KR101736518B1 - 몰딩된 반사 측벽 코팅을 갖는 led - Google Patents

몰딩된 반사 측벽 코팅을 갖는 led Download PDF

Info

Publication number
KR101736518B1
KR101736518B1 KR1020127004591A KR20127004591A KR101736518B1 KR 101736518 B1 KR101736518 B1 KR 101736518B1 KR 1020127004591 A KR1020127004591 A KR 1020127004591A KR 20127004591 A KR20127004591 A KR 20127004591A KR 101736518 B1 KR101736518 B1 KR 101736518B1
Authority
KR
South Korea
Prior art keywords
led
submount
reflective material
reflective
reflector
Prior art date
Application number
KR1020127004591A
Other languages
English (en)
Other versions
KR20120049288A (ko
Inventor
세르게 제이. 비어후이젠
그레고리 더블유. 잉
Original Assignee
루미레즈 엘엘씨
코닌클리케 필립스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루미레즈 엘엘씨, 코닌클리케 필립스 엔.브이. filed Critical 루미레즈 엘엘씨
Publication of KR20120049288A publication Critical patent/KR20120049288A/ko
Application granted granted Critical
Publication of KR101736518B1 publication Critical patent/KR101736518B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Abstract

인광체 층(30)을 갖는 LED들(10)의 어레이가 실장된 서브마운트 웨이퍼(36)가 인덴션들(42)의 어레이를 갖는 몰드(40)에 대하여 위치된다. 10중량%-50중량%의 TiO2와 실리콘의 혼합물(44)이 웨이퍼와 인덴션들 사이에 분산되며, 이는 몰딩된 실질적으로 반사성 재료를 생성한다. 몰딩된 혼합물은 LED의 측벽들을 커버하는 반사 벽(46)을 형성한다. 그 다음에, 반사성 재료는 경화되며, 서브마운트 웨이퍼는, 측벽들을 커버하는 반사성 재료가 LED로부터 방출된 광을 포함하도록 몰드로부터 분리된다. 서브마운트 웨이퍼는 다이싱된다. 그 다음에, LED가 요소의 중심 홀(54)을 통해 돌출하도록, 이 요소(예를 들어, 반사기(50), 지지 브래킷(76) 등)가 서브마운트(22)에 부착될 수 있다. 이 요소의 내부 에지는 LED의 상부 표면(32)의 위의 또는 아래의 임의의 높이에 위치하도록 용이하게 형성된다.

