KR101773888B1 - 크라이오펌프 - Google Patents

크라이오펌프 Download PDF

Info

Publication number
KR101773888B1
KR101773888B1 KR1020150140220A KR20150140220A KR101773888B1 KR 101773888 B1 KR101773888 B1 KR 101773888B1 KR 1020150140220 A KR1020150140220 A KR 1020150140220A KR 20150140220 A KR20150140220 A KR 20150140220A KR 101773888 B1 KR101773888 B1 KR 101773888B1
Authority
KR
South Korea
Prior art keywords
cryopump
cryo
inlet
panel
stage
Prior art date
Application number
KR1020150140220A
Other languages
English (en)
Other versions
KR20160041796A (ko
Inventor
켄 오이카와
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Publication of KR20160041796A publication Critical patent/KR20160041796A/ko
Application granted granted Critical
Publication of KR101773888B1 publication Critical patent/KR101773888B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • F04B37/085Regeneration of cryo-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

진공처리장치에 있어서의 리커버리 시간의 증가를 억제하여, 크라이오펌프의 재생인터벌을 늘린다.
크라이오펌프(10)는, 흡기구(12)를 정하는 크라이오펌프 용기(38)와, 크라이오펌프 용기(38)에 수용되는 제1 스테이지(22) 및 제2 스테이지(24)를 구비하고, 제2 스테이지(24)가 제1 스테이지(22)보다 저온으로 냉각되는 냉동기(16)와, 제1 스테이지(22)에 열적으로 접속되며, 크라이오펌프 용기(38)에 둘러싸여 있는 제1 크라이오패널(18)과, 제2 스테이지(24)에 열적으로 접속되며, 제1 크라이오패널(18)에 둘러싸여 있는 제2 크라이오패널(20)을 구비한다. 제1 크라이오패널(18)은, 흡기구(12)에 입구개구부를 가지는 플레이트부재(32)를 구비한다. 입구개구부는, 흡기구(12)의 개구 컨덕턴스에 대한 플레이트부재(32)의 컨덕턴스의 비가 6% 이하이도록 플레이트부재(32)에 형성되어 있다.

