KR101774900B1 - Preparing method of aromatic triazine derivatives for organic electroluminescent device - Google Patents

Preparing method of aromatic triazine derivatives for organic electroluminescent device Download PDF

Info

Publication number
KR101774900B1
KR101774900B1 KR1020150041476A KR20150041476A KR101774900B1 KR 101774900 B1 KR101774900 B1 KR 101774900B1 KR 1020150041476 A KR1020150041476 A KR 1020150041476A KR 20150041476 A KR20150041476 A KR 20150041476A KR 101774900 B1 KR101774900 B1 KR 101774900B1
Authority
KR
South Korea
Prior art keywords
organic electroluminescent
electroluminescent device
aromatic triazine
layer
formula
Prior art date
Application number
KR1020150041476A
Other languages
Korean (ko)
Other versions
KR20160114950A (en
Inventor
안경욱
김종남
왕규정
노동원
서난영
Original Assignee
(주)부흥산업사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)부흥산업사 filed Critical (주)부흥산업사
Priority to KR1020150041476A priority Critical patent/KR101774900B1/en
Publication of KR20160114950A publication Critical patent/KR20160114950A/en
Application granted granted Critical
Publication of KR101774900B1 publication Critical patent/KR101774900B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • C07D249/20Benzotriazoles with aryl radicals directly attached in position 2
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Abstract

본 발명은 신규의 유기 전계발광 소자용 방향족 트리아진 유도체의 제조방법에 관한 것으로, 좀 더 자세하게 설명하자면 유기 전계발광 소자의 정공주입 재료나 정공수송 재료 및 전자주입 재료로 사용 가능하고, 특히 전자수송 재료로 사용하기에 유용한 다음 [화학식 1]의 방향족 트리아진 유도체의 제조방법에 관한 것이다.
[ 화학식 1 ]

Figure 112017060989622-pat00016

상기 [화학식 1] 에서, 치환기 R1은 ‘퀴놀린’ 또는 ‘3-(나프탈렌-8-일)피리딘’이고, R2는 ‘9,10-디(나프탈렌-2-일)안트라센’ 또는 ‘9,10-디페닐안트라센’ 이다.The present invention relates to a novel process for producing an aromatic triazine derivative for an organic electroluminescent device, and more particularly, to a process for producing an aromatic triazine derivative for an organic electroluminescent device which can be used as a hole injecting material, a hole transporting material and an electron injecting material of an organic electroluminescent device, The present invention relates to a process for producing an aromatic triazine derivative represented by the following formula (1), which is useful for use as a material.
[Chemical Formula 1]
Figure 112017060989622-pat00016

The Formula 1 in the substituent R 1 is the "quinoline" or "3- (naphthalen-8-yl) pyridine", R 2 is, 9,10-di (naphthalene-2-yl) anthracene, "or" 9 , 10-diphenylanthracene ".

Description

유기 전계발광 소자용 방향족 트리아진 유도체의 제조방법{Preparing method of aromatic triazine derivatives for organic electroluminescent device}TECHNICAL FIELD The present invention relates to an aromatic triazine derivative for organic electroluminescent devices,

본 발명은 유기 전계발광 소자용 방향족 트리아진 유도체의 제조방법에 관한 것으로, 좀더 자세하게 설명하자면 유기 전계발광 소자의 정공주입 재료나 정공수송 재료 및 전자주입 재료로 사용 가능하고, 특히 전자수송 재료로 사용하기에 유용한 방향족 트리아진 유도체의 제조방법에 관한 것이다.The present invention relates to a process for producing an aromatic triazine derivative for an organic electroluminescent device, and more specifically, it can be used as a hole injecting material, a hole transporting material and an electron injecting material of an organic electroluminescent device, To a process for preparing an aromatic triazine derivative useful in the following.

유기 전계발광 소자(organic electroluminescent device)는 형광성 유기 화합물에 전류가 흐르면 빛을 내는 현상을 이용한 자체 발광형 소자로서, OLED (organic light emitting diode)나 유기 EL(organic electro luminescence) 이라고도 하며, 프렉시블(flexible)한 플라스틱 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 넓은 시야각, 고속 응답성, 고 콘트라스트(contrast) 등의 뛰어난 표시 성능을 갖고 있어서 평면 디스플레이용 소자로 각광받고 있다. BACKGROUND ART An organic electroluminescent device is a self-luminescent device that emits light when a current flows through a fluorescent organic compound. The organic electroluminescent device is also called an organic light emitting diode (OLED) or organic electroluminescence (EL) the device can be formed on a flexible plastic substrate and has excellent display performance such as a wide viewing angle, a high-speed response, and a high contrast, and has been attracting attention as a device for a flat display.

유기 전계발광 소자의 구조는 일반적으로 투명기판 위에 제1 전극(anode)과, 정공주입층, 정공수송층, 발광층, 전자주입층, 전자수송층 및 제2 전극(cathode) 등이 차례로 적층된 구조로 이루어진다. 그래서 상기 전자주입층과 정공주입층을 통해서 발광층으로 각각 전자(electron)와 정공(hole)을 주입하면, 이들 전자와 정공이 결합하여 엑시톤(exciton)을 생성하고, 상기 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 떨어지면서 발광을 한다. The structure of the organic electroluminescent device generally has a structure in which a first electrode (anode), a hole injecting layer, a hole transporting layer, a light emitting layer, an electron injecting layer, an electron transporting layer, and a second electrode are sequentially stacked on a transparent substrate . Therefore, when electrons and holes are injected into the light emitting layer through the electron injection layer and the hole injection layer, the electrons and the holes are combined with each other to generate excitons, and the excitons are excited ) To the ground state and emits light.

이처럼 유기 전계발광 소자는 다층 구조로 이루어져 있어서 각 층 사이의 계면 상태가 불안정하게 되면, 소자 내부에서 발생되는 열이나 전계 등으로 인해서 발광 성능에 악영향을 미칠 수 있고, 상기 발광층으로 정공이 공급되는 과정에서 각 계면 사이에 존재하는 에너지 장벽으로 인해 소자의 구동전압이 높아지는 문제가 발생할 수도 있다. If the interface state between the layers is unstable, the organic electroluminescent device may have a bad influence on the light emitting performance due to heat or an electric field generated inside the device. In addition, There may arise a problem that the driving voltage of the device is increased due to the energy barrier existing between each interface.

따라서, 유기 전계발광 소자의 성능을 향상시키기 위해서는 각 층 사이의 계면상태를 안정화시키고, 나아가 상기 발광층으로 정공을 주입하는 과정에서 에너지 장벽이 되는 요인을 최소화하는 것이 중요하다. 또한, 유기 전계발광 소자를 구성하는 각 층들은 주로 증착 방법으로 도포하기 때문에 고온 증착에도 견딜 수 있도록 내열성이 강한 재료를 사용해야 하고, 특히 상기 정공수송층으로 유리전이온도가 낮은 재료를 사용할 경우, 소자 구동시 박막 표면의 균일도가 불량하게 되어 소자의 수명이 단축시키는 원인이 된다. Therefore, in order to improve the performance of the organic electroluminescent device, it is important to stabilize the interfacial state between the respective layers, and to minimize the factors that become energy barriers in the process of injecting holes into the light emitting layer. Since each layer constituting the organic electroluminescent device is mainly applied by a vapor deposition method, it is necessary to use a material having high heat resistance so as to withstand high temperature deposition. In particular, when a material having a low glass transition temperature is used as the hole transport layer, The uniformity of the surface of the thin film becomes poor, thereby shortening the lifetime of the device.

이러한 기술적 요구에 따라 종래에도 전자와 정공의 주입 및 이동 능력이 우수하여 유기 전계발광 소자의 성능을 향상시킬 수 있는 물성을 갖는 새로운 유기화합물을 개발하려는 노력들이 시도되어 왔다. Efforts have been made to develop new organic compounds having physical properties capable of improving the performance of organic electroluminescent devices because of their excellent injection and migration ability of electrons and holes according to the technical requirements.