Description

몰딩된 반사 측벽 코팅을 갖는 LED{LED WITH MOLDED REFLECTIVE SIDEWALL COATING}
본 발명은 발광 다이오드(LED)에 관한 것으로, 상세하게는 측면 방출 광(side-emitted light)을 내부로 반사하기 위한 기법에 관한 것이다.
반도체 LED는 그 광 출력을 최대화하기 위해서 50 마이크로미터 아래와 같이 매우 얇게 이루어질 수 있다. 또한, 반도체 LED는, 청색 LED를 이용하여 백색 광을 생성하기 위해서와 같이 LED로부터의 광을 파장 변환하기 위해서 그 상부 표면 위에 비교적 두꺼운 인광체 층을 가질 수 있다. 이러한 구조는 여전히 단지 1mm2보다 작은 상부 영역 및 약 0.2-0.5mm의 총 두께를 가질 수 있다. LED는, 단지 서브마운트의 저부 상의 강건한 전극들이 인쇄 회로 기판에 땜납될 필요가 있도록 훨씬 더 큰 서브마운트의 상부 표면 상의 금속 패드들에 본딩되는 플립 칩일 수 있다.
몰딩된 포물선형 반사기를 갖는 LED(그러나 서브마운트는 아님)를, 이 반사기의 저부에서 장방형 개구부를 통해 LED를 삽입함으로써 둘러싸는 것이 알려져 있다. 반사기가 이상적으로는 LED의 상부와 측면들로부터 방출되는 모든 광을 반사해야 하기 때문에, LED에 가장 가까운 반사기의 내부 에지는 측면 광의 대부분을 캡처하기 위해서 매우 작은 두께를 가질 필요가 있다(나이프 에지(knife edge)로 지칭됨). 또한, 이상적인 반사기는 대부분의 측면 광을 캡처하기 위해서 LED의 에지에 실질적으로 접해야 한다. 이러한 이상적인 반사기는 생산하기에 비실용적이고, 통상적인 몰딩된 반사기들은 반사기 에지와 LED 사이에 가변 공간들을 가지며, 반사기 내부 에지(약 0.5mm 최소 두께)는 대부분의 측면 광이 반사기 영역에 입사하는 것을 차단한다.
실질적인 몰딩된 반사기가 LED로부터 방출되는 모든 광을 실질적으로 반사할 수 있게 하는 기법이 필요하다.
LED의 측벽들 위에 반사성 재료를 몰딩하는 LED 광원을 제조하는 방법이 개시된다. LED의 상부 발광 표면 위에는 실질적으로 어떠한 반사성 재료도 없다. LED는 통상적으로 인광체 층을 포함할 것이고, 반도체 LED 및 인광체 층의 측벽들은 반사성 재료로 코팅된다. 반사성 재료는 실질적으로 모든 광이 잘 정의된 방출 영역 내에서 방출되도록 광을 포함한다. 반사성 재료의 상부는 LED의 상부와 같은 높이로 형성될 수 있거나, 또는 LED의 상부의 위로 또는 아래로 연장될 수 있다.
실질적으로 어떠한 광도 LED의 측면들로부터 방출되지 않기 때문에, LED 둘레의 임의의 반사기는 단지 LED 광의 전부를 캡처하기 위해서 반사성 재료의 상부 에지와 같은 높이에 또는 그 아래에 그 내부 에지들을 가질 필요가 있다. 종래 기술과 대조적으로, 반사기의 내부 에지들은 광을 캡처하기 위해서 나이프 에지들일 필요는 없다.
일 실시예에서, 보울 형상의 반사기가 LED 및 반사성 재료를 둘러싼다.
다른 실시예에서, 반사성 측면들을 갖는 LED는 백색 플라스틱 요소(piece)와 같은 반사성 요소의 개구부 내에 실장된다. 반사성 요소의 개구부는 측벽 반사 재료의 외부 벽들보다 넓고, 반사성 요소는 측벽 반사 재료의 상부보다 높다. 일부 낮은 각도의(low-angled) 광선들은 측벽 반사 재료 위로 연장되는 반사성 요소의 내부 벽들로부터 반사될 것이다. 이것은 LED의 사이즈보다 큰 겉보기(apparent) 광원 사이즈를 생성하며, 또한 반사성 요소의 에지를 향하여 테이퍼되는 휘도 프로파일을 생성한다. 이는 다수의 광원으로부터의 광이 함께 혼합되어야 하는 경우와 같은 특정 애플리케이션들에서 유리하다.
LED 측벽들 위의 반사성 재료는 또한 측면 광이 반사성 재료에 더 깊게 침투하도록 덜 반사성으로 이루어질 수 있다. 이것은 광원의 겉보기 에지들(apparent edges)을 평활화하는데, 이는 다수의 광원으로부터의 광이 함께 혼합되어야 하는 경우와 같은 특정 애플리케이션들에서 유리하다.
다른 실시예에서, LED 측벽들 위의 반사성 재료는, 광 흡수 재료들이 전체 광 출력을 감소시키지 않고 이 광 흡수 재료들이 LED 옆에 이용될 수 있게 한다. 예를 들어, 흑색 플라스틱 브래킷은, 브래킷이 측면 광을 흡수하지 않고 히트 싱크 또는 다른 기판 상에 LED 서브마운트를 유지하는데 이용될 수 있다.
다른 실시예들도 또한 기술된다.
일 실시예에서, 인광체 플레이트와 같은 인광체 층을 각각 갖는 LED들의 어레이가 서브마운트 웨이퍼 상에 실장된다. 이 웨이퍼는 인덴션들(indentions)의 어레이를 갖는 몰드에 대하여 위치된다. 인덴션들은 10중량%-50중량%의 TiO2와 실리콘의 혼합물로 채워지는데, 이는 실질적으로 반사성 재료를 생성한다. TiO2는 백색 주변광 하에서 백색으로 나타난다. 실리콘은 실질적으로 투명한 재료이며, TiO2는 비-인광체 입자이다. 낮은 백분율의 TiO2(예를 들어, 10-15%)로, 광 경계(light boundary)가 더 소프트해지는데, 그 이유는 광이 반사성 재료에 더 깊게 침투하기 때문이다. 인덴션들은, 반사성 재료가 LED의 측벽들 둘레에 반사 벽을 형성하도록 LED들의 외부 치수들보다 큰 치수들을 갖는다.
어떠한 상당한 두께의 반사성 재료도 상부 표면과 인덴션 사이에 존재하지 않도록, LED들의 상부 표면들은 실질적으로 인덴션들의 저부 표면에 접촉한다. LED의 상부 표면 위의 임의의 반사성 재료는 마이크로비드 블라스팅(microbead blasting) 및 레이저 제거(laser ablation)와 같은 다양한 기법들을 이용하여 제거될 수 있다. 몇몇 애플리케이션들에서, 인광체 층 위에 TiO2의 매우 얇은 코팅이 요구되는데, 그 이유는 그것이 광을 상당히 반사하지 않고 더욱 미적으로 만족스러운 백색 외관(white appearance)을 생성하기 때문이다.
그 다음에, 반사성 재료가 경화되며, 서브마운트 웨이퍼는, 측벽들을 커버하는 반사성 재료가 LED들로부터 방출된 광을 포함하도록 몰드로부터 분리된다. 그 다음에, 서브마운트 웨이퍼는 다이싱된다. LED의 측벽들 둘레에 반사성 재료를 형성하기 위한 다양한 다른 방법들이 기술된다.
그 다음에, 보울 형상의 반사기 또는 다른 요소가 서브마운트에 부착된다. 반사기(또는 다른 요소)는 LED가 삽입되는 개구부를 갖는다. LED 측벽들 위의 반사성 재료가 적어도 LED만큼 높기 때문에, 반사기(또는 다른 요소)의 내부 에지들은 단지 실질적으로 LED 광의 전부를 캡처하기 위해서 반사성 재료의 상부와 같은 높이에 또는 그 아래에 있을 필요가 있다. 몇몇 실시예들에서, 외부 요소는 측벽 반사 재료보다 높은 내부 반사 벽들을 갖는다.
반사기 대신에 LED 둘레의 서브마운트에 렌즈가 부착될 수 있다.
도 1은 상부 표면에 부착된 인광체 플레이트(예를 들어, 황록색 YAG)를 갖는 서브마운트 웨이퍼 상에 실장된 청색 LED의 단면도이다.
도 2는 서브마운트 웨이퍼 상에 실장된 도 1의 복수의 LED들의 단면도, 및 (중량으로) 약 10%-50%의 TiO2가 주입된 액체 실리콘으로 채워진 몰드의 단면도이다.
도 3은 단지 각각의 LED의 측면들 둘레에 실리콘/TiO2를 압축 몰딩하기 위해서 접합되는 도 2의 몰드와 웨이퍼를 도시한다.
도 4는 실리콘이 경화되며 웨이퍼가 몰드로부터 제거된 후의 웨이퍼를 도시한다.
도 5는 반사기에 부착되는 싱귤레이팅된(singulated) LED의 단면도로, 여기서 반사기의 내부 에지는 실질적으로 LED에 의해 방출된 모든 광을 수광하기 위해서 반사기에 대한 나이프 에지일 필요는 없다(LED가 단지 0.5mm 높이일 수 있기 때문에, 반사기의 상대적인 사이즈는 통상적으로 더 클 것이다).
도 6은 반사기들의 몰딩된 어레이의 톱다운 도면으로, 반사기들의 LED들의 배치는 핸들링을 단순화하기 위해서 어레이 스케일로 수행된다.
도 7은 렌즈에 부착되는 싱귤레이팅된 LED의 단면도이다.
도 8은 LED보다 큰 광원의 외관을 생성하기 위하여 LED를 둘러싸며 이보다 더 높은 백색 플라스틱 요소를 도시한다.
도 9는 LED의 측면들 위의 두꺼운 벽의(thick-walled) 반사성 재료를 도시하는데, 여기서 반사성 재료는 평활한 경계들을 갖는 광원을 생성하기 위해서 낮은 백분율의 TiO2를 갖는다.
도 10은 히트 싱크에 서브마운트를 고정하는데 이용되는 광 흡수 요소를 도시하는데, 여기서 LED 측벽들 위의 반사성 재료는 이 요소가 LED 광을 흡수하는 것을 회피한다.
다양한 도면들에서의 유사하거나 동일한 요소들에는 동일한 번호가 붙여진다.
본 발명은 임의의 타입의 LED에 적용될 수 있지만, 모든 예들에서 이용되는 하나의 특정 LED가 설명될 것이다. 도 1은 백색 광 LED(10)의 단면도이다.
예시의 LED(10)의 활성층은 청색 광을 발생시킨다. LED(10)는 사파이어, SiC 또는 GaN과 같은 시작 성장 기판(starting growth substrate) 상에 형성된다. 일반적으로, n-층(12)이 성장된 다음, 활성층(14), 그 다음에 p-층(16)이 성장된다. p-층(16)은 하부의 n-층(12)의 일부분을 노출하도록 에칭된다. 그 다음에, 반사성 금속 전극들(18)(예를 들어, 은, 알루미늄 또는 합금)이 n 및 p 층들에 접촉하도록 LED의 표면 위에 형성된다. 전류를 더욱 고르게 확산시키기 위해서 많은 분포된 전극들이 존재할 수 있다. 다이오드가 순방향 바이어스되는 경우, 활성층(14)은 활성층(예를 들어, AlInGaN)의 조성에 의해 결정되는 파장을 갖는 광을 방출한다. 이러한 LED들을 형성하는 것은 잘 알려져 있으며, 보다 상세하게 설명될 필요는 없다. LED들을 형성하는 것에 대한 부가적인 상세는, Steigerwald 등에 의한 미국 특허 제6,828,596호 및 Bhat 등에 의한 미국 특허 제6,876,008호에 기술되어 있는데, 이들 모두는 본 양수인에게 양도되었으며, 참조로 본 명세서에 포함되어 있다.
그 다음에, 반도체 LED가 플립 칩으로서 서브마운트(22) 상에 실장된다. 서브마운트(22)는 많은 LED들이 실장되는 서브마운트 웨이퍼의 부분이며, 서브마운트는 나중에 싱귤레이팅된다. 서브마운트(22)의 상부 표면은 땜납 볼들(solder balls)을 통해 LED 상의 금속 전극들(18)에 땜납되거나 초음파 용접되는 금속 전극들을 포함한다. 다른 타입들의 본딩도 이용될 수 있다. 땜납 볼들은 전극들 자체가 함께 초음파 용접될 수 있는 경우에 제거될 수 있다.
서브마운트 전극들은, 서브마운트가 인쇄 회로 기판 상의 금속 패드들에 표면 실장될 수 있도록 서브마운트의 저부 상의 캐소드 및 애노드 패드들(24)에 비아들에 의해 전기적으로 접속되는데, 이는 카메라를 위한 플래시 모듈의 부분을 형성할 수 있다. 회로 기판 상의 금속 트레이스들은 전원에 패드들을 전기적으로 결합한다. 서브마운트(22)는 세라믹, 실리콘, 알루미늄 등과 같은 임의의 적합한 재료로 형성될 수 있다. 서브마운트 재료가 도전성인 경우, 기판 재료 위에 절연층이 형성되며, 절연층 위에 금속 전극 패턴이 형성된다. 서브마운트(22)는 기계적 지지체의 역할을 하고, 전원 및 LED 칩 상의 부서지기 쉬운(delicate) n 및 p 전극들 사이에 전기적 인터페이스를 제공하며, 히트 싱크를 제공한다. 서브마운트들은 잘 알려져 있다.
LED(10)가 낮은 프로파일을 가지며, 광이 성장 기판에 의해 흡수되는 것을 방지하기 위해서, 성장 기판은 예를 들어 CMP에 의해 또는 레이저 리프트 오프 방법을 이용하여 제거되는데, 여기서 레이저는 GaN으로부터 멀리 기판을 푸시하는 고압 가스를 생성하기 위해서 GaN과 성장 기판의 계면을 가열한다. 일 실시예에서, 성장 기판의 제거는, LED들의 어레이가 서브마운트 웨이퍼 상에 실장된 후에 그리고 LED들/서브마운트들이 (예를 들어, 소잉(sawing)에 의해) 싱귤레이팅되기 전에 수행된다. 반도체 층들의 최종 두께는 약 40 마이크로미터일 수 있다. LED 층들에 서브마운트를 더한 것의 두께는 약 0.5mm일 수 있다.
LED 반도체 층들의 프로세싱은, LED가 서브마운트 웨이퍼 상에 실장되기 전 또는 후에 일어날 수 있다.
일 실시예에서, 성장 기판이 제거된 후에, 미리 형성된 플레이트로서 형성된 인광체 층(30)이 활성층(14)으로부터 방출된 청색 광을 파장 변환하기 위해 예를 들어 실리콘에 의해 LED의 상부 위에 부착된다. 다른 실시예에서, 인광체 층(30)은, LED들이 성장 웨이퍼로부터 싱귤레이팅되기 전에 또는 LED들이 서브마운트 웨이퍼 상에 실장된 후에, 전기영동(electrophoresis)에 의해 박막 퇴적, 스핀온, 스프레이 퇴적될 수 있거나, 임의의 다른 기법을 이용하여 형성될 수 있다. 인광체 층(30)은, 유기 또는 무기일 수 있는 투명 또는 반투명 바인더의 인광체 입자들일 수 있거나, 또는 소결된 인광체 입자들일 수 있다.
인광체 층(30)에 의해 방출된 광은, 청색 광과 혼합되는 경우에 백색 광 또는 다른 원하는 컬러를 생성한다. 예시에서, 인광체는 황색 광을 생성하는 이트륨 알루미늄 옥사이드 가닛(yttrium aluminum oxide garnet)(YAG) 인광체이다(Y+B=백색). 인광체는 백색 광을 생성하기 위해서 적색 인광체 및 녹색 인광체와 같이 임의의 다른 인광체 또는 인광체들의 조합일 수 있다(R+G+B=백색). 인광체 층(30)의 두께는 방출될 원하는 전체 컬러 및 LED의 휘도에 따라 약 100 마이크로미터 또는 그 이상일 수 있다.
일 실시예에서, 미적인 목적을 위해 노르스름한 YAG 인광체가 백색으로 나타나도록 하기 위해서 약 1%의 TiO2가 주입된 실리콘의 얇은 층(32)이 그 다음에 인광체 층(30) 위에 퇴적된다. 두께는 30-100 마이크로미터 정도일 수 있다. 또한, 얇은 층(32)은, LED의 상부가 압력 하에서 강성의 몰드와 접촉할 수 있는 경우에 후속 몰딩 프로세스 중에 인광체 층(30)의 크래킹 방지를 돕는 역할을 한다. 실리콘 대신에, 솔-겔이 이용될 수 있다. 이 층(32)은 선택적이다. 이색성 필터 층을 포함한 다른 상부 층들이 형성될 수 있다. 리모트 인광체 층이 이용되는 경우, LED 위의 이색성 필터 층은 LED 광이 통과할 수 있게 하며 후방 산란 인광체 광을 반사하는데 유용하다.
도 2는 도 1의 서브마운트 웨이퍼(36) 및 LED들(10)을 예시한다. 웨이퍼(36)가 나중에 싱귤레이팅을 위해 소잉되거나 파단될 경우를 예시하는 선들이 웨이퍼(36) 상에 그려진다.
체이스(chase)로도 알려진 몰드(40)는, LED들의 상부들이 각각의 인덴션(42)의 평탄한 저부 표면에 접촉하거나 매우 가깝게 되는 것을 보장하기 위해서 바람직하게는 LED들(10)보다 더 얕은 인덴션들(42)을 갖는다. 인덴션들(42)은 LED들(10)보다 약간 더 넓은데, 여기서 그 차이는 LED들(10)의 측면들을 커버하는 몰딩된 재료의 두께일 것이다. 인덴션들(42)은 매우 정확한 치수들을 가질 수 있고, 몰딩된 재료의 외부 치수들은 서브마운트 웨이퍼(36) 상의 LED들의 배치 및 LED들(10)의 외부 치수에서의 임의의 변동에 독립적일 것이다.
실리콘과 TiO2의 점성 혼합물(44)은, 인덴션들(42)을 채우며 인덴션들(42) 사이에 얇은 층을 또한 생성하기 위해서 몰드(40) 위에 정확하게 분산된다. 혼합물(44)이 매우 낮은 점도를 갖는 경우, 몰드(40) 둘레에 돌출 밀봉(raised seal)이 이용될 것이다.
실리콘 내의 TiO2의 중량%는, 경화된 혼합물이 실리콘의 특성들을 현저하게 감소시키지는 않지만 실질적으로 반사성(예를 들어, 75% 위)이 되게 하기에 충분하다. 일반적으로, 약 10%-50%의 TiO2가 이용되는데, 여기서 반사율은 TiO2의 백분율에 관련된다. 예를 들어, TiO2 입자들은 반사성 재료의 약 20중량%-50중량%를 포함할 수 있다. ZrO2 및 Al2O3과 같은 다른 희끄무레한 불활성 비-인광체 입자들이 TiO2 대신에 이용될 수 있다. 입자들의 평균 직경은 1 마이크로미터보다 작다. 일 실시예에서, 평균 TiO2 입자 사이즈는 0.25 마이크로미터이다.
도 3에 도시된 바와 같이, LED들(10)이 혼합물(44)에 침지되도록 압력 하에서 서브마운트 웨이퍼(36)와 몰드(40)가 접합된다. 웨이퍼(36) 표면이 몰드(40) 표면에 근접함에 따라, 혼합물(44)의 점도는 압력에 점점 저항하는 경향이 있다. LED들(10)의 상부들이 단지 인덴션들(42)의 저부들에 터치하고 있는 경우, 압력이 유지되며, 예를 들어 가열에 의해 실리콘이 경화된다. 압력을 측정함으로써, LED들의 상부들이 인덴션들(42)의 저부에 접촉하고 있는 경우가 알려질 수 있다.
그 다음에, 도 4에 도시된 바와 같이, 웨이퍼(36) 및 몰드(40)는 분리되며, 굳은 실리콘/TiO2(46)는 가열 또는 UV에 의해 또한 경화될 수 있다. 서브마운트 웨이퍼(36)는 그 다음에 소잉 또는 파단에 의해 선들을 따라 싱귤레이팅된다.
LED(10)의 측면들을 커버하는 실리콘/TiO2(46)의 비교적 두꺼운 층은 실질적으로 LED 측면 광의 전부를(예를 들어, 적어도 75%) 반사한다. 실리콘/TiO2(46)로부터의 임의의 반사 후에, 광은 결국 LED(10)의 상부 표면을 통해 출사될 것이다. 일 실시예에서, LED(10)의 측벽들을 커버하는 실리콘/TiO2(46)의 두께는 0.1mm-1mm이다. 두께는 광을 적절하게 반사하는데 필요한 정도여야 한다. 몰드 인덴션들(42)의 사이즈는 LED(10) 사이즈에서의 임의의 변동들 및 서브마운트 웨이퍼(36) 상의 LED(10) 배치의 오정렬들뿐만 아니라, 실리콘/TiO2(46)로의 광의 침투 깊이를 고려할 필요가 있다. 중간 반사성 실리콘/TiO2(46)에 대하여 50 마이크로미터 정도의 침투가 통상적이다.