Description

크라이오펌프{Cryopump}
본 출원은, 2014년 10월 7일에 출원된 일본 특허출원 제2014-206158호에 근거하여 우선권을 주장한다. 그 출원의 전체 내용은 그 명세서 중에 참고로 원용되어 있다.
본 발명은, 크라이오펌프에 관한 것이다.
크라이오펌프의 용도 중 하나로 스퍼터링장치와 같은 진공처리장치가 있다. 진공처리장치에 있어서는, 소정의 진공프로세스가 반복 실행될 수 있다. 이러한 장치에 있어서의 크라이오펌프의 주요한 역할은, 진공프로세스에 적정한 진공도를 계속적으로 유지하는 것이다. 크라이오펌프는, 전회의 프로세스와 차회의 프로세스 사이의 장치 일시 대기 중에, 그 프로세스를 개시하는 것이 허용되는 적정 레벨까지 진공도를 회복하기 위하여 사용될 수 있다. 진공도의 회복에 필요한 시간은 리커버리 시간이라고도 불린다. 리커버리 시간이 짧을수록 차회의 프로세스를 빨리 시작할 수 있으므로, 장치의 생산성이 높아진다. 따라서, 리커버리 시간은 되도록 짧은 것이 바람직하다. 리커버리 시간을 짧게 하려면 크라이오펌프의 배기속도를 크게 하면 된다. 이를 위한 하나의 수단으로서 일반적으로 인식되고 있는 것은, 크라이오펌프 흡기구의 개구율을 높게 하는 것이다.
선행기술문헌
(특허문헌)
특허문헌 1: 일본 공개특허공보 2010-84702호
특허문헌 2: 일본 공개특허공보 2013-160105호
크라이오펌프는 저장식 진공펌프이기 때문에, 크라이오펌프의 진공 배기운전에 의하여 가스가 크라이오펌프에 축적된다. 가스가 축적됨에 따라, 크라이오펌프의 배기속도는 서서히 저하되며, 이와 함께 리커버리 시간도 서서히 길어진다. 이로 인하여, 축적된 가스를 크라이오펌프로부터 배출하고, 배기속도 및 리커버리 시간을 초기의 수준으로 회복하기 위하여, 크라이오펌프의 재생이 정기적으로 행해진다. 전회의 재생이 종료한 후 차회의 재생이 행해질 때까지의 진공 배기운전의 기간은 재생인터벌이라고도 불린다.
상기 서술한 바와 같이 종래부터, 크라이오펌프 흡기구의 개구율을 높게 하는 것이 리커버리 시간의 단축에 유효하다고 인식되고 있다. 그러나, 본 발명자는, 이와 같은 인식이 재생인터벌의 후기에 있어서 반드시 타당하지만은 않은 것을 발견했다. 실제로는, 재생인터벌의 후기에 있어서는, 개구율이 높은 것이 오히려 리커버리 시간의 증가를 촉진시킬 수 있다.
본 발명의 일 양태의 예시적인 목적 중 하나는, 종래의 인식과 상이한 새로운 지견에 근거하여 진공처리장치에 있어서의 리커버리 시간의 증가를 억제하여 크라이오펌프의 재생인터벌을 늘림으로써, 진공처리장치의 생산성 향상에 기여하는 것에 있다.
본 발명의 일 양태에 의하면, 크라이오펌프는, 크라이오펌프 흡기구를 정하는 크라이오펌프 용기와, 상기 크라이오펌프 용기에 수용되는 제1 스테이지 및 제2 스테이지를 구비하고, 상기 제2 스테이지가 상기 제1 스테이지보다 저온으로 냉각되는 냉동기와, 상기 제1 스테이지에 열적으로 접속되며, 상기 크라이오펌프 용기에 둘러싸여 있는 제1 크라이오패널과, 상기 제2 스테이지에 열적으로 접속되며, 상기 제1 크라이오패널에 둘러싸여 있는 제2 크라이오패널을 구비한다. 상기 제1 크라이오패널은, 상기 크라이오펌프 흡기구에 입구개구부를 가지는 입구 크라이오패널을 구비한다. 상기 입구개구부는, 상기 크라이오펌프 흡기구의 개구 컨덕턴스에 대한 상기 입구 크라이오패널의 컨덕턴스의 비가 6% 이하이도록 상기 입구 크라이오패널에 형성되어 있다.
다만, 본 발명의 구성요소나 표현을, 방법, 장치, 시스템 등의 사이에서 서로 치환한 것도 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 진공처리장치에 있어서의 리커버리 시간의 증가를 억제하여, 크라이오펌프의 재생인터벌을 늘릴 수 있다.
도 1은 본 발명의 일 실시형태에 관한 크라이오펌프의 주요부를 모식적으로 나타내는 측단면도이다.
도 2는 본 발명의 일 실시형태에 관한 제2 크라이오패널의 탑패널을 모식적으로 나타내는 상면도이다.
도 3은 본 발명의 일 실시형태에 관한 제1 크라이오패널의 플레이트부재를 모식적으로 나타내는 상면도이다.
도 4는 본 발명의 일 실시형태에 관한 것으로, 배기운전 중의 크라이오펌프를 모식적으로 나타내는 도이다.
도 5는 본 발명의 일 실시형태에 관한 것으로, 소정 재생인터벌에 있어서의 리커버리 시간의 변화를 예시하는 모식도이다.
도 6은 비교예에 관한 플레이트부재를 모식적으로 나타내는 상면도이다.
도 7은 본 발명의 다른 실시형태에 관한 제1 크라이오패널의 플레이트부재를 모식적으로 나타내는 상면도이다.
이하, 도면을 참조하면서, 본 발명을 실시하기 위한 형태에 대하여 상세하게 설명한다. 다만, 설명에 있어서 동일한 요소에는 동일한 부호를 붙여, 중복하는 설명을 적절히 생략한다. 또, 이하에 설명하는 구성은 예시이며, 본 발명의 범위를 한정하는 것은 아니다.
도 1은, 본 발명의 일 실시형태에 관한 크라이오펌프(10)의 주요부를 모식적으로 나타내는 측단면도이다. 크라이오펌프(10)는, 예를 들면, 진공처리장치의 진공챔버에 장착되어, 진공챔버 내부의 진공도를 원하는 프로세스에 요구되는 레벨까지 높이기 위하여 사용된다. 크라이오펌프(10)가 장착되는 진공처리장치는, 예를 들면, 스퍼터링장치이다. 스퍼터링장치에 있어서의 프로세스가스 압력은, 예를 들면, 1mTorr에서 10mTorr의 범위에 있다.
크라이오펌프(10)는, 기체를 받아들이기 위한 흡기구(12)를 가진다. 크라이오펌프(10)가 장착된 진공챔버로부터 흡기구(12)를 통하여, 배기되어야 할 기체가 크라이오펌프(10)의 내부공간(14)에 진입한다. 도 1은, 크라이오펌프(10)의 내부공간(14)의 중심축(A)을 포함하는 단면을 나타내고 있다.
흡기구(12)의 직경은, 예를 들면, 180mm에서 340mm의 범위에 있다. 따라서, 크라이오펌프(10)의 호칭직경은, 8인치, 10인치, 12인치, 또는 320mm일 수 있다.
다만 이하에서는, 크라이오펌프(10)의 구성요소의 위치관계를 알기 쉽게 나타내기 위하여, “축방향”, “직경방향”이라는 용어를 사용하는 경우가 있다. 축방향은 흡기구(12)를 통과하는 방향(도 1에 있어서 일점쇄선 A를 따르는 방향)을 나타내고, 직경방향은 흡기구(12)를 따르는 방향(일점쇄선 A에 수직인 방향)을 나타낸다. 편의상, 축방향에 관하여 흡기구(12)에 상대적으로 가까운 것을 “상”, 상대적으로 먼 것을 “하”라고 부르는 경우가 있다. 즉, 크라이오펌프(10)의 바닥부로부터 상대적으로 먼 것을 “상”, 상대적으로 가까운 것을 “하”라고 부르는 경우가 있다. 직경방향에 관해서는, 흡기구(12)의 중심(도 1에 있어서 중심축(A))에 가까운 것을 “내”, 흡기구(12)의 둘레 가장자리에 가까운 것을 “외”라고 부르는 경우가 있다. 다만, 이러한 표현은 크라이오펌프(10)가 진공챔버에 장착되었을 때의 배치와는 관계가 없다. 예를 들면, 크라이오펌프(10)는 연직방향으로 흡기구(12)를 하향으로 하여 진공챔버에 장착되어도 된다.
또, 축방향을 둘러싸는 방향을 “둘레방향”이라고 부르는 경우가 있다. 둘레방향은, 흡기구(12)를 따르는 제2 방향이며, 직경방향에 직교하는 접선방향이다.
크라이오펌프(10)는, 냉동기(16)를 구비한다. 냉동기(16)는, 예를 들면 기포드-맥마흔(Gifford-Mcmahon)식 냉동기(이른바 GM냉동기) 등의 극저온 냉동기이다. 냉동기(16)는, 제1 스테이지(22) 및 제2 스테이지(24)를 구비하는 2단식의 냉동기이다. 냉동기(16)는, 제1 스테이지(22)를 제1 온도레벨로 냉각하고, 제2 스테이지(24)를 제2 온도레벨로 냉각하도록 구성되어 있다. 제2 온도레벨은 제1 온도레벨보다 저온이다. 예를 들면, 제1 스테이지(22)는 65K~120K 정도, 바람직하게는 80K~100K로 냉각되며, 제2 스테이지(24)는 10K~20K 정도로 냉각된다.