예컨대, 일본특허 제4,476,594호(2010.06.09.)에는, 수송층이 N,N,N',N'-테트라페닐-4,4'-디아미노페닐,N,N'-디페닐-N,N'-지(3-메틸페닐)-4,4'-디아미노비페닐 등의 유기 화합물만으로 이루어진 유기 EL 소자가 제안되어 있고, 한국특허 제10-0806812호(2008.02.18.)에는 양극과 음극 사이에 발광층, 전자수송층을 포함하는 적층 구조를 가지되, 상기 전자 수송층은 상기 발광층에 인접한 제1 층과 상기 음극에 인접한 제2 층을 포함하고 적어도 둘 이상의 물질이 혼합된 혼합물로 이루어지는 유기 EL 소자가 소개되어 있다. 또한 한국특허 제10-0672301호(2007.01.16.)에는 유기 발광전계 하에서 전자 수송특성과 정공 수송특성을 갖는 새로운 유기발광 물질을 제공하여 이를 전자수송층과 정공수송층 및 발광층으로 이용하는 고휘도 고효율의 유기전계 발광소자를 소개하고 있다.For example, Japanese Patent No. 4,476,594 (Jun. 2010) discloses that the transport layer is made of N, N, N ', N'-tetraphenyl-4,4'- diaminophenyl, N, N'- (3-methylphenyl) -4,4'-diaminobiphenyl, and Korean Patent No. 10-0806812 (Feb. 18, 2008) discloses an organic EL device comprising only an organic compound such as An organic EL device having a laminated structure including a light emitting layer and an electron transporting layer, wherein the electron transporting layer comprises a mixture of a first layer adjacent to the light emitting layer and a second layer adjacent to the cathode, Is introduced. Korean Patent No. 10-0672301 (Jan. 16, 2007) discloses a novel organic luminescent material having an electron transporting property and a hole transporting property under an organic luminescent electric field, which is used as an electron transporting layer, a hole transporting layer and a luminescent layer, Emitting device.

그러나, 상기 일본특허 제4,476,594호에 소개된 소자는 도전성은 있으나 전기 저항이 만족할 만한 수준에 이르지 못하는 문제가 있고, 상기 한국특허 10-0806812호와 같이 다층구조로 제작되는 소자는 재료의 종류나 적층 구조 및 표면처리 조건 등에 따라 성능에 변화를 가져오기 때문에 일관성 있는 소자의 제조에 어려움이 있으며, 상기 한국특허 제10-0672301호는 소자를 제조하는 증착 공정에서 이민화합물의 열 불안정성으로 인해 원하는 함량을 유지하기 힘든 단점이 있다.
However, the device disclosed in the above-mentioned Japanese Patent No. 4,476,594 has a problem in that the electric resistance is not satisfactory even though it is conductive. The device manufactured in the multi-layer structure as in the Korean Patent No. 10-0806812, Structure and surface treatment conditions, it is difficult to manufacture a consistent device. The Korean Patent No. 10-0672301 discloses that the desired content of the amorphous compound due to heat instability in the deposition process for manufacturing the device It is difficult to maintain.

일본특허 제4,476,594호(2010.06.09)Japanese Patent No. 4,476,594 (June 6, 2010) 한국특허 제10-0806812호(2008.02.18)Korean Patent No. 10-0806812 (Feb. 18, 2008) 한국특허 제10-0672301호(2007.01.16)Korean Patent No. 10-0672301 (January 16, 2007)

이와 같이 종래에도 유기 전계발광 소자의 효율을 향상시키기 위하여 다양한 기능을 가진 화합물을 혼재하여 사용해 오고 있으나, 이로 인한 발광물질 및 각 유기 화합물간의 상호작용으로 소자의 발광효율과 수명을 높이는데 한계가 있기 때문에 호스트 재료, 발광도핑 재료, 전하주입 및 수송 재료 등으로 사용 가능한 새로운 유기 화합물의 개발이 계속 요구되고 있다.As described above, in order to improve the efficiency of the organic electroluminescent device, a variety of compounds having various functions have been mixed and used. However, due to the interaction between the luminescent material and each organic compound, the luminous efficiency and lifetime of the device are limited Therefore, the development of new organic compounds that can be used as host materials, light-emitting doping materials, charge injecting and transporting materials, and the like, has continued to be demanded.

이에 본 발명이 해결하고자 하는 과제는, 유기 전계발광 소자용으로 사용되는 유기 화합물에 있어서, 주어진 전기장(V/cm)에서 정공 혹은 전자의 이동도(cm2/V.s)를 향상시켜 주고, 또한 전자 및 정공을 주입하는 과정에서 발생하는 에너지 장벽을 최소화 하며, 나아가 각 층 사이의 계면을 안정화 시켜서 결과적으로 유기 전계발광 소자의 발광 효율을 향상시키고 수명을 연장시킬 수 있는 새로운 방향족 트리아진 유도체의 제조방법을 제공하는 것이다Accordingly, it is an object of the present invention to provide an organic compound used for an organic electroluminescent device which improves the mobility (cm 2 / Vs) of holes or electrons in a given electric field (V / cm) And a method for producing a novel aromatic triazine derivative capable of enhancing the luminous efficiency of the organic electroluminescent device and prolonging the lifetime by stabilizing the interface between the layers and thereby minimizing the energy barrier generated in the process of injecting holes and holes to provide a

또한 본 발명이 해결하고자 하는 과제는, 상기 방향족 트리아진 유도체를 제조하는데 유용한 중간체를 제공하는 것이다.
Another object of the present invention is to provide an intermediate useful for preparing the aromatic triazine derivative.

본 발명에 따른 유기 전계발광 소자용 방향족 트리아진 유도체는 다음 [화학식 1]로 표시되는 것을 특징으로 한다.The aromatic triazine derivative for organic electroluminescent device according to the present invention is characterized by being represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112015029206111-pat00001
Figure 112015029206111-pat00001

상기 [화학식 1] 에서, 치환기 R1은 ‘퀴놀린’ 또는 ‘3-(나프탈렌-8-일)피리딘’이고, R2는 ‘9,10-디(나프탈렌-2-일)안트라센’ 또는 ‘9,10-디페닐안트라센’ 이다.The Formula 1 in the substituent R 1 is the "quinoline" or "3- (naphthalen-8-yl) pyridine", R 2 is, 9,10-di (naphthalene-2-yl) anthracene, "or" 9 , 10-diphenylanthracene ".

또한 본 발명에 따른 유기 전계발광 소자용 방향족 트리아진 유도체의 제조 중간체는 다음 [화학식 2]로 표시되는 것을 특징으로 한다.The production intermediate of an aromatic triazine derivative for an organic electroluminescent device according to the present invention is characterized by being represented by the following formula (2).

[화학식 2](2)

Figure 112015029206111-pat00002
Figure 112015029206111-pat00002

상기 [화학식 2]에서, 치환기 X1과 X2는 각각 불소, 염소, 브롬, 요오드 중 어느 하나를 나타낸다.
In the above formula (2), the substituents X 1 and X 2 each represent any one of fluorine, chlorine, bromine and iodine.

본 발명에 따른 상기 [화학식 1]의 방향족 트리아민 유도체는 정공 억제기능을 하는 피리딘(pyridine)과 전자 수송기능을 갖는 트리아진(triazine)을 함유하고 있어서, 유기 전계발광 소자의 전자 주입재료나 전자 수송재료로 유용하게 사용될 수 있다. The aromatic triamine derivative of the formula (1) according to the present invention contains pyridine having a hole-blocking function and triazine having an electron-transporting function, And can be usefully used as a transportation material.

특히, 상기 방향족 트리아진 유도체는 음극과 비슷한 LUMO(lowest unoccupied molecular orbital)를 가지기 때문에 음극으로부터 전자의 주입을 용이하게 하며, 구동전압을 감소시키고, 양자효율 및 전력효율을 향상시켜서 결과적으로 유기 전계발광 소자의 성능 및 수명을 향상시키는 효과가 있다. In particular, since the aromatic triazine derivative has LUMO (lowest unoccupied molecular orbital) similar to that of a cathode, injection of electrons from the cathode is facilitated, driving voltage is reduced, quantum efficiency and power efficiency are improved, Thereby improving the performance and lifetime of the device.

또한, 상기 [화학식 2] 화합물은 상기 [화학식 1]의 방향족 트리아민 유도체의 제조 중간체로서 매우 유용하다.
The compound of formula (2) is very useful as an intermediate for preparation of aromatic triamine derivatives of formula (1).

도 1은 종래의 전자수송층 재료를 사용한 전계발광 소자에 대하여 인가전압(V; X축)에 따른 전류밀도(mA/cm; Y축)의 변화를 나타낸 그래프,
도 2는 본 발명의 방향족 트리아진 유도체를 전자수송층으로 사용한 전계발광 소자에 대하여 인가전압(V; X축)에 따른 전류밀도(mA/cm; Y축)의 변화를 나타낸 그래프,
도 3은 종래의 전자수송층 재료를 사용한 전계발광 소자에 대하여 전류밀도(mA/cm; X축)에 따른 발광 휘도(nit, cd/cm; Y축)의 변화를 나타낸 그래프,
도 4는 본 발명의 방향족 트리아진 유도체를 전자수송층으로 사용한 전계발광 소자에 대하여 전류밀도(mA/cm; X축)에 따른 발광 휘도(nit, cd/cm; Y축)의 변화를 나타낸 그래프이다.
1 is a graph showing a change in current density (mA / cm 2) along an applied voltage (X axis) with respect to an electroluminescent device using a conventional electron transport layer material,
2 is a graph showing a change in current density (mA / cm 2) along an applied voltage (X axis) with respect to an electroluminescent device using an aromatic triazine derivative of the present invention as an electron transport layer,
3 is a graph showing a change in emission luminance (nit, cd / cm, Y axis) according to current density (mA / cm; X axis) of an electroluminescent device using a conventional electron transporting layer material,
4 is a graph showing changes in emission luminance (nit, cd / cm, Y axis) according to current density (mA / cm; X axis) of an electroluminescent device using an aromatic triazine derivative of the present invention as an electron transport layer .

본 발명에 따른 상기 [화학식 1]의 방향족 트리아진 유도체에 대한 구체적인 예를 들어보면 다음 [화학식 1-1] 내지 [화학식 1-6]과 같다.
Specific examples of the aromatic triazine derivatives of the formula (1) according to the present invention are as shown in the following formulas (1-1) to (1-6).

3-(2-(4-(9,10-3- (2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole -6-일)퀴놀린-6-yl) quinoline

[화학식 1-1][Formula 1-1]

Figure 112015031393346-pat00021

Figure 112015031393346-pat00021

4-(2-(4-(9,10-4- (2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일)-3 days) 페닐Phenyl )-(2H-) - (2H- 벤조Benzo [d] [1,2,3] 트리아졸-6-일)이소퀴놀린[d] [1,2,3] triazol-6-yl) isoquinoline

[화학식 1-2][Formula 1-2]

Figure 112015031393346-pat00022

Figure 112015031393346-pat00022

2-(4-(9,10-2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일-5-(1-피리딘-3-일)나프탈렌-4-일)-2H-Yl) -5- (1-pyridin-3-yl) naphthalen-4-yl) 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole

[화학식 1-3][Formula 1-3]

Figure 112015031393346-pat00023

Figure 112015031393346-pat00023

3-(2-(4-(9,10-3- (2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole -6-일)퀴놀린-6-yl) quinoline

[화학식 1-4][Formula 1-4]

Figure 112015031393346-pat00024

Figure 112015031393346-pat00024

4-(2-(4-(9,10-4- (2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole -6-일)이소퀴놀린-6-yl) isoquinoline

[화학식 1-5][Formula 1-5]

Figure 112015031393346-pat00025

Figure 112015031393346-pat00025

2-(4-(9,10-2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-5-(1-(피리딘-3-일)나프탈렌-4-일)-2H-Yl) -5- (1- (pyridin-3-yl) naphthalen-4-yl) 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole

[화학식 1-6][Chemical Formula 1-6]

Figure 112015029206111-pat00008

Figure 112015029206111-pat00008

한편, 상기 [화학식 2] 화합물은 신규한 물질로서 상기 [화학식 1]의 방향족 트리아진 유도체를 제조하는데 매우 유용한 중간체 화합물이다. 이하, 상기 [화학식 2] 화합물의 제조예 및 그로부터 유도되는 다른 중간체들에 대한 제조예를 설명한다.
On the other hand, the compound of the formula (2) is an intermediate compound which is very useful for preparing the aromatic triazine derivative of the formula (1) as a novel substance. Hereinafter, preparation examples of the compound of formula (2) and preparation examples of other intermediates derived therefrom will be described.

제조예Manufacturing example A) 중간체 2-(4- A) Intermediate 2- (4- 브로모페놀Bromophenol )-5-) -5- 클로로Chloro -2H-벤조[d][1,2,3]Benzo [d] < RTI ID = 0.0 > [1,2,3] 트리아졸Triazole (( PMPM -1)의 제조-1)

Figure 112015029206111-pat00009
Figure 112015029206111-pat00009

(PM-1)                                                         (PM-1)

250ml 삼구 플라스크에 에탄올 500ml를 넣고, 4-브로모 페닐히드라진 염산 150g(670mmol)과 초산나트륨 삼수화물 70g(854mmol)을 넣어 10분간 교반 한 후, 4-클로로-2-플루오로 니트로벤젠 50g(285mmol)을 넣고 20시간 환류 교반한다. 500 ml of ethanol was placed in a 250 ml three-necked flask, and 150 g (670 mmol) of 4-bromophenylhydrazine hydrochloride and 70 g (854 mmol) of sodium triacetate were added thereto and stirred for 10 minutes. Then, 50 g ) And the mixture was refluxed with stirring for 20 hours.

반응 종료 후 5℃로 냉각하고, 생성된 슬러리를 여과하면서 2L의 물과 1.2L 에탄올로 세척한 후, 60℃에서 진공 건조하여 2-(4-브로모페놀)-5-클로로-2H-벤조[d][1,2,3]트리아졸(PM-1) 66.7g(순도 99.2%, 수율73%)을 얻는다.After completion of the reaction, the reaction mixture was cooled to 5 캜, and the resulting slurry was filtered, washed with 2 L of water and 1.2 L of ethanol, and vacuum dried at 60 캜 to give 2- (4-bromophenol) (purity 99.2%, yield 73%) of [d] [1,2,3] triazole (PM-1).

[ HPLC 분석조건 ][HPLC analysis conditions]

(1) 칼럼 : inersil ODS-SP, 4.6ID x 250mm(GL Science inc)(1) Column: inersil ODS-SP, 4.6 ID x 250 mm (GL Science inc)

(2) 용매 : 메탄올:물=85:15(2) Solvent: methanol: water = 85: 15

(3) Flow rate : 1.0ml/min(3) Flow rate: 1.0 ml / min

(4) Detector(UV) : 254nm
(4) Detector (UV): 254 nm

제조예Manufacturing example B) 중간체 5- B) Intermediate 5- 클로로Chloro -2-(9,10--2- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-3 days) 페닐Phenyl -2H--2H- 벤조Benzo [d] [1,2,3] 트리아졸([d] [1,2,3] triazole ( PMPM -2)의 제조-2)

Figure 112015029206111-pat00010
Figure 112015029206111-pat00010

(PM-2)(PM-2)

250ml 삼구 플라스크에 정제수 34ml, 탄산칼륨 8.06g(58mmol), 상기 PM-1 화합물 6g(19.4mmol), (9,10-디페닐안트라센-2-일)보론산 8.73g(18.4mmol), 디옥산 60ml와 함께 넣고 질소를 충진한 후 80℃에서 30분간 환류하고 50℃로 냉각한다. 테트라키스(트리페닐포스핀)팔라듐(0)[Pd(pph3)4] 0.76g(0.58mmol)을 넣고, 다시 80℃로 가열하여 2시간 동안 환류한 다음 반응을 종결한다.To a 250 ml three-necked flask were added 34 ml of purified water, 8.06 g (58 mmol) of potassium carbonate, 6 g (19.4 mmol) of the PM-1 compound, 8.73 g (18.4 mmol) of (9,10- diphenylanthracene- And the mixture is refluxed at 80 ° C for 30 minutes and cooled to 50 ° C. 0.76 g (0.58 mmol) of tetrakis (triphenylphosphine) palladium (0) [Pd (pph3) 4] was added and the mixture was heated to 80 ° C and refluxed for 2 hours.