실리콘/TiO2(46)의 매우 얇은 층이 서브마운트 웨이퍼(36) 위의 LED들(10)의 높이에서의 변동들로 인해 LED(10)의 상부 표면 위에 형성되는 경우에, 이러한 작은 두께는 어떠한 상당한 반사도 야기시키지 않을 것이다(예를 들어, 1%보다 작음). 상부 표면 위의 임의의 바람직하지 않은 실리콘/TiO2(46)는, 마이크로비드 블라스팅, 레이저 제거, 폴리싱 또는 다른 기법에 의해 제거될 수 있다.
다른 실시예에서, 실리콘/TiO2 혼합물(44)은 몰드에서 단일의 큰 인덴션을 채우고, 웨이퍼(36)와 몰드가 접합되는 경우, 혼합물(44)은 LED들(10) 사이의 갭들을 확실히 채워, 실리콘/TiO2(46)에 어떠한 스텝들도 존재하지 않는다. 도 4는 이러한 평면 실리콘/TiO2 층의 윤곽(47)을 도시한다. 다른 실시예에서, 혼합물(44)은 초기에 LED들(10) 상에 퇴적되고, 웨이퍼(36)와 몰드가 접합되는 경우에 몰드 인덴션(들)은 혼합물(44)을 성형한다. 일 실시예에서, 몰드는 실리콘/TiO2(46)가 LED들(10)보다 높은 LED들(10) 둘레의 벽들을 생성할 수 있게 한다. 다른 실시예에서, 혼합물(44)은 LED들(10) 둘레에 개별적으로 분산되며, 그 다음에 몰드를 이용하지 않고 경화되지만, 몰드를 이용하여 정확한 치수들을 생성하는 것이 각각의 LED(10) 둘레에 혼합물(44)을 분산시키는 것보다 훨씬 더 빠르며 바람직하다.
도 5는 포물선형 반사기(50)에 대해 에폭시화되는(epoxied) LED(10) 및 서브마운트(22)를 예시한다. 반사기(50)는 보울 표면 상에 스퍼터링되거나 증발되는 얇은 정반사성 금속을 갖는 몰딩된 플라스틱이다. 알루미늄, 은, 크롬 또는 다른 적합한 금속들이 정반사성 금속으로서 이용될 수 있다. 에폭시는 반사기(50)의 아래쪽의 셸프(shelf)(52) 상에 분산되며, LED/서브마운트는 자동 픽업 배치 머신(automatic pick and place machine)을 이용하여 위치된다.
반사기(50)의 내부 에지들은 비교적 큰 두께(예를 들어, 최대 0.5mm)를 갖지만 광 캡처를 감소시키지 않을 수 있는데, 그 이유는 반사기(50)의 에지가 LED(10)의 상부 표면의 아래에 또는 대략 이 표면과 같은 높이이며, 실질적으로 어떠한 광도 측면들로부터 빠져 나오지 않기 때문이라는 것에 유의한다. 실리콘/TiO2(46)를 통과하는 광의 양은 TiO2 백분율 및 실리콘/TiO2(46)의 두께에 의존한다. 나중에 기술되는 다른 실시예들에서, 반사기의 높이는 LED의 높이보다 위일 수 있다.
실리콘/TiO2(46)의 외부 치수들이 몰드 인덴션들(42)에 의해 정확하게 결정되기 때문에, 반사기(50) 개구부는 서브마운트 웨이퍼(36) 상의 LED(10)의 오정렬들 또는 LED(10) 사이즈에서의 변동들을 고려할 필요가 없다. 또한, 서브마운트(22) 표면 위의 실리콘/TiO2(46)의 두께가 몰딩 프로세스에 의해 정확하게 제어될 수 있기 때문에, 반사기(50)의 수직 배치는 일정하다. 실리콘/TiO2(46)의 몰딩된 스텝은 임의의 광학 요소의 정렬에 이용될 수 있다.
몇몇 애플리케이션들에서, 반사성 재료가 광의 손실이 없는 높이까지 측벽을 커버할 필요가 있기 때문에, 측벽 반사 재료는 LED의 전체 높이까지 LED의 측면들을 커버할 필요가 없다. 예를 들어, 도 5에서, 실리콘/TiO2(46)는, 반사기(50)로부터의 균일한 광 프로젝션을 위한 바람직한 높이일 수 있는, 반사기(50)의 내부 에지와 같은 높이에 있을 필요가 있다. 두꺼운 인광체 층들의 경우, 인광체 층의 높이보다 얇은 외부 반사기의 내부 에지를 형성하는 것이 용이할 수 있다. 그러나, 실리콘/TiO2(46)의 두께는 거의 항상 LED의 반도체 부분의 상부(n-층(12)의 상부)보다 클 것이고, 인광체 층의 두께의 적어도 10%의 서브마운트(22) 표면 위의 스텝 높이를 가질 것이다. 따라서, 몰드(40)는 이러한 원하는 높이를 달성하기 위해서 적합한 형상의 인덴션들을 가질 것이다.
도 6은 도 5에 도시된 방식으로 LED를 수용하기 위한 개구부들(54)을 갖는 반사기들(50)의 몰딩된 어레이의 정면도이다. 일단 모든 LED들이 반사기(50)에 부착되면, 반사기들(50)의 어레이는 반사기 경계들을 따라(예를 들어, 몰딩되는 약화된 선들(56)을 따라) 소잉 또는 파단에 의해 싱귤레이팅된다. 도 6은 또한 LED들과 함께 이용될 임의의 광학 요소들의 어레이를 예시하는데 이용될 수 있다.
도 5의 결과적인 구조는 셀폰 카메라일 수 있는 카메라의 플래시로서 이용될 수 있으며, 서브마운트(22)의 전극들(24)(도 1)은 플래시 일렉트로닉스를 지지하는 인쇄 회로 기판 상의 패드들에 땜납된다.
도 7은 렌즈 셸프(62) 상에 분산된 에폭시에 의해 미리 형성되는 몰딩된 렌즈(60)에 부착되는 서브마운트(22) 및 LED(10)를 예시한다. 렌즈(60)는 임의의 형상을 가질 수 있다. 렌즈(60)는, LED들/서브마운트들이 렌즈들(60)에 부착된 경우에 렌즈 어레이의 다른 렌즈들에 접속되었을 수 있다. 반사성 실리콘/TiO2(46)로 인해, 측면 방출이 감소된다. 이것은 광이 특정 각도로 제한되는 카메라 플래시 애플리케이션들에 대해 이득이 있을 수 있다.
도 8은 반사성 요소(66)가 서브마운트(22)에 부착되며 반사성 요소(66)가 LED(10)의 상부 위로 연장되는 일 실시예를 도시한다. 반사성 요소(66)는 백색 플라스틱 또는 다른 반사성 재료일 수 있다. LED(10)의 상부로부터의 낮은 각도의 광선들(68)은, 광원이 더 큰 폭 w를 갖는 것으로 보이도록 반사성 요소(66)의 내부 벽들로부터 반사된다. 이것은 또한 광원의 더 소프트한 경계를 생성하는데, 이는 다수의 광원으로부터의 광을 혼합하는 경우에 이득이 있을 수 있다. 반사성 요소(66)를 더 높게 만드는 것은 경계 근처의 휘도를 증가시키는데, 그 이유는 그것이 LED(10)로부터의 더 많은 광을 차단하기 때문이다. 도 8에서, 반사성 요소(66)는 또한 스크류들(72)을 이용하여 히트 싱크(70)에 대해 서브마운트(22)를 단단하게 고정하는 역할을 한다. 히트 싱크(70)는 금속 코어 회로 기판일 수 있다.
반사성 요소(66)는 LED(10) 위의 다른 광학 요소들의 정렬을 위한 기준 홀들 또는 핀들을 포함할 수 있다.
도 9는 실리콘/TiO2(46)가 LED(10) 위로 연장되도록 형성될 수 있는 것을 예시한다. 실리콘/TiO2(46)는 TiO2 백분율이 충분히 낮은 경우에 확산된 경계를 생성할 것이다. 이것은 광원의 겉보기 사이즈(apparent size)를 증가시키는데 이용될 수 있는데, 그 이유는 그 증가된 높이로 인해 실리콘/TiO2(46)에 의해 더 많은 광이 반사되며 광이 실리콘/TiO2(46)에 침투하기 때문이다.
LED의 측면들 상의 몰딩된 반사성 재료의 발명은 반사기 또는 렌즈에 LED를 접속시키지 않는 특정 애플리케이션들에서도 유용할 수 있다. 예를 들어, 측면 방출이 요구되지 않는 애플리케이션들에서, 실리콘/TiO2(46)는 정의된 경계 내의 광 방출을 포함하는데 이용될 수 있다. 또한, TiO2 백분율 및 실리콘/TiO2(46)의 두께를 조정함으로써, 광원의 형상 및 경계 프로파일이 제어 가능하다. 예를 들어, TiO2 백분율을 저하시킴으로써, 광원은 더 소프트한 에지를 갖고, 실리콘/TiO2(46)는 실리콘/TiO2(46) 내에서 광이 반사되는 것을 보장하기 위해 더 두껍게 이루어질 수 있다.
도 10은 LED(10)로부터의 광이 광 흡수 리테이너(76) 또는 다른 구조체에 의해 흡수되는 것을 방지하기 위해 실리콘/TiO2(46)를 이용하는 것을 예시한다. 리테이너(76)는 흑색 플라스틱 또는 다른 광 흡수 재료일 수 있다. 또한, 리테이너(76)가 약간 반사하는 경우, 실리콘/TiO2(46)는 리테이너(76)가 LED(10)를 둘러싸는 바람직하지 않은 광 방출을 생성하는 것을 방지한다. 이것은 LED(10)에 근접하여 이용되는 상이한 재료들에 대한 가능성을 매우 자유롭게 한다. 리테이너(76)는 거의 악영향 없이 LED(10) 위로 약간 연장될 수 있다.
인광체 층은 본 발명에 요구되지는 않는다. 몰딩된 실리콘/TiO2(46)의 접착을 위한 측벽들을 제공하기 위해서, 비교적 두꺼운 클리어 층이 반도체 LED 위에 형성될 수 있거나, 또는 성장 기판의 일부분이 남을 수 있다.
본 발명이 상세하게 설명되었고, 당업자라면, 본 개시물이 주어지는 경우, 본 명세서에 기술된 사상 및 발명의 개념으로부터 벗어나지 않고 본 발명에 대해 변형들이 이루어질 수 있다는 것을 인식할 것이다. 따라서, 본 발명의 범위는 예시되며 기술된 특정 실시예들에 제한되는 것으로 의도되지는 않는다.

Claims (15)

  1. 발광 디바이스로서,
    측벽들 및 상부 표면을 갖는 발광 다이오드(LED);
    상기 LED가 실장되는 서브마운트 - 상기 서브마운트는 측면 에지들 및 저부 표면을 가지며, 상기 저부 표면은 회로 기판에 본딩하기 위한 금속 패드들을 가짐 -;
    상기 측벽들 위에 직접 제공되는 반사성 재료 - 상기 반사성 재료는, 반사를 야기시키는 불활성 비-인광체 입자들(inert non-phosphor particles)을 포함하는 투명한 재료를 포함하고, 상기 입자들은 상기 반사성 재료의 적어도 10중량%이고, 상기 입자들은 백색 주변광 하에서 백색 컬러를 가지며, 상기 반사성 재료는, 상기 측벽들을 커버하는 상기 반사성 재료가 상기 LED로부터 방출된 광을 적어도 부분적으로 포함하도록 상기 LED의 상부 표면을 커버하지 않음 -; 및
    상기 LED, 상기 서브마운트 및 상기 반사성 재료와 별개로 형성된 반사기 - 상기 반사기는 상기 LED가 삽입되는 개구부를 가지며, 상기 반사기는, 상기 서브마운트의 상부 표면 위이지만 상기 LED의 상부 표면 아래에 위치되는, 상기 LED 둘레에 주변을 형성하는 내부 에지들을 가짐 -
    를 포함하고,
    상기 반사기는, 상기 서브마운트의 측면 에지들을 넘어 연장되는 외부 에지들을 가지며, 상기 서브마운트가 배치되는 인덴트(indent)를 갖고, 상기 반사기의 저부 표면은 상기 서브마운트의 저부 표면 아래로 연장되지 않으며, 상기 반사기는, 상기 반사성 재료 위로 연장되는 반사 벽들을 갖는 발광 디바이스.
  2. 제1항에 있어서,
    상기 입자들은 TiO2, ZrO2, 또는 Al2O3 중 하나를 포함하는 발광 디바이스.
  3. 제1항에 있어서,
    상기 입자들은 상기 반사성 재료의 20중량%-50중량%를 포함하는 발광 디바이스.
  4. 제1항에 있어서,
    상기 입자들의 평균 직경은 1 마이크로미터보다 작은 발광 디바이스.
  5. 제1항에 있어서,
    상기 투명한 재료는 실리콘을 포함하는 발광 디바이스.
  6. 제1항에 있어서,
    상기 LED는 인광체 층을 포함하며, 상기 반사성 재료는 상기 인광체 층의 측벽들을 커버하는 발광 디바이스.
  7. 제6항에 있어서,
    상기 인광체 층은, 상기 LED의 반도체 부분의 상부 표면에 부착된 플레이트인 발광 디바이스.
  8. 제1항에 있어서,
    상기 반사기의 내부 에지들은 상기 반사성 재료의 외부 에지들로부터 이격되는 발광 디바이스.
  9. 제1항에 있어서,
    상기 반사성 재료는 적어도 상기 LED의 상부 표면의 높이만큼 연장되는 발광 디바이스.
  10. 발광 디바이스를 제조하는 방법으로서,
    서브마운트 상에 실장된 발광 다이오드(LED)를 제공하는 단계 - 상기 LED는 측벽들 및 상부 표면을 가짐 -;
    인덴션(indention)을 갖는 몰드에 대하여 상기 서브마운트를 위치시키는 단계;
    상기 서브마운트와 상기 몰드 사이에 반사성 재료를 제공하는 단계 - 상기 반사성 재료는, 반사를 야기시키는 불활성 비-인광체 입자들을 포함하는 투명한 재료를 포함하고, 상기 입자들은 상기 반사성 재료의 적어도 10중량%이고, 상기 입자들은 백색 주변광 하에서 백색 컬러를 가지며, 상기 인덴션은, 상기 반사성 재료가 상기 LED의 측벽들을 커버하는 반사 벽을 형성하도록 그리고 상기 상부 표면과 상기 인덴션 사이에 어떠한 상당한 두께의 반사성 재료도 존재하지 않도록, 상기 LED의 외부 치수보다 큰 치수들을 가짐 -;
    상기 반사성 재료를 경화시키는 단계;
    상기 측벽들을 커버하는 상기 반사성 재료가 상기 LED로부터 방출된 광을 포함하도록, 상기 몰드로부터 상기 서브마운트를 분리하는 단계 - 상기 서브마운트는 측면 에지들 및 저부 표면을 가지며, 상기 저부 표면은 회로 기판에 본딩하기 위한 금속 패드들을 가짐 -; 및
    상기 서브마운트에 반사성 요소를 부착하는 단계 - 상기 반사성 요소는 상기 LED가 삽입되는 개구부를 갖고, 상기 반사성 요소의 내부 에지들은 상기 반사성 재료를 둘러싸고, 상기 반사성 요소는, 상기 서브마운트의 측면 에지들을 넘어 연장되는 외부 에지들을 가지며, 상기 서브마운트가 배치되는 인덴트를 갖고, 상기 반사성 요소의 저부 표면은 상기 서브마운트의 저부 표면 아래로 연장되지 않으며, 상기 반사성 요소는, 상기 반사성 재료 위로 연장되는 반사 벽들을 가짐 -
    를 포함하는 방법.
  11. 제10항에 있어서,
    상기 입자들은 TiO2, ZrO2, 또는 Al2O3 중 하나를 포함하는 방법.
  12. 제10항에 있어서,
    상기 LED는 인광체 층을 포함하며, 상기 반사성 재료는 상기 인광체 층의 측벽들을 커버하는 방법.
  13. 제10항에 있어서,
    상기 몰드에 대하여 상기 서브마운트를 위치시키는 단계는, 복수의 LED들이 실장된 서브마운트 웨이퍼를, 상기 서브마운트 웨이퍼 상의 각각의 LED 위치에 대응하는 복수의 동일한 인덴션들을 갖는 상기 몰드에 대하여 위치시키는 단계를 포함하는 방법.
  14. 삭제
  15. 삭제
KR1020127004591A 2009-07-23 2010-06-23 몰딩된 반사 측벽 코팅을 갖는 led KR101736518B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/508,238 2009-07-23
US12/508,238 US8097894B2 (en) 2009-07-23 2009-07-23 LED with molded reflective sidewall coating
PCT/IB2010/052847 WO2011010234A1 (en) 2009-07-23 2010-06-23 Led with molded reflective sidewall coating

Publications (2)

Publication Number Publication Date
KR20120049288A KR20120049288A (ko) 2012-05-16
KR101736518B1 true KR101736518B1 (ko) 2017-05-16

Family

ID=42735391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127004591A KR101736518B1 (ko) 2009-07-23 2010-06-23 몰딩된 반사 측벽 코팅을 갖는 led

Country Status (7)

Country Link
US (1) US8097894B2 (ko)
EP (1) EP2457267B1 (ko)
JP (1) JP5526232B2 (ko)
KR (1) KR101736518B1 (ko)
CN (1) CN102473811B (ko)
TW (1) TWI502778B (ko)
WO (1) WO2011010234A1 (ko)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259418A1 (en) * 2004-05-18 2005-11-24 Callegari Mark R Expanded bit map display for mounting on a building surface and a method of creating same
US9780268B2 (en) 2006-04-04 2017-10-03 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
USD738832S1 (en) 2006-04-04 2015-09-15 Cree, Inc. Light emitting diode (LED) package
US10298834B2 (en) 2006-12-01 2019-05-21 Google Llc Video refocusing
EP2335295B1 (en) 2008-09-25 2021-01-20 Lumileds LLC Coated light emitting device and method of coating thereof
DE102009036621B4 (de) 2009-08-07 2023-12-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauteil
US9631782B2 (en) * 2010-02-04 2017-04-25 Xicato, Inc. LED-based rectangular illumination device
US20120056228A1 (en) * 2010-09-07 2012-03-08 Phostek, Inc. Led chip modules, method for packaging the led chip modules, and moving fixture thereof
US8647900B2 (en) * 2010-09-20 2014-02-11 Tsmc Solid State Lighting Ltd. Micro-structure phosphor coating
US8486724B2 (en) * 2010-10-22 2013-07-16 Tsmc Solid State Lighting Ltd. Wafer level reflector for LED packaging
DE202011000856U1 (de) 2011-04-13 2011-08-10 Flextronics Automotive Gmbh & Co.Kg Anzeigevorrichtung für die Kühlschranktemperatur
CN102244164B (zh) * 2011-07-15 2013-11-06 财团法人成大研究发展基金会 发光二极管晶粒模块、其封装方法及其移取治具
DE102011079796B4 (de) 2011-07-26 2015-08-13 Flextronics Automotive Gmbh & Co.Kg Verfahren zur Ermittlung von PWM-Werten für LED-Module
KR101945532B1 (ko) 2011-08-16 2019-02-07 루미리즈 홀딩 비.브이. 슬롯에 형성된 반사 벽을 갖는 led 혼합 챔버
CN102956790A (zh) * 2011-08-18 2013-03-06 一诠精密工业股份有限公司 发光二极管导线架及其制造方法
DE102011111980A1 (de) * 2011-08-29 2013-02-28 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Leuchtdiode und Leuchtdiode
CN102324458A (zh) * 2011-09-29 2012-01-18 南昌黄绿照明有限公司 具有透明有机支撑基板的半导体发光器件及其制备方法
WO2013061228A1 (en) * 2011-10-28 2013-05-02 Koninklijke Philips Electronics N.V. Light emitting device with integral shaped reflector
DE102011118290A1 (de) * 2011-11-10 2013-05-16 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
JP6038443B2 (ja) * 2011-11-21 2016-12-07 スタンレー電気株式会社 半導体発光装置および半導体発光装置の製造方法
US9117991B1 (en) 2012-02-10 2015-08-25 Flextronics Ap, Llc Use of flexible circuits incorporating a heat spreading layer and the rigidizing specific areas within such a construction by creating stiffening structures within said circuits by either folding, bending, forming or combinations thereof
US10134961B2 (en) * 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
US9735198B2 (en) 2012-03-30 2017-08-15 Cree, Inc. Substrate based light emitter devices, components, and related methods
US10222032B2 (en) 2012-03-30 2019-03-05 Cree, Inc. Light emitter components and methods having improved electrical contacts
JP5816127B2 (ja) * 2012-04-27 2015-11-18 株式会社東芝 半導体発光装置およびその製造方法
US9858649B2 (en) 2015-09-30 2018-01-02 Lytro, Inc. Depth-based image blurring
US9356214B2 (en) 2012-06-27 2016-05-31 Flextronics Ap, Llc. Cooling system for LED device
US9041019B2 (en) * 2012-10-25 2015-05-26 Flextronics Ap, Llc Method of and device for manufacturing LED assembly using liquid molding technologies
US9748460B2 (en) 2013-02-28 2017-08-29 Flextronics Ap, Llc LED back end assembly and method of manufacturing
US10334151B2 (en) 2013-04-22 2019-06-25 Google Llc Phase detection autofocus using subaperture images
JP6172796B2 (ja) * 2013-06-07 2017-08-02 シチズン電子株式会社 Led発光装置
KR102088148B1 (ko) 2013-07-31 2020-03-13 삼성디스플레이 주식회사 표시장치
CN104347605A (zh) * 2013-08-06 2015-02-11 惠州市华阳光电技术有限公司 一种发光二极管的封装工艺
JP6215612B2 (ja) * 2013-08-07 2017-10-18 ソニーセミコンダクタソリューションズ株式会社 発光素子、発光素子ウェーハ及び電子機器
JP6236999B2 (ja) 2013-08-29 2017-11-29 日亜化学工業株式会社 発光装置
US9395067B2 (en) 2013-10-07 2016-07-19 Flextronics Ap, Llc Method of and apparatus for enhanced thermal isolation of low-profile LED lighting fixtures
WO2015064883A1 (en) * 2013-11-01 2015-05-07 Seoul Semiconductor Co., Ltd. Light source module and backlight unit having the same
US9419189B1 (en) * 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
DE102013112549B4 (de) 2013-11-14 2021-08-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
CN104752588A (zh) * 2013-12-31 2015-07-01 晶能光电(江西)有限公司 一种用于倒装芯片的荧光胶涂布方法
WO2015101899A1 (en) 2014-01-06 2015-07-09 Koninklijke Philips N.V. Thin led flash for camera
JP6749240B2 (ja) * 2014-01-09 2020-09-02 ルミレッズ ホールディング ベーフェー 反射側壁を有する発光デバイス
JP6216272B2 (ja) * 2014-03-14 2017-10-18 シチズン電子株式会社 Led発光装置
JP6259329B2 (ja) * 2014-03-14 2018-01-10 シチズン電子株式会社 Led発光装置
EP2919284B1 (en) * 2014-03-14 2019-07-03 Citizen Electronics Co., Ltd. Light emitting apparatus
US9228706B2 (en) 2014-04-23 2016-01-05 Brent V. Andersen Lighting array providing visually-captivating lighting effects
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US10439111B2 (en) 2014-05-14 2019-10-08 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US9356185B2 (en) 2014-06-20 2016-05-31 Heptagon Micro Optics Pte. Ltd. Compact light sensing modules including reflective surfaces to enhance light collection and/or emission, and methods of fabricating such modules
DE102014112883A1 (de) * 2014-09-08 2016-03-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
CN104253194A (zh) * 2014-09-18 2014-12-31 易美芯光(北京)科技有限公司 一种芯片尺寸白光led的封装结构及方法
JP6387787B2 (ja) * 2014-10-24 2018-09-12 日亜化学工業株式会社 発光装置、パッケージ及びそれらの製造方法
CN105720164B (zh) * 2014-12-05 2019-10-11 江西省晶能半导体有限公司 一种白光led的制备方法
JP6552190B2 (ja) * 2014-12-11 2019-07-31 シチズン電子株式会社 発光装置及び発光装置の製造方法
DE102015103571A1 (de) * 2015-03-11 2016-09-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl an Konversionselementen, Konversionselement und optoelektronisches Bauelement
DE102015105486A1 (de) * 2015-04-10 2016-10-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
US10444931B2 (en) 2017-05-09 2019-10-15 Google Llc Vantage generation and interactive playback
US10540818B2 (en) 2015-04-15 2020-01-21 Google Llc Stereo image generation and interactive playback
US10469873B2 (en) 2015-04-15 2019-11-05 Google Llc Encoding and decoding virtual reality video
US10419737B2 (en) 2015-04-15 2019-09-17 Google Llc Data structures and delivery methods for expediting virtual reality playback
US10412373B2 (en) 2015-04-15 2019-09-10 Google Llc Image capture for virtual reality displays
US10565734B2 (en) 2015-04-15 2020-02-18 Google Llc Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline
US10567464B2 (en) 2015-04-15 2020-02-18 Google Llc Video compression with adaptive view-dependent lighting removal
US10275898B1 (en) 2015-04-15 2019-04-30 Google Llc Wedge-based light-field video capture
US10546424B2 (en) 2015-04-15 2020-01-28 Google Llc Layered content delivery for virtual and augmented reality experiences
US10341632B2 (en) 2015-04-15 2019-07-02 Google Llc. Spatial random access enabled video system with a three-dimensional viewing volume
US10440407B2 (en) 2017-05-09 2019-10-08 Google Llc Adaptive control for immersive experience delivery
US10217914B2 (en) * 2015-05-27 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP6554914B2 (ja) * 2015-06-01 2019-08-07 日亜化学工業株式会社 発光装置とその製造方法
US9979909B2 (en) 2015-07-24 2018-05-22 Lytro, Inc. Automatic lens flare detection and correction for light-field images
CN106549092A (zh) 2015-09-18 2017-03-29 新世纪光电股份有限公司 发光装置及其制造方法
EP3360157B1 (en) * 2015-10-07 2020-09-02 Heptagon Micro Optics Pte. Ltd. Molded circuit substrates
CN105514253B (zh) * 2015-12-24 2018-03-16 鸿利智汇集团股份有限公司 一种led车灯光源及其制造方法
CN105845790B (zh) * 2016-05-18 2018-08-31 厦门多彩光电子科技有限公司 一种倒装led芯片的封装方法
US10275892B2 (en) 2016-06-09 2019-04-30 Google Llc Multi-view scene segmentation and propagation
CN107546301B (zh) * 2016-06-29 2019-12-06 江西省晶能半导体有限公司 一种白胶、led灯珠及其的封装方法
CN109791968A (zh) * 2016-07-26 2019-05-21 克利公司 发光二极管、组件和相关方法
DE102016122532A1 (de) * 2016-11-22 2018-05-24 Osram Opto Semiconductors Gmbh Optoelektrisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
US10679361B2 (en) 2016-12-05 2020-06-09 Google Llc Multi-view rotoscope contour propagation
KR102519814B1 (ko) * 2016-12-15 2023-04-10 루미리즈 홀딩 비.브이. 높은 근거리 콘트라스트 비를 갖는 led 모듈
US10594945B2 (en) 2017-04-03 2020-03-17 Google Llc Generating dolly zoom effect using light field image data
US10224358B2 (en) * 2017-05-09 2019-03-05 Lumileds Llc Light emitting device with reflective sidewall
US10474227B2 (en) 2017-05-09 2019-11-12 Google Llc Generation of virtual reality with 6 degrees of freedom from limited viewer data
US10354399B2 (en) 2017-05-25 2019-07-16 Google Llc Multi-view back-projection to a light-field
CN107146838B (zh) * 2017-07-05 2019-02-26 深圳市彩立德照明光电科技有限公司 一种led器件的封装工艺及led器件
US10361349B2 (en) * 2017-09-01 2019-07-23 Cree, Inc. Light emitting diodes, components and related methods
US10545215B2 (en) 2017-09-13 2020-01-28 Google Llc 4D camera tracking and optical stabilization
CN107731996A (zh) * 2017-09-28 2018-02-23 惠州市华瑞光源科技有限公司 Led灯珠及其制备方法
DE102017124155A1 (de) * 2017-10-17 2019-04-18 Osram Opto Semiconductors Gmbh Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
DE102017124585A1 (de) * 2017-10-20 2019-04-25 Osram Opto Semiconductors Gmbh Halbleiterkörper, Halbleiterchip und ein Verfahren zur Herstellung einer Mehrzahl von Halbleiterkörpern oder Halbleiterchips
TW202249306A (zh) 2017-11-05 2022-12-16 新世紀光電股份有限公司 發光裝置
US10784423B2 (en) 2017-11-05 2020-09-22 Genesis Photonics Inc. Light emitting device
US10965862B2 (en) 2018-01-18 2021-03-30 Google Llc Multi-camera navigation interface
US10553768B2 (en) * 2018-04-11 2020-02-04 Nichia Corporation Light-emitting device
US11024785B2 (en) 2018-05-25 2021-06-01 Creeled, Inc. Light-emitting diode packages
US11056618B2 (en) 2018-08-03 2021-07-06 Lumileds Llc Light emitting device with high near-field contrast ratio
JP6753438B2 (ja) 2018-08-03 2020-09-09 日亜化学工業株式会社 発光モジュールおよびその製造方法
US11335833B2 (en) 2018-08-31 2022-05-17 Creeled, Inc. Light-emitting diodes, light-emitting diode arrays and related devices
US11233183B2 (en) 2018-08-31 2022-01-25 Creeled, Inc. Light-emitting diodes, light-emitting diode arrays and related devices
US11333320B2 (en) 2018-10-22 2022-05-17 American Sterilizer Company Retroreflector LED spectrum enhancement method and apparatus
KR102378918B1 (ko) * 2018-12-26 2022-03-28 루미레즈 엘엘씨 매트릭스 어레이를 만들기 위한 2단계 인광체 퇴적
EP3915151B1 (en) * 2019-01-25 2023-08-23 Lumileds LLC Method of manufacturing a wavelength-converting pixel array structure
CN111864028B (zh) * 2019-04-24 2021-10-08 錼创显示科技股份有限公司 微型元件及其结构
TWI692883B (zh) * 2019-04-24 2020-05-01 錼創顯示科技股份有限公司 微型元件及其結構
KR20190077254A (ko) * 2019-06-13 2019-07-03 엘지전자 주식회사 마이크로미터 단위 크기의 반도체 발광 소자를 이용하는 발광 장치 및 그 제조 방법
US11101411B2 (en) 2019-06-26 2021-08-24 Creeled, Inc. Solid-state light emitting devices including light emitting diodes in package structures
CN110845988A (zh) * 2019-11-06 2020-02-28 安晟技术(广东)有限公司 一种遮光胶、其制备方法及应用
CA3130378A1 (en) 2020-09-10 2022-03-10 Saco Technologies Inc. Method for transmitting control instructions to a plurality of receivers and receiver adapted to receive a light pixel carrying the control instructions
EP4360135A1 (en) * 2021-06-25 2024-05-01 Lumileds LLC Fabrication of led arrays and led array light engines
WO2023227324A1 (en) * 2022-05-24 2023-11-30 Ams-Osram International Gmbh Optoelectronic device and method for producing an optoelectronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148147A (ja) 2004-11-15 2006-06-08 Lumileds Lighting Us Llc Ledダイ上のオーバーモールドレンズ
JP2007517404A (ja) 2003-12-24 2007-06-28 ゲルコアー リミテッド ライアビリティ カンパニー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
WO2009069671A1 (ja) 2007-11-29 2009-06-04 Nichia Corporation 発光装置及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704941B2 (ja) 1998-03-30 2005-10-12 日亜化学工業株式会社 発光装置
JP4571731B2 (ja) 2000-07-12 2010-10-27 シチズン電子株式会社 発光ダイオード
US6828596B2 (en) 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
DE10229067B4 (de) * 2002-06-28 2007-08-16 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
US6876008B2 (en) 2003-07-31 2005-04-05 Lumileds Lighting U.S., Llc Mount for semiconductor light emitting device
CN1977127B (zh) * 2004-03-30 2010-08-04 照明管理解决方案公司 用于改进的照明区域填充的设备和方法
US7514867B2 (en) * 2004-04-19 2009-04-07 Panasonic Corporation LED lamp provided with optical diffusion layer having increased thickness and method of manufacturing thereof
JP4667803B2 (ja) * 2004-09-14 2011-04-13 日亜化学工業株式会社 発光装置
JP2007019096A (ja) * 2005-07-05 2007-01-25 Toyoda Gosei Co Ltd 発光装置及びその製造方法
DE102006015377B4 (de) * 2006-04-03 2018-06-14 Ivoclar Vivadent Ag Halbleiter-Strahlungsquelle sowie Lichthärtgerät
US20080121911A1 (en) * 2006-11-28 2008-05-29 Cree, Inc. Optical preforms for solid state light emitting dice, and methods and systems for fabricating and assembling same
US7652301B2 (en) * 2007-08-16 2010-01-26 Philips Lumileds Lighting Company, Llc Optical element coupled to low profile side emitting LED
US20090046479A1 (en) * 2007-08-16 2009-02-19 Philips Lumileds Lighting Company, Llc Thin Backlight Using Low Profile Side Emitting LED
US7791093B2 (en) * 2007-09-04 2010-09-07 Koninklijke Philips Electronics N.V. LED with particles in encapsulant for increased light extraction and non-yellow off-state color
US20090154137A1 (en) * 2007-12-14 2009-06-18 Philips Lumileds Lighting Company, Llc Illumination Device Including Collimating Optics
CN201221731Y (zh) * 2008-03-06 2009-04-15 尹勇健 一种带反光杯的led灯泡
US20100279437A1 (en) * 2009-05-01 2010-11-04 Koninklijke Philips Electronics N.V. Controlling edge emission in package-free led die
US7932529B2 (en) * 2008-08-28 2011-04-26 Visera Technologies Company Limited Light-emitting diode device and method for fabricating the same
CN101408286B (zh) * 2008-09-16 2010-08-11 深圳市九洲光电子有限公司 一种道路照明用白光发光二极管
EP2335295B1 (en) 2008-09-25 2021-01-20 Lumileds LLC Coated light emitting device and method of coating thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517404A (ja) 2003-12-24 2007-06-28 ゲルコアー リミテッド ライアビリティ カンパニー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
JP2006148147A (ja) 2004-11-15 2006-06-08 Lumileds Lighting Us Llc Ledダイ上のオーバーモールドレンズ
WO2009069671A1 (ja) 2007-11-29 2009-06-04 Nichia Corporation 発光装置及びその製造方法

Also Published As

Publication number Publication date
JP5526232B2 (ja) 2014-06-18
KR20120049288A (ko) 2012-05-16
EP2457267A1 (en) 2012-05-30
CN102473811B (zh) 2015-08-26
TW201114076A (en) 2011-04-16
US8097894B2 (en) 2012-01-17
JP2012533902A (ja) 2012-12-27
US20110018017A1 (en) 2011-01-27
CN102473811A (zh) 2012-05-23
WO2011010234A1 (en) 2011-01-27
TWI502778B (zh) 2015-10-01
EP2457267B1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
KR101736518B1 (ko) 몰딩된 반사 측벽 코팅을 갖는 led
US9601670B2 (en) Method to form primary optic with variable shapes and/or geometries without a substrate
US10615315B2 (en) Light emitting device
TWI645577B (zh) 具有用於側發光之定型生長基板之發光二極體
KR102304741B1 (ko) Led를 둘러싸는 내부 전반사 층을 갖는 led를 위한 기판
KR20170036113A (ko) 원격 인광체 층 및 반사성 서브마운트를 구비하는 led
CN101378103A (zh) 白光发光装置及其制作方法
US10490703B2 (en) Light-emitting-device package and production method therefor
JP2013110273A (ja) 半導体発光装置
TWI589037B (zh) 發光裝置
US20090023234A1 (en) Method for manufacturing light emitting diode package
JP2018107170A (ja) 発光装置の製造方法
KR101638123B1 (ko) 반도체 발광소자 및 이를 제조하는 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant