KR101667642B1 - 자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법 - Google Patents

자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법 Download PDF

Info

Publication number
KR101667642B1
KR101667642B1 KR1020117015315A KR20117015315A KR101667642B1 KR 101667642 B1 KR101667642 B1 KR 101667642B1 KR 1020117015315 A KR1020117015315 A KR 1020117015315A KR 20117015315 A KR20117015315 A KR 20117015315A KR 101667642 B1 KR101667642 B1 KR 101667642B1
Authority
KR
South Korea
Prior art keywords
electrode
source
anode
substrate
bias
Prior art date
Application number
KR1020117015315A
Other languages
English (en)
Other versions
KR20110118622A (ko
Inventor
존 매독스
Original Assignee
제너럴 플라즈마, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 플라즈마, 인크. filed Critical 제너럴 플라즈마, 인크.
Publication of KR20110118622A publication Critical patent/KR20110118622A/ko
Application granted granted Critical
Publication of KR101667642B1 publication Critical patent/KR101667642B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • H01J27/143Hall-effect ion sources with closed electron drift
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/081Sputtering sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

폐쇄 드리프트 이온 소스의 전기적으로 절연된 애노드 전극에 전자를 공급하는 단계를 포함하는, 기판 표면을 개질하는 방법을 제공한다. 애노드 전극은 정전위의 애노드 전극 하전 바이어스를 가지며, 폐쇄 드리프트 이온 소스의 다른 요소는 전기적으로 접지되거나 전기적 부동 전압을 유지한다. 전자는 이온 형성을 유도하는 폐쇄 드리프트 자계와 부딪친다. 가스의 존재에 의해 전극 하전 바이어스를 부전위로 스위칭함으로써 애노드의 오염이 방지되며, 애노드 전극의 근위에 플라즈마가 생성되어, 애노드 전극으로부터 퇴적된 오염 물질을 세정한다. 이어서, 전극 하전 바이어스가 반복 전자 소스의 존재에 의해 정전위로 복귀되어, 기판의 표면을 다시 개질하도록 반복 이온 형성을 유도한다. 이러한 방법에 의해 기판 표면의 개질을 위한 장치가 제공된다.

Description

자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법{CLOSED DRIFT MAGNETIC FIELD ION SOURCE APPARATUS CONTAINING SELF-CLEANING ANODE AND A PROCESS FOR SUBSTRATE MODIFICATION THEREWITH}
본 발명은 기판 표면의 개질에 관한 것으로서, 더 구체적으로는 애노드의 오염 퇴적물을 제거하기 위해, 전기적으로 절연된 애노드에 교번의 하전 바이어스(alternative charge bias)를 인가하는 폐쇄 드리프트 이온 소스(closed drift ion source)에 관한 것이다.
관련 출원
본 출원은 2008년 12월 8일에 출원된 미국 가 출원 61/120,800호의 우선권을 주장하며, 그 전체 내용을 본 명세서에 참조에 의해 포함한다.
이온 소스(ion source)는 기판의 개질 및 박막의 증착에 유용한 것으로 증명되어 있다. 표면을 에칭하고 성장하는 막에 에너지를 공급하기 위해 에너지를 가진 이온이 사용되고 있다. 이온 소스의 산업상의 사용에 대한 현재의 과제는 애노드가 공정 부산물에 의해 오염되는, 특히 애노드 상에 형성되는 절연막에 부산물이 생기는 경향이 있다는 것이다. 애노드를 절연막으로 피복하는 경우에, 전자(electrons)는 더 이상 애노드에 효과적으로 도달하지 못하게 되어, 이온 소스의 동작이 방해를 받는다. 본 발명은 폐쇄 드리프트 이온 소스(closed drift ion source)의 개선에 관한 것이다. 폐쇄 드리프트 이온 소스는 축 방향(axial) 또는 미러 자계(mirror magnet field) 구성을 가진 이온 소스 및 그리드형 이온 소스(gridded ion source)를 포함하는 다른 유형의 이온 소스와 혼동하여서는 안 된다. 그리드형 이온 소스는 플라즈마 방전 캐비티(plasma discharge cavity)로부터 이온을 가속하기 위해 일련의 대전 그리드(electrified grid)를 사용한다. 그리드형 이온 소스를 동작시키기 위해서는 전원이 필요할 뿐만 아니라, 정밀한 그리드(precision grid)를 가진 이온 소스 구성은 이러한 이온 소스를 복잡하게 하고 비용이 많이 들게 한다. 또한, 그리드의 열 팽창에 의해, 이러한 소스를 대형의 기판에까지 사용하는 것이 현실적으로 불가능하다. 폐쇄 드리프트 이온 소스는 이온 가속용 애노드(ion accelerating anode)를 공정 챔버에 노출시키고, 애노드와 공정 챔버 사이에 직교 자계(orthogonal magnetic field)를 생기게 한다. 이온을 생성하는 전자는 챔버 안으로 투입되고, 애노드에 도달하기 위해 자계를 가로질러야 한다. 전자는, 자계와 만나면, 홀(Hall) 방향으로 이동하게 되고, 폐쇄 레이스트랙(closed racetrack)을 제공하도록 소스를 구성함으로써, 전자가 무한 루프에 효과적으로 포획(trap)된다. 공정 챔버와 애노드 사이에 채널을 형성하기 위해 부동 또는 접지된 측면 벽(side walls)은 자계 선(magnetic field line)에 따른 전자 흐름을 차단한다.
폐쇄 드리프트 이온 소스는 상업적 성공을 가져온 특별한 장점이 있다. (1)전자를 애노드에 도달하도록 자계 선을 강제로 가로지르도록 함으로써, 전자 흐름에 대한 강력한 임피던스가 생성되어, 수백 볼트의 이온 가속 전계를 설정한다. 이에 의해서 생긴, 폐쇄 드리프트 이온 소스로부터 방출되는 이온 빔은 많은 공정에 효과적으로 사용될 수 있다. 이러한 교차되는 자계 임피던스는 축 방향 또는 미러 자계(mirror magnetic field)를 가로지르는 임피던스보다 크다. (2)직교의 전계(electric field) 및 자계(magnetic field)에 의해 생기는 홀 드리프트(Hall drift)는 폐쇄 루프 레이스트랙 주위에 균일한 전자 흐름을 생성할 수 있으며, 레이스트랙으로부터 균일한 이온 빔이 방출된다. 이러한 효과는 레이스트랙이 몇 미터 넘게 연장될 수 있기 때문에 대형의 기판을 처리하는 데에 매우 유용하다.
종래 기술은 폐쇄 드리프트 이온 소스를 3가지 범주, 즉 확장 가속 채널, 애노드 계층 타입, 및 엔드 홀(end Hall)로 구분하고 있다. 완전히 일치하지는 않지만, 확장 가속 채널과 애노드 계층 타입 간의 일반적인 구분 요소는 채널 깊이에 대한 전자를 구속하는 채널 폭의 비율이다. 채널 깊이가 채널 폭 치수를 초과하면, 이온 소스를 확장 가속 채널 타입이라고 한다. 폐쇄 드리프트 이온 소스의 확장 가속 채널 타입의 대표적인 예는 미국 특허 5,646,476에 개시되어 있다. 종래의 확장 가속 채널 타입 소스는 정전위로 전하가 바이어스된 애노드를 가진다.
애노드 계층 타입 이온 소스는 제2 타입의 폐쇄 드리프트 이온 소스이다. 애노드 계층 타입의 이온 소스에서, 폐쇄 채널 깊이는, 통상적으로 폭보다 짧거나 동일하다. 폐쇄 드리프트 이온 소스의 애노드 계층 타입의 대표적인 구성의 예는 미국 특허 5,763,989, 5,838,120 및 7,241,360에 개시되어 있다. 미국 특허 7,241,360은 이온 소스를 스퍼터 세정하기 위해 부전위의 AC 사이클(negative AC cycle)에 대하여 총 이온 소스 바이어스 전하 부전위를 갖는 특징이 있다.
엔드 홀 이온 소스는 폐쇄 드리프트 이온 소스의 변형이다. 엔드 홀 이온 소스에서, 안쪽 자극(inner magnet pole)은 환형의 노드의 측면을 노출시키기 위해 외측 자극에 비해 낮게 위치한다. 이러한 형태에 의해, 제2 전자 구속 영역(electron confinement regime)이 폐쇄 드리프트 이온 소스의 페닝 스타일 구속(Penning style confinement)과 조합된다. 제2 구속 영역은 전자가 경사 자계(gradient magnetic field)에 의해 자계 선을 따라 부분적으로 구속되는 미러 전자 구속(mirror electron confinement)이다. 이러한 소스의 대표적인 예는 미국 특허 6,750,600 및 6,870,164에 개시되어 있다. 특히, 미국 특허 6,750,600은 애노드 상의 오염 퇴적물과 전도가능하게 관련된 애노드의 손실을 감소시키고자 한 것이다. 미국 특허 6,870,164는 동작상의 불안정을 피하기 위해 애노드에 정전위 하전 바이어스를 펄스로 인가함으로써 그 위의 오염 퇴적물을 통한 애노드 열화를 해결하지만, 애노드 부전위를 바이어스하지 않아서, 애노드에 플라즈마가 발생한다.
모든 타입의 폐쇄 드리프트 이온 소스에 대해 애노드 오염의 문제를 해결하기 위해 많은 방법을 사용하고 있다. 그럼에도, 시간의 경과에 따라 애노드 전도성을 잃지 않으면서도, 동작을 일관 되게 할 수 있는 폐쇄 드리프트 이온 소스를 위한 방법 및 장치가 필요하다. 이상적으로는, 해결 방안은 10 시간의 연장된 공정 시간 동안 절연 축적이 되지 않는 상태를 유지하는 자체 클리닝 애노드(self-cleaning anode)를 포함하는 것일 것이다.
폐쇄 드리프트 이온 소스의 전기적으로 절연된 애노드 전극에 전자를 공급하는 단계를 포함하는, 기판의 표면을 개질하기 위한 방법을 제공한다. 애노드 전극은 폐쇄 드리프트 이온 소스의 다른 요소가 전기적으로 접지되거나 전기적 부동 전압(float voltage)을 유지하면서, 정전위(positive) 상태인 애노드 전극 하전 바이어스를 갖는다. 전자는 제1 애노드 전극을 둘러싸는 진공 챔버 내의 가스로부터 이온 형성을 유도하는 폐쇄 드리프트 자계에 충돌한다. 이어서, 이온이 빔으로서 가속되어, 기판의 표면에 입사되고 표면을 개질(modify)한다. 표면 개질은, 에칭, 마그네트론 스퍼터 증착 공정, 이온 도움 열적 증착(ion enhanced thermal deposition), 및 플라즈마 도움 화학 기상 증착(plasma enhanced chemical vapor deposition)을 포함한다. 애노드의 오염은 가스에 의해 전극 하전 바이어스를 부전위로 스위칭함으로써 방지되며, 애노드의 근위에 플라즈마를 발생시켜, 애노드 전극으로부터 퇴적된 오염 물질을 세정한다. 이후, 전극 하전 바이어스가 반복 전자 소스에 의해 정전위로 복귀하여, 기판의 표면을 다시 개질하도록 반복 이온 형성(repeat ion formation)을 유도한다.
기판 표면의 개질을 위한 장치는, 전기적으로 절연된 애노드 전극과, 강자성 자극 및 폐쇄 드리프트 자계를 형성하는 자석을 구비하는 다른 요소를 갖는 폐쇄 드리프트 이온 소스를 포함한다. 다른 요소는 전기적으로 접지되거나 전기적 부동 전압을 유지한다. 전원은 정전위의 하전 바이어스 기간 및 부전위의 하전 바이어스 기간이 있는 하전 바이어스를 가진 애노드 전극에 전원을 선택적으로 공급한다. 전자 에미터는 전극 하전 바이어스가 정전위 상태일 때에 애노드 전극에 전자를 공급한다.
도 1a는 왼쪽의 폐쇄 드리프트 스퍼터 이온 소스가 부전위로 바이어스되고 오른쪽의 폐쇄 드리프트 스퍼터 이온 소스가 정전위로 바이어스된 경우를 나타내는 교류 전원을 가진 본 발명의 장치를 나타내는 단면도이다.
도 1b는 왼쪽의 폐쇄 드리프트 스퍼터 이온 소스가 부전위로 바이어스되고 오른쪽의 폐쇄 드리프트 스퍼터 이온 소스가 정전위로 바이어스된 경우를 나타내는 다른 경우에서의 도 1a의 장치를 나타내는 단면도이다.
도 2는 도 1a에 나타낸 본 발명의 장치의 사시도이다.
도 3은 짧은 가속 채널과 전원 스위칭을 구비하는 본 발명의 장치를 개략적으로 나타내는 단면도이다.
도 4는 부전위의 애노드 바이어스 기간 동안 애노드의 안쪽 면에 플라즈마 방전을 유지하는 장치의 단면도로서, 도시된 것과 유사한 제2 폐쇄 드리프트 소스와 장치의 근위에 있는 기판이 도면의 명료를 위해 생략된 도면이다.
도 5는 스퍼터 증착에 특히 적합한 장치 및 주위의 진공 챔버와 기판에 완전히 노출된 전극을 나타내는 단면도이다.
본 발명은 에칭 또는 증착을 포함하는, 기판의 표면 개질(surface modification), 특히 기판상에 절연막을 증착하기 위한 장치로서의 용도를 갖는다. 본 명세서에서는, 폐쇄 드리프트 스퍼터 이온 소스(closed drift sputter ion source)의 전극(electrode)을 애노드 또는 애노드 전극과 동일한 의미로 사용한다.
동작 기간의 연장을 위한 기판 표면의 안정적이고 재생가능한 개질은, 부전위 하전 바이어스(negative charge bias)를 폐쇄 드리프트 이온 소스의 전기적으로 절연된 애노드에 간격을 두고 그리고 애노드로부터 이온 형성을 억제하고 대신에 애노드로부터 퇴적된 오염 물질을 세정하는 스퍼터링 플라즈마(sputtering plasma)를 유지하기에 충분한 시간 동안 인가하는 본 발명에 의해 달성된다. 애노드를 세정 상태로 유지하는 결과로서, 장치는 재생가능한 표면 개질 특성 및 유지를 위한 더 긴 시간의 동작 기간을 달성한다.
본 발명은, 종래 기술과는 다르게, 부전위 바이어스(negative bias)를 폐쇄 드리프트 이온 소스의 자극 및 애노드 전극에 모두 인가함으로써, 기판 표면상의 오염 물질로서 캐소드 자극 물질(cathode pole material)이 스퍼터 증착되는 것을 전제로 한다. 부전위 하전 바이어스를 애노드에만 인가함으로써, 소정 기판의 표면에 오염 물질을 허용하지 않도록 하는 애노드 물질을 용이하게 선택할 수 있다. 이러한 물질을 폐쇄 드리프트 이온 소스의 하우징, 캐소드 및 다른 요소에 제공하는 것은, 기판 표면 오염과, 이러한 가상의 장치의 제조 및 동작이 크게 복잡하게 되는 것을 방지할 것이다. 또한, 부전위의 바이어스를 폐쇄 드리프트 이온 소스의 애노드에만 인가함으로써, 애노드의 스퍼터링 세정(sputtering cleaning)을 달성하고, 기체 및 급수 라인, 자극 커버(pole cover), 차폐 등과 같은 폐쇄 드리프트 이온 소스의 다른 요소를 전기적으로 절연시키는 것과 연관된 상당한 노력을 제거한다.
본 발명의 장치에서 전극으로의 전자 흐름을 차단하는 폐쇄 드리프트 임피던스 경로는 미러 임피던스(mirror impedance)와 혼동하지 않아야 한다. 본 발명의 폐쇄 드리프트 임피던스(closed drift impedance)는 미러 임피던스보다 크다. 예를 들어, 폐쇄 드리프트 영역 양단에서의 전압은 대략 300 볼트이며, 자기 미러(magnetic mirror) 양단의 전압은 80V에 가깝다. 이것은 이들 두 가지 전자 구속 방법들 사이의 중요하고 기본적인 차이이다. 본 발명의 경우에, 높은 임피던스와 높은 이온 에너지를 생기게 하는 폐쇄 드리프트 구속(closed drift confinement)이 이루어진다. 이러한 높은 이온 에너지는 소정의 막 증착 및 에칭 공정에 특히 유용하다. 예를 들어, 다이아몬드 코팅(DLC: diamond like coating)의 성장은, 폐쇄 드리프트 타입의 이온 소스의 높은 에너지에 의해 보강된다. 높은 이온 에너지의 이점을 갖는 다른 막 형성 공정은 산소 및 수분 침투 장벽 막이다.
교류 전원에 의해 전원이 공급되는 2개의 폐쇄 드리프트 이온 소스를 연결함으로써, 제1 소스의 애노드가 부전위 하전 바이어스된 경우, 소스는 전자를 폐쇄 드리프트 자계를 통해 부전위로 하전된 바이어스 노드를 갖는 다른 소스에 공급하는 스퍼터 마그네트론(sputter magnetron)으로서 동작함으로써, 제2 소스가 기판의 표면에 입사되는 이온을 생성하여, 기판을 개질시킨다. 결합된 소스의 전기적으로 절연된 애노드에 하전 바이어스를 교대로 인가함으로써, 양 애노드가 깨끗한 상태로 유지되고, 안정적인 상태의 기판 표면 개질 환경이 달성된다.
도 1a, 도 1b 및 도 2를 참조하면, 본 발명은 전원(11)에 연결된 2개의 폐쇄 드리프트 이온 소스(10a, 10b)를 구비하는 장치(100)를 나타내고 있다. 도 1a, 도 1b 및 도 2에 나타내는 바와 같이, 이온 소스(10a, 10b)의 속성과 같이, 이온 소스(10a)와 연관된 속성에 대해서는 소정의 참조부호 뒤에 영문자 a를 붙이고, 이온 소스(10b)와 연관된 속성에 대해서는 소정의 참조부호 뒤에 영문자 b를 붙이고 있다. 애노드 전극(1a, 1b)은 직선형의 고리 모양의 형태를 가지며, 도 2에 나타낸 바와 같이, 소스(10a)의 길이(102)는 기판(S)의 폭(W)의 ±10% 이내인 것이 바람직하다. 길이(102)는 기판(S)을 수용하도록 수 미터까지 연장될 수 있는 것이 바람직하다. 더 바람직하게는, 소스(10a)의 길이(102)는 소스(10a, 10b)와 연관된 자계 에지 효과(magnetic field edge effects)와 관련된 폭(W)을 규정하는 에지의 기판 개질 프로파일을 제한하기 위해 폭(W)보다 더 길다. 각각의 소스(10a, 10b)는 타원체 또는 원형의 고리 모양, 또는 타원형 또는 원형 플레이트, 또는 2개의 소스의 내포 구성(nested configuration)을 포함하는 다른 형태를 가진 기판의 특성에 따라 다른 형태로 독립적으로 구성될 수 있다. 동심의 고리 모양 소스는 이러한 2개의 소스의 내포 구성의 예이다. 소스(10a, 10b)가 이들 사이에 상호교체 가능한 요소를 갖는 경우에, 제조 및 동작에서 상당한 효능이 달성될 수 있는 것이 바람직하다. 소스(10a, 10b)는 애노드 전극(1a, 1b)을 각각 갖는다. 전극(1a, 1b)은 전원(11)에 연결된다. 전원(11)의 특성은 애노드 스퍼터 자체 세정을 유도하기 위한 충분한 시간 동안 애노드에 대한 바이어스를, 경우에 따라 부전위로 바이어스하는 장치의 능력에 의해서만 제한된다. 전원(11)은 교류(AC), 무선 주파수(RF), 펄스 직류(pulsed DC), 및 다른 펄스 파형 소스와 같은 입수가능한 다수의 전원을 포함한다. AC 전원은 10 킬로와트에서의 고전압 버전에서 용이하게 이용할 수 있으며, 낮은 비용 때문에, 대부분의 표면 개질 공정에 바람직하다. AC 전원(11)의 통상적인 교류 주파수는 1 킬로헤르츠(kHz)부터 1 메가헤르츠(MHz)까지의 범위를 가지며, 10 kHz부터 100 kHz까지의 범위가 바람직하다. 도시한 전극(1a, 1b)은 고리 모양의 형태이기 때문에, 폐쇄 드리프트 이온 소스에 통상적인 폐쇄 레이스트랙(closed racetrack) 형태를 형성한다. 전극(1a, 1b)은 스탠드오프(standoff)(104a, 104b)에 의해 각각 전기적으로 절연된다. 스탠드오프(104a, 104b)는 소스(10a, 10b)의 다른 요소로부터 전극(1a, 1b)을 절연하는 전기 절연체이며, 소스 가스(18)가 통과하여 전극(1a, 1b)과 접촉하게 된다. 본 발명의 장치(100)의 긴 시간 동안의 동작을 지원하기 위하여, 전극(1a, 1b)은 전극(1a, 1b)과의 열적 전달을 위한 폐 루프에서의 물 순환에 의해 냉각되는 것이 바람직하다.
플라즈마 방전 영역(24a, 24b)은 전극(1a, 1b), 외측 강자성 자극 커버(outer ferromagnetic pole cover)(3a, 3b), 및 내측 강자성 자극 커버(6a, 6b)에 의해 형상이 이루어지며, 플라즈마 영역(24a, 24b)은 기판(S)의 표면(T)을 향해 연장된다. 자석(9a), 후방 분로(back shunt)(12a), 및 강자성 자극(2a, 4a)의 상호작용에 의해 플라즈마 영역(24a)에 자계(13a)를 형성한다. 대응하는 요소(9b, 12b, 2b, 4b)에 의해 형성되는 플라즈마 영역(24b)에는, 대응하는 자계(13b)가 형성된다. 선택적으로, 소스(10a 또는 10b)에는 열 차폐부(heat shield)(21a, 21b)가 독립적으로 제공된다. 열 차폐부(21a 또는 21b)는 전극(1a 또는 1b)으로부터 나오는 열 복사(thermal radiation) 및 자석(9a 또는 9b)에 대한 영향을 감소시킨다. 열 차폐에 특히 적합한 재료는 강자성체가 아닌 것이면 어떠한 재료도 가능하며, 알루미늄이 열 차폐부를 형성하기에 바람직한 재료를 구성한다. 선택적으로, 내측 강자성 자극(4a, 4b)의 측면은 커버(6a, 6b)가 각각 체결되어 있다. 마찬가지로, 외측 강자성 자극(2a, 2b)의 측면에는 커버(3a, 3b)가 체결될 수 있다. 동작 동안, 본 발명의 장치(100)에 의해 이루어지는 환경으로부터 각각의 자극을 보호하기 위한 커버(3a, 3b, 6a, 6b)의 재료가 선택될 수 있으며, 특별한 기판 표면의 개질에 대한 화학적 성질과 호환가능하도록 선택된다.
전극의 스퍼터링 효과는 전극 재료의 선택에 의해 제어된다. 예를 들어, 전극 재료는 높은 2차 전자 방출 레이트와 낮은 스퍼터링 레이트를 갖도록 선택될 수 있다. 산소 소스 가스가 사용되는 경우에는, 알루미늄이 그 재료의 예가 된다. 이러한 경우, 전극 표면은 산화되고, 알루미늄이 형성된다. 알루미늄은 느린 스퍼터링 레이트를 가지며, 높은 2차 전자 방출 수율을 갖는다. 전극 재료는 기판과 공정에서의 불리한 효과를 최소화하도록 선택될 수 있다. 예를 들어, 철을 함유한 모든 재료는, 전자급 실리콘 막(electronic grade silicon film)을 증착하는 경우에는 피해야 할 것이다. 이 경우, 전극은 실리콘 막으로 코팅되는 것이 바람직하다. 전극 재료에 추가로, 자극 커버 재료도 고려하여야 한다. 자극 커버(pole cover)는 높은 에너지의 플라즈마에 의해 부식된다. 이들 재료는 전극과 유사한 고려 사항에 기초해서 선택된다.
소스 가스는 본 발명의 장치(100)의 다양한 위치에 제공된다. 도 1a, 도 1b 및 2에 나타낸 바와 같이, 소스 가스(18)는 가스 매니폴드(gas manifold)(17b)와 유체 연통된 홀(19b)을 통해 폐쇄 드리프트 이온 소스(10b)에 제공된다. 매니폴드(17b)는 도 1a 및 도 1b에 나타낸 2개의 부분(17b)이 유체 연통되는 연속 고리 모양의 그루브(groove)인 것이 바람직하다. 매니폴드(17b)는 소스(10a)의 대응하는 매니폴드(17a)와 유체 연통되며, 이와 달리, 매니폴드(17a)에는, 조성, 흐름 레이트 또는 이들의 조합이 다양한 별개의 소스 가스가 공급된다. 매니폴드(17b)에 대하여, 소스 가스(18)는 후방 분로(12b)를 거쳐 애퍼처(10b)를 통해, 방열 플레이트(heat dissipator plater)(21b)의 가스 출구 홀(23)에 의해, 애노드 전극(1b)과 스탠드오프(104b)를 포함하는 주위의 구조체 사이의 암부(dark space)(14)로 흐른다. 매니폴드(17)에 대해서도 유사한 가스 경로가 존재하는데, 공통의 참조부호에 "a"를 붙여서 나타낸다. 암부 영역(14)으로부터, 소스(10b)에서의 소스 가스(18)의 분자가 플라즈마 영역(24b)으로 흐른다. 선택적으로, 외부 가스(15)가 매니폴드(16)에 의해 공급된다. 매니폴드(16)는 이온 소스(10a, 10b) 사이의 개재 요소로서 도시되어 있지만, 외부 가스(15)는 본 발명의 장치에 근접한 진공 챔버 및 기판(S)의 표면(T) 부근을 포함한, 예를 들어 도 1a, 도 1b, 및 도 2의 좌측에 나타낸 다른 위치로의 유입을 통해 용이하게 반응된다.
본 발명의 장치(100)는 진공 챔버 내에 설치되며, 기판(S)은, 소정의 조건 하에서의 질소가 질화물을 형성하는 조건하에서의 동작 조건하에서는 비활성이다. 장치(100)를 활성화하기 위하여, 소스 가스(18)는 암부(14b)에 존재할 때까지 홀(19) 안으로 그리고 전극(1a, 1b)의 근위에 펌핑된다. 이어서, 전원(11)이 활성화되고, 하전 바이어스가 제1 애노드 전극(1a) 및 제2 애노드 전극(1b)에 인가된다. 전원(11)은 교류 전원인 것이 바람직하다. 예를 들어, 기판(S)의 표면(T)은 플라즈마를 생성하고 전자(8)와 이온 빔(7)을 유도하는 장치 면(103)을 가로 방향으로 가로질러 이동됨으로써, 표면(T)의 개질의 바람직한 균일성을 제공할 수 있다. 본 발명의 장치(100)에 의해 용이하게 수행되는 표면 개질은, 표면(T)의 에칭, 재료 섬의 증착, 또는 재료 막의 증착을 포함한다. 본 발명의 장치(100)의 방출 면(103)과 기판(S)의 표면(T) 사이의 분리 거리(separation distance)(d)는 공정의 구체적인 사항에 따라 달라질 수 있다. 예를 들어, 라인 플라즈마 화학 기상 증착(PECVD)과 대면적 기판에서, 분리 거리(d)는 통상 25 밀리미터 내지 100 밀리미터이다.
동작에 있어서, 소스 가스(18)는 본 발명의 장치(100)로 전달되어, 로컬 플라즈마 영역(24a 또는 24b)이 전극(1a 또는 1b)에 대하여 마그네트론 스퍼터링 플라즈마(5a 또는 5b)를 점화(ignite)하기에 충분한 소스 가스 압력을 갖게 된다. 소스 가스(18)에 대한 통상의 압력은 1 밀리토르(milliTorr) 내지 50 밀리토르이다. 소스 가스(18)는 산소, 헬륨, 아르곤, 질소 또는 이들의 조합 등의 불응축(noncondensing)의 기체를 포함하며, 산소는 반응성 가스를 구성하지만, 다른 가스도 가능하며, 20 킬로헤르츠(KHz) 내지 70 킬로헤르츠에서 동작하는 교류 전원이 사용된다. 제1 애노드 전극(1a)이 부전위의 하전 바이어스를 갖는 경우, 마그네트론 스퍼터링 플라즈마(5a)는 전극(1a)의 근위에서 점화한다. 바람직하게는, 애노드 전극(1a, 1b)은 스퍼터링 플라즈마의 공간 범위를 정하기 위한, 면 리세스(facial recess)(26a, 26b)를 포함한다. 도 1a에 나타낸 바와 같이, 애노드 전극(1a)은 부전위의 하전 바이어스를 가지며, 플라즈마(5a)는 전자(e-)(8)를 점화하여 제1 애노드 전극과 반대의 하전 바이어스를 가진 제2 애노드 전극(1b)을 갖는 이온 소스(1b)에 공급한다. 즉, 애노드 전극(1b)은 정전위의 하전 바이어스를 갖는다. 전자(8)가 정전위로 바이어스된 애노드 전극(1b)에 도달하여 전원 전류 루프를 완성함에 따라, 전자(8a)는 플라즈마 영역(24b)에서의 폐쇄 드리프트 자계를 통과하여야 하며, 도 1a에 나타낸 바와 같이, 이온 소스(10b)만이 본 기술분야의 종래의 통상적인 폐쇄 드리프트 이온 소스처럼 기능한다. 본 발명의 장치(100)는 소정의 애노드 전극에 대하여 정전위 및 부전위 사이의 교번하는 하전 바이어스의 조합에 의해, 마그네트론 스퍼터링 플라즈마가 전극(1a 또는 1b)에서 유지되는 시간 동안, 강자성 자극(2a, 2b, 4a, 4b)과 자극 커버(3a, 3b, 6a, 6b)를 포함하는 다른 이온 소스 요소는 전기적 전원-애노드 전기 회로로부터 배제된다. 이러한 폐쇄 드리프트 이온 소스의 다른 요소는 현재 전기적으로 접지되거나 전기 부동 전압을 유지한다. 바람직하게는, 이들 다른 요소는 전기적으로 부동이다. 도 1a에 나타낸 바와 같이, 전자(8)는 이온 소스(10b)로부터 이온 형성을 유도한다. 이들 이온은 이온 빔(7)으로서 표면(T)을 향해 가속된다. 당업자라면, 이온 빔(i)(7)이 표면(T)을 에칭하고 표면(T)하고만 또는 그 위에 증착물을 형성하기 위해 전구체 가스(precursor gas)와 조합하여 반응할 수 있다는 것을 알 수 있을 것이다.
도 1a에 나타낸 전압이 반전되면, 전극(1a, 1b)은 하전 바이어스를 반전시키고, 도 1b에 나타낸 바와 같이, 이온 소스(10b)는 이온 소스로서 동작하고 이온 빔(7)을 생성하는 이온 소스(10a)에 이온화 및 중성화 전자를 제공한다.
이온 소스(10a, 10b)가 애노드 전극 하전 바이어스를 교대로 인가함에 따라, 각각의 이온 소스는 전자 소스와 이온 소스로 교대로 되고, 이에 따라 플라즈마가 밀집되고, 이온 소스(10a, 10b)의 각각으로부터 이온 빔이 교대로 방출된다. 본 발명의 장치의 이온의 rms 속도는 전자의 rms 속도보다 훨씬 느리다는 것을 알 수 있을 것인데, 이것은 도 1a 및 도 1b에 나타낸 시나리오의 합계로서 효과적으로 기능하는 적절한 빈도로 하전 바이어스가 전환되는 본 발명의 장치(100)가 안정적인 상태의 표면 개질 이온 빔 생성이 되기 때문이다. 안정적인 상태의 동작 과정에서, 각각의 애노드 전극(1a, 1b)은 전자 소스로서 기능하는 동안 계속해서 자체 세정(self-cleaning)된다. 애노드 전극의 계속적인 자체 세정에 의해, 장치의 동작 제어 안정성이 크게 향상된다.
본 발명의 장치(100)는 외부 매니폴드(16)를 통해 전구체 가스(precursor gas)(15)의 도입이 있는 PECVD 공정에 특히 유용하다는 것을 알 수 있을 것이다. 기판(S)의 표면(T)과 이온 소스(10a, 10b) 사이의 이온 소스 영역과 밀집한 플라즈마와 이온 사이에 매니폴드(16)를 위치시키는 것이 바람직하다. 반응성 전구체 가스(15)를 플라즈마 영역(24a, 24b)의 외부로 전달하는 것은 소스(10a, 10b) 내의 전구체 가스 분자의 분해와 연관된 오염 물질의 축적을 감소시킨다. 동작 동안 본 발명의 장치(100)가 애노드 전극(1a, 1b)을 자체 세정하는 능력은 PECVD를 크게 용이하게 하며, 특히 전구체 가스(15)의 분자가, 이러한 거리 갭(d)에서 반응성의 중간 물질을 형성하기 위해 장치(100)의 면과 표면(T) 사이의 거리 갭에 있는 반응성 분자를 활성화하는 전자 및 에너지를 가진 이온과 부딪친다. 반응성의 중간 물질이 표면(T)에 충돌하면, 이들 활성화된 전구체 가스(15)의 중간 물질이 표면(T)상에 밀집된다. 본 발명의 장치(100)의 이온 빔(7)의 에너지는, CVD 증착 동안 이온 빔 충격이 없는 것들을 생성한 것에 비해, 밀집된 높은 품질의 PECVD 막을 촉진한다. 도 1a 및 도 1b의 긴 가속 채널 타입의 소스는 반응성의 응축 가스의 소스(10a 또는 10b)로의 후퇴를 저지한다는 것을 알 수 있을 것이다.
결과적으로, 전기적으로 절연된 애노드의 자체 세정을 제공하는 본 발명의 장치는 아르곤 또는 다른 비활성 커버 가스 없이도, 반응성 소스로서 산소의 존재에 의해 진공 하에서 용이하게 동작할 수 있다. 10 킬로헤르츠 내지 100 킬로헤르츠의 범위에서 비동기적인 파워 탠덤 이온 소스의 동작 주파수를 갖는 AC는 애노드에서의 절연성 오염 물질의 축적을 저지하는 바람직한 실시예를 나타낸다. 킬로헤르츠의 AC는 충분히 높은 주파수를 갖기 때문에, 정전위 하전 바이어스 사이클(전자가 애노드에 도달함) 또는 부전위 하전 바이어스 사이클(이온이 애노드에 충돌) 동안 애노드에 축적되는 임의의 얇은 산화 막을 통해 전류가 용량 결합되도록 한다. 이것은 직류 전원 공급으로 동작하는 종래의 이온 소스와 반대이다. 또한, 탠덤 구성에서, 전극 타겟 물질은 순수한 산소 환경과 호환될 수 있도록 선택될 수 있다. 예를 들어, 알루미늄 타겟이 사용될 수 있다. 동작 중에, 알루미늄 타겟 표면이 산화되어, 알루미나가 된다. 캐소드에서, 전자를 생성하는 동작 모드에서, 알루미나 표현은 천천히 스퍼터하고, 높은 이차 전자 방출을 갖는다. 이들은 스퍼터 이온 소스 전극에 대해서는 이상적인 속성이다. 순수한 반응성 가스에서의 동작이 가능한 것은, 애노드 표면이 오염되는 것 또는 중공의 캐소드 또는 필라멘트 전자 소스를 영구적으로 파손되는 것을 피하기 위해 아르곤을 소스를 통해 전달할 필요가 있는 종래의 이온 소스와 다르다. 아르곤 또는 다른 비활성 커버 가스를 흐르게 할 필요가 없게 됨으로써, 펌핑 시스템에서의 가스 부하가 경감되고, 낮은 처리율의 펌프를 사용할 수 있고 전체 동작을 단순화할 수 있다.
도 2는 도 1a 및 도 1b의 장치(100)를 나타내는 사시도이다. 이 도면은 본 발명이 플라스틱 막의 롤(roll)이나 유리 시트 등의 큰 면적의 기판에 적용될 수 있다는 것을 나타낸다. 본 발명의 장치의 이온 소스는 둥근 또는 다른 형태의 고리 모양의 전극 레이아웃으로 용이하게 형성된다는 것을 알 수 있을 것이다. 폐쇄 드리프트 이온 소스를 상이한 길이로 연장하는 것은 본 기술분야에 잘 알려져 있다. 중요한 기준은 레이스트랙 주위의 폐쇄 드리프트 전자 홀 전류 경로의 생성이다.
자체 세정 애노드를 갖는 폐쇄 드리프트 이온 소스(40)를 도 3에 나타내고 있으며, 외측 강자성 자극(32)과 내측 강자성 자극(34) 사이에 형성된 가속 채널은, 도 1a 및 도 1b와 관련해서 도시한 것에 비해 짧게 되어 있다. 도 3에 나타낸 유사한 도면 부호는 이들 도면부호에 대하여 이전에 설명한 의미를 갖는다. 소스(40)는 이온 소스(10a, 10b)와 관련해서 설명한 것과 유사한 물질 요소를 갖는다. 짧은 가속 채널을 갖는 소스(40)는 애노드 계층 타입의 이온 소스이다. 내측 자극(34)은 자극 캡(pole cap)(61)에 의해 덮이고, 외측 자극(32)은 대응하는 자극 캡(60)에 의해 덮인다. 캡(60, 61)은 전극(31) 위에서 추가의 자계 강도(62)에 초점을 맞추도록 제공될 수 있다. 자석(39)과 후방 분로(42)는 자계 선(63, 62)을 포함하는 폐쇄 드리프트 자계를 생성한다. 전극(31)은 절연체 스탠드오프(134)에 의해 주변의 전기적으로 부동인 표면으로부터 먼 쪽으로 지지된다. 소스 가스(18)는 백 커버(55) 내의 나사 홀(tapped hole)(50), 후방 분로(42) 내의 가스 출구 홀(53), 가스 매니폴드 영역(57), 및 분배 홀(54)을 통해 암부 영역(44)까지 스퍼터 영역(35) 및 플라즈마 영역(64)으로 전달된다. 전극(31) 및 다른 요소는 잘 알려진 방법을 사용해서 필요에 따라 물로 냉각시킬 수 있다.
소스(40)는 2개의 전원에 연결된 애노드 전극(31)을 가진 단일의 소스이다. 스위치(71)에 의해 전원(70 또는 71)이 전극(31)에 연결될 수 있다. 전원(70)이 연결되었으면, 전극(31)은 부전위로 바이어스되고, 플라즈마 방전(35)이 전극(31) 상에 유지된다. 방전(35)은 전극(31)으로부터 축적된 오염 물질을 세정한다. 스위치(71)가 전극(31)을 전원(72)에 연결하도록 설정되면, 전극(31)은 정전위로 바이어스되고, 소스(40)는 이온 빔(7)을 생성하는 통상의 폐쇄 드리프트 이온 소스로서 동작한다. 이러한 이온 소스 모드에서, 전자(8)의 소스는 통상 방출된 이온을 중성화하고 전자 전류를 전극(31)에 제공하는 데에 필요하다. 전자 에미터(73)는 이러한 목적을 위해 제공되며, 부전위로 바이어스된 소스(10A) 또는 다른 통상의 마그네트론 캐소드와 같은 스퍼터 마그네트론, 중공의 캐소드, 및 필라멘트를 포함한다. 이온 소스 동작을 위한 충분한 전자를 공급할 수 있는 자극 커버(60, 61) 및 기판(S)에 입사되는 이온 빔으로부터의 이차 전자 방출에 따라, 점화 소스(40)가 전자 에미터(73) 없이도 선택적으로 동작할 수 있다.
통상, 전극(31)은 연장된 시간 동안 전원(72)에 연결되고, 소스(40)는 이온 소스로서 동작할 것이다. 소스 전압이 애노드 전극(31)의 오염을 나타내는 미리 선택된 값까지 증가하면, 전원(70)은 온으로 스위칭되고, 전극(31)은 스퍼터에 의해 세정된다. 짧은 세정 사이클이 완료되면, 동작은 근접 표면(T)을 개질하기 위해 이온 소스 모드로 귀환한다.
도 4는 안쪽을 향하는 면(202)에서 스퍼터링 방전(105)을 유지하는 애노드 전극(201)을 가진 이온 소스(200)를 나타낸다. 도 4에 나타낸 유사한 도면부호는 이들 도면부호에 대하여 앞서 설명한 것과 같은 의미를 가진다. 자석(109, 112)은 구속 자계를 형성하기 위해 전극(201) 위에 폐쇄 레이스트랙 자기 구속부(closed racetrack magnetic confinement)(126)를 형성한다. 전극(201)은 구속부(126)를 강화하기 위한 리세스(226)를 구비할 수 있다. 전극(201)은 도 1a에 나타낸 스탠드오프(104a)와 같은 스탠드오프와 전기적으로 절연되어 있으며, 도 4에서는 명료하게 나타내기 위해 도시하지 않고 있다. 리세스(226)는 스퍼터링 방전(105)을 규정하며, 동작 기간 동안, 특히 PECVD 공정과 관련된 오염 환경에서 축적되는 잠재적인 절연 코팅으로부터 전도성 전극 영역을 추가로 보호한다. 소스(200)는 측면 분로(22) 및/또는 중앙 분로(204)를 포함할 수 있다. 베이스(125)는 소스(200)의 나머지 부분을 지지한다. 자석(112)은 마그네트론 구속 자계(126) 및 폐쇄 드리프트 구속 자계 선(113)을 형성한다. 폐쇄 구동 구속 자계 선(113)은 자석 커버(203)와 중앙 분로(204) 사이의 개방된 방전 영역을 통해 지나간다. 소스 가스(18)는 나사 홀(119)을 통해 소스(200)로 전달되어, 매니폴드(117) 및 애퍼처(120)와 연통된다. 애퍼처(120)는 비강자성 열 차폐 커버(121) 내에 천공된다. 커버(121)는 자석(109)을 전극(201)의 잠열로부터 분리시키고, 중앙 분로(204)를 제 위치에 유지한다. 소스 가스(18)는 전극(201) 및 전기적으로 절연된 주변 요소 사이의 암부 영역으로 흐른다. 소스 가스(18)가 암부 영역(114)으로 투입됨으로써, 대부분의 가스(18)가 127에서 스퍼터링 플라즈마(105)에 인접한 영역으로 흐른다. 소스(200)와 동일한 제2 소스(200b)는 전원(11) 양단에 연결된다.
동작 중에, 소스(200)는 소스(200b)에 중성화 전자(8)를 공급하는 스퍼터링 마그네트론 및 애노드 하전 바이어스에 따른 폐쇄 드리프트 이온 소스로서 번갈아 작용한다. AC 사이클의 일부분 동안과 같은 정전위 애노드 바이어스 동안, 전극(201)에 도달하기 위한 전자(8)는 자계 선(113)에 의해 저지되며, 가스 원자는 영역(124)에서 이온화되어 이온 빔(7)을 생성한다. 애노드에 대한 부전위 바이어스 동안, 플라즈마 방전(105)은 전극(201) 상에 유지됨으로써, 중성화 및 이온 생성 전자(8)를 제2 소스(200b)에 공급하고, 오염 물질이 축적된 전극(201)을 세정한다.
도 5는 제1 이온 소스(302a)와 제2 폐쇄 드리프트 이온 소스(302b)를 구비하는 다른 자체 세정 애노드 이온 소스 장치(300)를 나타낸다. 도 5에 사용되는 유사한 도면부호는 이들 도면부호에 대하여 앞서 설명한 것과 동일한 의미를 갖는다. 이 경우, 전극(301a, 301b)은 진공 챔버 및 기판(S)에 완전히 노출된다. 소스(302a)는 전원(11) 양단에 제2 소스(302)와 쌍으로 되어 있다. 소스(302b)는 소스(302a)와 동일하지만, 소스(302b) 대신에 다른 소스를 사용할 수 있다는 것을 알 수 있을 것이다. 이들은 통상의 마그네트론 및 소스(10b, 40, 200)를 포함한다. 소스(302a, 302b) 내의 자석(303a, 303b)은 소스(302a, 302b) 내에 스퍼터 구속 자계 선(315a, 315b)과 폐쇄 드리프트 구속 자계 선(314a, 314b)을 형성한다. 자기 회로는 후방 분로(305a), 외측 분로(304a), 및 내측 분로(306a)에 의해 그리고 소스(302)는 후방 분로(305b), 외측 분로(304b), 및 내측 분로(306b)에 의해 형성된다. 전극(301a)은 사각의 고리 모양 또는 둥근 고리 모양 및 타원형이 될 수 있다. 전극(301a, 301b)은 수냉식으로 할 수 있다. 냉각수(존재한다는 전제하에)는 배킹 플레이트(backing plate)(325a, 235b) 내의 도관(conduit)(311a, 311b)을 통해 흐른다. 냉각수 공급 및 회수 관은 명료히 나타내기 위해 도시하지 않는다. 전극(301a, 301b) 뿐만 아니라 배킹 커버(325a, 325b)는, 절연체 스탠드오프(104)에 의해 다른 소스 요소(미도시)로부터 지지된다. 암부 영역(316a, 316b)은 전극(301a, 301b)이 접지 또는 부동 전압에 남아 있는 다른 소스 요소를 둘러싸는 높은 전압에 있도록 유지된다. 바람직하게는, 주위의 다른 소스 요소는 부동 전압으로 유지된다.
동작 중에, AC 전원(11)이 턴온되면, 소스(302a)는 스퍼터링 마그네트론 및 폐쇄 드리프트 이온 소스로서 교대로 동작한다. 소스(302a)가 전원(11) 양단의 소스(302b)에 관련해서 정전위로 바이어스되면, 이온 소스 모드는 소스(302a)에 대하여 효과를 발휘한다. 이러한 모드에서, 전극(301a)의 타겟 표면에 도달하기 위한 전자(8)는 자계 선(314)에 의해 저지된다. 전자(8)가 자계 선(314) 주위의 309에서 선회하면, 전자(8)는 원자와 충돌해서 사선 빗금친 영역(313)에 이온을 생성한다. 이어서, 이들 이온은 전극(301a)으로부터 가속화되는 전계에 있게 되고, 이온은 기판(S)의 표면(T)을 향해 이온 빔(7)이 추진된다. 외측 자극(304a) 및 내측 자극(306a)의 부동 표면 또는 접지 표면으로부터 지나가는 자계 선(314)에 의해 영역(313)이 생성된다. 자극 표면에 의해 경계가 형성된 자계 선(314)은 본 발명의 방법의 폐쇄 드리프트 임피던스 영역을 생성한다.
본 발명의 중요한 특징을 예로 나타내는 장치(300)는, 이중 스퍼터 마그네트론과 달리, 유입되는 전자(8)에 대한 순수한 폐쇄 드리프트 임피던스를 제공한다. 이중 마그네트론 스퍼터링에서 잘 알려진 바와 같이, 하나의 마그네트론이 정전위로 바이어스되면, 다른 마그네트론을 위한 애노드로서 작용한다. 이 경우, 전자는 부전위의 캐소드 마그네트론으로부터 정전위의 마그네트론으로 흘러서, 전기 회로를 완성한다. 종래의 이중 마그네트론에서, 전자는 자계 선을 가로지르지 않으면서도 정전위 마그네트론에 도달할 수 있다. 종래의 이중 마그네트론에서, 전극의 중심은 전자 흐름에 대해 전도성을 갖는다. 이러한 영역에서, 전자 흐름은 자기 미러에 의해 저지될 수 있지만, 높은 임피던스가 걸린 자계 선에 의해서는 저지되지 않는다. 본 발명은 스퍼터 마그네트론과 폐쇄 드리프트 이온 소스를 조합하여 향상된 동작 이온 및 스퍼터 소스를 생성하는 것을 구현한다. 본 장치는 높은 에너지의 이온 빔(7)이 충돌하면서, 전극(301)으로부터 스퍼터링된 막으로 기판의 표면(T)을 코팅한다. 이러한 이중 효과는 표면(T)상에 높은 밀도와 높은 품질의 막 증착을 형성하는 데에 이상적인 것을 알 수 있을 것이다.
명세서에서 언급한 특허 문서 및 공개 문헌은 본 발명이 속하는 기술분야의 당업자의 수준을 나타낸다. 이들 문서와 문헌은 각각의 문서 또는 문헌이 참조에 의해 본 명세서에 특정적이며 개별적으로 포함되는 것처럼 동일한 범위까지 본 명세서에 참조에 의해 포함된다.
이상의 설명은 본 발명의 특정의 실시예를 예시하고 있지만, 그 실시를 제한하는 것을 의미하지는 않는다. 이하의 청구범위, 청구범위의 모든 균등 표현은 본 발명의 범위를 규정한다.

Claims (21)

  1. 기판의 표면을 개질(modify)하기 위한 방법으로서,
    제1 전극과 공정 챔버 사이에 자계 선(magnetic field line)을 개입하여 상기 제1 전극을 상기 공정 챔버 내에 정전위(positive)로 바이어스하는 제1 전극 바이어스 단계로서, 상기 자계 선이 제1 폐쇄 드리프트 구속 영역(closed drift confinement region)을 형성하는, 제1 전극 바이어스 단계;
    상기 제1 폐쇄 드리프트 구속 영역을 가로질러서 상기 제1 전극에 도달해야 하는 전자를 공급하는 전자 공급 단계로서, 상기 전자가 상기 공정 챔버 내에 존재하는 가스로부터 상기 제1 폐쇄 드리프트 구속 영역에 이온 형성을 유도하는, 전자 공급 단계;
    상기 표면을 개질하기 위해 상기 기판의 표면에 상기 이온을 입사(impinge)하는 단계;
    이온 형성을 억제하고 상기 제1 전극의 근위에 제1 마그네트론 스퍼터 플라즈마를 형성하기 위해 상기 가스의 존재에 의해 상기 제1 전극의 하전 바이어스를 부전위(negative)로 스위칭하는 스위칭 단계로서, 자석에 의해 생성된 제1 마그네트론 스퍼터 플라즈마가 상기 제1 전극 상에 마그네트론 스퍼터 구속 자계를 형성하는, 스위칭 단계;
    상기 제1 마그네트론 스퍼터 플라즈마로 상기 제1 전극으로부터 퇴적된 오염 물질을 세정하는 단계; 및
    상기 기판의 표면을 개질하는 반복 이온 형성(repeat ion formation)을 유도하기 위해 상기 제1 전극의 하전 바이어스를 정전위(positive)로 복귀시키는 단계
    를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 전자는 전자 에미터(electron emitter)에 의해 공급되는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 전자 에미터는 상기 반복 이온 형성과 상기 이온 형성 동안 상기 제1 전극의 하전 바이어스와 반대인 하전 바이어스를 갖는 제2 전극이고, 상기 제2 전극은 상기 제1 전극의 하전 바이어스가 정전위인 때에 제2 전극 마그네트론 스퍼터 플라즈마를 유지하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 제2 전극은 상기 제2 전극과 상기 공정 챔버 사이에 개입되는 자계 선에 의해 형성된 제2 폐쇄 드리프트 구속 영역을 가지는 것을 특징으로 하는 방법.
  5. 제4항에 있어서,
    단일의 교류 전원이 상기 제1 전극의 하전 바이어스 및 상기 제1 전극의 하전 바이어스와 반대인 제2 전극의 하전 바이어스를 교류 주파수로 동시에 공급하는 것을 특징으로 하는 방법.
  6. 제5항에 있어서,
    상기 교류 주파수는 10 킬로헤르츠(kHz) 내지 100 킬로헤르츠 사이의 범위를 갖는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 제1 전극은 다른 소스 요소와 전기적으로 절연되는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 다른 소스 요소는 강자성 자극 및 자극 커버를 포함하는 것을 특징으로 하는 방법.
  9. 제1항에 있어서,
    상기 기판의 표면을 개질하는 것은 전기적 절연막의 증착을 포함하는 것을 특징으로 하는 방법.
  10. 제1항에 있어서,
    상기 기판의 표면을 개질하는 것은 막의 증착을 행하는 것이며, 증착 동안 상기 기판을 가로 방향으로 이동시키는 것을 더 포함하는 것을 특징으로 하는 방법.
  11. 제1항에 있어서,
    다수의 전구체 가스(precursor gas) 분자를 상기 제1 마그네트론 스퍼터 플라즈마 및 상기 이온과 접촉하도록 도입하고, 상기 다수의 전구체 가스 분자를 분해하여, 상기 기판의 표면에 증착되는 코팅 재료를 형성하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  12. 제11항에 있어서,
    상기 다수의 전구체 가스 분자는 상기 제1 폐쇄 드리프트 구속 영역의 외부로 도입되는 것을 특징으로 하는 방법.
  13. 제4항에 있어서,
    상기 제2 전극이 정전위 바이어스를 가질 때에, 상기 제2 폐쇄 드리프트 구속 영역을 가로질러서 상기 제2 전극에 도달해야 하는 전자가 상기 제2 전극에 공급되고, 상기 전자가 상기 공정 챔버 내에 존재하는 가스로부터 상기 제2 폐쇄 드리프트 구속 영역에 이온 형성을 유도하고,
    상기 제2 폐쇄 드리프트 구속 영역에 형성된 이온이 상기 기판의 표면에 입사되어 상기 표면을 개질하는 것을 특징으로 하는 방법.
  14. 제3항에 있어서,
    단일의 교류 전원이 상기 제1 전극의 하전 바이어스 및 상기 제1 전극의 하전 바이어스와 반대인 제2 전극의 하전 바이어스를 교류 주파수로 동시에 공급하는 것을 특징으로 하는 방법.
  15. 제13항에 있어서,
    단일의 교류 전원이 상기 제1 전극의 하전 바이어스 및 상기 제1 전극의 하전 바이어스와 반대인 제2 전극의 하전 바이어스를 교류 주파수로 동시에 공급하는 것을 특징으로 하는 방법.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
KR1020117015315A 2008-12-08 2009-12-08 자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법 KR101667642B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12080008P 2008-12-08 2008-12-08
US61/120,800 2008-12-08
PCT/US2009/067149 WO2010077659A2 (en) 2008-12-08 2009-12-08 Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith

Publications (2)

Publication Number Publication Date
KR20110118622A KR20110118622A (ko) 2011-10-31
KR101667642B1 true KR101667642B1 (ko) 2016-10-19

Family

ID=42310492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117015315A KR101667642B1 (ko) 2008-12-08 2009-12-08 자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법

Country Status (6)

Country Link
US (2) US9136086B2 (ko)
EP (1) EP2368257A4 (ko)
JP (1) JP5694183B2 (ko)
KR (1) KR101667642B1 (ko)
CN (1) CN102308358B (ko)
WO (1) WO2010077659A2 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0916880B1 (pt) 2008-08-04 2019-12-10 Agc Flat Glass Na Inc fonte de plasma e método de formar revestimento que utiliza deposição química a vapor melhorada de plasma e revestimento
JP2013089812A (ja) * 2011-10-19 2013-05-13 Sumitomo Rubber Ind Ltd 導電性複合体の製造方法およびプリント配線板
WO2014105819A1 (en) 2012-12-28 2014-07-03 Sputtering Components, Inc. Plasma enhanced chemical vapor deposition (pecvd) source
KR101478216B1 (ko) * 2013-04-26 2014-12-31 (주)화인솔루션 이온 소스 및 이를 갖는 이온빔 처리 장치
WO2014175702A1 (ko) * 2013-04-26 2014-10-30 (주) 화인솔루션 이온빔 소스
KR101480114B1 (ko) * 2013-06-13 2015-01-07 (주)화인솔루션 밀폐 고정 절연부를 갖는 이온 소스
WO2015070254A1 (en) * 2013-11-11 2015-05-14 General Plasma, Inc. Multiple layer anti-reflective coating
WO2015085283A1 (en) * 2013-12-06 2015-06-11 General Plasma Inc. Durable anti-reflective coated substrates for use in electronic-devices displays and other related technology
KR101683726B1 (ko) 2014-11-17 2016-12-20 이찬용 기판 처리 장치
ES2900321T3 (es) 2014-12-05 2022-03-16 Agc Flat Glass Na Inc Fuente de plasma que utiliza un recubrimiento de reducción de macropartículas y procedimiento para usar una fuente de plasma que utiliza un recubrimiento de reducción de macropartículas para la deposición de recubrimientos de película delgada y modificación de superficies
CN107852805B (zh) 2014-12-05 2020-10-16 Agc玻璃欧洲公司 空心阴极等离子体源
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
MX2018007547A (es) * 2015-12-18 2019-05-09 Agc Flat Glass Na Inc Fuente de iones de catodo hueco y metodo de extraer y acelerar iones.
US10242846B2 (en) * 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
WO2017196622A2 (en) 2016-05-11 2017-11-16 Veeco Instruments Inc. Ion beam materials processing system with grid short clearing system for gridded ion beam source
SG10201705059TA (en) 2016-06-24 2018-01-30 Veeco Instr Inc Enhanced cathodic arc source for arc plasma deposition
US10815570B2 (en) * 2017-11-13 2020-10-27 Denton Vacuum, L.L.C. Linearized energetic radio-frequency plasma ion source
CA3103016C (en) * 2018-06-20 2024-01-16 Board Of Trustees Of Michigan State University Single beam plasma source
CN109166780B (zh) * 2018-09-27 2023-10-24 中山市博顿光电科技有限公司 一种条形霍尔离子源
US11545343B2 (en) 2019-04-22 2023-01-03 Board Of Trustees Of Michigan State University Rotary plasma reactor
DE102020114162B3 (de) * 2020-05-27 2021-07-22 VON ARDENNE Asset GmbH & Co. KG Ionenquelle und Verfahren
CN114302546B (zh) * 2021-12-08 2023-10-20 核工业西南物理研究院 一种高效率低污染等离子体源
CN114438462A (zh) * 2021-12-24 2022-05-06 兰州空间技术物理研究所 一种二次电子发射薄膜致密化成膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075060A1 (en) 2002-10-21 2004-04-22 Luten Henry A. Method of cleaning ion source, and corresponding apparatus/system
WO2007124032A2 (en) * 2006-04-19 2007-11-01 Applied Process Technologies, Inc. Dual plasma beam sources and method
WO2008118203A2 (en) 2006-10-19 2008-10-02 Applied Process Technologies, Inc. Closed drift ion source

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735591A (en) * 1971-08-30 1973-05-29 Usa Magneto-plasma-dynamic arc thruster
US4862032A (en) * 1986-10-20 1989-08-29 Kaufman Harold R End-Hall ion source
DE4042286C1 (ko) * 1990-12-31 1992-02-06 Leybold Ag, 6450 Hanau, De
US5508368A (en) * 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
US5646476A (en) * 1994-12-30 1997-07-08 Electric Propulsion Laboratory, Inc. Channel ion source
JP3487002B2 (ja) * 1995-02-06 2004-01-13 石川島播磨重工業株式会社 イオン源
DE19508405A1 (de) * 1995-03-09 1996-09-12 Leybold Ag Kathodenanordnung für eine Vorrichtung zum Zerstäuben von einem Target-Paar
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
RU2084085C1 (ru) * 1995-07-14 1997-07-10 Центральный научно-исследовательский институт машиностроения Ускоритель с замкнутым дрейфом электронов
DE19540543A1 (de) * 1995-10-31 1997-05-07 Leybold Ag Vorrichtung zum Beschichten eines Substrats mit Hilfe des Chemical-Vapor-Deposition-Verfahrens
US5973447A (en) * 1997-07-25 1999-10-26 Monsanto Company Gridless ion source for the vacuum processing of materials
JP2002529600A (ja) * 1998-11-06 2002-09-10 シヴァク 高レート・コーティング用のスパッタリング装置および方法
US6451389B1 (en) * 1999-04-17 2002-09-17 Advanced Energy Industries, Inc. Method for deposition of diamond like carbon
DE19928053C5 (de) 1999-06-15 2005-12-22 Hermann Dr. Schlemm Anordnung zur Erzeugung eines Niedertemperaturplasmas durch eine magnetfeldgestützte Kathodenentladung
US6870164B1 (en) * 1999-10-15 2005-03-22 Kaufman & Robinson, Inc. Pulsed operation of hall-current ion sources
AU2001277271A1 (en) * 2000-07-27 2002-02-13 Atf Technologies, Inc. Low temperature cathodic magnetron sputtering
US6359388B1 (en) * 2000-08-28 2002-03-19 Guardian Industries Corp. Cold cathode ion beam deposition apparatus with segregated gas flow
US20030209198A1 (en) * 2001-01-18 2003-11-13 Andrew Shabalin Method and apparatus for neutralization of ion beam using ac or dc ion source
EP1388159B1 (en) * 2001-04-20 2011-12-07 General Plasma, Inc. Magnetic mirror plasma source
US6750600B2 (en) * 2001-05-03 2004-06-15 Kaufman & Robinson, Inc. Hall-current ion source
US6454910B1 (en) * 2001-09-21 2002-09-24 Kaufman & Robinson, Inc. Ion-assisted magnetron deposition
US7576320B2 (en) * 2002-02-15 2009-08-18 Implant Sciences Corporation Photoelectric ion source photocathode regeneration system
US7241360B2 (en) * 2002-04-19 2007-07-10 Advanced Energy Industries, Inc. Method and apparatus for neutralization of ion beam using AC ion source
US6608431B1 (en) * 2002-05-24 2003-08-19 Kaufman & Robinson, Inc. Modular gridless ion source
US6815690B2 (en) * 2002-07-23 2004-11-09 Guardian Industries Corp. Ion beam source with coated electrode(s)
US6988463B2 (en) * 2002-10-18 2006-01-24 Guardian Industries Corp. Ion beam source with gas introduced directly into deposition/vacuum chamber
US7259378B2 (en) * 2003-04-10 2007-08-21 Applied Process Technologies, Inc. Closed drift ion source
WO2005028697A1 (en) * 2003-09-12 2005-03-31 Applied Process Technologies, Inc. Magnetic mirror plasma source and method using same
US7183559B2 (en) * 2004-11-12 2007-02-27 Guardian Industries Corp. Ion source with substantially planar design
US7439521B2 (en) * 2005-02-18 2008-10-21 Veeco Instruments, Inc. Ion source with removable anode assembly
US7872422B2 (en) * 2006-07-18 2011-01-18 Guardian Industries Corp. Ion source with recess in electrode
BRPI0916880B1 (pt) * 2008-08-04 2019-12-10 Agc Flat Glass Na Inc fonte de plasma e método de formar revestimento que utiliza deposição química a vapor melhorada de plasma e revestimento

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075060A1 (en) 2002-10-21 2004-04-22 Luten Henry A. Method of cleaning ion source, and corresponding apparatus/system
WO2007124032A2 (en) * 2006-04-19 2007-11-01 Applied Process Technologies, Inc. Dual plasma beam sources and method
WO2008118203A2 (en) 2006-10-19 2008-10-02 Applied Process Technologies, Inc. Closed drift ion source

Also Published As

Publication number Publication date
EP2368257A4 (en) 2016-03-09
CN102308358B (zh) 2015-01-07
JP5694183B2 (ja) 2015-04-01
CN102308358A (zh) 2012-01-04
JP2012511242A (ja) 2012-05-17
WO2010077659A2 (en) 2010-07-08
US20110226611A1 (en) 2011-09-22
KR20110118622A (ko) 2011-10-31
US9136086B2 (en) 2015-09-15
EP2368257A2 (en) 2011-09-28
US20160027608A1 (en) 2016-01-28
WO2010077659A3 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
KR101667642B1 (ko) 자체 세정 애노드를 포함하는 폐쇄 드리프트 자계 이온 소스 장치와 이 장치를 사용하여 기판을 개질하는 방법
US7411352B2 (en) Dual plasma beam sources and method
CA2499235C (en) Method of cleaning ion source, and corresponding apparatus/system
CA2205576C (en) An apparatus for generation of a linear arc discharge for plasma processing
JP6625793B2 (ja) 減圧アークプラズマ浸漬皮膜蒸着及びイオン処理
CA2305938C (en) Filtered cathodic arc deposition method and apparatus
US20090032393A1 (en) Mirror Magnetron Plasma Source
US20150002021A1 (en) Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP6134394B2 (ja) プラズマ源および当該プラズマ源を備える真空蒸着装置
EP1390964A1 (en) Dipole ion source
JP2002537488A (ja) プラズマ蒸着法並びに磁気バケットおよび同心プラズマおよび材料源を備える装置
TWI436412B (zh) 製造已清潔的基材或被進一步處理的潔淨的基材之方法及設備
US7030390B2 (en) Ion source with electrode kept at potential(s) other than ground by zener diode(s), thyristor(s) and/or the like
EP0818801A2 (en) Plasma treating apparatus
WO2005024880A2 (en) Floating mode ion source
WO2002011176A1 (en) Magnetron sputtering
JP2000068227A (ja) 表面処理方法および装置
KR20240019088A (ko) 플라즈마 처리를 위한 방법 및 디바이스
KR102350978B1 (ko) 다중 전극 이온 빔 발생 장치 및 이를 이용한 표면 개질 방법
JPH0741952A (ja) プラズマ処理装置及びプラズマ処理方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190927

Year of fee payment: 4