반응용매를 진공에서 농축하고 다시 톨루엔 600ml 추가하여 완전 용해하고, 서서히 온도를 내리면서 결정을 석출시킨 다음, 5℃ 까지 냉각하고 여과하여 5-클로로-2-(9,10-디페닐안트라센-3-일)페닐)-2H-벤조[d][1,2,3]트리아졸(PM-2) 6.5g(수율60%, 순도99.3%)을 얻는다.The reaction solvent was concentrated in vacuo and 600 ml of toluene was added again to dissolve completely. The crystals were precipitated by gradually lowering the temperature, then cooled to 5 캜 and filtered to obtain 5-chloro-2- (9,10-diphenylanthracene- (Yield: 60%, purity: 99.3%) was obtained in the same manner as in Example 1,

1 HNMR(400MHZ,CDCl3):δ 8.0(s,1H), 7.9~7.8(m,4H), 7.7~7.6(m,3H), 1 H NMR (400 MHz, CDCl 3 ):? 8.0 (s, 1H), 7.9-7.8 (m, 4H), 7.7-7.6

7.5~7.4(m,10H), 7.3~7.2(m,10H)
7.5 to 7.4 (m, 10H), 7.3 to 7.2 (m, 10H)

제조예Manufacturing example C) 중간체 2-(1-(4,4,5,5- C) Intermediate 2- (1- (4,4,5,5- 테트라메틸Tetramethyl -1,3,2--1,3,2- 디옥사보란Dioxaborane -2-일)나프탈렌-4-일)피리딘(Yl) naphthalen-4-yl) pyridine ( PMPM -3)의 제조 -3)

Figure 112015029206111-pat00011
Figure 112015029206111-pat00011

(PM-3)
(PM-3)

C-1) 4-(피리딘-3-일)-1-아미노 나프탈렌의 제조C-1) Preparation of 4- (pyridin-3-yl) -1-aminonaphthalene

250ml 삼구플라스크에 정제수 36ml, 1,4-디옥산 54ml를 넣고, 3-피리딘 보론산 5g(40mmol)과 1-아미노-4-브로모 나프탈렌 9.03g(40mmmol) 및 탄산칼륨 16.86g(122mmol)을 넣은 다음, 수조를 이용하여 80℃로 가열하고, 30분간 환류하여 50℃로 냉각한다.(40 mmol) of 3-pyridine boronic acid, 9.03 g (40 mmmol) of 1-amino-4-bromonaphthalene, and 16.86 g (122 mmol) of potassium carbonate were added to a 250 ml three-necked flask containing 36 ml of purified water and 54 ml of 1,4- And the mixture is heated to 80 DEG C using a water bath, refluxed for 30 minutes, and cooled to 50 DEG C. [

테트라키스(트리페닐포스핀)팔라듐(0)[Pd(pph3)4] 1.4g(1.2mmol)을 넣어 다시 5시간 환류시키면서 교반하고, 박막크로마토그라피로 반응이 완결된 것을 확인한 후, 용매를 감압 농축시켜서 4-(피리딘-3-일)-1-아미노 나프탈렌 7.07g(수율 78.5%, 순도 93.2%)을 얻는다.
1.4 g (1.2 mmol) of tetrakis (triphenylphosphine) palladium (0) [Pd (pph3) 4] were added and stirred for 5 hours while refluxing. After confirming that the reaction was completed by thin layer chromatography, Concentrated to obtain 7.07 g (yield 78.5%, purity 93.2%) of 4- (pyridin-3-yl) -1-aminonaphthalene.

C-2) 3-(1-C-2) 3- (1- 아이오도Iodo 나프탈렌-4-일)피리딘의 제조 Naphthalen-4-yl) pyridine

빛을 차단할 수 있는 갈색 삼구 플라스크에 상기 4-(피리딘-3-일)-1-아미노 나프탈렌 4.06g(18mmol)을 넣고, 물 13g을 황산 6.53g과 함께 실온에서 1시간 교반한 후 아질산나트륨 1.53g(22mmol)을 넣고 2시간 교반한다. 요오드화칼륨 7.65g(46mmol)을 넣고 상온에서 5시간 교반한 후 톨루엔으로 추출하고 무수황산마그네슘으로 건조하고 감압 농축하여 3-(1-아이오도 나프탈렌-4-일)피리딘 3.41g(수율 50%)을 얻는다.
4.0 g (18 mmol) of 4- (pyridin-3-yl) -1-aminonaphthalene was added to a three-necked flask capable of blocking light, and 13 g of water was stirred together with 6.53 g of sulfuric acid at room temperature for 1 hour. g (22 mmol) were added thereto and stirred for 2 hours. The mixture was stirred at room temperature for 5 hours, extracted with toluene, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain 3.41 g (yield: 50%) of 3- (1-iodonaphthalen-4-yl) .

C-3) 2-(1-(4,4,5,5-C-3) 2- (1- (4,4,5,5- 테트라메틸Tetramethyl -1,3,2--1,3,2- 디옥사보란Dioxaborane -2-일)나프탈렌-4-일)피리딘의 제조Yl) naphthalen-4-yl) pyridine

250ml 삼구 플라스크에 상기 3-(1-아이오도나프탈렌-4-일)피리딘 4g(18.4mmol)을 물 13g 및 황산 6.66g과 함께 넣고, 상온에서 약 1시간 동안 교반한 후 아질산나트륨(NaNO2) 1.53g(22mmol)과 Pin2B2(비스(피나콜라토)디보론) 0.15g(0.6mmol)을 넣고 5℃에서 5시간 반응시킨다. 반응액을 톨루엔으로 추출하고 건조 후 농축하여 2-(1-(4,4,5,5-테트라메틸-1,3,2-디옥사보란-2-일)나프탈렌-4-일)피리딘(PM-3) 3.8g(수율 88%)을 얻는다.
4 g (18.4 mmol) of the above 3- (1-iodonaphthalen-4-yl) pyridine was placed in a 250 ml three-necked flask together with 13 g of water and 6.66 g of sulfuric acid. The mixture was stirred at room temperature for about 1 hour and then sodium nitrite (NaNO 2 ) And 0.15 g (0.6 mmol) of Pin2B2 (bis (pinacolato) diboron) were added to the reaction mixture and reacted at 5 ° C for 5 hours. The reaction solution was extracted with toluene, dried and concentrated to give 2- (1- (4,4,5,5-tetramethyl-1,3,2-dioxaboran-2-yl) PM-3) (yield: 88%).

제조예Manufacturing example D) 중간체 5- D) Intermediate 5- 클로로Chloro -2-(4-(9,10--2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일)페Yl) Neal )-2H-벤조[d][1,2,3]) -2H-benzo [d] [1, 2,3] 트리아졸Triazole (( PMPM -4)의 제조-4)

Figure 112015029206111-pat00012
Figure 112015029206111-pat00012

(PM-4)    (PM-4)

250ml 반응기에 정제수 34ml, K2CO3 8.06g, 상기 PM-1 화합물 6g, 9,10-디(나프탈렌-3-일)안트라센-2-일-2-보론산 11.07g와 1.4-디옥산e 60ml를 투입하고, 80℃에서 30분 환류 교반하여 50℃로 냉각한 다음, Pd(pph3)4 0.67g 투입하고 2시간 환류 교반한다.Purified water to 250ml reactor 34ml, K 2 CO 3 6,0 g of the above PM-1 compound and 11.07 g of 9,10-di (naphthalene-3-yl) anthracen-2-yl-2-boronic acid and 60 ml of 1,4- After refluxing and stirring, the mixture was cooled to 50 캜, 0.67 g of Pd (pph 3 ) 4 was added, and the mixture was refluxed and stirred for 2 hours.

반응액을 농축하고 톨루엔 500ml 투입하여 80℃에서 용해시킨 후 SiO2 60g을 투입하여 교반 후 여과하고 농축한다. 농축 잔사에 톨루엔 600ml을 투입하고 용해한 다음 냉각하여 결정된 고체를 여과하고 60℃에서 진공 건조하여 5-클로로-2-(4-(9,10-디(나프탈렌-3-일)안트라센-3-일)페닐)-2H-벤조[d][1,2,3]트리아졸(PM-4) 8.83g(수율: 67%, 순도: 99.6%)을 얻는다.After the reaction mixture was concentrated and 500ml toluene added and dissolved in 80 ℃ SiO 2 And the mixture is stirred, filtered and concentrated. To the concentrated residue, 600 ml of toluene was added and dissolved, followed by cooling. The solid thus precipitated was filtered and dried in vacuo at 60 ° C to give 5-chloro-2- (4- (9,10- ) Phenyl) -2H-benzo [d] [1,2,3] triazole (PM-4) (yield: 67%, purity: 99.6%).

1 HNMR(400MHZ,CDCl3):δ 8.0(s,1H), 7.9~7.8(m,4H), 7.7~7.6(m,3H), 1 H NMR (400 MHz, CDCl 3 ):? 8.0 (s, 1H), 7.9-7.8 (m, 4H), 7.7-7.6

7.5~7.4(m,10H), 7.3~7.2(m,10H)7.5 to 7.4 (m, 10H), 7.3 to 7.2 (m, 10H)

[ HPLC 분석조건 ][HPLC analysis conditions]

(1) Column lnertsil ODS-SP, 4.6 I.D X250mm(GL Sciences inc)(1) Column lnertsil ODS-SP, 4.6 I.D X 250 mm (GL Sciences inc)

(2) Mobile phase Me-OH/THF=95/5(2) Mobile phase Me-OH / THF = 95/5

(3) Flow rate 1.0ml/min(3) Flow rate 1.0 ml / min

(4) Column temp 40℃(4) Column temp 40 ° C

(5) Detector (UV) 254nm
(5) Detector (UV) 254 nm

다음으로 본 발명의 바람직한 실시예로서 상기 [화학식 1-1] 내지 [화학식 1-6] 의 제조방법을 설명한다.
Next, as a preferred embodiment of the present invention, the production method of the above-mentioned [1-1] to [1-6] will be explained.

실시예Example 1) 3-(2-(4-(9,10- 1) 3- (2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- Ben 조[article[ d][1,2,3]트리아졸d] [1,2,3] triazole -6-일)퀴놀린[화학식 1-1]의 제조-6-yl) quinoline [Preparation of 1-1]

250ml 반응기에 상기 PM-4 화합물 3.3g, 인산칼륨 2.12g, 퀴놀린-3-일-3-보론산 1.03g, 정제수 8.25g와 1,4-디옥산 82.5ml을 투입하고, 반응액을 30분간 환류 교반한다. 반응이 완료되면, 50℃로 냉각하고 트리사이클로헥실포스핀 3 0.89g와 Pd2(dba)3 0.14g을 투입 교반한 다음, 철야 환류 교반하고 상온으로 냉각한다. 3.3 g of the PM-4 compound, 2.12 g of potassium phosphate, 1.03 g of quinoline-3-yl-3-boronic acid, 8.25 g of purified water and 82.5 ml of 1,4-dioxane were fed into a 250 ml reactor, Followed by reflux stirring. After completion of the reaction, the mixture was cooled to 50 ° C, 0.89 g of tricyclohexylphosphine 3 and 0.14 g of Pd 2 (dba) 3 were added and stirred, and then stirred at reflux overnight and cooled to room temperature.

반응액을 농축하고 톨루엔 100ml와 SiO2 20g을 투입 교반한 다음, 여과하여 톨루엔 300ml와 초산에칠 800ml로 세척한다. 여액을 농축하고 실리카겔 컬럼한 후 메탄올 용매에서 재결정하고, 40℃에서 진공 건조한다.The reaction solution was concentrated, 100 ml of toluene and 100 ml of SiO 2 20 g are added and stirred, and then the mixture is filtered, and the mixture is washed with 300 ml of toluene and 800 ml of acetic acid. The filtrate is concentrated and silica gel column is followed by recrystallization in a methanol solvent and vacuum drying at 40 ° C.

1 HNMR(400MHZ,CDCl3):δ9.0(s,1H), 8.3(m,2H), 8.0~7.8(m,5H), 1 H NMR (400MHZ, CDCl 3 ): δ9.0 (s, 1H), 8.3 (m, 2H), 8.0 ~ 7.8 (m, 5H),

7.7~7.5(m,12H), 7.4~7.2(m,14H)
7.7-7.5 (m, 12H), 7.4-7.2 (m, 14H)

실시예Example 2) 4-(2-(4-(9,10- 2) 4- (2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일)-3 days) 페닐Phenyl )-(2H-) - (2H- Ben 조[article[ d][1,2,3]트리아졸d] [1,2,3] triazole -6-일)이소퀴놀린[화학식 1-2]의 제조-6-yl) isoquinoline [Chemical Formula 1-2]

250ml 반응기에 상기 PM-4 화합물 3.3g, 인산칼륨 2.12g, 이소퀴놀린-4-일-4-보론산 1.03g, 정제수 8.25g, 1.4-디옥산 82.5ml를 투입하고, 반응액을 30분간 환류 교반한다. 반응이 완료되면, 50℃ 냉각하고 트리사이클로 헥실포스핀 3 0.89g와 Pd2(dba)3 0.14g을 투입하고 교반한다. 3.3 g of the PM-4 compound, 2.12 g of potassium phosphate, 1.03 g of isoquinolin-4-yl-4-boronic acid, 8.25 g of purified water and 82.5 ml of 1,4-dioxane were introduced into a 250 ml reactor, Lt; / RTI > When the reaction is completed, the mixture is cooled to 50 ° C, 0.89 g of tricyclohexylphosphine 3 and 0.14 g of Pd 2 (dba) 3 are added and stirred.

철야 환류 교반한 후 상온으로 냉각하고, 반응액을 농축하여 톨루엔 100ml 와 SiO2 20g을 투입 교반한 다음, 여과 후 톨루엔 300ml와 초산에칠 800ml로 세척한다. 여액을 농축하고 실리카겔 컬럼한 다음, 메탄올 용매에서 재결정하고, 40℃에서 진공 건조 시킨다.After stirring at reflux overnight, the reaction mixture was cooled to room temperature, and 100 ml of toluene and 150 ml of SiO 2 20 g is added and stirred, and after filtration, it is washed with 300 ml of toluene and 800 ml of acetic acid. The filtrate was concentrated, and the residue was subjected to silica gel column chromatography, recrystallization in a methanol solvent, and vacuum drying at 40 ° C.

1 HNMR(400MHZ,CDCl3):δ 9.1(s,1H), 8.7(s,1H), 8.2(s,1H), 8.0~7.8(m,5H), 1 H NMR (400MHZ, CDCl 3 ): δ 9.1 (s, 1H), 8.7 (s, 1H), 8.2 (s, 1H), 8.0 ~ 7.8 (m, 5H),

7.7~7.5(m,12H), 7.4~7.2(m,14H)
7.7-7.5 (m, 12H), 7.4-7.2 (m, 14H)

실시예Example 3) 2-(4-(9,10- 3) 2- (4- (9,10- 디(나프탈렌-3-일)안트라센Di (naphthalene-3-yl) anthracene -3-일-5-(1-피리딘-3-일)나프탈렌-4-일)-2H-Yl) -5- (1-pyridin-3-yl) naphthalen-4-yl) 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole [화학식 1-3]의 제조Preparation of [Formula 1-3]

250ml 반응기에 상기 PM-4 화합물 3.3g, K3PO4 2.12g, 상기 PM-3 화합물 1.95g, 정제수 8.25g와 1.4-디옥산 82.5ml 투입하고, 반응액을 30분간 환류 교반한다. 반응이 완료되면, 50℃로 냉각하고, 트리사이클로헥실포스핀 3 0.89g 와 Pd2(dba)3 0.14g을 투입한 후, 철야 환류 교반하고 상온으로 냉각한다. 반응액을 농축하고 톨루엔 100ml와 SiO2 20g을 투입 교반한다. 여과 후 톨루엔 300ml와 초산에칠 800ml로 세척하고, 여액을 농축하여 실리카겔 컬럼으로 정제한다. Wherein a 250ml reactor PM-4 compound 3.3g, K 3 PO 4 2.15 g of the above PM-3 compound, 8.25 g of purified water and 82.5 ml of 1.4-dioxane, and the reaction solution is refluxed for 30 minutes. When the reaction is completed, the mixture is cooled to 50 ° C, 0.89 g of tricyclohexylphosphine 3 and 0.14 g of Pd 2 (dba) 3 are added, and the mixture is stirred at reflux at night and cooled to room temperature. The reaction solution was concentrated, 100 ml of toluene and 100 ml of SiO 2 20 g is added and stirred. After filtration, the filtrate is washed with 300 ml of toluene and 800 ml of acetic acid, and the filtrate is concentrated and purified by silica gel column.

1 HNMR(400MHZ,CDCl3):δ 8.8(m,1H), 8.5(m,1H), 8.2(s,1H), 8.0~7.9(m,5H), 1 H NMR (400MHZ, CDCl 3 ): δ 8.8 (m, 1H), 8.5 (m, 1H), 8.2 (s, 1H), 8.0 ~ 7.9 (m, 5H),

7.7~7.5(m,14H), 7.4~7.2(m,16H)
7.7-7.5 (m, 14H), 7.4-7.2 (m, 16H)

실시예Example 4) 3-(2-(4-(9,10- 4) 3- (2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- 벤조[d][1,2,3]트리Benzo [d] [1,2,3] tri 아졸-6-일)퀴놀린[화학식 1-4]의 제조Azol-6-yl) quinoline [Chemical Formula 1-4]

250ml 반응기에 상기 PM-2 화합물 2.8g, 인산칼륨 2.12g, 퀴놀린-3-일-3-보론산 1.03g, 정제수 7g와 1.4-디옥산 70g 투입하고, 30분간 환류 교반한다. 50℃로 냉각하고 트리사이클로헥실포스핀 0.89g 와 Pd2(dba)3 0.14g을 투입한 다음, 철야로 환류 교반한다. 상온으로 냉각하여 농축하고, 톨루엔 100ml 투입하여 용해한 다음, SiO2 20g을 투입하여 교반한다. 상온에서 여과하고 농축 후 실리카겔 컬럼 한다.2.8 g of the PM-2 compound, 2.12 g of potassium phosphate, 1.03 g of quinolin-3-yl-3-boronic acid, 7 g of purified water and 70 g of 1.4-dioxane are introduced into a 250 ml reactor and stirred under reflux for 30 minutes. After cooling to 50 ° C, 0.89 g of tricyclohexylphosphine and 0.14 g of Pd 2 (dba) 3 were added, followed by reflux stirring at night. After cooling to room temperature, the mixture is concentrated, and 100 ml of toluene is added to dissolve it. Then, 20 g of SiO 2 is added and stirred. Filter at room temperature, concentrate and column with silica gel.

1 HNMR(400MHZ,CDCl3):δ 9.0(s,1H), 8.2(m,2H), 8.0~7.8(m,3H), 1 H NMR (400MHZ, CDCl 3 ): δ 9.0 (s, 1H), 8.2 (m, 2H), 8.0 ~ 7.8 (m, 3H),

7.7~7.5(m,6H), 7.4~7.2(m,18H)
7.7-7.5 (m, 6H), 7.4-7.2 (m, 18H)

실시예Example 5) 4-(2-(4-(9,10- 5) 4- (2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-3 days) 페닐Phenyl )-2H-) -2H- 벤조[d][1,2,3]트리Benzo [d] [1,2,3] tri 아졸-6-일)이소퀴놀린[화학식 1-5]의 제조Azol-6-yl) isoquinoline [Formula 1-5]

250ml 반응기에 상기 PM-2 화합물 2.8g, K3PO4 2.12g, 이소퀴놀린-4-일-4-보론산 1.03g, 정제수 7g,1.4-디옥산 70ml 투입하고, 30분간 환류 교반한다. 50℃로 냉각하고 트리사이클로 헥실포스핀 0.89g와 Pd2(dba)3 0.14g을 투입 교반한 다음, 철야 환류 교반한다. 상온 냉각하고 농축한 다음, 톨루엔 100ml 투입하여 용해하고 SiO2 20g을 투입 교반한다. 여과하고 농축하여 실리카겔 컬럼한 다음, 진공 건조한다(수득량 : 0.46g, 수율 : 14.2%, 순도 : 91.0%)Wherein a 250ml reactor PM-2 compound 2.8g, K 3 PO 4 1.03 g of isoquinolin-4-yl-4-boronic acid, 7 g of purified water and 70 ml of 1,4-dioxane were added and stirred at reflux for 30 minutes. After cooling to 50 ° C, 0.89 g of tricyclohexylphosphine and 0.14 g of Pd 2 (dba) 3 were added and stirred, and then stirred at reflux overnight. After cooling at room temperature and concentration, 100 ml of toluene was added to dissolve and SiO 2 20 g is added and stirred. Filtered, concentrated to give a silica gel column, and vacuum dried (yield: 0.46 g, yield: 14.2%, purity: 91.0%)

1 HNMR(400MHZ,CDCl3):δ 9.1(s,1H), 8.7(s,1H), 8.2(m,1H), 8.0~7.7(m,3H), 1 H NMR (400MHZ, CDCl 3 ): δ 9.1 (s, 1H), 8.7 (s, 1H), 8.2 (m, 1H), 8.0 ~ 7.7 (m, 3H),

7.6~7.4(m,6H), 7.3~7.1(m,18H)
7.6-7.4 (m, 6H), 7.3-7.1 (m, 18H)

실시예Example 6) 2-(4-(9,10- 6) 2- (4- (9,10- 디페닐안트라센Diphenylanthracene -3-일)-5-(1-(피리딘-3-일)나프탈렌-4-일)-2H-Yl) -5- (1- (pyridin-3-yl) naphthalen-4-yl) 벤조[d][1,2,3]트리아졸Benzo [d] [1,2,3] triazole [화학식 1-6]의 제조Preparation of [Formula 1-6]

250ml 반응기에 상기 PM-2 화합물 2.8g, 인산칼륨 2.12g, 상기 PM-3 화합물 2.0g, 정제수 7g, 1.4-디옥산 70ml 투입하고 30분간 환류 교반한다. 50℃ 냉각하고 트리클로로 헥실포스핀 0.89g 와 Pd2(dba)3 0.14g을 투입하고 16시간 환류 교반한다. 상온으로 냉각하고 농축한 후 다시 톨루엔 100ml 투입하여 용해한다. SiO2 20g을 투입하여 교반하고, 여과하여 농축한 후 실리카겔 컬럼하고 진공 건조한다.2.8 g of the PM-2 compound, 2.12 g of the potassium phosphate, 2.0 g of the PM-3 compound, 7 g of purified water and 70 ml of 1,4-dioxane were charged into a 250 ml reactor and stirred under reflux for 30 minutes. The mixture was cooled to 50 ° C, and 0.89 g of trichlorohexylphosphine and 0.14 g of Pd 2 (dba) 3 were added thereto, followed by stirring under reflux for 16 hours. After cooling to room temperature and concentration, 100 ml of toluene is added to dissolve. SiO 2 And the mixture is stirred, filtered and concentrated, and then subjected to silica gel column and vacuum drying.

1 HNMR(400MHZ,CDCl3):δ 8.9(s,1H), 8.5(m,1H), 8.2(s,1H), 8.1~7.8(m,3H), 1 H NMR (400MHZ, CDCl 3 ): δ 8.9 (s, 1H), 8.5 (m, 1H), 8.2 (s, 1H), 8.1 ~ 7.8 (m, 3H),

7.7~7.5(m,8H), 7.4~7.0(m,20H)
7.7 ~ 7.5 (m, 8H), 7.4 ~ 7.0 (m, 20H)

[소자 제조예][Device manufacturing example]

통상적인 방법에 따라, 투명한 기판(substrate) 위에 양극(anode)을 형성하고, 그 위에 정공주입층(HIL), 정공수송층(HTL), 발광층(EML), 전자수송층(ETL), 전자주입층(EIL) 및 음극(cathode)을 순차적으로 적층하여 유기 전계발광 소자를 제조하되, 다음 표 1 내지 표 3과 같은 조건으로 9종의 시험소자(소자 A ~ I)를 제조하였다. 이때, 각 층의 두께는 양극 150nm, 정공주입층 25nm, 정공수송층 35nm, 발광층 25nm, 전자수송층 35nm, 전자주입층 0.5nm, 그리고 음극 150nm로 하였고, 유기 단분자의 특성상 고 진공(~torr) 상태에서 저항 가열식 열증착 방법으로 형성하였다.An anode is formed on a transparent substrate according to a conventional method and a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL) EIL) and a cathode were successively laminated to prepare an organic electroluminescent device, and nine kinds of test devices (Devices A to I) were manufactured under the conditions shown in Tables 1 to 3 below. In this case, the thickness of each layer was 150 nm for the anode, 25 nm for the hole injecting layer, 35 nm for the hole transporting layer, 25 nm for the light emitting layer, 35 nm for the electron transporting layer, 0.5 nm for the electron injecting layer and 150 nm for the cathode. In a resistance heating thermal deposition method.

상기 시험소자들 중에서 소자 A~C는 전자수송층(ETL)의 재료로서 종래의 전자수송층 재료인 Alq3과 Balq를 그대로 사용한 것이고, 소자 D~I는 각각 본 발명의 실시예 1 내지 6에 따라 제조된 [화학식 1-1] 내지 [화학식 1-6] 화합물과 상기 Alq3 화합물이 1 : 1의 중량비로 혼합된 재료를 사용한 것이다.
Among the above-mentioned test elements, the elements A to C used Alq3 and Balq, which are conventional electron transporting layer materials, as they are as the material of the electron transport layer (ETL) A material in which the compound of the formulas 1-1 to 1-6 and the Alq3 compound are mixed at a weight ratio of 1: 1 is used.

구 분division 소자 AElement A 소자 BDevice B 소자 C Device C 발광 색상Emitting color 녹색발광Green light 녹색발광Green light 녹색발광Green light 음 극Negative pole AlAl AlAl AlAl 전자주입층Electron injection layer LiFLiF LiFLiF LiFLiF 전자수송층Electron transport layer Alq3Alq3 BalqBalq Balq:Alq3 = 7:3Balq: Alq3 = 7: 3 발 광 층Light emitting layer Alq3 + Co6(1%)Alq3 + Co6 (1%) Alq3 + Co6(1%)Alq3 + Co6 (1%) Alq3 + C545T(1%)Alq3 + C545T (1%) 정공수송층Hole transport layer NPBNPB NPBNPB NPBNPB 정공주입층Hole injection layer CuPcCuPc CuPcCuPc CuPcCuPc 양 극Positive pole ITOITO ITOITO ITOITO

구 분division 소자 DDevice D 소자 EDevice E 소자 FDevice F 발광 색상Emitting color 녹색발광Green light 녹색발광Green light 녹색발광Green light 음 극Negative pole AlAl AlAl AlAl 전자주입층Electron injection layer LiFLiF LiFLiF LiFLiF 전자수송층Electron transport layer Alq3:P1 = 1:1 Alq3: P1 = 1: 1 Alq3:P2 = 1:1 Alq3: P2 = 1: 1 Alq3:P3 = 1:1 Alq3: P3 = 1: 1 발 광 층Light emitting layer Alq3 + C545T(1%)Alq3 + C545T (1%) Alq3 + C545T(2%)Alq3 + C545T (2%) Alq3 + C545T(3%)Alq3 + C545T (3%) 정공수송층Hole transport layer NPBNPB NPBNPB NPBNPB 정공주입층Hole injection layer CuPcCuPc CuPcCuPc CuPcCuPc 양 극Positive pole ITOITO ITOITO ITOITO

구 분 division 소자 GElement G 소자 HDevice H 소자 IDevice I 발광 색상Emitting color 녹색발광Green light 녹색발광Green light 녹색발광Green light 음 극Negative pole AlAl AlAl AlAl 전자주입층Electron injection layer LiFLiF LiFLiF LiFLiF 전자수송층Electron transport layer Alq3:P4 = 1:1 Alq3: P4 = 1: 1 Alq3:P5 = 1:1 Alq3: P5 = 1: 1 Alq3:P6 = 1:1 Alq3: P6 = 1: 1 발 광 층Light emitting layer Alq3 + C545T(4%)Alq3 + C545T (4%) Alq3 + C545T(5%)Alq3 + C545T (5%) Alq3 + C545T(6%)Alq3 + C545T (6%) 정공수송층Hole transport layer NPBNPB NPBNPB NPBNPB 정공주입층Hole injection layer CuPcCuPc CuPcCuPc CuPcCuPc 양 극Positive pole ITOITO ITOITO ITOITO

상기 표 1 내지 도 3에 사용된 약자의 의미는 다음 [표 4]와 같다.Meanings of abbreviations used in Tables 1 to 3 are as shown in Table 4 below.

약 자Weak 의 미meaning CuPcCuPc copper phthalocyanine copper phthalocyanine NPBNPB 4,4'-bis[(1-naphthyl)-N-phenyl-amino]biphenyl 4,4'-bis [(1-naphthyl) -N-phenylamino] biphenyl Alq3Alq3 tris-(8-hydroxyquinolinato)-aluminium tris- (8-hydroxyquinolinato) -aluminium BalqBalq aluminum(Ⅲ)bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate C545TC545T 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)
quinolizino[9,9a,1gh]coumarin
2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10- (2-benzothiazolyl)
quinolizino [9,9a, 1 H] coumarin
CBPCBP 2,9- dimethyl-4,7-diphenyl-1,10-phenanthroline 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Ir(ppy)3Ir (ppy) 3 tris[2-phenylpyridinato-C²,N]iridium(Ⅲ) tris [2-phenylpyridinato-C 2, N] iridium (III) ITOITO indium tin oxide 인ium 티온 산화물

[소자 특성평가][Evaluation of device characteristics]

IVL(Current-Voltage-Luminance) 측정기를 이용하여 상기 시험소자 A~I에 대한 전압, 전류, 발광휘도(Brightness), 발광효율(lm/W, cd/A, %) 등을 측정하였다. 이때 전류밀도(Current density)는 50mA/cm² 에서 측정하였고, 상기 IVL 측정기의 사양은 아래와 같다.Current, luminance, luminous efficiency (lm / W, cd / A,%) of the test elements A to I were measured using an IVL (Current-Voltage-Luminance) At this time, the current density was measured at 50 mA / cm < 2 >, and the specifications of the IVL measuring instrument are as follows.

< IVL 측정기의 사양 ><Specifications of IVL Meter>

1) 모델명 : SMU(Keithley-2400) : Keithley1) Model name: SMU (Keithley-2400): Keithley

2) Power output : 22W2) Power output: 22W

3) Current Capability : Min±10pA, Max±1.05A 3) Current Capability: Min ± 10 pA, Max ± 1.05 A

4) Voltage Capability : Min±10μV, Max±21±210V4) Voltage Capability: Min ± 10μV, Max ± 21 ± 210V

5) Ohms Range : 0.2Ω~200MΩ5) Ohms Range: 0.2Ω ~ 200MΩ

6) Basic Accuracy : I(0.035%), V(0.015%), Ω(0.06%)
6) Basic Accuracy: I (0.035%), V (0.015%), Ω (0.06%)

첨부 도 1 및 도 2는 상기 소자 A~I에 대하여 인가 전압(V; X축)에 따른 전류밀도(mA/cm; Y축))의 변화를 나타낸 그래프이다. 첨부 도 1의 그래프로부터, 전자수송층(ETL)의 재료로 Balq를 사용한 소자 B가 Alq3을 사용한 소자 A 보다 전압이 약 1볼트 정도 떨어져 있고, Balq + Alq3의 혼합재료를 사용한 소자 C의 경우는 약 2볼트 가량 전압이 떨어지는 것을 알 수 있다.1 and 2 are graphs showing changes in current density (mA / cm 2) along the applied voltage (V) (X axis) with respect to the devices A to I. 1, the device B using Balq as the material of the electron transport layer (ETL) is about 1 volt away from the device A using Alq3 and the device C using the mixture material of Balq + Alq3 is about It can be seen that the voltage of about 2 volts drops.

본 발명에 따른 방향족 트리아진 화합물을 함께 사용한 소자 D~I의 경우, 첨부 도 2에서 보는 바와 같이, 상기 소자 A~C에 비해 전체적으로 전압 성능이 개선된 효과를 보여주고 있으며, 특히 상기 화학식 1-6 화합물을 함께 사용한 소자 I가 가장 우수한 성능을 보이는 것으로 나타났다.In the case of the devices D to I in which the aromatic triazine compound according to the present invention is used together, as shown in FIG. 2, the voltage performance is improved as a whole compared to the devices A to C, 6 showed the best performance.

또한, 첨부 도 3 및 도 4는 상기 소자 A~I에 대하여 전류밀도(mA/cm; X축)에 따른 발광 휘도(nit, cd/cm²; Y축)의 변화를 나타낸 그래프이다. 첨부 도 3으로부터, 소자 C는 다른 소자에 비해 전압 효율은 좋지 않지만 발광 효율은 높은 것을 알 수 있는데 이는 정공억제 성질을 갖는 Balq를 혼합 사용함으로써 소자의 효율이 상승된 것으로 짐작된다.3 and 4 are graphs showing changes in the light emission luminance (nit, cd / cm2; Y axis) according to the current density (mA / cm; X axis) of the devices A to I. 3, it can be seen that the device C has a higher voltage efficiency but a higher luminous efficiency than the other devices. It is presumed that the efficiency of the device is increased by mixing Balq having a hole blocking property.

본 발명에 따른 방향족 트리아진 화합물을 함께 사용할 경우, 첨부 도 4에서 보는 바와 같이, 상기 소자 A~C에 비해 전체적으로 동등 이상의 개선된 결과를 보여주고 있으며, 특히 소자 D, 소자 E 및 소자 I에서 높은 발광 효율이 관찰되었다. In the case of using the aromatic triazine compound according to the present invention together, as shown in FIG. 4, the same results are obtained as compared with the devices A to C, Luminescent efficiency was observed.

Claims (5)

삭제delete 삭제delete 삭제delete 1) 2-(4-브로모페놀)-5-클로로-2H-벤조[d][1,2,3]트리아졸과 (9,10-디페닐안트라센-2-일)보론산을 반응시켜서 5-클로로-2-(9,10-디페닐안트라센-3-일)페닐)-2H-벤조[d][1,2,3]트리아졸을 제조하는 단계와;
2) 상기 5-클로로-2-(9,10-디페닐안트라센-3-일)페닐)-2H-벤조[d][1,2,3]트리아졸과 2-(1-(4,4,5,5-테트라메틸-1,3,2-디옥사보란-2-일)나프탈렌-4-일)피리딘을 반응시켜서 2-(4-(9,10-디페닐안트라센-3-일)-5-(1-(피리딘-3-일)나프탈렌-4-일)-2H-벤조[d][1,2,3]트리아졸을 제조하는 단계;
를 포함하는 것을 특징으로 하는 유기 전계발광 소자용 방향족 트리아진 유도체의 제조방법.
1) Reaction of 2- (4-bromophenol) -5-chloro-2H- benzo [d] [1,2,3] triazole with (9,10- diphenylanthracene- Dichloro-2- (9,10-diphenylanthracen-3-yl) phenyl) -2H-benzo [d] [1,2,3] triazole;
2) Synthesis of 2- (1- (4, 4-dioxolan-2-yl) (9,10-diphenylanthracene-3-yl) thiophene-2-yl) -5- (1- (pyridin-3-yl) naphthalen-4-yl) -2H-benzo [d] [1,2,3] triazole;
Wherein the aromatic triazine derivative for organic electroluminescent device is a compound represented by formula
제4항에 있어서,
상기 2) 단계에서는 1,4-디옥산을 반응용매로 사용하고, 트리클로로헥실포스핀과 Pd2(dba)3 를 촉매로 사용하는 것을 특징으로 하는 유기 전계발광 소자용 방향족 트리아진 유도체의 제조방법.
5. The method of claim 4,
In the above step 2), 1,4-dioxane is used as a reaction solvent, and trichlorohexylphosphine and Pd 2 (dba) 3 are used as catalysts to prepare an aromatic triazine derivative for organic electroluminescence device Way.
KR1020150041476A 2015-03-25 2015-03-25 Preparing method of aromatic triazine derivatives for organic electroluminescent device KR101774900B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150041476A KR101774900B1 (en) 2015-03-25 2015-03-25 Preparing method of aromatic triazine derivatives for organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150041476A KR101774900B1 (en) 2015-03-25 2015-03-25 Preparing method of aromatic triazine derivatives for organic electroluminescent device

Publications (2)

Publication Number Publication Date
KR20160114950A KR20160114950A (en) 2016-10-06
KR101774900B1 true KR101774900B1 (en) 2017-09-05

Family

ID=57164576

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150041476A KR101774900B1 (en) 2015-03-25 2015-03-25 Preparing method of aromatic triazine derivatives for organic electroluminescent device

Country Status (1)

Country Link
KR (1) KR101774900B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016135A1 (en) * 2013-07-29 2015-02-05 保土谷化学工業株式会社 Benzotriazole derivative and organic electroluminescent element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672301B1 (en) 2001-10-16 2007-01-23 엘지전자 주식회사 High Efficient Organic Electroluminescent Display Device
JP4476594B2 (en) 2003-10-17 2010-06-09 淳二 城戸 Organic electroluminescent device
KR100806812B1 (en) 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 Organic Electroluminescence Device and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016135A1 (en) * 2013-07-29 2015-02-05 保土谷化学工業株式会社 Benzotriazole derivative and organic electroluminescent element

Also Published As

Publication number Publication date
KR20160114950A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP7026405B2 (en) Organic compounds and organic electroluminescent devices containing them
JP4870245B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
KR101996649B1 (en) Pyrene derivative compounds and organic light-emitting diode including the same
KR101835934B1 (en) Oled having host exhibiting delayed fluorescence
KR101724304B1 (en) Fused aromatic compounds and organic light-emitting diode including the same
EP2416627A1 (en) Organic electroluminescent device
KR20160080090A (en) Novel compound and organic electroluminescent device comprising same
KR102169273B1 (en) Organic electroluminescent compound comprising acridine derivative and organic electroluminescent device comprising same
KR20160089693A (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR101771529B1 (en) Heterocyclic compounds and organic light-emitting diode including the same
KR101791022B1 (en) spiro compounds and organic light-emitting diode including the same
KR20150128583A (en) Novel aromatic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR20110113469A (en) Heterocyclic compounds and organic light-emitting diode including the same
KR20140058755A (en) Heterocyclic compound and organic light emitting device comprising the same
KR20160068683A (en) Novel compound and organic electroluminescent device comprising same
KR20170031614A (en) Novel compound and organic electroluminescent device comprising same
KR102402220B1 (en) Novel blue fluorescent host compound and organic electroluminescent device comprising same
KR20150058082A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR102447718B1 (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR20110113470A (en) Heterocyclic compounds and organic light-emitting diode including the same
KR20150058080A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR20140086880A (en) Novel organic compound and organic electroluminescent device comprising same
KR20160021424A (en) Novel compound and organic electroluminescent device comprising same
KR20150064682A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR20150058083A (en) Novel electroluminescent compound and organic electroluminescent device comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right