KR101564753B1 - 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법 - Google Patents

코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법 Download PDF

Info

Publication number
KR101564753B1
KR101564753B1 KR1020130163943A KR20130163943A KR101564753B1 KR 101564753 B1 KR101564753 B1 KR 101564753B1 KR 1020130163943 A KR1020130163943 A KR 1020130163943A KR 20130163943 A KR20130163943 A KR 20130163943A KR 101564753 B1 KR101564753 B1 KR 101564753B1
Authority
KR
South Korea
Prior art keywords
gene
seq
host cell
nucleotide sequence
lysine
Prior art date
Application number
KR1020130163943A
Other languages
English (en)
Other versions
KR20150075717A (ko
Inventor
최종수
권영덕
한석훈
임정구
김정애
윤기훈
Original Assignee
백광산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백광산업 주식회사 filed Critical 백광산업 주식회사
Priority to KR1020130163943A priority Critical patent/KR101564753B1/ko
Publication of KR20150075717A publication Critical patent/KR20150075717A/ko
Application granted granted Critical
Publication of KR101564753B1 publication Critical patent/KR101564753B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2431Beta-fructofuranosidase (3.2.1.26), i.e. invertase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01041Isocitrate dehydrogenase (NAD+) (1.1.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01042Isocitrate dehydrogenase (NADP+) (1.1.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01002Glutamate dehydrogenase (1.4.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01026Beta-fructofuranosidase (3.2.1.26), i.e. invertase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01001Pyruvate carboxylase (6.4.1.1)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 코리네박테리움(Corynebacterium) 속 미생물에서의 라이신 생합성 대사에 관여하는 중요 유전자들 중에 글루코즈 6-포스페이트 디하이드로게나아제 (zwf), 트랜스케톨라아제 (tkt), 아스파르토키나아제 (lysC), 파이루베이트 카르복실라아제 (pycA), 수크로즈 6-포스페이트 하이드롤라아제 (scrB), 글루타메이트 디하이드로게나아제 (gdh), 이소사이트레이트 디하이드로게나아제 (icd)의 유전자들의 개시코돈을 동시에 치환시켜 각 유전자들의 발현이 조절되어진 개량 개시코돈을 포함하는 미생물 및 재조합 벡터를 이용하여 아미노산, 바람직하게는 L-라이신을 생산하는 방법에 관한 것이다.

Description

코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법{Recombinant vector comprising start codon derived from Coryne form bacteria, transformed host cell and method for producing amino acid using the same}
본 발명은 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법에 관한 것으로, 보다 상세하게는 코리네박테리움(Corynebacterium) 속 미생물에서의 라이신 생합성 대사에 관여하는 중요 유전자들 중에 글루코즈 6-포스페이트 디하이드로게나아제 (zwf), 트랜스케톨라아제 (tkt), 아스파르토키나아제 (lysC), 파이루베이트 카르복실라아제 (pycA), 수크로즈 6-포스페이트 하이드롤라아제 (scrB), 글루타메이트 디하이드로게나아제 (gdh), 이소사이트레이트 디하이드로게나아제 (icd)의 유전자들의 개시코돈을 동시에 치환시켜 각 유전자들의 발현이 조절되어진 개량 개시코돈을 포함하는 미생물 및 재조합 벡터를 이용하여 아미노산, 바람직하게는 L-라이신을 생산하는 방법에 관한 것이다.
코리네형 미생물은 전통적으로 아미노산과 핵산관련물질의 생산에 가장 널리 이용되는 산업용 미생물로서, 주로 L-라이신(lysine), L-트레오닌(threonine), L-아르기닌(arginine), 및 글루탐산(glutamic acid) 등의 아미노산 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는데 이용되고 있으며 상기 미생물을 이용하여 발효공정을 통해 생산되고 있다.
그 중, L-라이신은 사람이나 동물의 체내에서 합성되지 않는 필수 아미노산으로서, 식품, 의약 그리고 사료첨가용으로 사용되고 있다. 이처럼 L-라이신을 산업적으로 생산하는 것이 경제적으로 중요한 산업공정이므로, L-라이신 생산 효율을 증대하기 위한 다양한 방법이 연구되어 왔다.
라이신의 생산 효율을 개선시키기 위한 방법으로는 라이신 생합성 경로 상의 유전자를 증폭시키거나 유전자의 프로모터를 변형시켜, 생합성 경로 상의 효소활성을 증대시키는 방법이 이용되어 왔다. 종래 라이신 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 L-라이신 생산방법이 알려져 있었다.
예를 들면, 한국공개특허 제2008-10073호, 제2008-8620호 및 제2010-20140호에 따르면, L-라이신 생산에 관련된 유전자인 아스파테이트 아미노트랜스퍼라아제와 피루베이트 카르복실라아제를 함께 발현시킴으로써 라이신 생산이 증가되었고 (한국공개특허 제2008-0025355호), 내재적 프로모터보다 개량한 프로모터의 교체로 라이신 생산에 효과를 확인한 바 있다 (미국특허출원 제13/037,790호).
또한, 미국특허 제6,221,636호에는 L-라이신 및 L-쓰레오닌에 의하여 피드백 저해에 실질적으로 탈감작화된 (insensitive) 아스파토키나제를 코딩하는 DNA 서열 및 디아미노피멜레이트 디카르복실라제를 코딩하는 DNA 서열을 포함하는 재조합 DNA로 형질전환된 코리네박테리아가 개시되어 있다.
또한, 박테리아 대장균내에서 특정 유전자의 개시코돈을 ATG로 치환하여 단백질과 발현을 유도하였고 (한국공개특허 제2002-0066075호), 또한 개시코돈 중에서도 아데닐레이트 사이클라아제 유전자의 개시코돈을 TTG, GTG 그리고 ATG로 치환하여 번역 개시의 수준을 비교하였을 때, ATG의 코돈이 번역 개시의 효율이 제일 높았다는 것을 확인하였다(Reddy et al.,1985. Proc. Nadl. Acad. Sci. 82:5656).
또한 C. 글루타미쿰에서 ICD를 코딩하는 유전자는 에이크만스(Eikmanns) 등에 의해서 동정 및 클로닝되고, 그의 특징이 규명되었으며 (Eikmanns, B. et al., J. Bacteriol. (1995) 177:774-782), 특히, 이 유전자의 개시코돈을 치환함으로써(ATG->GTG) 유전자의 활성을 감소시켜 아스파테이트 생성 관련 경로로 탄소의 흐름을 유도하여 아스파테이트계의 아미노산 생산이 증가된 결과를 보여준 바 있다 (한국공개특허 제2012-0108040호).
생물체내에서 유전자의 단백질 발현을 위해 우선 리보솜 소단위와 개시인자가 mRNA의 개시코돈 AUG에 결합하여서 번역개시가 이뤄진다. 이때 유전자의 개시코돈이 AUG외에 다른 코돈이 사용될 경우에는 번역의 수준이 조절이 될 수 있다. 또한 개시 코돈을 규정하는 ATG 번역개시 서열은 최적의 서열로서 바람직하다고 보고한 바 있다 (한국공개특허 제2007-0090151호).
특히, 본 발명자는 라이신 생합성에 관련된 유전자들 중에는 번역 개시 코돈으로서 ATG를 사용하지 않는 유전자들을 확인하고, 라이신 생합성 관련 주요 유전자들의 번역개시서열을 ATG 또는 GTG의 개시코돈으로 치환하여, 번역개시 서열의 최적화를 통해 효소활성을 조절함으로써, 라이신의 생산을 증가시킬 수 있음을 확인하였다.
본 발명의 목적은 숙주세포의 아미노산, 바람직하게는 L-라이신의 생합성에 관여하는 효소들의 활성을 증가 및/또는 감소시켜 대사상 전구체의 흐름을 아미노산, 바람직하게는 L-라이신의 생합성으로 전환시킬 수 있는 재조합 벡터를 제공하는 것이다.
본 발명의 다른 목적은 상기 재조합 벡터로 형질전환되어, 아미노산, 바람직하게는 L-라이신의 생합성에 관여하는 효소들의 활성을 증가 및/또는 감소시켜 대사상 전구체의 흐름을 아미노산, 바람직하게는 L-라이신의 생합성으로 전환시킬 수 있는 숙주세포를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 숙주세포를 이용하여 아미노산, 바람직하게는 L-라이신을 생산하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 서열번호 30의 염기서열로 구성되고, 트랜스케톨라제를 코딩하는 유전자(tkt)의 개시코돈이 ATG로 치환된 유전자 개시코돈 변이체를 제공한다.
또한, 본 발명은 상기 유전자 개시코돈 변이체를 포함하는 재조합 벡터를 제공한다.
또한, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다.
또한, 본 발명은 상기 숙주세포를 이용하여 배양하는 단계를 포함하는 아미노산의 생산방법을 제공한다.
본 발명에 의한 변이체를 포함하는 재조합 벡터로 형질전환된 숙주세포를 이용하여 아미노산, 바람직하게는 L-라이신을 생산하는 경우, 아미노산, 바람직하게는 L-라이신의 생합성에 관여하는 유전자들의 번역개시 효율의 증가를 통한 유전자의 활성 증가 및/또는 아미노산, 바람직하게는 L-라이신의 생합성에 관여하는 유전자들의 번역개시 효율의 감소를 통한 유전자의 활성 감소로 아미노산, 바람직하게는 L-라이신의 생합성 효율을 증가시킬 수 있다.
본 발명에서, "핵산"은 핵염기로 구성된 DNA, RNA 또는 이의 유도체 또는 유사체 분자(가닥)을 말한다. 예를 들면 핵염기에는 DNA에서 볼 수 있는 자연 생성 또는 유도된 퓨린 또는 피리미딘 염기(가령, 아데닌 "A", 구아닌 "G", 티민 "T" 또는 시토신 "C") 또는 RNA (가령, A, G, 우라실 "U" 또는C)를 포함한다.
상기 염기들 중에서 3개가 짝지어져 하나의 코돈을 만들고, 이렇게 생성된 3개의 염기로 된 코돈이 mRNA(messenger RNA)상에서 하나의 아미노산을 결정하는, 즉 단백질을 생성하는 유전암호의 기본단위이다.
또한 본 발명에서, "개시코돈"이란, mRNA 상에서 유전정보인 염기배열을 단백질로 번역 (translation) 할 때 개시점에 해당하는 코돈을 의미한다. 대부분의 생물체에서 발견되어진 개시코돈은 대부분 ATG (mRNA: AUG)를 사용하며, 특히 본 발명에 있어서 코리네박테리움 글루타미쿰의 전체 게놈 염기서열 분석에 의하면, 코리네 박테리움속에 속하는 미생물의 개시코돈은 다음과 같다.
교와 (Kyowa Hakko)에 의해 분석된 C. 글루타미쿰 ATCC13032 는 AUG 62.5%, GUG 24.3%, UUG 13.2%의 비율로 개시코돈을 사용하고, 데구사 (Degussa AG)에 의한 C. 글루타미쿰 ATCC13032는 AUG 66.5%, GUG 23.1% UUG 10.3%의 개시코돈을 사용하며, 아지노모토 (Ajinomoto)에 의한 C. 에피션스는 AUG 53.8% GUG 32.5% UUG 13.7%의 개시코돈을 사용한다고 보고되었다 (Handbook of Corynebacterium glutamicum, Lothar Eggeling & Michael Bott, 2005).
본 발명에서, "개시코돈 변이체"라는 용어는 L-라이신의 생합성에 관여하는 유전자의 개시코돈이 ATG 또는 GTG로 치환된 유전자 변이체를 의미한다.
본 발명자들은 라이신 생합성 관련 주요한 유전자들 중에서 개시코돈을 ATG가 아닌 GTG로 사용하는 lysC, tkt, zwf, pycA, scrB 유전자들을 NCBI (http://www.ncbi.nlm.nih.gov)를 통해 확인하였다.
또한, 본 발명에서 "벡터"라는 용어는, 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절요소를 포함하는 유전자 제조물을 뜻한다.
상기에서 "조절요소"는 전사를 수행하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다.
본 발명의 "재조합 벡터"는 코리네형 세균 뿐만 아니라, 적합한 숙주세포 내로 형질전환된 후, 숙주세포의 게놈과 무관하게 복제 가능하거나 게놈 그 자체에 봉합될 수 있다. 이 때, 상기 "적합한 숙주세포"는 벡터가 복제가능한 것으로서, 복제가 개시되는 특정 핵산서열인 복제 원점을 포함할 수 있다.
본 발명에서, "숙주 세포"는 본 발명의 임의의 재조합 벡터(들) 또는 단리된 폴리뉴클레오티드의 수용체일 수 있거나, 수용체인 개별 세포 또는 세포 배양물을 포함한다. 상기 숙주 세포는 단일 숙주 세포의 자손일 수 있으며, 자손은 자연적, 우발적 또는 인공 돌연변이 및/또는 변화로 인하여, 형태 또는 총 DNA 상보 면에서,원래의 모 세포와 완전히 동일하지 않아도 된다.
상기 숙주 세포는 생체내 또는 시험관내에서 본 발명의 재조합 벡터 또는 폴리뉴클레오티드로 형질감염되거나, 형질전환 되거나 또는 감염된 세포를 포함한다. 본 발명의 재조합 벡터를 포함하는 숙주 세포는 재조합 숙주 세포, 재조합 세포 또는 재조합 미생물이다.
또한, 본 발명에 의한 "재조합 벡터"는 선택 마커(selection marker)를 포함할 수 있는데, 상기 "선택 마커"는 벡터로 형질전환된 형질전환체(숙주세포)를 선별하기 위한 것으로서, 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환 된 세포의 선별이 가능하다.
상기 선택 마커의 대표적인 예로서 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으며, 본 발명에서는 카나마이신을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 형질전환용 재조합 벡터 내에 삽입된 유전자들은 상동성 재조합 교차로 인하여 코리네박테리움 속 미생물과 같은 숙주세포 내로 치환될 수 있다.
본 발명에서, "~에 의해 코딩되는" 또는 "~를 코딩하는"이란 핵산 서열이 폴리펩티드 서열을 코딩하는 것을 말하며, 여기서 상기 "폴리펩티드 서열"은 상기 핵산 서열에 의해 코딩되는 폴리펩티드인 적어도 3~5개 아미노산, 보다 바람직하게는 적어도 8~10개 아미노산, 보다 더 바람직하게는 적어도 15~20개 아미노산으로 이루어진 아미노산 서열을 포함한다. 상기 서열에 의해 코딩된 폴리펩티드를 사용하여 면역학적으로 확인할 수 있는 폴리펩티드 서열도 포함된다.
따라서, 항원 "폴리펩티드", "단백질" 또는 "아미노산" 서열은 항원의 폴리펩티드 또는 아미노산 서열에 대해 70% 이상의 유사성, 바람직하게는 약 80% 이상의 유사성, 더 바람직하게는 약 90~95%의 유사성, 가장 바람직하게는 약 99%의 유사성을 가질 수 있다.
본 발명에서, "유전자"는 유전적 기능이 관련되어 있는 핵산 분자(염색체, 플라스미드 등)의 뉴클레오티드 서열이다. 유전자는, 예를 들어, 유기체의 게놈 내의 특정 물리적 위치를 차지하는 폴리뉴클레오티드 서열(예를 들어, 포유동물의 DNA 서열)을 포함하는, 유기체의 유전 단위이다. 유전자는 폴리펩티드 또는 폴리뉴클레오티드와 같은 발현 생성물을 코딩할 수 있다.
일반적으로, 유전자는 폴리펩티드 코딩 서열과 같은 코딩 서열 및 프로모터 서열, 폴리아데닐화 서열, 전사 조절 서열(예를 들어, 인핸서 서열)과 같은 비코딩 서열을 포함한다. 다수의 진핵생물 유전자가 "인트론"(비코딩 서열)이 개재되어 있는 "엑손"(코딩 서열)을 갖는다.
본 발명에서, "프라이머"는 상보성 RNA 또는 DNA 표적 폴리뉴클레오티드에 혼성화하고, 예를 들어, 폴리머라제 연쇄 반응에서 발생하는 뉴클레오티딜트랜스퍼라제의 작용에 의해 모노뉴클레오티드로부터 폴리뉴클레오티드의 단계적 합성을 위한 출발점으로 기능하는 올리고뉴클레오티드 서열을 의미한다.
본 발명에서, "형질전환 또는 트랜스펙션"은 DNA를 숙주로 도입하여 DNA가 염색체외의 인자로서 또는 염색체로의 삽입에 의해 복제 가능하게 되는 것을 의미한다.
본 발명에서, "대사 경로"로도 지칭되는 용어 "(생)합성 경로"는 하나의 화학종을 다른 종으로 전환(transmuting)시키기 위한 동화(anabolic) 또는 이화(catabolic) 생화학 작용의 세트를 지시한다. 유전자 산물은 병렬로 또는 직렬로 동일 기질에 작용하여 동일 산물을 생산하거나, 또는 동일 기질과 대사 최종 산물 사이의 대사 중간 생성물(즉, 대사 산물)에 작용하거나 또는 이를 생산하면, 동일한 "대사 경로"에 속한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 서열번호 30의 염기서열로 구성되고, 트랜스케톨라제를 코딩하는 유전자(tkt)의 개시코돈이 ATG로 치환된 유전자 개시코돈 변이체에 관한 것이다.
본 발명에서, 상기 유전자 개시코돈 변이체는 코리네박테리움 속 미생물 유래인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 상기 유전자 개시코돈 변이체를 포함하는 재조합 벡터에 관한 것이다.
본 발명의 상기 재조합 벡터에서, (a) 코리네박테리움 속 미생물 유래의 글루코즈 6-포스페이트 디하이드로게나아제(zwf)를 코딩하는 유전자 개시코돈 변이체, (b) 코리네박테리움 속 미생물 유래의 아스파르토키나아제(lysC)를 코딩하는 유전자 개시코돈 변이체, (c) 코리네박테리움 속 미생물 유래의 파이루베이트 카르복실라아제(pycA)를 코딩하는 유전자 개시코돈 변이체, (d) 코리네박테리움 속 미생물 유래의 수크로즈 6-포스페이트 하이드롤라아제(scrB를 코딩하는 유전자 개시코돈 변이체, (e) 코리네박테리움 속 미생물 유래의 글루타메이트 디하이드로게나아제(gdh)를 코딩하는 유전자 개시코돈 변이체, 및 (f) 코리네박테리움 속 미생물 유래의 이소사이트레이트 디하이드로게나아제(icd)를 코딩하는 유전자 개시코돈 변이체 중에서 어느 하나 이상의 유전자 개시코돈 변이체를 더 포함하는 재조합 벡터, 바람직하게는 상기 (a) 내지 (f)의 유전자 개시코돈 변이체를 더 포함하는 재조합 벡터일 수 있다.
본 발명의 상기 재조합 벡터에서, 상기 (a) 유전자 개시코돈 변이체는 서열번호 29의 염기서열로 구성되고, 상기 (b) 유전자 개시코돈 변이체는 서열번호 31의 염기서열로 구성되며, 상기 (c) 유전자 개시코돈 변이체는 서열번호 32의 염기서열로 구성되고, 상기 (d) 유전자 개시코돈 변이체는 서열번호 33의 염기서열로 구성되며, 상기 (e) 유전자 개시코돈 변이체는 서열번호 34의 염기서열로 구성되고, 상기 (f) 유전자 개시코돈 변이체는 서열번호 35의 염기서열로 구성되는 것일 수 있다.
즉, 본 발명의 재조합 벡터는 글루코즈 6-포스페이트 디하이드로게나아제 (zwf) 를 코딩하는 유전자 (Gene ID: 3345621), 트랜스케톨라아제 (tkt)를 코딩하는 유전자 (Gene ID: 3343601), 아스파르토키나아제 (lysC)를 코딩하는 유전자 (Gene ID: 3345161), 파이루베이트 카르복실라아제 (pycA) 를 코딩하는 유전자(Gene ID: 3344537),또는 수크로즈 6-포스페이트 하이드롤라아제 (scrB)를 코딩하는 유전자 (Gene ID: 3345082)의 개시코돈을 각각 ATG로 동시에 치환되어진 변이체 및/또는 글루타메이트 디하이드로게나아제 (gdh)를 코딩하는 유전자 (Gene ID: 3343980)와 이소사이트레이트 디하이드로게나아제 (icd)를 코딩하는 유전자 (Gene ID: 3345662)의 개시코돈이 GTG로 치환되어진 변이체를 이용하여 상기 유전자들의 발현을 조절할 수 있는 재조합 벡터일 수 있다.
특히, 본 발명에 의한 재조합 벡터는 라이신 생합성 관련 유전자들인 상기 유전자들 zwf (gtg->atg), tkt (ttg->atg), lysC (gtg->atg), pycA (gtg->atg), scrB (gtg->atg)의 번역개시코돈을 변화시켜 번역개시 효율을 높이고, 라이신 생합성 대사에 방해되는 경로 유전자인 gdh (atg->gtg), icd (atg->gtg)의 번역 개시코돈을 변화시켜 번역개시 효율을 낮춘 유? 개시코돈 변이체를 포함함으로써, 이를 이용하여 코리네박테리움 속 미생물의 상기 유전자들 발현을 조절함으로써, L-라이신 등과 같은 아미노산을 효과적으로 생산할 수 있다.
본 발명에서 사용될 수 있는 유전자들은 기능적으로 등가물이면 유래를 따지지 않고 사용할 수 있지만, 더욱 바람직하게는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum, C.glutamicum)으로부터 유래될 수 있다. 가장 바람직하게는 C. 글루타미쿰 유래 서열번호 29의 염기서열로 구성되는 글루코즈 6-포스페이트 디하이드로게나아제, 서열번호 30의 염기서열로 구성되는 트랜스케톨라아제, 서열번호 31의 염기서열로 구성되는 아스파르토키나아제, 서열번호 32의 염기서열로 구성되는 파이루베이트 카르복실라아제, 및/또는 서열번호 33의 염기서열로 구성되는 수크로즈 6-포스페이트 하이드롤라아제, 서열번호 34의 염기서열로 구성되는 글루타메이트 디하이드로게나아제, 서열번호 35의 염기서열로 구성되는 이소사이트레이트 디하이드로게나아제를 코딩하는 유전자 서열, 바람직한 구체예로써, 유전자 서열의 개시코돈의 변이체로서 각각 서열번호 29 내지 서열번호 35로 표시되는 염기서열을 사용할 수 있다.
본 발명은 상기 재조합 벡터로 형질전환된 숙주세포에 관한 것이다.
본 발명의 상기 형질전환된 숙주세포에 사용되는 미생물은 야생형 생물체에서 발견되는 유전자의 감소(reduction), 파괴(disruption) 또는 적중(knockout) 및 또는 이종(heterologous) 폴리뉴클레오티드의 도입(introduction)을 포함한다.
본 발명의 상기 재조합 벡터를 숙주세포에 형질전환시키는 방법은 핵산을 세포내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등을 사용할 수 있다.
본 발명의 재조합 벡터로 형질전환된 형질전환체는 상동 재조합을 통해 코리네박테리움 속 미생물의 상기 유전자들의 개시코돈이 변이된 서열로 대체함으로써, 상기 유전자들은 개량된 개시코돈을 가지게 되며, 이를 통해 활성이 야생형보다 증가되거나 감소되는 특징을 가질 수 있다.
본 발명에서, 상기 "코리네박테리움속 미생물"은 코리네박테리움(Corynebacterium) 속 브레비박테리움(Brevibacterium) 속, 아쓰로박터 속(Arthrobacter sp.) 및 마이크로박테리움 속(Microbacterium sp.)의 미생물을 포함하는 개념이다.
바람직하게는 코리네박테리움(Corynebacterium)속에 속하는 미생물, 더욱 바람직하게는 코리네박테리움 글루타미컴 (예. ATCC13032), 코리네박테리움 암모니아게네스 (예. ATCC 6872), 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum) (예. ATCC13869), 브레비박테리움 플라범 (Brevibacterium flavum) (예. ATCC14067), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes) (예. FERM-BP1539), 코리네박테리움 에피션스 (Corynebacterium efficiens) (예. C.efficiens str. YS-314) 등을 사용하고, 가장 바람직하게는 코리네박테리움 글루타미컴 또는 코리네박테리움 에피션스를 사용한다. 본 발명의 일 실시예에서는 코리네박테리움 글루타미쿰 KCTC12307BP를 사용할 수 있다.
본 발명에서, 상기 형질전환된 숙주세포는 코리네박테리움 속 미생물, 바람직하게는 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 또는 코리네박테리움 에피션스 (Corynebacterium efficiens)일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 숙주세포는 코리네박테리움 글루타미쿰 KCTC12307BP-ZTCPS-GI (KCTC 12536BP) 일 수 있다.
본 발명에서, 상기 숙주세포는 서열번호 29 내지 서열번호 35의 염기서열로 구성되는 유전자 개시코돈 변이체를 포함할 수 있다.
본 발명은 숙주세포를 이용하여 배양하는 단계를 포함하는 아미노산의 생산방법에 관한 것이다.
본 발명에서, 상기 아미노산으로는 L-라이신, L-트레오닌, L-메티오닌 등을 들 수 있는데, L-라이신이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 형질전환된 숙주세포의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 이들 공지된 배양 방법은 문헌[Chmiel; Bioprozesstechnik 1.Einfuhrung in die Bioverfahrenstechnik(Gustav Fischer Verlag, Stuttgart, 1991), 및 Storhas; Bioreaktorenund periphere Einrichtungen(Vieweg Verlag, Braunschweig / Wiesbaden, 1994)]에 상세히 기술되어 있다.
본 발명에서, 상기 형질전환된 숙주세포의 배양 배지는 적합한 탄소 기질을 포함하여야 하는데, 상기 적합한 기질로는 단당류, 올리고 당류, 다당류 기질 또는 그 혼합물로 이루어진 군으로부터 선택되는 탄소 공급원을 사용할 수 있다.
상기 단당류로는 예를 들어 글루코스, 프락토스 등, 상기 올리고당류로는 예를 들어 락토오스, 수크로스 등, 상기 다당류로는 예를 들어 전분, 셀룰로오스 또는 그 혼합물과, 재생가능한 공급재료로부터의 비정제된 혼합물을 포함할 수 있지만, 이에 한정되지 않는다. 가장 바람직한 탄소 기질로는 글루코스, 프럭토즈, 수크로스 등을 사용할 수 있다.
적절한 탄소 공급원 외에, 발효 배지는 적합한 미네랄, 염, 보조 인자, 완충액 및 라이신 생성에 필요한 효소 경로의 촉진 및 배양물의 성장에 적합한, 당업자에게 공지된 기타 성분을 포함할 수 있다.
본 발명에서, 상기 형질전환된 숙주세포의 배양 조건은, 적절한 배지에서 약 25℃ 내지 약 40℃ 범위의 온도에서 성장시킨다. 본 발명에서 적합한 성장 배지는 루리아 베르타니(Luria Bertani, LB) 액체 배지, 사부로 덱스트로스(Sabouraud Dextrose, SD) 액체 배지 또는 효모 배지(Yeast Medium, YM) 액체 배지와 같이 일반적으로 상업적으로 제조된 배지를 사용할 수 있다.
배양에 적합한 pH 범위는 pH 5.0 내지 pH 9.0이며, 여기서 pH 6.0 내지 pH 8.0이 초기 조건에 바람직하다. 배양 배지의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또 는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 거포제를 사용하여 조절할 수 있다.
배양은 호기 조건 또는 통성 혐기 조건 하에 실시될 수 있으며, 산소 또는 산소-함유 가스 혼합물, 예를 들어 공기를 배양배지 중으로 도입시켜 호기성 조건을 유지시킬 수 있다.
배양은 원하는 L-아미노산의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 160 시간에서 달성된다. L-라이신은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함되며, 바람직하게는 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 상기 아미노산의 생산방법은 상기 배양하는 단계에서 생성되는 라이신을 회수하는 방법을 추가로 포함할 수 있다. 아미노산, 특히 L-라이신을 회수하는 방법은 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 L-라이신을 분리해낼 수 있다.
L-라이신 회수 방법의 예로서, 여과, 이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예>
하기 실시예에 사용된 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) KCTC12307BP와 E. coli DH5a이었다.
상기 코리네박테리움 글루타미쿰 KCTC12307BP는, 증류수 1 L에 글루코오스 5g, NaCl 2.5g, 효모 추출물 5.0g, 유레아 1.0g, 폴리펩톤 10.0g, 비프(beef) 추출물 5.0g 조성의 CM-broth 배지 (pH 6.8)에서 30℃의 온도로 배양하였다.
상기 E. coli DH5a는 트립톤 10.0g, NaCl 10.0g과 효모 추출물 5.0g (증류수 1 L에)조성의 LB 배지 상에서 37℃의 온도로 배양하였다.
제한 효소는 로슈(Roche)사의 효소를, 항생제(Ampicillin, Kanamycin, Chloramphenicol)는 시그마(Sigma)사의 제품을 사용하였고, DNA 시퀀싱 분석은 마크로젠(주)에 의뢰하여 분석하였다.
<실시예 1>
1-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 zwf 개시코돈이 ATG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum KCTC12307BP의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 zwf 유전자 (Gene ID: 3345621)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 1과 같이 제작하였다.
먼저 서열번호 1과 서열번호 2를 가지고 PCR을 수행하여 800 bp 크기의 단편을 수득하였고, 서열번호 3과 서열번호 4를 가지고 PCR을 수행하여 4 kb 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 1과 4를 가지고 중첩 PCR을 수행하여 4.8 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKz-1F GCTCTAGA GACGTTGAGATCGACAAG 1
PKz-1R CACTACCATCATGAGCAC 2
PKz-2F GTGCTCATGATGGTAGTG 3
PKz-2R GGGGTACC GAGTTGCACGCTCTGAAG 4
획득된 단편은 각각 XbaI과 KpnI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 XbaI과 KpnI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 XbaI 및 KpnI 제한 효소로 처리하여 유전자의 단편을 확인하고 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKz라고 명명하였다.
1-2. 벡터 PKz 로 형질전환된 코리네박테리움 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 zwf 유전자 삽입이 확인된 벡터를 C. 글루타미쿰에 형질전환하기 위하여 C. glutamicum KCTC12307BP를 수용성 세포(competent cell)로 제작하였다.
10 ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전 배양된 세포는 100 ml의 BHIS 배지[BHI 37 g, 2M 소르비톨 100ml (증류수 1L 기준)]에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전 처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 후, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 상기 제작된 균주를 KCTC12307BP-Z라고 명명하였다.
<실시예 2>
2-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 tkt 개시코돈이 ATG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum (KCTC12307BP) 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 tkt 유전자 (Gene ID: 3343601)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 2과 같이 제작하였다.
먼저 서열번호 5와 서열번호 6을 가지고 PCR을 수행하여 1 kb 크기의 단편을 수득하였고, 서열번호 7과 서열번호 8로 PCR을 수행하여 약 1 kb 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 5와 8을 가지고 중첩 PCR을 수행하여 2 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKt-1F ACGCGTCGACGGCGACCTGGATTCCTACCTC 5
PKt-1R CAGCGTCAAGGTGGTCATGGGTAAAAAATCCTTTCG 6
PKt-2F CGAAAGGATTTTTTACCCATGACCACCTTGACGCTG 7
PKt-2R GCTCTAGACCGATGATGGTGCGAACG 8
획득된 단편은 각각 SalI과 XbaI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 SalI과 XbaI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 SalI 및 XbaI 제한 효소로 처리하여 유전자의 단편을 확인하고 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKt라고 명명하였다.
2-2. 벡터 PKt 로 형질전환된 코리네박테리움 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 tkt 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-Z를 수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전 배양된 세포는 100ml의 BHIS 배지가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 이 세포는 10% 글리세롤로 현탁시켜 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 바로 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 다음, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 제작된 균주를 KCTC12307BP-ZT라고 명명하였다.
<실시예 3>
3-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 lysC 개시코돈이 ATG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum (KCTC12307BP) 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 lysC 유전자 (Gene ID: 3345161)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 3과 같이 제작하였다.
먼저 서열번호 9와 서열번호 10을 가지고 PCR을 수행하여 약 1000 bp 크기의 단편을 수득하였고, 서열번호 11과 서열번호 12로 PCR을 수행하여 약 750 bp 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 9와 12를 가지고 중첩 PCR을 수행하여 1.8 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKc-1F CAAGCTTGGTAGCCCAGAAGATTTCAGTTC 9
PKc-1R TACGACCAGGGCCATGGGTAAAAAATCCTTTCGTAGG 10
PKc-2F ATTTTTTACCCATGGCCCTGGTCGTACAGAAATATG 11
PKc-2R CGAATTCGGTCAGCGGTATACACACCGTCAAC 12
획득된 단편은 각각 HindIII와 EcoRI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 HindIII와 EcoRI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 HindIII와 EcoRI 제한 효소로 처리하여 유전자의 단편을 확인하고 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKc라고 명명하였다.
3-2. 벡터 PKc 로 형질전환된 코리네박테리움 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 tkt 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-ZT수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전배양된 세포는 100ml의 BHIS 배지에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 후, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 제작된 균주를 KCTC12307BP-ZTC라고 명명하였다.
<실시예 4>
4-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 pycA 개시코돈이 ATG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum (KCTC12307BP) 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 pycA 유전자 (Gene ID: 3344537)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 4과 같이 제작하였다.
먼저 서열번호 13과 서열번호 14를 가지고 PCR을 수행하여 약 800 bp 크기의 단편을 수득하였고, 서열번호 15와 서열번호 16으로 PCR을 수행하여 약 620 bp 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 13과 16을 가지고 중첩 PCR을 수행하여 1.3 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKp-1F GGCTCTAGAGCCACGGTTTTGTGAAGC 13
PKp-1R GTGTGAGTCGACATTAGAGT 14
PKp-2F ACTCTAATGTCGACTCACAC 15
PKp-2R TGTGAATTCACATATACCGCGCCATCG 16
획득된 단편은 각각 XbaI과 EcoRI으로 제한 효소처리를 하였고 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 XbaI과 EcoRI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 XbaI과 EcoRI 제한 효소로 처리하여 유전자의 단편을 확인하고, 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKp라고 명명하였다.
4-2. 벡터 PKp 로 형질전환된 코리네박테리움 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 pyc 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-ZTC수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전배양된 세포는 100ml의 BHIS 배지에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 다음, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 제작된 균주를 KCTC12307BP-ZTCP라고 명명하였다.
<실시예 5>
5-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 scrB 개시코돈이 ATG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum KCTC12307BP 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 scrB 유전자 (Gene ID: 3345082)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 5과 같이 제작하였다.
먼저 서열번호 17과 서열번호 18를 가지고 PCR을 수행하여 약 750 bp 크기의 단편을 수득하였고, 서열번호 19와 서열번호 20으로 PCR을 수행하여 약 600 bp 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 16과 20을 가지고 중첩 PCR을 수행하여 1.3 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKs-1F GGATCCACAGCTACTTCAAAACCA 17
PKs-1R AGCCCCACACATTACTTTCC 18
PKs-2F AGGAAAGTAATGTGTGGGGC 19
PKs-2R GAATTCTGCACCGGTGAGGTTTTCG 20
획득된 단편은 각각 BamHI과 EcoRI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 BamHI과 EcoRI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 BamHI과 EcoRI 제한 효소로 처리하여 유전자의 단편을 확인하고 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKs라고 명명하였다.
5-2. 벡터 PKs 로 형질전환된 C. 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 scrB 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-ZTCP수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전배양된 세포는 100ml의 BHIS 배지에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 다음, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 제작된 균주를 KCTC12307BP-ZTCPS라고 명명하였다.
<실시예 6>
1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 gdh 개시코돈이 GTG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum KCTC12307BP 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 gdh 유전자 (Gene ID: 3343980)의 염기서열을 확보하였고, 개시코돈의 치환을 위한 프라이머를 하기 표 6과 같이 제작하였다.
먼저 서열번호 21과 서열번호 22를 가지고 PCR을 수행하여 약 730 bp 크기의 단편을 수득하였고, 서열번호 23와 서열번호 24으로 PCR을 수행하여 약 550 bp 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 21과 24를 가지고 중첩 PCR을 수행하여 1.3 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKg-1F AAGCTTTGTTTCAAGTCTAAC 21
PKg-1R CAACTGTCACGATTTCCTCG 22
PKg-2F CGAGGAAATCGTGACAGTT 23
PKg-2R GAATTCGTAACCGATCTCGCGGC 24
획득된 단편은 각각 HindIII와 EcoRI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 HindIII와 EcoRI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 HindIII와 EcoRI 제한 효소로 처리하여 유전자의 단편을 확인하고, 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKg라고 명명하였다.
6-2. 벡터 PKg 로 형질전환된 C. 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 gdh 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-ZTCPS수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전 배양된 세포는 100ml의 BHIS 배지에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전 처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 다음, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였으며, 제작된 균주를 KCTC12307BP-ZTCPS-G라고 명명하였다.
<실시예 7>
7-1. 코리네박테리움 글루타미쿰 KCTC12307BP 유래 icd 개시코돈이 GTG 로 치환된 유전자의 클로닝 및 재조합 벡터의 제작
본 실시예에서는 C. glutamicum KCTC12307BP 의 염색체 DNA를 주형으로 사용하였고, NCBI를 근거로 icd 유전자 (Gene ID: 3345662)의 염기서열을 확보하였으며, 개시코돈의 치환을 위한 프라이머를 하기 표 7과 같이 제작하였다.
먼저 서열번호 25와 서열번호 26을 가지고 PCR을 수행하여 약 800 bp 크기의 단편을 수득하였고, 서열번호 27와 서열번호 28로 PCR을 수행하여 약 750 bp 크기의 단편을 수득한 후, 두 단편을 주형으로 서열번호 25와 28을 가지고 중첩 PCR을 수행하여 1.5 kb 크기의 단편을 획득하였다.
프라이머 염기서열 서열번호
PKi-1F GTCGACGCCAAACTTCCCGAAGACTC 25
PKi-1R ATGATCTTAGCCATGAGTCTCCTTGGTTG 26
PKi-2F CAACCAAGGAGACTCATGGCTAAGATCATC 27
PKi-2R GAGCTCGGAGAAGAGGATACCTTCTGCCTTTG 28
획득된 단편은 각각 SalI과 SacI으로 제한 효소처리를 하였고, pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 SalI과 SacI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 다음, T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 18시간 정치하였다.
생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 SalI과 SacI 제한 효소로 처리하여 유전자의 단편을 확인하고, 최종 그 유전자의 염기서열을 확인하였으며, 이 벡터를 PKi라고 명명하였다.
7-2. 벡터 PKi 로 형질전환된 C. 글루타미쿰 라이신 생산균주의 제작
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 개시코돈이 치환된 icd 유전자 삽입이 확인된 벡터를 형질전환하기 위하여 KCTC12307BP-ZTCPS-G를 수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지에서 30℃의 온도로 밤새 배양하였다. 상기 전배양된 세포는 100ml의 BHIS 배지에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 상기 세포를 10% 글리세롤로 현탁시킨 다음, 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐벳을 이용하여 BIO-RAD사의 펄서로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 200rpm, 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 40시간 동안 정치하였다.
상기 생성된 콜로니들을 2차 재조합에 이용하기 위해 200 ㎕ BHIS 배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후, 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 다음, PCR로 확인하고 DNA 시퀀싱으로 확인하였으며, 이렇게 최종적으로 제작된 라이신 생산 균주를 “코리네박테리움 글루타미쿰KCTC12307BP-ZTCPS-GI”라고 명명하고, 2013년 12월 24일자로, 한국생명공학연구원 생명자원센터 (KCTC)에 수탁번호 KCTC 12536BP로 기탁하였다.
< 실시예 8> L-라이신의 생산
코리네박테리움 글루타미쿰 KCTC12307BP 균주 및 실시예 7에서 제작된 라이신 생산균주인 코리네박테리움 글루타미쿰 KCTC12307BP-ZTCPS-GI의 L-라이신 생산을 위해 아래와 같이 배양하였다.
CM 배지를 50 ml 함유한 250ml 플라스크에 모균주인 코리네박테리움 글루타미쿰 KFCC12307BP와 코리네박테리움 글루타미쿰 KCTC12307BP-ZTCPS-GI를 접종하고, 30℃에서 16시간, 180 rpm의 조건으로 진탕 배양하였다.
250 ml 플라스크에 하기의 L-라이신 배지를 50 ml 첨가하여 CM 배지에서 진탕 배양된 세포 5 ml을 접종하고, 30℃, 180 rpm, 70시간의 조건으로 진탕 배양하였다. 배양 종료 후 라이신 분석은 o-phthalaldehyde를 가지고 유도체화 (Hill DW et al., 1979. Anal Chem 51:1338) 시킨 후 HPLC (Shimazu, Japan)로 L-라이신의 생산량을 측정하였는데, 그 결과를 표 8에 나타내었다.
하기 표 8에서 나타낸 바와 같이, 모균주인 KFCC12307BP보다 PKz, PKt, PKc, PKp, PKs, PKg, PKi를 동시 삽입한 균주 KCTC12307BP-ZTCPS-GI의 L-라이신이 7.4% 가량 증가된 것을 확인할 수 있었다.
[L-라이신 배지 조성 (pH 7. 0)]
원당 63 g, (NH4)2SO4 35 g, KH2PO4 0.6 g, MgSO4ㆍH2O 0.4 g, MnSO4ㆍH2O 2 mg, FeSO4ㆍH2O 2 mg, ThiamineㆍHCl 0.3 mg, Biotin 1 mg, CaCO3 5% (증류수 1L 기준)
균주 L-라이신(g/l) 비율
KCTC12307BP 31.2 100
KCTC12307BP-ZTCPS 33.5 107.4
KCTC12307BP-ZTCPS-GI 36.1 115.7
상기한 바와 같이, 라이신 생합성 경로의 강화를 위한 최적의 번역개시 서열 (ATG)로 치환된 KCTC12307BP-ZTCPS의 L-라이신 생산량이 모균주보다 7.4% 증가된 것을 확인 하였다.
한편, ATG로 치환되어 생합성 경로로의 기질흐름이 강화된 균주 KCTC12307BP-ZTCPS에 부산물 생성에 관련하는 gdh, icd 유전자의 개시서열을 번역효율이 낮은 GTG로 치환한 경우, L-라이신 생산량이 모균주보다 15.7% 증가되어 시너지 효과가 있음을 확인하였다.
한국생명공학연구원 KCTC12536BP 20131224
<110> Paik Kwang Ind. Co. Ltd <120> Recombinant vector comprising start codon derived from Coryne form bacteria, transformed host cell and method for producing amino acid using the same <130> 9398 <160> 35 <170> KopatentIn 2.0 <210> 1 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 gctctagaga cgttgagatc gacaag 26 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 cactaccatc atgagcac 18 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 3 gtgctcatga tggtagtg 18 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 4 ggggtaccga gttgcacgct ctgaag 26 <210> 5 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 5 acgcgtcgac ggcgacctgg attcctacct c 31 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 6 cagcgtcaag gtggtcatgg gtaaaaaatc ctttcg 36 <210> 7 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 7 cgaaaggatt ttttacccat gaccaccttg acgctg 36 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 8 gctctagacc gatgatggtg cgaacg 26 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 9 caagcttggt agcccagaag atttcagttc 30 <210> 10 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 10 tacgaccagg gccatgggta aaaaatcctt tcgtagg 37 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 11 attttttacc catggccctg gtcgtacaga aatatg 36 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 12 cgaattcggt cagcggtata cacaccgtca ac 32 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 13 ggctctagag ccacggtttt gtgaagc 27 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 14 gtgtgagtcg acattagagt 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 15 actctaatgt cgactcacac 20 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 16 tgtgaattca catataccgc gccatcg 27 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 17 ggatccacag ctacttcaaa acca 24 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 18 agccccacac attactttcc 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 19 aggaaagtaa tgtgtggggc 20 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 20 gaattctgca ccggtgaggt tttcg 25 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 21 aagctttgtt tcaagtctaa c 21 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 22 caactgtcac gatttcctcg 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 23 cgaggaaatc gtgacagtt 19 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 24 gaattcgtaa ccgatctcgc ggc 23 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 25 gtcgacgcca aacttcccga agactc 26 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 26 atgatcttag ccatgagtct ccttggttg 29 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 27 caaccaagga gactcatggc taagatcatc 30 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 28 gagctcggag aagaggatac cttctgcctt tg 32 <210> 29 <211> 1545 <212> DNA <213> Artificial Sequence <220> <223> zwf with substituted start codon <400> 29 atgagcacaa acacgacccc ctccagctgg acaaacccac tgcgcgaccc gcaggataaa 60 cgactccccc gcatcgctgg cccttccggc atggtgatct tcggtgtcac tggcgacttg 120 gctcgaaaga agctgctccc cgccatttat gatctagcaa accgcggatt gctgccccca 180 ggattctcgt tggtaggtta cggccgccgc gaatggtcca aagaagactt tgaaaaatac 240 gtacgcgatg ccgcaagtgc tggtgctcgt acggaattcc gtgaaaatgt ttgggagcgc 300 ctcgccgagg gtatggaatt tgttcgcggc aactttgatg atgatgcagc tttcgacaac 360 ctcgctgcaa cactcaagcg catcgacaaa acccgcggca ccgccggcaa ctgggcttac 420 tacctgtcca ttccaccaga ttccttcaca gcggtctgcc accagctgga gcgttccggc 480 atggctgaat ccaccgaaga agcatggcgc cgcgtgatca tcgagaagcc tttcggccac 540 aacctcgaat ccgcacacga gctcaaccag ctggtcaacg cagtcttccc agaatcttct 600 gtgttccgca tcgaccacta tttgggcaag gaaacagttc aaaacatcct ggctctgcgt 660 tttgctaacc agctgtttga gccactgtgg aactccaact acgttgacca cgtccagatc 720 accatggctg aagatattgg cttgggtgga cgtgctggtt actacgacgg catcggcgca 780 gcccgcgacg tcatccagaa ccacctgatc cagctcttgg ctctggttgc catggaagaa 840 ccaatttctt tcgtgccagc gcagctgcag gcagaaaaga tcaaggtgct ctctgcgaca 900 aagccgtgct acccattgga taaaacctcc gctcgtggtc agtacgctgc cggttggcag 960 ggctctgagt tagtcaaggg acttcgcgaa gaagatggct tcaaccctga gtccaccact 1020 gagacttttg cggcttgtac cttagagatc acgtctcgtc gctgggctgg tgtgccgttc 1080 tacctgcgca ccggtaagcg tcttggtcgc cgtgttactg agattgccgt ggtgtttaaa 1140 gacgcaccac accagccttt cgacggcgac atgactgtat cccttggcca aaacgccatc 1200 gtgattcgcg tgcagcctga tgaaggtgtg ctcatccgct tcggttccaa ggttccaggt 1260 tctgccatgg aagtccgtga cgtcaacatg gacttctcct actcagaatc cttcactgaa 1320 gaatcacctg aagcatacga gcgcctcatt ttggatgcgc tgttagatga atccagcctc 1380 ttccctacca acgaggaagt ggaactgagc tggaagattc tggatccaat tcttgaagca 1440 tgggatgccg atggagaacc agaggattac ccagcgggta cgtggggtcc aaagagcgct 1500 gatgaaatgc tttcccgcaa cggtcacacc tggcgcaggc cataa 1545 <210> 30 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> tkt with substituted start codon <400> 30 atgaccacct tgacgctgtc acctgaactt caggcgctca ctgtacgcaa ttacccctct 60 gattggtccg atgtggacac caaggctgta gacactgttc gtgtcctcgc tgcagacgct 120 gtagaaaact gtggctccgg ccacccaggc accgcaatga gcctggctcc ccttgcatac 180 accttgtacc agcgggttat gaacgtagat ccacaggaca ccaactgggc aggccgtgac 240 cgcttcgttc tttcttgtgg ccactcctct ttgacccagt acatccagct ttacttgggt 300 ggattcggcc ttgagatgga tgacctgaag gctctgcgca cctgggattc cttgacccca 360 ggacaccctg agtaccgcca caccaagggc gttgagatca ccactggccc tcttggccag 420 ggtcttgcat ctgcagttgg tatggccatg gctgctcgtc gtgagcgtgg cctattcgac 480 ccaaccgctg ctgagggcga atccccattc gaccaccaca tctacgtcat tgcttctgat 540 ggtgacctgc aggaaggtgt cacctctgag gcatcctcca tcgctggcac ccagcagctg 600 ggcaacctca tcgtgttctg ggatgacaac cgcatctcca tcgaagacaa cactgagatc 660 gctttcaacg aggacgttgt tgctcgttac aaggcttacg gctggcagac cattgaggtt 720 gaggctggcg aggacgttgc agcaatcgaa gctgcagtgg ctgaggctaa gaaggacacc 780 aagcgaccta ccttcatccg cgttcgcacc atcatcggct tcccagctcc aactatgatg 840 aacaccggtg ctgtgcacgg tgctgctctt ggcgcagctg aggttgcagc aaccaagact 900 gagcttggat tcgatcctga ggctcacttc gcgatcgacg atgaggttat cgctcacacc 960 cgctccctcg cagagcgcgc tgcacagaag aaggctgcat ggcaggtcaa gttcgatgag 1020 tgggcagctg ccaaccctga gaacaaggct ctgttcgatc gcctgaactc ccgtgagctt 1080 ccagcgggct acgctgacga gctcccaaca tgggatgcag atgagaaggg cgtcgcaact 1140 cgtaaggctt ccgaggctgc acttcaggca ctgggcaaga cccttcctga gctgtggggc 1200 ggttccgctg acctcgcagg ttccaacaac accgtgatca agggctcccc ttccttcggc 1260 cctgagtcca tctccaccga gacctggtct gctgagcctt acggccgtaa cctgcacttc 1320 ggtatccgtg agcacgctat gggatccatc ctcaacggca tttccctcca cggtggcacc 1380 cgcccatacg gcggaacctt cctcatcttc tccgactaca tgcgtcctgc agttcgtctt 1440 gcagctctca tggagaccga cgcttactac gtctggaccc acgactccat cggtctgggc 1500 gaagatggcc caacccacca gcctgttgaa accttggctg cactgcgcgc catcccaggt 1560 ctgtccgtcc tgcgtcctgc agatgcgaac gagaccgccc aggcttgggc tgcagcactt 1620 gagtacaagg aaggccctaa gggtcttgca ctgacccgcc agaacgttcc tgttctggaa 1680 ggcaccaagg agaaggctgc tgaaggcgtt cgccgcggtg gctacgtcct ggttgagggt 1740 tccaaggaaa ccccagatgt gatcctcatg ggctccggct ccgaggttca gcttgcagtt 1800 aacgctgcga aggctctgga agctgagggc gttgcagctc gcgttgtttc cgttccttgc 1860 atggattggt tccaggagca ggacgcagag tacatcgagt ccgttctgcc tgcagctgtg 1920 accgctcgtg tgtctgttga agctggcatc gcaatgcctt ggtaccgctt cttgggcacc 1980 cagggccgtg ctgtctccct tgagcacttc ggtgcttctg cggattacca gaccctgttt 2040 gagaagttcg gcatcaccac cgatgcagtc gtggcagcgg ccaaggactc cattaacggt 2100 taa 2103 <210> 31 <211> 1266 <212> DNA <213> Artificial Sequence <220> <223> lysC with substituted start codon <400> 31 atggccctgg tcgtacagaa atatggcggt tcctcgcttg agagtgcgga acgcattaga 60 aacgtcgctg aacggatcgt tgccaccaag aaggctggaa atgatgtcgt ggttgtctgc 120 tccgcaatgg gagacaccac ggatgaactt ctagaacttg cagcggcagt gaatcccgtt 180 ccgccagctc gtgaaatgga tatgctcctg actgctggtg agcgtatttc taacgctctc 240 gtcgccatgg ctattgagtc ccttggcgca gaagcccaat ctttcacggg ctctcaggct 300 ggtgtgctca ccaccgagcg ccacggaaac gcacgcattg ttgatgtcac tccaggtcgt 360 gtgcgtgaag cactcgatga gggcaagatc tgcattgttg ctggtttcca gggtgttaat 420 aaagaaaccc gcgatgtcac cacgttgggt cgtggtggtt ctgacaccac tgcagttgcg 480 ttggcagctg ctttgaacgc tgatgtgtgt gagatttact cggacgttga cggtgtgtat 540 accgctgacc cgcgcatcgt tcctaatgca cagaagctgg aaaagctcag cttcgaagaa 600 atgctggaac ttgctgctgt tggctccaag attttggtgc tgcgcagtgt tgaatacgct 660 cgtgcattca atgtgccact tcgcgtacgc tcgtcttata gtaatgatcc cggcactttg 720 attgccggct ctatggagga tattcctgtg gaagaagcag tccttaccgg tgtcgcaacc 780 gacaagtccg aagccaaagt aaccgttctg ggtatttccg ataagccagg cgaggctgcg 840 aaggttttcc gtgcgttggc tgatgcagaa atcaacattg acatggttct gcagaacgtc 900 tcttctgtag aagacggcac caccgacatc accttcacct gccctcgttc cgacggccgc 960 cgcgcgatgg agatcttgaa gaagcttcag gttcagggca actggaccaa tgtgctttac 1020 gacgaccagg tcggcaaagt ctccctcgtg ggtgctggca tgaagtctca cccaggtgtt 1080 accgcagagt tcatggaagc tctgcgcgat gtcaacgtga acatcgaatt gatttccacc 1140 tctgagattc gtatttccgt gctgatccgt gaagatgatc tggatgctgc tgcacgtgca 1200 ttgcatgagc agttccagct gggcggcgaa gacgaagccg tcgtttatgc aggcaccgga 1260 cgctaa 1266 <210> 32 <211> 3423 <212> DNA <213> Artificial Sequence <220> <223> pycA with substituted start codon <400> 32 atgtcgactc acacatcttc aacgcttcca gcattcaaaa agatcttggt agcaaaccgc 60 ggcgaaatcg cggtccgtgc tttccgtgca gcactcgaaa ccggtgcagc cacggtagct 120 atttaccccc gtgaagatcg gggatcattc caccgctctt ttgcttctga agctgtccgc 180 attggtaccg aaggctcacc agtcaaggcg tacctggaca tcgatgaaat tatcggtgca 240 gctaaaaaag ttaaagcaga tgccatttac ccgggatacg gcttcctgtc tgaaaatgcc 300 cagcttgccc gcgagtgtgc ggaaaacggc attactttta ttggcccaac cccagaggtt 360 cttgatctca ccggtgataa gtctcgcgcg gtaaccgccg cgaagaaggc tggtctgcca 420 gttttggcgg aatccacccc gagcaaaaac atcgatgaga tcgttaaaag cgctgaaggc 480 cagacttacc ccatctttgt gaaggcagtt gccggtggtg gcggacgcgg tatgcgtttt 540 gttgcttcac ctgatgagct tcgcaaatta gcaacagaag catctcgtga agctgaagcg 600 gctttcggcg atggcgcggt atatgtcgaa cgtgctgtga ttaaccctca gcatattgaa 660 gtgcagatcc ttggcgatca cactggagaa gttgtacacc tttatgaacg tgactgctca 720 ctgcagcgtc gtcaccaaaa agttgtcgaa attgcgccag cacagcattt ggatccagaa 780 ctgcgtgatc gcatttgtgc ggatgcagta aagttctgcc gctccattgg ttaccagggc 840 gcgggaaccg tggaattctt ggtcgatgaa aagggcaacc acgtcttcat cgaaatgaac 900 ccacgtatcc aggttgagca caccgtgact gaagaagtca ccgaggtgga cctggtgaag 960 gcgcagatgc gcttggctgc tggtgcaacc ttgaaggaat tgggtctgac ccaagataag 1020 atcaagaccc acggtgcagc actgcagtgc cgcatcacca cggaagatcc aaacaacggc 1080 ttccgcccag ataccggaac tatcaccgcg taccgctcac caggcggagc tggcgttcgt 1140 cttgacggtg cagctcagct cggtggcgaa atcaccgcac actttgactc catgctggtg 1200 aaaatgacct gccgtggttc cgactttgaa actgctgttg ctcgtgcaca gcgcgcgttg 1260 gctgagttca ccgtgtctgg tgttgcaacc aacattggtt tcttgcgtgc gttgctgcgg 1320 gaagaggact tcacttccaa gcgcatcgcc accggattca ttgccgatca cccgcacctc 1380 cttcaggctc cacctgctga tgatgagcag ggacgcatcc tggattactt ggcagatgtc 1440 accgtgaaca agcctcatgg tgtgcgtcca aaggatgttg cagctcctat cgataagctg 1500 cctaacatca aggatctgcc actgccacgc ggttcccgtg accgcctgaa gcagcttggc 1560 ccagccgcgt ttgctcgtga tctccgtgag caggacgcac tggcagttac tgataccacc 1620 ttccgcgatg cacaccagtc tttgcttgcg acccgagtcc gctcattcgc actgaagcct 1680 gcggcagagg ccgtcgcaaa gctgactcct gagcttttgt ccgtggaggc ctggggcggc 1740 gcgacctacg atgtggcgat gcgtttcctc tttgaggatc cgtgggacag gctcgacgag 1800 ctgcgcgagg cgatgccgaa tgtaaacatt cagatgctgc ttcgcggccg caacaccgtg 1860 ggatacaccc cgtacccaga ctccgtctgc cgcgcgtttg ttaaggaagc tgccagctcc 1920 ggcgtggaca tcttccgcat cttcgacgcg cttaacgacg tctcccagat gcgtccagca 1980 atcgacgcag tcctggagac caacaccgcg gtagccgagg tggctatggc ttattctggt 2040 gatctctctg atccaaatga aaagctctac accctggatt actacctaaa gatggcagag 2100 gagatcgtca agtctggcgc tcacatcttg gccattaagg atatggctgg tctgcttcgc 2160 ccagctgcgg taaccaagct ggtcaccgca ctgcgccgtg aattcgatct gccagtgcac 2220 gtgcacaccc acgacactgc gggtggccag ctggcaacct actttgctgc agctcaagct 2280 ggtgcagatg ctgttgacgg tgcttccgca ccactgtctg gcaccacctc ccagccatcc 2340 ctgtctgcca ttgttgctgc attcgcgcac acccgtcgcg ataccggttt gagcctcgag 2400 gctgtttctg acctcgagcc gtactgggaa gcagtgcgcg gactgtacct gccatttgag 2460 tctggaaccc caggcccaac cggtcgcgtc taccgccacg aaatcccagg cggacagttg 2520 tccaacctgc gtgcacaggc caccgcactg ggccttgcgg atcgtttcga actcatcgaa 2580 gacaactacg cagccgttaa tgagatgctg ggacgcccaa ccaaggtcac cccatcctcc 2640 aaggttgttg gcgacctcgc actccacctc gttggtgcgg gtgtggatcc agcagacttt 2700 gctgccgatc cacaaaagta cgacatccca gactctgtca tcgcgttcct gcgcggcgag 2760 cttggtaacc ctccaggtgg ctggccagag ccactgcgca cccgcgcact ggaaggccgc 2820 tccgaaggca aggcacctct gacggaagtt cctgaggaag agcaggcgca cctcgacgct 2880 gatgattcca aggaacgtcg caatagcctc aaccgcctgc tgttcccgaa gccaaccgaa 2940 gagttcctcg agcaccgtcg ccgcttcggc aacacctctg cgctggatga tcgtgaattc 3000 ttctacggcc tggtcgaagg ccgcgagact ttgatccgcc tgccagatgt gcgcacccca 3060 ctgcttgttc gcctggatgc gatctctgag ccagacgata agggtatgcg caatgttgtg 3120 gccaacgtca acggccagat ccgcccaatg cgtgtgcgtg accgctccgt tgagtctgtc 3180 accgcaaccg cagaaaaggc agattcctcc aacaagggcc atgttgctgc accattcgct 3240 ggtgttgtca ccgtgactgt tgctgaaggt gatgaggtca aggctggaga tgcagtcgca 3300 atcatcgagg ctatgaagat ggaagcaaca atcactgctt ctgttgacgg caaaatcgat 3360 cgcgttgtgg ttcctgctgc aacgaaggtg gaaggtggcg acttgatcgt cgtcgtttcc 3420 taa 3423 <210> 33 <211> 3438 <212> DNA <213> Artificial Sequence <220> <223> scrB with substituted start codon <400> 33 atgtgtgggg ctatgcacac agaactttcc agtttgcgcc ctgcgtacca tgtgactcct 60 ccgcagggca ggctcaatga tcccaacgga atgtacgtcg atggcgatac cctccacgtc 120 tactaccagc acgatccagg tttccccttc gcaccaaagc gcaccggctg ggctcacacc 180 accacgccgt tgaccggacc gcagcgattg cagtggacgc acctgcccga cgctctttac 240 ccggatgcat cctatgacct ggatggatgc tattccggtg gagccgtatt tactgacggc 300 acacttaaac ttttctacac cggcaaccta aaaattgacg gcaagcgccg cgccacccaa 360 aacctcgtcg aagtcgagga cccaactggg ctgatgggcg gcattcatcg ccgttcgcct 420 aaaaatccgc ttatcgacgg acccgccagc ggtttcacac cccattaccg cgatcccatg 480 atcagccctg atggtgatgg ttggaaaatg gttcttgggg cccaacgcga aaacctcacc 540 ggtgcagcgg ttctataccg ctcgacagat cttgaaaact gggaattctc cggtgaaatc 600 acctttgacc tcagtgatgc acaacctggt tctgctcctg atctcgttcc cggtggctac 660 atgtgggaat gccccaacct ttttacgctt cgcgatgaag aaactggcga agatctcgac 720 gtgctgattt tctgtccaca aggattggac cgaatccacg atgaggttac tcactacgca 780 agctctgacc agtgcggata tgtcgtcggc aagcttgaag gaacgacctt ccgcgtcttg 840 cgaggattca gcgagctgga tttcggccat gaattctacg caccgcaggt tgcagtaaac 900 ggttctgatg cctggctcgt gggctggatg gggctgcccg cgcaggatga tcacccaaca 960 gttgcacggg aaggatgggt gcactgcctg actgtgcccc gcaagcttca tttgcgcaac 1020 cacgcgatct atcaagagct tcttctccca gagggggagt caggggtaat cagatctgta 1080 ttaggttctg aacctgtccg agtagacatc cgaggcaata tttccctcga gtgggatggt 1140 gtccgtttgt ctgtggatcg tggtggtgat cgtcgcgtag ctgaggtaaa acctggcgaa 1200 ttagtgatcg cggacgataa tacagccatt gagataactg caggtgatgg acaggtttca 1260 ttcgctttcc gggctttcaa aggtgacact attgagagat aagtcataaa aaagggtctt 1320 ttgtggcgaa ttgtacaaat acttcgcaaa atcccttgat cggacacaaa taaacaggtt 1380 taatgttgtt tagcttttga acaaacattc atgtctgaat atttttgctt cttcccggtt 1440 aaggagaaat tcatggacca taaggacctc gcgcaacgca tcctgcgcga cattggcggc 1500 gaagacaaca ttgtcgccgc cgcacactgt gcaacgcgtt tacgcctcgt gctcaaagac 1560 accaaggatg tggatcgcca aagtctggat gatgatccag atctgaaagg cacgtttgaa 1620 acgggtggta tgttccagat catcgtcggg ccaggcgatg tggatcatgt tttcaaagaa 1680 ctcgatgacg caacctccaa agacatcgct gtgtccacag agcagctcaa agatgttgtg 1740 gctaacaacg ccaactggtt cagccgtgct gtgaaggtat tggcggacat tttcgtcccg 1800 ctgattccaa tcttggttgg tggcggtctg ctcatggcta tcaacaatgt gttggttgcg 1860 caggatctgt tcggtccgca atcactggtg gagatgttcc ctcagatcag cggtgttgct 1920 gagatgatca acctcatggc atctgcgccg ttcgcgttct tgccagtgtt ggttggtttc 1980 accgcaacca agcgtttcgg cggcaatgag ttcctgggcg ccggtattgg tatggcgatg 2040 gtgttcccga gcttggtgaa cggctacgac gtggccgcca ccatggctgc gggcgaaatg 2100 ccaatgtggt ccctgtttgg tttagatgtt gcccaagccg gttaccaggg caccgtgctt 2160 cctgtgctgg tggtttcttg gattctggca acgatcgaga agttcctgca caagcgactc 2220 aagggcactg cagacttcct gatcactcca gtgctgacgt tgctgctcac cggattcctt 2280 acattcatcg ccattggccc agcaatgcgc tgggtgggcg atgtgctggc acacggtcta 2340 cagggacttt atgatttcgg tggtccagtc ggcggtctgc tcttcggtct ggtctactca 2400 ccaatcgtca tcactggtct gcaccagtcc ttcccgccaa ttgagctgga gctgtttaac 2460 cagggtggat ccttcatctt cgcaacggca tctatggcta atatcgccca gggtgcggca 2520 tgtttggcag tgttcttcct ggcgaagagt gaaaagctca agggccttgc aggtgcttca 2580 ggtgtctccg ctgttcttgg tattacggag cctgcgatct tcggtgtgaa ccttcgcctg 2640 cgctggccgt tcttcatcgg tatcggtacc gcagctatcg gtggcgcttt gattgcactc 2700 tttaatatca aggcagttgc gttgggcgct gcaggtttct tgggtgttgt ttctattgat 2760 gctccagata tggtcatgtt cttggtgtgt gcagttgtta ccttcttcat cgcattcggc 2820 gcagcgattg cttatggcct ttacttggtt cgccgcaacg gcagcattga tccagatgca 2880 accgctgctc cagtgcctgc aggaacgacc aaagccgaag cagaagcacc cgcagaattt 2940 tcaaacgatt ccaccatcat ccaggcacct ttgaccggtg aagctattgc actgagcagc 3000 gtcagcgatg ccatgtttgc cagcggaaag cttggctcgg gcgttgccat cgtcccaacc 3060 aaggggcagt tagtttctcc ggtgagtgga aagattgtgg tggcattccc atctggccat 3120 gctttcgcag ttcgcaccaa ggctgaggat ggttccaatg tggatatctt gatgcacatt 3180 ggtttcgaca cagtaaacct caacggcacg cactttaacc cgctgaagaa gcagggcgat 3240 gaagtcaaag caggggagct gctgtgtgaa ttcgatattg atgccattaa ggctgcaggt 3300 tatgaggtaa ccacgccgat tgttgtttcg aattacaaga aaaccggacc tgtaaacact 3360 tacggtttgg gcgaaattga agcgggagcc aacctgctca acgtcgcaaa gaaagaagcg 3420 gtgccagcaa caccataa 3438 <210> 34 <211> 1344 <212> DNA <213> Artificial Sequence <220> <223> gdh with substituted start codon <400> 34 ttgacagttg atgagcaggt ctctaactat tacgacatgc ttctgaagcg caatgctggc 60 gagcctgaat ttcaccaggc agtggcagag gttttggaat ctttgaagat cgtcctggaa 120 aaggaccctc attacgctga ttacggtctc atccagcgcc tgtgcgagcc tgagcgtcag 180 ctcatcttcc gtgtgccttg ggttgatgac cagggccagg tccacgtcaa ccgtggtttc 240 cgcgtgcagt tcaactctgc acttggacca tacaagggcg gcctgcgctt ccacccatct 300 gtaaacctgg gcattgtgaa gttcctgggc tttgagcaga tctttaaaaa ctccctaacc 360 ggcctgccaa tcggtggtgg caagggtgga tccgacttcg accctaaggg caagtccgat 420 ctggaaatca tgcgtttctg ccagtccttc atgaccgagc tacaccgcca catcggtgag 480 taccgcgacg ttcctgcagg tgacatcgga gttggtggcc gcgagatcgg ttacctgttt 540 ggccactacc gtcgcatggc taaccagcac gagtccggcg ttttgaccgg taagggcctg 600 acctggggtg gatccctggt ccgcaccgag gcaactggct acggctgcgt ttacttcgtg 660 agtgaaatga tcaaggctaa gggcgagagc atcagcggcc agaagatcat cgtttccggt 720 tccggcaacg tagcaaccta cgcgattgaa aaggctcagg aactcggcgc aaccgttatt 780 ggtttctccg attccagcgg ttgggttcat acccctaacg gcgttgacgt ggctaagctc 840 cgcgaaatca aggaagttcg tcgcgcacgc gtatccgtgt acgccgacga agttgaaggc 900 gcaacctacc acaccgacgg ttccatctgg gatctcaagt gcgatatcgc tcttccttgt 960 gcaactcaga acgagctcaa cggcgagaac gctaagactc ttgcagacaa cggctgccgt 1020 ttcgttgctg aaggcgcgaa catgccttcc acccctgagg ctgttgaggt cttccgtgag 1080 cgcgacatcc gcttcggacc aggcaaggca gctaacgctg gtggcgttgc aacctccgct 1140 ctggagatgc agcagaacgc ttcgcgcgat tcctggagct tcgagtacac cgacgagcgc 1200 ctccaggtga tcatgaagaa catcttcaag acctgtgcag agaccgcagc agagtatgga 1260 cacgagaacg attacgttgt cggcgctaac attgctggct tcaagaaggt agctgacgcg 1320 atgctggcac agggcgtcat ctaa 1344 <210> 35 <211> 2217 <212> DNA <213> Artificial Sequence <220> <223> icd with substituted start codon <400> 35 ttggctaaga tcatctggac ccgcaccgac gaagcaccgc tgctcgcgac ctactcgctg 60 aagccggtcg tcgaggcatt tgctgctacc gcgggcattg aggtcgagac ccgggacatt 120 tcactcgctg gacgcatcct cgcccagttc ccagagcgcc tcaccgaaga tcagaaggta 180 ggcaacgcac tcgcagaact cggcgagctt gctaagactc ctgaagcaaa catcattaag 240 cttccaaaca tctccgcttc tgttccacag ctcaaggctg ctattaagga actgcaggac 300 cagggctacg acatcccaga actgcctgat aacgccacca ccgacgagga aaaagacatc 360 ctcgcacgct acaacgctgt taagggttcc gctgtgaacc cagtgctgcg tgaaggcaac 420 tctgaccgcc gcgcaccaat cgctgtcaag aactttgtta agaagttccc acaccgcatg 480 ggcgagtggt ctgcagattc caagaccaac gttgcaacca tggatgcaaa cgacttccgc 540 cacaacgaga agtccatcat cctcgacgct gctgatgaag ttcagatcaa gcacatcgca 600 gctgacggca ccgagaccat cctcaaggac agcctcaagc ttcttgaagg cgaagttcta 660 gacggaaccg ttctgtccgc aaaggcactg gacgcattcc ttctcgagca ggtcgctcgc 720 gcaaaggcag aaggtatcct cttctccgca cacctgaagg ccaccatgat gaaggtctcc 780 gacccaatca tcttcggcca cgttgtgcgc gcttacttcg cagacgtttt cgcacagtac 840 ggtgagcagc tgctcgcagc tggcctcaac ggcgaaaacg gcctcgctgc aatcctctcc 900 ggcttggagt ccctggacaa cggcgaagaa atcaaggctg cattcgagaa gggcttggaa 960 gacggcccag acctggccat ggttaactcc gctcgcggca tcaccaacct gcatgtccct 1020 tccgatgtca tcgtggacgc ttccatgcca gcaatgattc gtacctccgg ccacatgtgg 1080 aacaaagacg accaggagca ggacaccctg gcaatcatcc cagactcctc ctacgctggc 1140 gtctaccaga ccgttatcga agactgccgc aagaacggcg cattcgatcc aaccaccatg 1200 ggtaccgtcc ctaacgttgg tctgatggct cagaaggctg aagagtacgg ctcccatgac 1260 aagaccttcc gcatcgaagc agacggtgtg gttcaggttg tttcctccaa cggcgacgtt 1320 ctcatcgagc acgacgttga ggcaaatgac atctggcgtg catgccaggt caaggatgcc 1380 ccaatccagg attgggtaaa gcttgctgtc acccgctccc gtctctccgg aatgcctgca 1440 gtgttctggt tggatccaga gcgcgcacac gaccgcaacc tggcttccct cgttgagaag 1500 tacctggctg accacgacac cgagggcctg gacatccaga tcctctcccc tgttgaggca 1560 acccagctct ccatcgaccg catccgccgt ggcgaggaca ccatctctgt caccggtaac 1620 gttctgcgtg actacaacac cgacctcttc ccaatcctgg agctgggcac ctctgcaaag 1680 atgctgtctg tcgttccttt gatggctggc ggcggactgt tcgagaccgg tgctggtgga 1740 tctgctccta agcacgtcca gcaggttcag gaagaaaacc acctgcgttg ggattccctc 1800 ggtgagttcc tcgcactggc tgagtccttc cgccacgagc tcaacaacaa cggcaacacc 1860 aaggccggcg ttctggctga cgctctggac aaggcaactg agaagctgct gaacgaagag 1920 aagtccccat cccgcaaggt tggcgagatc gacaaccgtg gctcccactt ctggctgacc 1980 aagttctggg ctgacgagct cgctgctcag accgaggacg cagatctggc tgctaccttc 2040 gcaccagtcg cagaagcact gaacacaggc gctgcagaca tcgatgctgc actgctcgca 2100 gttcagggtg gagcaactga ccttggtggc tactactccc ctaacgagga gaagctcacc 2160 aacatcatgc gcccagtcgc acagttcaac gagatcgttg acgcactgaa gaagtaa 2217

Claims (13)

  1. 삭제
  2. 삭제
  3. 서열번호 30의 염기서열로 구성되고, 트랜스케톨라제를 코딩하는 유전자(tkt)의 개시코돈이 ATG로 치환된 유전자 개시코돈 변이체, 및 하기 (a) 내지 (f)의 유전자 개시코돈 변이체를 포함하는 재조합 벡터:
    (a) 코리네박테리움 속 미생물 유래의 글루코즈 6-포스페이트 디하이드로게나아제(zwf)를 코딩하고, 서열번호 29의 염기서열로 구성되는 유전자 개시코돈 변이체,
    (b) 코리네박테리움 속 미생물 유래의 아스파르토키나아제(lysC)를 코딩하고, 서열번호 31의 염기서열로 구성되는 유전자 개시코돈 변이체,
    (c) 코리네박테리움 속 미생물 유래의 파이루베이트 카르복실라아제(pycA)를 코딩하고, 서열번호 32의 염기서열로 구성되는 유전자 개시코돈 변이체,
    (d) 코리네박테리움 속 미생물 유래의 수크로즈 6-포스페이트 하이드롤라아제(scrB)를 코딩하고, 서열번호 33의 염기서열로 구성되는 유전자 개시코돈 변이체,
    (e) 코리네박테리움 속 미생물 유래의 글루타메이트 디하이드로게나아제(gdh)를 코딩하고, 서열번호 34의 염기서열로 구성되는 유전자 개시코돈 변이체,
    (f) 코리네박테리움 속 미생물 유래의 이소사이트레이트 디하이드로게나아제(icd)를 코딩하고, 서열번호 35의 염기서열로 구성되는 유전자 개시코돈 변이체
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제3항의 재조합 벡터로 형질전환된 숙주세포로서, 상기 숙주세포가 코리네박테리움 글루타미쿰 KCTC12307BP-ZTCPS-GI (KCTC 12536BP)인 것을 특징으로 하는 숙주세포.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제7항에 있어서, 상기 숙주세포는 서열번호 29 내지 서열번호 35의 염기서열로 구성되는 유전자 개시코돈 변이체를 포함하는 것을 특징으로 하는 숙주세포.
  12. 제7항의 숙주세포를 이용하여 배양하는 단계를 포함하는 아미노산의 생산방법.
  13. 제12항에 있어서, 상기 아미노산이 L-라이신인 것을 특징으로 하는 아미노산의 생산방법.
KR1020130163943A 2013-12-26 2013-12-26 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법 KR101564753B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130163943A KR101564753B1 (ko) 2013-12-26 2013-12-26 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130163943A KR101564753B1 (ko) 2013-12-26 2013-12-26 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법

Publications (2)

Publication Number Publication Date
KR20150075717A KR20150075717A (ko) 2015-07-06
KR101564753B1 true KR101564753B1 (ko) 2015-11-13

Family

ID=53788786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130163943A KR101564753B1 (ko) 2013-12-26 2013-12-26 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법

Country Status (1)

Country Link
KR (1) KR101564753B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291553B1 (ko) * 2021-01-29 2021-08-18 씨제이제일제당 (주) 신규한 프리모솜 조립 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
JP2024515390A (ja) * 2021-04-30 2024-04-09 シージェイ チェイルジェダング コーポレイション L-リシン生産能が向上したコリネバクテリウム・グルタミカム変異株及びそれを用いたl-リシン生産方法
CN113308426B (zh) * 2021-05-27 2022-10-18 齐鲁工业大学 一种改造tk基因5′端序列的重组棒状杆菌及其应用
KR20230053351A (ko) * 2021-10-14 2023-04-21 대상 주식회사 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법

Also Published As

Publication number Publication date
KR20150075717A (ko) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6679803B2 (ja) 新規プロモーター及びその用途
US11499173B2 (en) Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same
JP5396403B2 (ja) 改良されたプロモーターおよびこれを用いたl−リシンの生産方法
RU2733426C1 (ru) Модифицированная гомосериндегидрогеназа и способ получения гомосерина или l-аминокислоты, имеющей происхождение от гомосерина, с использованием такой гомосериндегидрогеназы
JP6297134B2 (ja) プトレシン生産性を有する微生物及びそれを用いたプトレシン生産方法
AU2016284767B2 (en) Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
JP5400065B2 (ja) 改良されたプロモーターおよびこれを用いたl−リシンの生産方法
JP6625133B2 (ja) ピルビン酸デヒドロゲナーゼ変異体、それを含む微生物及びそれを用いるl−アミノ酸生産方法
EP3287469B1 (en) Gluconate repressor variant, l-lysine producing microorganism comprising same, and method for producing l-lysine using same
AU2019400521A1 (en) Modified Homoserine Dehydrogenase And Method For Producing Homoserine Or L-Amino Acid Derived From Homoserine Using The Same
KR101564753B1 (ko) 코리네형 세균 유래의 치환된 개시코돈을 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법
JP2019030316A (ja) L−リシン生産能を有する微生物及びそれを用いたl−リシンの生産方法
JP7311634B2 (ja) ジヒドロジピコリン酸レダクターゼ変異型ポリペプチド及びそれを用いたl-スレオニン生産方法
JP7350994B2 (ja) 新規なプロモーター及びそれを用いた標的物質生産方法
JP2023506053A (ja) クエン酸シンターゼの活性が弱化した新規な変異型ポリペプチド及びそれを用いたl-アミノ酸生産方法
KR102673796B1 (ko) 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법
JP7422888B2 (ja) 新規なプロモーター及びその用途
RU2802274C1 (ru) Новый вариант аминотрансферазы аминокислот с разветвленной цепью и способ получения лейцина с его использованием
EP4083064A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
JP2024515389A (ja) L-リシン生産能が向上したコリネバクテリウム・グルタミカム変異株及びそれを用いたl-リシンの生産方法
AU2022271753A1 (en) Novel promoter and use thereof
KR20220083557A (ko) 변이형 atp-의존적 프로테아제 및 이를 이용한 l-아미노산의 생산 방법
KR20220157144A (ko) 신규 프로모터 및 이의 용도
KR20140074665A (ko) 코리네형 세균 유래의 sod 프로모터를 포함하는 재조합 벡터, 형질전환된 숙주세포 및 이를 이용한 아미노산의 생산방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 5