또, 냉동기(16)는, 제1 실린더(23) 및 제2 실린더(25)를 구비한다. 제1 실린더(23)는, 냉동기(16)의 실온부를 제1 스테이지(22)에 접속한다. 제2 실린더(25)는, 제1 스테이지(22)를 제2 스테이지(24)에 접속하는 접속부분이다.
도시되는 크라이오펌프(10)는, 이른바 가로형의 크라이오펌프이다. 가로형의 크라이오펌프란 일반적으로, 냉동기(16)가 크라이오펌프(10)의 내부공간(14)의 중심축(A)에 교차(통상은 직교)하도록 배치되어 있는 크라이오펌프이다.
크라이오펌프(10)는, 제1 크라이오패널(18)과, 제1 크라이오패널(18)보다 저온으로 냉각되는 제2 크라이오패널(20)을 구비한다. 자세한 것은 후술하지만, 제1 크라이오패널(18)은, 방사실드(30)와 플레이트부재(32)를 구비하고, 제2 크라이오패널(20)을 포위한다. 플레이트부재(32)와 제2 크라이오패널(20) 사이에 응축층(72)의 주수용공간(21)이 형성된다(도 4 참조).
먼저 제2 크라이오패널(20)을 설명한다. 제2 크라이오패널(20)은, 크라이오펌프(10)의 내부공간(14)의 중심부에 마련되어 있다. 제2 크라이오패널(20)은, 제2 스테이지(24)를 둘러싸도록 하여 제2 스테이지(24)에 장착되어 있다. 따라서, 제2 크라이오패널(20)은, 제2 스테이지(24)에 열적으로 접속되어 있어, 제2 크라이오패널(20)은 제2 온도레벨로 냉각된다.
도 2는, 본 발명의 일 실시형태에 관한 제2 크라이오패널(20)의 탑패널(60)을 모식적으로 나타내는 상면도이다. 도 1 및 도 2에 나타나는 바와 같이, 탑패널(60)은 냉동기(16)의 제2 스테이지(24)의 상면에 직접적으로 장착되어 있으며, 제2 스테이지(24)는 크라이오펌프(10)의 내부공간(14)의 중심부에 위치한다. 이렇게 하여, 응축층(72)의 주수용공간(21)이 내부공간(14)의 상반부를 차지하고 있다.
탑패널(60)은, 가스를 그 표면에 응축하기 위하여 마련되어 있다. 탑패널(60)은, 제2 크라이오패널(20) 중 플레이트부재(32)에 가장 근접하는 부분이며, 플레이트부재(32)의 이면에 대향하는 탑패널 전면(61)을 구비한다. 탑패널 전면(61)은, 중심영역(62)과, 중심영역(62)을 둘러싸는 외측영역(63)을 구비한다.
탑패널(60)은, 축방향에 수직으로 배치된 대체로 평판인 크라이오패널이다. 탑패널(60)은, 중심영역(62)에 있어서 제2 스테이지(24)에 고정되어 있다. 중심영역(62)은 오목부를 가지며, 그 오목부에 있어서 탑패널(60)은 적절한 고정부재(64)를 이용하여 제2 스테이지(24)에 고정된다(도 2 참조). 고정부재(64)는, 예를 들면 볼트이다. 오목부의 주위에는 상방을 향하는 단부(65)가 형성되어 있다. 단부(65)의 높이는 고정부재(64)를 오목부에 수용하도록 정해져 있다. 단부(65)로부터 직경방향 외향으로 외측영역(63)이 뻗어 있다. 외측영역(63)의 직경방향 말단은 하방으로 굴곡되어 있으며, 탑패널(60)의 외주단부(66)가 형성되어 있다. 탑패널(60)은, 도 2에 나타나는 바와 같이, 대체로 원판 형상의 패널이다.
다만 탑패널(60)은, 고정부재(64)를 수용하는 중심영역(62)의 오목부를 가지고 있지 않아도 된다. 이 경우, 탑패널 전면(61)은, 단부(65)를 가지지 않는 평탄면이어도 된다. 또, 본 실시형태에서는 탑패널(60)은 흡착제를 구비하고 있지 않지만, 예를 들면 그 이면에 흡착제가 마련되어 있어도 된다.
제2 크라이오패널(20)은, 제1 측방간극(43)의 폭(W1)과 제2 측방간극(44)의 폭(W2)을 맞추도록 형상이 조정되어 있다. 즉 제1 측방간극(43)의 폭(W1)과 제2 측방간극(44)의 폭(W2)은 실질적으로 동일하다. 이로 인하여, 탑패널(60)은, 제1 측방간극(43)의 폭을 확장시키는 절결부(74)를 가진다. 이 절결부(74)는, 탑패널(60)의 외주에 있어서 냉동기(16)측에 평탄부를 형성한다. 다만, 탑패널(60)보다 하방의 크라이오패널에 대해서도 마찬가지로 절결부를 가져도 된다.
또, 제2 크라이오패널(20)은, 1개 또는 복수의 통상패널(67)을 포함한다. 통상패널(67)은, 가스를 그 표면에 응축 또는 흡착하기 위하여 마련되어 있다. 통상패널(67)은, 탑패널(60)의 하방에 배열되어 있다. 통상패널(67)은 탑패널(60)과 형상이 상이하다. 통상패널(67)은 예를 들면, 각각이 원뿔대의 측면의 형상, 이른바 우산형의 형상을 가진다. 각 통상패널(67)에는 활성탄 등의 흡착제(68)가 마련되어 있다. 흡착제는 예를 들면 통상패널(67)의 이면에 접착되어 있다. 통상패널(67)의 전면은 응축면, 이면은 흡착면으로서 기능한다.
제1 크라이오패널(18)은, 크라이오펌프(10)의 외부 또는 크라이오펌프 용기(38)로부터의 복사열로부터 제2 크라이오패널(20)을 보호하기 위하여 마련되어 있는 크라이오패널이다. 제1 크라이오패널(18)은 제1 스테이지(22)에 열적으로 접속되어 있다. 따라서 제1 크라이오패널(18)은 제1 온도레벨로 냉각된다. 제1 크라이오패널(18)은 제2 크라이오패널(20)과의 사이에 간극을 가지고 있어, 제1 크라이오패널(18)은 제2 크라이오패널(20)과 접촉하고 있지 않다.
방사실드(30)는, 크라이오펌프 용기(38)의 복사열로부터 제2 크라이오패널(20)을 보호하기 위하여 마련되어 있다. 방사실드(30)는, 크라이오펌프 용기(38)와 제2 크라이오패널(20) 사이에 있으며, 제2 크라이오패널(20)을 둘러싼다. 방사실드(30)는, 크라이오펌프 용기(38)보다 약간 작은 직경을 가진다. 방사실드(30)는 크라이오펌프 용기(38)와의 사이에 간극을 가지고 있어, 방사실드(30)는 크라이오펌프 용기(38)와 접촉하고 있지 않다.
방사실드(30)는, 실드개구(26)를 획정하는 실드전단(28)과, 실드개구(26)에 대향하는 실드바닥부(34)와, 실드전단(28)으로부터 실드바닥부(34)로 뻗어 있는 실드측부(36)를 구비한다. 실드개구(26)는, 흡기구(12)에 위치하는 크라이오펌프(10)의 주개구이다. 방사실드(30)는, 실드바닥부(34)가 폐쇄된 통형(예를 들면 원통)의 형상을 가지며, 컵 형상으로 형성되어 있다.
방사실드(30)는, 냉동기(16)의 장착시트(37)를 구비한다. 장착시트(37)는, 방사실드(30)의 밖으로부터 보아 오목하게 되어 있으며, 냉동기(16)를 방사실드(30)에 장착하기 위한 평탄부분을 실드측부(36)에 형성한다. 장착시트(37)는, 제2 크라이오패널(20)의 측방에 위치한다. 상기 서술한 바와 같이 냉동기(16)의 제2 스테이지(24)의 상면에 탑패널(60)이 직접적으로 장착되며, 이로 인하여 탑패널(60)은 제2 스테이지(24)와 동일한 높이에 있으므로, 장착시트(37)는 탑패널(60)의 측방에 위치한다.
실드측부(36)는, 전체적으로 폐쇄된 환형 부분을 형성한다. 상기 서술한 제1 측방간극(43)이 실드측부(36)의 장착시트(37)와 탑패널(60) 사이에 형성되고, 제2 측방간극(44)이 실드측부(36)의 나머지 부분과 탑패널(60) 사이에 형성되어 있다. 제1 측방간극(43) 및 제2 측방간극(44)은 실드측부(36)와 통상패널(67) 사이에도 형성되어 있다. 제2 측방간극(44)은 제1 측방간극(43)에 둘레방향으로 연속되어 있으며, 제1 측방간극(43) 및 제2 측방간극(44)에 의하여 폐쇄된 환형 간극이 형성된다. 제2 측방간극(44)은, 둘레방향으로 일정한 폭을 가진다.
도 1에 나타나는 바와 같이, 장착시트(37)에는 냉동기(16)의 장착구멍(42)이 있으며, 그 장착구멍(42)으로부터 냉동기(16)의 제2 스테이지(24) 및 제2 실린더(25)가 방사실드(30) 안에 삽입되어 있다. 냉동기(16)의 제1 스테이지(22)는 방사실드(30) 밖에 배치되어 있다. 방사실드(30)는, 전열부재(45)를 통하여 제1 스테이지(22)에 접속되어 있다. 전열부재(45)는, 그 일단의 플랜지에 의하여 장착구멍(42)의 외주부에 고정되고, 타단의 플랜지에 의하여 제1 스테이지(22)에 고정되어 있다. 전열부재(45)는, 예를 들면 중공의 단통이며, 냉동기(16)의 중심축을 따라 방사실드(30)와 제1 스테이지(22) 사이로 뻗어 있다. 이렇게 하여 방사실드(30)는 제1 스테이지(22)에 열적으로 접속되어 있다. 다만 방사실드(30)는 제1 스테이지(22)에 직접 장착되어도 된다.
제2 실린더(25)와 장착구멍(42) 사이에는, 실드개구(26)에 가까운 측에 상방간극(46)이 형성되고, 실드개구(26)로부터 먼 측에 하방간극(48)이 형성되어 있다. 냉동기(16)는 장착구멍(42)의 중심에 삽입되어 있으므로, 상방간극(46)의 폭은 하방간극(48)의 폭과 동일하다.
본 실시형태에 있어서는, 방사실드(30)는 도시되는 바와 같은 일체의 통 형상으로 구성되어 있다. 이 대신에, 방사실드(30)는, 복수의 부품에 의하여 전체적으로 통형의 형상을 이루도록 구성되어 있어도 된다. 이들 복수의 부품은 서로 간극을 가지고 배치되어 있어도 된다. 예를 들면, 방사실드(30)는 축방향으로 2개의 부분으로 분할되어 있어도 된다. 이 경우, 방사실드(30)의 상부는, 양단이 개방된 통이며, 실드전단(28)과 실드측부(36)의 제1 부분을 구비한다. 방사실드(30)의 하부는, 상단이 개방되고 하단이 폐쇄되어 있으며, 실드측부(36)의 제2 부분과 실드바닥부(34)를 구비한다. 실드측부(36)의 제1 부분과 제2 부분 사이에는 둘레방향으로 뻗는 간극이 형성되어 있다. 냉동기(16)의 장착구멍(42)은 그 상반부가 실드측부(36)의 제1 부분에 형성되고, 하반부가 실드측부(36)의 제2 부분에 형성된다.
크라이오펌프(10)에는, 냉동기(16)의 제2 실린더(25)를 포위하는 냉동기커버(70)가 마련되어 있다. 냉동기커버(70)는 제2 실린더(25)보다 약간 큰 직경의 원통 형상으로 형성되어 있으며, 일단이 제2 스테이지(24)에 장착되고, 방사실드(30)의 장착구멍(42)을 통과하여 제1 스테이지(22)를 향하여 뻗어 있다. 냉동기커버(70)와 방사실드(30) 사이에는 간극이 마련되어 있어, 냉동기커버(70)와 방사실드(30)는 접촉하고 있지 않다. 냉동기커버(70)는 제2 스테이지(24)에 열적으로 접속되어 있어, 제2 스테이지(24)와 동일한 온도로 냉각된다. 따라서, 냉동기커버(70)는 제2 크라이오패널(20)의 일부라고도 간주된다.
제1 크라이오패널(18)은, 흡기구(12)에 있어서 입구개구부를 가지는 입구 크라이오패널을 구비한다. 입구 크라이오패널은, 흡기구(12)에 배치되는 유공(有孔) 부재를 구비한다. 입구개구부는, 유공 부재에 형성되어 있는 적어도 1개의 개구이다. 유공 부재는, 실드개구(26)를 덮는 단일의 유공 플레이트(예를 들면 플레이트부재(32))여도 된다. 상기 개구는, 예를 들면 다수의 구멍(예를 들면 소공(小孔)(54))이다. 다만, 입구개구부를 정하는 입구 크라이오패널의 측면이 흑색이어도 된다. 입구 크라이오패널의 이면(즉, 제2 크라이오패널(20)을 향하는 면)이 흑색이어도 된다.
입구개구부는, 흡기구(12)의 개구 컨덕턴스에 대한 입구 크라이오패널의 컨덕턴스의 비가 1% 이상 6% 이하이도록 입구 크라이오패널에 형성되어 있다. 바람직하게는, 입구개구부는, 흡기구(12)의 개구 컨덕턴스에 대한 입구 크라이오패널의 컨덕턴스의 비가 4% 이상 6% 이하이도록 입구 크라이오패널에 형성되어 있다.
플레이트부재(32)는, 크라이오펌프(10)의 외부의 열원으로부터의 복사열로부터 제2 크라이오패널(20)을 보호하기 위하여, 실드개구(26)에 마련되어 있다. 크라이오펌프(10)의 외부의 열원은, 예를 들면, 크라이오펌프(10)가 장착되는 진공챔버 내의 열원이다. 복사열뿐만 아니라 기체분자의 진입도 제한된다. 플레이트부재(32)는, 흡기구(12)를 통한 내부공간(14)으로의 기체 유입을 원하는 양으로 제한하도록 흡기구(12)의 개구 면적의 일부를 점유한다. 플레이트부재(32)는, 흡기구(12)의 대부분을 덮고 있다. 플레이트부재(32)의 냉각온도에서 응축하는 기체(예를 들면 수분)가 그 표면에 포착된다.
실드전단(28)과 플레이트부재(32) 사이에는 축방향으로 약간의 간극이 있다. 이 간극을 덮어 기체의 흐름을 규제하기 위하여, 플레이트부재(32)는 스커트부(33)를 구비한다. 스커트부(33)는 플레이트부재(32)를 감싸는 단통이다. 스커트부(33)는 플레이트부재(32)와 함께, 플레이트부재(32)를 바닥면으로 하는 원형 트레이 형상의 일체구조를 이룬다. 이 원형 트레이 구조는 방사실드(30)를 덮도록 배치되어 있다. 따라서, 스커트부(33)는, 플레이트부재(32)로부터 축방향 하방으로 돌출하여, 실드전단(28)으로 직경방향에 인접하여 뻗어 있다. 스커트부(33)와 실드전단(28)의 직경방향 거리는 예를 들면, 방사실드(30)의 치수 공차 정도이다.
실드전단(28)과 플레이트부재(32)의 간극은 제조상의 오차에 의하여 변동될 수 있다. 이러한 오차는 정밀한 부재의 가공 및 조립에 의하여 저감될 수 있지만, 이에 따른 제조 코스트의 상승을 고려하면 반드시 현실적이지만은 않을 수도 있다. 오차는 크라이오펌프(10)의 개체의 차로 이어진다. 만일 스커트부(33)가 없는 경우에는, 간극의 크기에 따라, 방사실드(30)의 내측으로의 기체의 유입량이 변동한다. 기체의 유입량은 크라이오펌프(10)의 배기속도에 직접 관련된다. 간극이 너무 커도, 혹은 너무 작아도, 실제의 배기속도가 설계상의 성능으로부터 차이가 나게 된다. 실드전단(28)과 플레이트부재(32)의 간극을 스커트부(33)가 덮음으로써, 간극을 통한 기체의 흐름이 규제되어, 개체의 차가 저감된다. 그 결과, 설계 성능에 대한 크라이오펌프 배기속도의 개체의 차도 작게 할 수 있다.
실드전단(28) 및 플레이트부재(32)는, 크라이오펌프 용기(38)의 흡기구 플랜지(40)를 넘어 축방향 상방에 배치되어 있다. 실드전단(28) 및 플레이트부재(32)는, 크라이오펌프 용기(38)의 밖에 위치한다. 이와 같이, 방사실드(30)는, 크라이오펌프(10)가 장착되는 진공챔버를 향하여 연장되어 있다. 방사실드(30)를 상방으로 늘림으로써, 응축층(72)의 주수용공간(21)을 축방향으로 넓힐 수 있다. 단, 그 연장부분의 축방향 길이는, 진공챔버(또는 진공챔버와 크라이오펌프(10) 사이의 게이트밸브)에 간섭하지 않도록 정해져 있다.
크라이오펌프 용기(38)는, 제1 크라이오패널(18) 및 제2 크라이오패널(20)을 수용하는 크라이오펌프(10)의 케이싱이며, 내부공간(14)의 진공 기밀을 유지하도록 구성되어 있는 진공용기이다. 또, 냉동기(16)의 제1 스테이지(22) 및 제2 스테이지(24)가 크라이오펌프 용기(38)에 수용되어 있다.
크라이오펌프 용기(38)의 전단(39)에 의하여, 흡기구(12)가 획정되어 있다. 크라이오펌프 용기(38)는, 전단(39)으로부터 직경방향 외측을 향하여 뻗어 있는 흡기구 플랜지(40)를 구비한다. 흡기구 플랜지(40)는, 크라이오펌프 용기(38)의 전체둘레에 걸쳐 마련되어 있다. 흡기구 플랜지(40)를 이용하여 크라이오펌프(10)가 진공챔버에 장착된다. 크라이오펌프 용기(38)의 전단(39)과 플레이트부재(32) 사이에는 직경방향으로 간극이 있어, 크라이오펌프 용기(38)에 플레이트부재(32)는 접촉하고 있지 않다.
도 3은, 본 발명의 일 실시형태에 관한 플레이트부재(32)를 모식적으로 나타내는 상면도이다. 도 3에 있어서는 플레이트부재(32)의 하방에 있는 대표적인 구성요소를 파선으로 나타낸다. 플레이트부재(32)는, 실드개구(26)를 횡단하는 1매의 평판(예를 들면 원판)이다. 플레이트부재(32)의 전면이 크라이오펌프(10)의 외부 공간을 향하고, 플레이트부재(32)의 이면이 탑패널(60)을 향한다. 플레이트부재(32)와 탑패널(60)의 축방향 거리에 의하여 주수용공간(21)의 높이가 정해져 있다.
플레이트부재(32)의 치수(예를 들면 직경)는, 실드개구(26)의 치수와 대략 동일하다. 플레이트부재(32)는, 플레이트 중심부(50)와 플레이트 외주부(52)를 가진다. 플레이트 중심부(50)는, 플레이트부재(32)의 직경방향 내측 부분이며, 플레이트 외주부(52)는, 플레이트 중심부(50)를 둘러싸는 플레이트부재(32)의 직경방향 외측 부분이다.
플레이트 외주부(52)는, 실드전단(28)의 플레이트 장착부(29)에 장착되어 있다. 플레이트 장착부(29)는, 실드전단(28)으로부터 직경방향 내측으로 돌출하는 볼록부이며, 둘레방향으로 등간격(예를 들면 90° 간격)으로 형성되어 있다. 플레이트부재(32)는 적절한 수법으로 플레이트 장착부(29)에 고정된다. 예를 들면, 플레이트 장착부(29) 및 플레이트 외주부(52)는 각각 볼트구멍(도시하지 않음)을 가지며, 플레이트 외주부(52)가 플레이트 장착부(29)에 볼트 고정된다.
플레이트부재(32)에는 기체의 흐름을 허용하는 다수의 소공(54)이 형성되어 있다. 소공(54)은 플레이트 중심부(50)에 형성된 관통구멍이다. 따라서, 제2 크라이오패널(20)에 응축되어야 할 가스를, 소공(54)을 통하여 플레이트부재(32)와 제2 크라이오패널(20) 사이의 주수용공간(21)에 받아들일 수 있다. 소공(54)은, 플레이트 외주부(52)에는 형성되어 있지 않다.
소공(54)은 규칙적으로 배열되어 있다. 본 실시형태에 있어서는, 소공(54)은, 직교하는 2개의 직선방향 각각에 있어서 등간격으로 마련되며, 소공(54)의 격자를 형성한다. 대안으로서, 소공(54)은, 직경방향 및 둘레방향 각각에 있어서 등간격으로 마련되어 있어도 된다.
소공(54)의 형상은 예를 들면 원형이지만, 이에 한정되지 않고, 소공(54)은, 직사각형과 기타 형상을 가지는 개구, 직선 형상 또는 곡선 형상으로 뻗는 슬릿, 또는 플레이트부재(32)의 외주에 형성된 절결이어도 된다. 소공(54)의 크기는 명확하게 실드개구(26)보다 작다.
소공(54)은, 흡기구(12)의 개구 면적에 대한 소공(54)의 합계 면적의 비(흡기구(12)의 개구율이라고도 할 수 있음)가 1% 이상 6% 이하(바람직하게는, 4% 이상 6% 이하)이도록, 플레이트부재(32)에 형성되어 있다. 이와 같이 하여, 소공(54)은, 흡기구(12)의 개구 컨덕턴스에 대한 플레이트부재(32)의 컨덕턴스의 비가 1% 이상 6% 이하(바람직하게는, 4% 이상 6% 이하)이도록 플레이트부재(32)에 형성되어 있다.
플레이트부재(32)의 이면 및 방사실드(30)의 내면에는, 복사율을 높이는 표면 처리 예를 들면 흑체 처리가 이루어져 있어도 된다. 이로써, 플레이트부재(32)의 이면 및 방사실드(30)의 내면의 복사율은 대략 1과 동일하다. 동일한 표면 처리가, 플레이트부재(32)에 있어서 소공(54)을 정하는 플레이트부재 측면에 이루어져 있어도 된다. 플레이트부재(32)의 흑색 표면은, 예를 들면 구리의 기재의 표면에 흑색 크롬 도금을 실시함으로써 형성되어도 되고, 흑색 도장(塗裝)에 의하여 형성되어도 된다. 이러한 흑색 표면은, 크라이오펌프(10)에 진입한 열의 흡수에 기여한다.
한편, 플레이트부재(32)의 전면에는, 외부로부터의 복사열을 반사하기 위하여, 복사율을 낮추는 표면 처리가 이루어져 있어도 된다. 이러한 저복사율의 표면은, 예를 들면, 구리의 기재의 표면에 니켈 도금을 실시함으로써 형성되어도 된다.
상기의 구성의 크라이오펌프(10)에 의한 동작을 이하에 설명한다. 크라이오펌프(10)의 작동 시에는, 먼저 그 작동 전에 다른 적당한 러핑펌프로 진공챔버 내부를 예를 들면 1Pa 정도까지 러핑한다. 그 후 크라이오펌프(10)를 작동시킨다. 냉동기(16)의 구동에 의하여 제1 스테이지(22) 및 제2 스테이지(24)가 냉각되고, 이들에 열적으로 접속되어 있는 제1 크라이오패널(18), 제2 크라이오패널(20)도 냉각된다. 제1 크라이오패널(18) 및 제2 크라이오패널(20)은 각각, 제1 온도 및 그보다 낮은 제2 온도로 냉각된다.
플레이트부재(32)는, 진공챔버로부터 크라이오펌프(10) 내부를 향하여 날아오는 기체분자를 냉각하고, 그 냉각온도에서 증기압이 충분히 낮아지는 기체(예를 들면 수분 등)를 표면에 응축시켜 배기한다. 플레이트부재(32)의 냉각온도에서는 증기압이 충분히 낮아지지 않는 기체는, 다수의 소공(54)을 통과하여 주수용공간(21)에 진입한다. 크라이오펌프(10)에 입사하는 기체의 일부는 플레이트부재(32)에 의하여 반사되어, 주수용공간(21)에 진입하지 않는다.
진입한 기체분자 중 제2 크라이오패널(20)의 냉각온도에서 증기압이 충분히 낮아지는 기체(예를 들면 아르곤 등)는, 제2 크라이오패널(20)의 표면(주로, 탑패널 전면(61))에 응축되어 배기된다. 그 냉각온도에서도 증기압이 충분히 낮아지지 않는 기체(예를 들면 수소 등)는, 제2 크라이오패널(20)의 표면에 접착되어 냉각되어 있는 흡착제(68)에 의하여 흡착되어 배기된다. 이와 같이 하여 크라이오펌프(10)는 진공챔버의 진공도를 원하는 레벨에 도달시킬 수 있다.
도 4는, 배기운전 중의 크라이오펌프(10)를 모식적으로 나타내는 도이다. 도 4에 나타나는 바와 같이, 크라이오펌프(10)의 탑패널(60)에는 응축된 기체로 이루어지는 얼음 또는 서리가 퇴적되어 있다. 도 4에 나타내는 바와 같이, 돔형 또는 버섯형의 응축층(72)이 탑패널(60)에 성장한다. 이 응축층(72)의 주성분은 예를 들면 아르곤이다. 그 얼음층은 배기운전 시간과 함께 성장하여 두께가 증가되어 간다. 다만 도 4에 있어서는, 간략화를 위하여, 통상패널(67) 및 냉동기커버(70)에 퇴적하는 응축층은 도시를 생략하고 있다.
응축층(72)이 성장함에 따라, 응축층(72)에는 그 깊이방향으로 온도 구배가 발생한다. 그 결과, 탑패널(60)의 표면 온도보다 응축층(72)의 표면 온도가 높아진다. 이것이 의미하는 것은, 재생인터벌 초기에는 저온의 탑패널 전면(61)에 가스가 직접 응축되는 것에 비하여, 재생인터벌 후기에는 그보다 고온의 응축층(72)의 표면에 가스가 응축되게 된다는 것이다. 따라서, 크라이오펌프(10)의 진공 배기운전이 계속될 때, 크라이오펌프(10)의 배기속도는 서서히 저하된다. 배기속도의 저하에 따라 리커버리 시간도 길어진다.
따라서, 리커버리 시간은 크라이오펌프(10)의 재생의 필요 여부를 결정하기 위한 지표의 하나로서 사용될 수 있다. 이 경우, 리커버리 시간이 규정치보다 짧은 동안은 크라이오펌프(10)의 운전 지속이 허용된다. 그러나, 리커버리 시간이 규정치보다 길어졌을 때 크라이오펌프(10)의 진공 배기운전이 중지되며, 크라이오펌프(10)의 재생이 행해진다. 그 규정치는, 진공처리장치에 있어서의 진공프로세스의 사양으로서 정해져 있어도 된다.
크라이오펌프(10)의 재생은 진공처리장치에 있어서도 다운타임이 된다. 따라서, 진공처리장치의 생산성을 향상시키는 데 있어서, 리커버리 시간의 증가를 억제하여 크라이오펌프(10)의 재생인터벌을 길게 하는 것이 바람직하다.
리커버리 시간을 짧게 하려면 크라이오펌프(10)의 배기속도를 크게 하면 되는 것으로 일반적으로 인식되고 있다. 이를 위한 하나의 수단은, 크라이오펌프(10)의 흡기구(12)의 개구 컨덕턴스에 대한 플레이트부재(32)의 컨덕턴스의 비를 크게 하는 것이다. 간단하게 말하면, 흡기구(12)의 개구율을 높게 함으로써, 크라이오펌프(10)의 배기속도를 크게 하여, 리커버리 시간을 짧게 할 수 있다.
이는, 재생인터벌 초기에 있어서는 맞다. 그러나, 재생인터벌 후기에 있어서는, 응축층(72)이 성장한 것을 고려하면, 반드시 맞는 것은 아니다. 왜냐하면, 개구율이 크면 크라이오펌프(10)에 진입하는 열부하가 높아지고, 이에 따라 응축층(72)의 온도 구배가 확대되기 때문이다. 또, 개구율이 크면 크라이오펌프(10)에 진입하는 가스량도 많아진다. 이것도 응축층(72)의 온도 구배를 확대하는 효과를 가진다. 응축층(72)에 있어서의 온도 구배의 확대는 상기 서술한 바와 같이, 응축층(72)의 표면 온도의 상승과 리커버리 시간의 증가를 초래한다. 재생인터벌 후기에 있어서는 도 4에 나타나는 바와 같이 응축층(72)이 크게 성장해 있기 때문에, 리커버리 시간의 증가가 현저해질 수 있다.
따라서, 본 실시형태에서는, 응축층(72)의 온도 구배의 확대를 억제함으로써 리커버리 시간의 증가를 억제하는 것을 지향한다. 응축층(72)과 탑패널(60)의 온도차를 작게 함으로써, 응축층(72)의 성장에 따른 크라이오펌프(10)의 배기속도의 저하가 완화된다. 이로 인하여, 본 실시형태에서는, 컨덕턴스비가 실용상, 궁극적으로 작은 값으로 설정된다. 예를 들면, 상기 서술한 바와 같이, 흡기구(12)의 개구 컨덕턴스에 대한 플레이트부재(32)의 컨덕턴스의 비가 1% 이상 6% 이하(예를 들면 4% 이상 6% 이하)로 설정된다.
다만, 돔형의 응축층(72)이 직경방향으로 더 성장하면, 응축층(72)의 외주부가 실드측부(36)에 접촉할 수 있다. 만일, 장착시트(37)와 탑패널(60) 사이의 간극이 좁으면, 응축층(72)은 먼저 장착시트(37)에 접촉한다. 접촉 부위에서 가스는 다시 기화되어, 주수용공간(21) 및 크라이오펌프(10)의 외부로 방출되게 된다. 따라서, 그 이후 크라이오펌프(10)는 설계상의 배기 성능을 제공할 수 없다. 따라서, 이 때의 가스의 흡장량이 크라이오펌프(10)의 최대 흡장량을 부여한다. 응축층(72)의 국소부분(이 경우, 장착시트(37) 부근의 응축층(72))이 크라이오펌프(10)의 가스 흡장 한계를 결정하고 있다.
크라이오펌프는 일반적으로 축대칭으로 설계되어 있다. 그러나 가로형의 크라이오펌프(10)는 냉동기(16)가 가로방향으로 배치되므로, 필연적으로 비대칭부분(예를 들면 장착시트(37))을 가진다. 본 실시형태에 있어서는, 이러한 비대칭부분에 탑패널(60)의 형상을 맞추어, 탑패널(60)과 방사실드(30)의 간극의 폭을 둘레방향으로 일치시키고 있다. 탑패널(60) 상에 있어서 직경방향으로 성장하는 응축층(72)의 특정 부위(이 경우, 장착시트(37) 부근의 응축층(72))만이 선행하여 방사실드(30)에 접촉하는 것을 회피할 수 있다. 그 결과, 본 실시형태에 의하면, 크라이오펌프(10)의 가스흡장량을 향상시킬 수 있다.
도 5는, 본 발명의 일 실시형태에 관한 것으로, 소정 재생인터벌에 있어서의 리커버리 시간의 변화를 예시하는 모식도이다. 도 5의 세로축은 리커버리 시간을 나타내고, 가로축은 크라이오펌프(10)의 운전 시간을 나타낸다. 도 5의 가로축은, 크라이오펌프(10)의 진공 배기운전 중에 실시되는 리커버리의 누적 횟수를 나타낸다고도 할 수 있다. 도 5에 있어서는, 본 실시형태에 관한 리커버리 시간의 변화를 실선으로 나타내며, 비교예에 관한 리커버리 시간의 변화를 파선으로 나타낸다. 비교예는, 크라이오펌프 흡기구의 개구율이 비교적 높은(예를 들면 7%보다 큰) 경우이다. 본 실시형태에 관한 재생인터벌을 화살표 B로 도시하고, 비교예에 관한 재생인터벌을 화살표 C로 도시한다.
도 6은, 비교예에 관한 플레이트부재(132)를 모식적으로 나타내는 상면도이다. 도 6에 나타나는 바와 같이, 플레이트부재(132)는, 플레이트 중심부(150)뿐만 아니라 플레이트 외주부(152)에도 형성되어 있는 다수의 소공(154)을 가진다. 이와 같이, 소공(154)이 플레이트부재(132)의 전역에 분포하는 경우에는, 흡기구의 개구율은 7%를 넘는다.
도 5에 나타나는 바와 같이, 본 실시형태에 관한 크라이오펌프(10)에 있어서는, 재생인터벌 초기의 리커버리 시간이 비교예에 비하여 어느 정도 길다. 크라이오펌프(10)의 진공 배기운전이 계속될 때, 재생인터벌 후기를 향하여 크라이오펌프(10)의 배기속도는 서서히 저하되고, 이와 함께 리커버리 시간이 서서히 길어진다. 이렇게 하여 리커버리 시간이 규정치(T)에 이르렀을 때 재생인터벌이 종료된다(즉 재생이 개시된다).
본 실시형태에 의하면, 흡기구(12)의 개구에 대한 입구 크라이오패널의 개구율이 작다. 입구 크라이오패널의 개구율이란, 축방향으로 보았을 때의 입구 크라이오패널 면적에 대한 입구 크라이오패널의 개구부분의 면적의 비이다. 입구 크라이오패널의 개구율이 작기 때문에, 크라이오펌프(10)의 밖으로부터 주수용공간(21)으로의 가스 유량도 낮다. 이로 인하여, 응축층(72)의 성장 속도가 작다. 또, 가스에 의한 열부하도 작다. 또한, 진입하는 복사열에 의한 열부하도 작다. 따라서, 응축층(72)에 있어서의 온도 구배가 작아져, 응축층(72)의 표면 온도가 저온으로 유지된다. 따라서, 재생인터벌 후기에 있어서의 리커버리 시간의 증가를 억제할 수 있다. 이로써, 본 실시형태에 있어서의 재생인터벌(B)은, 비교예에 있어서의 재생인터벌(C)에 비하여 연장된다.
본 발명자의 고찰 및 시산(試算)에 의하면, 흡기구의 직경이 180mm에서 340mm의 범위에 있는 경우에, 개구율 저감에 의한 재생인터벌의 연장 효과를 얻을 수 있다. 또, 본 발명자의 고찰 및 시산에 의하면, 본 실시형태는, 예를 들면, 1mTorr에서 10mTorr의 범위에 있어서의 진공배기에 유효하다.
이상 설명한 바와 같이, 본 발명의 실시형태에 의하면, 종래의 인식과 상이한 새로운 지견에 근거하여, 진공처리장치에 있어서의 리커버리 시간의 증가를 억제하여, 크라이오펌프(10)의 재생인터벌을 길게 할 수 있다. 따라서, 진공처리장치의 생산성 향상에 기여하는 크라이오펌프(10)를 제공할 수 있다.
이상, 본 발명을 실시예에 근거하여 설명했다. 본 발명은 상기 실시형태에 한정되지 않고, 다양한 설계 변경이 가능하며, 다양한 변형예가 가능한 것, 또 이러한 변형예도 본 발명의 범위에 있는 것은, 당업자에게 이해되는 바이다.
도 7은, 본 발명의 다른 실시형태에 관한 제1 크라이오패널의 플레이트부재(232)를 모식적으로 나타내는 상면도이다. 플레이트부재(232)는, 가스가 통과되는 적어도 1개의 개구를 가지는 제1 플레이트(234)와, 제1 플레이트(234)에 인접하며 제1 플레이트(234)와 협동하여 실드개구를 덮는 제2 플레이트(236)를 구비한다. 제1 플레이트(234)와 달리, 제2 플레이트(236)는 가스가 통과되는 개구를 가지지 않는다.
제1 플레이트(234)는, 크라이오펌프 흡기구 및 실드개구의 직경보다 작은 직경을 가지는 유공 원판이다. 제1 플레이트(234)는, 다수의 소공(254)을 가진다. 제2 플레이트(236)는, 제1 플레이트(234)와 함께 흡기구를 덮는 원환 플레이트이다. 제2 플레이트(236)는, 흡기구 및 실드개구의 직경과 대략 동일한 외경을 가진다. 제2 플레이트(236)는, 크라이오펌프 흡기구의 적어도 15%를 차지한다.
제1 플레이트(234)는, 제1 호칭직경을 가지는 크라이오펌프 및/또는 방사실드에 적합한 플레이트부재(32)여도 된다. 제1 플레이트(234)를 제2 플레이트(236)와 조합함으로써, 제1 호칭직경보다 큰 제2 호칭직경을 가지는 크라이오펌프 및/또는 방사실드에 적합한 플레이트부재(232)를 얻을 수 있다. 제1 호칭직경은 예를 들면 8인치이며, 제2 호칭직경은 예를 들면 10인치여도 된다.
10 크라이오펌프
12 흡기구
16 냉동기
18 제1 크라이오패널
20 제2 크라이오패널
22 제1 스테이지
24 제2 스테이지
32 플레이트부재
38 크라이오펌프 용기
54 소공

Claims (10)

  1. 크라이오펌프 흡기구를 정하는 크라이오펌프 용기와,
    상기 크라이오펌프 용기에 수용되는 제1 스테이지 및 제2 스테이지를 구비하고, 상기 제2 스테이지가 상기 제1 스테이지보다 저온으로 냉각되는 냉동기와,
    상기 제1 스테이지에 열적으로 접속되며, 상기 크라이오펌프 용기에 둘러싸여 있는 제1 크라이오패널과,
    상기 제2 스테이지에 열적으로 접속되며, 상기 제1 크라이오패널에 둘러싸여 있는 제2 크라이오패널을 구비하고,
    상기 제1 크라이오패널은, 상기 크라이오펌프 흡기구에 입구개구부를 가지는 입구 크라이오패널을 구비하며,
    상기 입구개구부는, 상기 크라이오펌프 흡기구의 개구 컨덕턴스에 대한 상기 입구 크라이오패널의 컨덕턴스의 비가 6% 이하이도록 상기 입구 크라이오패널에 형성되어 있는 것을 특징으로 하는 크라이오펌프.
  2. 제 1 항에 있어서,
    상기 입구개구부는, 상기 크라이오펌프 흡기구의 개구 컨덕턴스에 대한 상기 입구 크라이오패널의 컨덕턴스의 비가 1% 이상 또는 4% 이상이도록 상기 입구 크라이오패널에 형성되어 있는 것을 특징으로 하는 크라이오펌프.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 입구 크라이오패널은, 상기 크라이오펌프 흡기구에 배치되는 유공 부재를 구비하고, 상기 입구개구부는, 상기 유공 부재에 형성되어 있는 적어도 1개의 개구이며,
    상기 크라이오펌프 흡기구에 대한 상기 적어도 1개의 개구의 면적비가 6% 이하인 것을 특징으로 하는 크라이오펌프.
  4. 제 3 항에 있어서,
    상기 면적비가 1% 이상 또는 4% 이상인 것을 특징으로 하는 크라이오펌프.
  5. 제 3 항에 있어서,
    상기 유공 부재는, 상기 크라이오펌프 흡기구를 덮는 단일의 유공 플레이트인 것을 특징으로 하는 크라이오펌프.
  6. 제 3 항에 있어서,
    상기 크라이오펌프 흡기구는, 제1 직경을 가지는 원형 개구이고,
    상기 유공 부재는, 상기 제1 직경보다 작은 제2 직경을 가지는 원형 플레이트와, 상기 원형 플레이트와 함께 상기 크라이오펌프 흡기구를 덮는 원환 플레이트를 구비하며, 상기 적어도 1개의 개구가 상기 원형 플레이트에 형성되어 있는 것을 특징으로 하는 크라이오펌프.
  7. 제 3 항에 있어서,
    상기 개구는, 다수의 구멍인 것을 특징으로 하는 크라이오펌프.
  8. 제 1 항 또는 제 2 항에 있어서,
    상기 크라이오펌프 흡기구의 직경이 180mm에서 340mm의 범위에 있는 것을 특징으로 하는 크라이오펌프.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 입구개구부를 정하는 상기 입구 크라이오패널의 측면이 흑색인 것을 특징으로 하는 크라이오펌프.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 입구 크라이오패널은, 상기 크라이오펌프 흡기구를 정하는 크라이오펌프 용기의 전단보다 상방에 배치되어 있는 것을 특징으로 하는 크라이오펌프.
KR1020150140220A 2014-10-07 2015-10-06 크라이오펌프 KR101773888B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-206158 2014-10-07
JP2014206158A JP6415230B2 (ja) 2014-10-07 2014-10-07 クライオポンプ

Publications (2)

Publication Number Publication Date
KR20160041796A KR20160041796A (ko) 2016-04-18
KR101773888B1 true KR101773888B1 (ko) 2017-09-01

Family

ID=55632506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150140220A KR101773888B1 (ko) 2014-10-07 2015-10-06 크라이오펌프

Country Status (5)

Country Link
US (1) US20160097380A1 (ko)
JP (1) JP6415230B2 (ko)
KR (1) KR101773888B1 (ko)
CN (1) CN105484968B (ko)
TW (1) TWI631280B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU169309U1 (ru) * 2016-05-04 2017-03-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский институт Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГБОУ ВО Воронежский Криогенная вымораживающая ловушка
JP7300494B2 (ja) * 2017-02-08 2023-06-29 住友重機械工業株式会社 クライオポンプ
JP2018127943A (ja) * 2017-02-08 2018-08-16 住友重機械工業株式会社 クライオポンプ
CN107605700A (zh) * 2017-09-26 2018-01-19 安徽万瑞冷电科技有限公司 一种高吸留极限的低温泵
CN108915991B (zh) * 2018-06-19 2019-08-23 安徽万瑞冷电科技有限公司 一种带热桥的快速降温型低温泵
JP7369129B2 (ja) * 2018-09-03 2023-10-25 住友重機械工業株式会社 クライオポンプおよびクライオポンプの監視方法
CN112601889B (zh) * 2018-09-06 2023-02-28 住友重机械工业株式会社 低温泵
WO2023145296A1 (ja) * 2022-01-26 2023-08-03 住友重機械工業株式会社 クライオポンプ
CN116066323A (zh) * 2022-12-16 2023-05-05 安徽万瑞冷电科技有限公司 低温泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172054A (ja) * 1991-12-20 1993-07-09 Ulvac Japan Ltd クライオポンプ
JP4521047B2 (ja) * 2008-05-16 2010-08-11 住友重機械工業株式会社 クライオポンプ
JP5193786B2 (ja) * 2008-10-01 2013-05-08 住友重機械工業株式会社 クライオポンプ
TWI557320B (zh) * 2011-02-09 2016-11-11 布魯克機械公司 低溫泵、低溫泵的前隔板及製造低溫泵之前隔板的方法
JP5822747B2 (ja) * 2012-02-02 2015-11-24 住友重機械工業株式会社 クライオポンプ
JP6057782B2 (ja) * 2013-03-05 2017-01-11 住友重機械工業株式会社 クライオポンプ
JP6338403B2 (ja) * 2013-03-25 2018-06-06 住友重機械工業株式会社 クライオポンプ及び真空排気方法
TWI580865B (zh) * 2013-03-25 2017-05-01 Sumitomo Heavy Industries Low temperature pump

Also Published As

Publication number Publication date
US20160097380A1 (en) 2016-04-07
KR20160041796A (ko) 2016-04-18
TW201615981A (zh) 2016-05-01
CN105484968A (zh) 2016-04-13
TWI631280B (zh) 2018-08-01
JP6415230B2 (ja) 2018-10-31
CN105484968B (zh) 2017-09-22
JP2016075218A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
KR101773888B1 (ko) 크라이오펌프
KR101595435B1 (ko) 크라이오펌프 및 진공배기방법
JP6076843B2 (ja) クライオポンプ
JP6710604B2 (ja) クライオポンプ
KR101530926B1 (ko) 크라이오펌프
KR102364147B1 (ko) 크라이오펌프
US11047374B2 (en) Cryopump and gate valve
KR102364146B1 (ko) 크라이오펌프
JP2017180451A (ja) クライオポンプ
KR102342229B1 (ko) 크라이오펌프
JP2009174470A (ja) クライオポンプ及び真空排気方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant