KR101545440B1 - 폐공기 정화제의 처리 방법 - Google Patents
폐공기 정화제의 처리 방법 Download PDFInfo
- Publication number
- KR101545440B1 KR101545440B1 KR1020140030542A KR20140030542A KR101545440B1 KR 101545440 B1 KR101545440 B1 KR 101545440B1 KR 1020140030542 A KR1020140030542 A KR 1020140030542A KR 20140030542 A KR20140030542 A KR 20140030542A KR 101545440 B1 KR101545440 B1 KR 101545440B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction tank
- experimental example
- radionuclide
- alkaline earth
- tank
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 239000002699 waste material Substances 0.000 title claims description 72
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims abstract description 24
- 238000007711 solidification Methods 0.000 claims abstract description 8
- 230000008023 solidification Effects 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 62
- 238000010438 heat treatment Methods 0.000 claims description 46
- 239000012459 cleaning agent Substances 0.000 claims description 43
- 238000011084 recovery Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 17
- 239000004568 cement Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 230000002285 radioactive effect Effects 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000010792 warming Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims 2
- 239000000395 magnesium oxide Substances 0.000 claims 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 52
- 238000003795 desorption Methods 0.000 abstract description 29
- 239000000463 material Substances 0.000 abstract description 14
- 239000002901 radioactive waste Substances 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 3
- 230000003831 deregulation Effects 0.000 abstract description 2
- 239000011398 Portland cement Substances 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 84
- 238000007254 oxidation reaction Methods 0.000 description 23
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 230000006837 decompression Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 150000002894 organic compounds Chemical class 0.000 description 10
- 230000001105 regulatory effect Effects 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000009390 chemical decontamination Methods 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 239000012629 purifying agent Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000941 radioactive substance Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002355 alkine group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/02—Treating gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
본 발명은 폐공기 정화제 내의 방사성 핵종의 탈리공정과, 상기 방사성 핵종의 회수공정에 관한 것으로, 구체적으로 폐공기 정화제를 반응기에 투입하고, 방사성 핵종의 회수물질로서 알칼리토 산화물을 넣어, 방사성 핵종을 탈리(탈착)하여 가압탱크에 포집하고, 상기 C-14와 H-3이 포집된 알칼리토 산화물을 포틀란트 시멘트와 혼합하여 고화처리하는 공정을 포함하는 폐공기 정화제의 처리 방법에 관한 것이다. 본 발명의 방법을 이용하여 폐공기 정화제를 처리할 경우, 폐공기 정화제를 규제해제기준이하로 처리함으로서, 방사성 폐기물 처분비용을 저감하고, 단순화된 공정을 통해 장비구축 및 운영에 소요되는 비용을 최소화하고, 회수된 방사성 핵종은 안정한 고화체로 제조하여 처분할 수 있는 장점이 있다.
Description
본 발명은 폐공기 정화제 내 방사성 핵종의 탈리 및 방사성 핵종 회수 처리 방법에 관한 것이다.
국내 원전에서는 방사선 관리구역 내에서 존재하는 방사성 핵종인 C-14, H-3으로 구성된 탄산가스, 유기화합물 및 수분 등을 제거하기 위해 공기정화계통에서 공기정화제(활성탄, 제올라이트)를 이용하여 제거하며, 이러한 과정에서 규제해제기준(C-14: 1bq/g, H-3: 100bq/g)을 초과하는 방사성 폐기물이 매년 수십 드럼(200L 기준) 분량으로 발생한다.
이와 같은 방사성 폐기물을 규제해제기준 이하로 방사성 핵종의 농도를 낮추어 최종처분비용을 저감하기 위해, 여러 가지 탈착기술 및 처리공정들이 개발되어 왔다. 종래의 기술은 핵종탈착공정, 유기물의 촉매산화공정, 응축 및 흡수공정 등이 복합적으로 구성되어 있으며, "흡착되어" 있는 방사성 물질을 탈착하는 방법과 탈착된 방사성 물질을 효과적으로 회수하는 방법으로 개발되었다.
실제 원전에서 발생되는 폐공기 정화제는 원자로의 종류, 발전소별 환경 등에 따라 공기정화계통에 존재하는 방사성 핵종의 종류 및 흡탈착이력 등이 상이하기 때문에 폐공기 정화제 내에 방사성 핵종의 농도는 매우 상이하며, 물리흡착 및 화학흡착 또는 화학반응 등의 다양한 경로들이 존재하기 때문에, 단순감압, 가온 또는 화학제염을 통한 처리를 기반으로 하는 종래의 기술은 복잡하고 다양한 이력과 특성을 가진 "모든 경우의 폐공기 정화제를 규재해제수준" 까지 탈착처리하기에는 한계가 있으며, 특정한 조건의 폐공기 정화제의 경우에는 규제해제수준에 도달하기 어려워, 규제해제 이상의 처리생성물이 발생될 수 있는 위험이 존재한다. 따라서, 본 발명은 "폐공기 정화제가 어떠한 상황하에서도 규제해제 수준 이하로 처리될 수 있도록 할 수 있는 폐공기 정화제의 처리기술"에 관한 것이다.
본 기술은 원자로의 종류, 공기정화제의 이력, 방사성 핵종의 화학적 상태에 상관없이 폐공기 정화제를 규제해제 기준 이하로 처리함으로서, 기존 기술이 농도 또는 화학적 상태에 따른 적용기술에 대한 의존성을 제거하여 폐공기 정화제가 규제해제기준이상으로 처리되는 문제점을 방지하고자 하기 위한 것이다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위해서, 본 발명은 하기 단계를 포함하는 폐공기 정화제 내 방사성 핵종의 탈리 방법을 제공한다:
1) 폐공기 정화제를 반응조에 투입하고, 알칼리토 산화물을 회수반응조에 투입하는 단계;
2) 상기 반응조 및 회수반응조에 질소(N2) 및 산소(O2)의 혼합가스를 주입하는 단계;
3) 상기 반응조에 마이크로파를 조사하여 폐공기 정화제를 1 내지 60분 동안 가온하고, 상기 반응조에서 발생된 이산화탄소(CO2) 및 물(H2O)은 상기 회수반응조 내의 알칼리토 산화물에 화학흡착시키는 단계;
4) 상기 회수반응조와 반응조를 물리적으로 차단하고, 반응조에서 폐공기 정화제 내에 잔존하는 방사성 핵종을 탈리한 가스를 가압탱크에 포집하는 단계;
5) 상기 반응조와 가압탱크를 물리적으로 차단하고, 상기 반응조에 포함된 폐공기 정화제를 가온하며, 상기 가압탱크와 회수반응조를 연결하여 상기 탈리된 방사성 핵종을 포집하는 단계; 및
6) 상기 반응조, 회수반응조 및 가압탱크 내부 잔존가스를 질소를 이용해 제거하는 단계.
본 발명은 폐공기 정화제의 이력, 특성 및 핵종농도에 영향을 받지 않고, 폐공기 정화제를 규제해제 기준 이하로 처리할 수 있는 방법을 제공하는 것으로, 폐공기 정화제의 상태에 따라, 분쇄, 화학제염, 가온감압, 촉매산화공정 및 회수공정등과 같은 복잡한 처리공정이 없이 공정을 단순화하여, 공정설치 및 유지 등에 따른 비용을 절감할 수 있는 효과를 가진다.
또한, 통상적인 탈착조건에서 탈착되지 않는 방사성 핵종과 흡착된 유기물을 산화시킴으로서, 촉매산화공정을 필요하지 않으며, 처리과정에서 규제해제 기준 이상의 폐기물이 발생될 수 있는 가능성을 완전히 제거할 수 있다.
처리된 폐공기 정화제를 안정한 형태(극성분자를 흡착하지 않는 상태)로 전환시킬 수 있으며, 하나의 물질을 이용하여 C-14와 H-3을 동시에 포집/회수 할 수 있으며, 이를 통해 회수된 방사성 핵종은 처분기준을 만족하는 고화체로 제조할 수 있다.
폐공기 정화제를 규제해제 기준 이하로 처리함으로서, 방사성 폐기물 처분비용을 저감하고, 단순화된 공정을 통해 장비구축 및 운영에 소요되는 비용을 최소화하고, 회수된 방사성 핵종은 안정한 고화체로 제조하여 처분할 수 있는 기술이다.
도 1은 본 발명의 폐공기 정화제의 처리 공정을 나타낸 도면이다.
도 2는 본 발명의 폐공기 정화제 처리 공정 흐름을 나타낸 도면이다.
도 3은 유기화합물의 탄화반응의 온도에 따른 깁스에너지(ΔG)를 나타낸 도면이다.
도 4는 유기화합물들의 산화반응 깁스에너지(ΔG), nA+mO2(g)=xCO2(g)+ yH2O(g)를 나타낸 도면이다(A는 유기화합물).
도 5는 알칼리토 산화물 및 수산화물에 대한 반응깁스 에너지(ΔG)를 나타낸 도면이다(a:Mg, b:Ca, c:Sr, d:Ba).
도 2는 본 발명의 폐공기 정화제 처리 공정 흐름을 나타낸 도면이다.
도 3은 유기화합물의 탄화반응의 온도에 따른 깁스에너지(ΔG)를 나타낸 도면이다.
도 4는 유기화합물들의 산화반응 깁스에너지(ΔG), nA+mO2(g)=xCO2(g)+ yH2O(g)를 나타낸 도면이다(A는 유기화합물).
도 5는 알칼리토 산화물 및 수산화물에 대한 반응깁스 에너지(ΔG)를 나타낸 도면이다(a:Mg, b:Ca, c:Sr, d:Ba).
본 발명은 서로 다른 이력을 가진 폐공기 정화제 내에 다양한 화학적 상태로 존재하는 방사성 핵종 C-14 및 C-3을 규제해제 기준 이하로 처리하기 위한 탈리(탈착) 기술에 관한 것이다.
본 발명은 원자로의 종류, 공기정화제의 이력, 방사성 핵종의 화학적 상태에 상관없이 폐공기 정화제를 규제해제 기준 이하로 처리함으로서, 기존 기술이 농도 또는 화학적 상태에 따른 적용기술에 대한 의존성을 제거하여 폐공기 정화제가 규제해제 기준 이상으로 처리되는 문제점을 방지하고자 하기 위한 것이다.
본 발명은 탈착효율을 증가시키기 위한 분쇄공정과 같은 폐공기 정화제의 물리적 전처리공정을 제거하여 처리과정 및 후처리공정에서 발생될 수 있는 방사성 폐기물의 비산에 따른 이차오염을 방지하기 위한 것이다.
또한 본 발명은 무기시약류를 투입하는 화학제염과 같은 전처리 공정을 제거하여 유독물질투입에 따른 폐기물양의 증가를 방지하고, 화학제염에 필요한 장치 및 공정비용 등을 제거하는 것을 목적으로 한다.
본 발명은 탈리(탈착)공정과 회수처리 공정이 분리되어 기상흐름을 위해 필요한 여러 가지 배관 및 공정부대비용을 제거하여 한 개 모듈의 공정장치로 처리함으로서, 처리장치의 공간을 최소화하고, 공정설치 및 유지비용을 최소화하기 위한 것이다.
본 발명은 C-13 및 H-3을 동시에 회수하여 시멘트 고화와 적합한 폐기물로 전환하여 고화처리함으로서, 방사성 폐기물을 안정하게 최종처분하기 위한 것이다.
따라서, 본 발명은 폐공기 정화제의 시료이력 및 특성에 상관없이 탈리(탈착)하고자 하는 방사성 핵종을 단순화된 공정과 낮은 비용으로 규제해제수준까지 처리하고, 탈리(탈착)된 C-14 및 H-3을 하나의 물질로 동시에 회수하여 고화처리함으로서, 처리된 폐공기 정화제는 규제해제 폐기물로 자체처분하고, 탈착된 C-14 및 H-3은 안정한 방사성 고화체로 제조함으로서, 방사성 폐기물의 부피저감과 아울러 방사성 폐기물의 안정적인 최종처분을 목적으로 한다.
본 발명은 폐공기 정화제내에 방사성 핵종인 C-14 및 H-3을 탈리(탈착)하고, 동시에 이를 안정한 형태로 회수하는 단일 모듈공정과 회수된 물질을 고화처리하는 공정으로 구성되어 있다.
즉, 본 발명은 하기 단계를 포함하는 폐공기 정화제 내 방사성 핵종의 탈리 방법을 제공한다:
1) 폐공기 정화제를 반응조(104)에 투입하고, 알칼리토 산화물을 회수반응조(105)에 투입하는 단계;
2) 상기 반응조 및 회수반응조에 질소(N2) 및 산소(O2)의 혼합가스를 주입하는 단계;
3) 상기 반응조에 마이크로파를 조사하여 폐공기 정화제를 1 내지 60분 동안 가온하고, 상기 반응조에서 발생된 이산화탄소(CO2) 및 물(H2O)은 상기 회수반응조 내의 알칼리토 산화물에 화학흡착시키는 단계;
4) 상기 회수반응조와 반응조를 물리적으로 차단하고, 반응조에서 폐공기 정화제 내에 잔존하는 방사성 핵종을 탈리한 가스를 가압탱크(106)에 포집하는 단계;
5) 상기 반응조와 가압탱크를 물리적으로 차단하고, 상기 반응조에 포함된 폐공기 정화제를 가온하며, 상기 가압탱크와 회수반응조를 연결하여 상기 탈리된 방사성 핵종을 포집하는 단계; 및
6) 상기 반응조, 회수반응조 및 가압탱크 내부 잔존가스를 질소를 이용해 제거하는 단계.
즉, 본 기술의 처리공정은 1단계로, 폐공기 정화제의 형태의 물리적 형상의 변형없이 반응기에 투입하고, 방사성 핵종의 회수물질로서 CaO, BaO, MgO등을 투입하는 공정에 이어, 2단계로, 반응기 내에 N2와 O2의 혼합가스를 주입하는 단계로 이때, 산소의 농도는 1~20%로 하며, 내부 용기에 압력은 10~760torr로 하며, 3단계로 microwave를 이용하여 폐공기 정화제를 100~900도까지 가온하여 1분~1시간 내외로 유지하는 공정과 이때 발생되는 CO2 및 H2O는 알칼리토 산화물(MgO, CaO, BaO등)로 화학흡착시키는 공정과, 4단계로, 알칼리토 물질의 방사성 핵종의 회수반응조와 폐공기 정화제 반응조를 물리적으로 차단하고 폐공기 정화제를 100~900도로 유지하면서 폐공기 정화제 반응조의 내부압력을 1~300 torr의 음압상태로 10분~1시간 동안 유지하면서 폐공기 정화제 내에 잔존하는 방사성 핵종을 탈리(탈착)하여 가압탱크에 포집하는 공정과, 5단계로 폐공기 정화제를 주어진 음압상태를 900도 이상의 온도에서 3시간 내로 가온하여 화학적으로 안정한 형태로 변환하는 동시에 포집탱크 내에 가스를 알칼리토 회수반응조로 연결하여 탱크 내에 방사성 핵종을 상온에서 3시간 내외로 포집하는 공정에 이어, 6단계로, 각 반응조 및 탱크 내부 잔존가스를 N2로 purge하는 단계를 포함한다.
또한, 마지막 단계로 C-14와 H-3이 포집된 알칼리토 산화물을 1~40 wt%로 포틀란트 시멘트와 혼합하여 고화처리하는 공정으로 구성되어 있다. (공정 1 참조)
즉, 본 발명은 방사성 핵종의 탈리공정과 방사성 핵종을 회수하는 공정 그리고 고화처리공정으로 구성되어 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[
실시예
]
실시예
1. 방사성 핵종의
탈리(탈착)공정
원전에서 사용되는 공기정화제(활성탄, 제올라이트)는 이산화탄소, 수분 및 유기화합물(CnHm)의 형태로 존재하는 C-14와 H-3을 물리흡착하며, 이러한 흡착질들은 통상적인 가온감압을 통해 쉽게 탈착시킬 수 있으나, 장기간 사용하는 과정에서 흡착질의 일부분은 공기정화제 구조 내에 완전히 물리적으로 고정되거나 공기정화제 내의 각 화합물들과 화학반응 등을 통해 고착화 될 수 있으며, 이러한 경우에는 일반적인 가온감압 조건 하에서는 탈착이 용이하지 않다.
흡착된 물질의 탈착은 일반적으로 가온감압을 통해 손쉽게 얻을 수 있는데, 통상적인 탈착조건하에서 고착된 유기화합물들은 탄화되어 공기정화제 내에 존재할 수 있는 가능성이 있다. 도 3은 몇 가지 유기화합물의 탄화반응에 대한 Gibbs energy를 나타낸 것이다.
따라서, 고착된 유기화합물이 통상적인 가온감압조건 하에서는 탄화되어 제거되지 않을 가능성이 존재하며, 이러한 점을 해소하기 위해서는 산소를 이용하여 산화반응시켜 CO2와 H2O로 분해하여 탈착시키는 것이 바람직하다. 또한 다공성의 공기정화제 pore내에 고착화된 흡착물질 또는 관능기 내에 존재하는 물질을 산화시키기 위해서는 산소가 충분히 접촉할 수 있도록 가압조건하에서 가온을 통하여 산화반응을 수행하는 것이 바람직하다. 도 4는 각 유기화합물의 산화반응에 대한 반응깁스에너지를 나타낸 것이다.
Alkyl, alkene, alkyne group의 산화반응은 탄소로 이루어진 활성탄에 비해 보다 큰 음의 반응깁스에너지를 나타내며 산소의 농도를 조정하여 활성탄 구조를 산화시키지 않은 상태에서 고착된 유기화합물을 산화시켜 CO2와 H2O로 분해시킬 수 있으며, 제올라이트는 구조물에 산화반응에 안정하기 때문에, 적정한 산소농도하에서 쉽게 산화반응을 수행할 수 있다.
활성탄에 존재하는 유기관능기(phenol group, lactone group, carboxyl group, carbonyl group 등)는 장시간 사용과정에서 방사성 핵종이 관능기의 구성 성분으로 존재할 수 있으며, 이 경우에는 통상적인 탈착조건 하에서는 탈착되지 않는다. 이러한 관능기도 마찬가지로 산화반응을 통해 제거할 수 있으며 반응깁스에너지는 큰 음의 값을 가지기 때문에 산소농도 조절을 통해 활성탄 자체의 산화반응없이 관능기만 산화시킬 수 있다.
폐공기 정화제 내 고착화된 방사성 핵종을 탈리(탈착)하는 방법으로, 질소는 가압용 가스로, 산소는 반응가스로 사용하며, 활성탄의 비표면적 및 관능기 등의 특성에 따라, 10~760 torr내외에서 조절하여 산화반응을 수행할 수 있다.
산화반응을 수행하기 위해 공기정화제를 전체를 동시에 균질하게 가온할 수 있는 microwave를 이용하여 가온하므로서, 열전도 및 열복사에 따른 탄화 및 고착화될 수 있는 가능성을 차단한다. 이때 반응온도는 300도 이상으로 하여 산화반응이 효과적으로 일어나도록 한다.
이러한 산화반응을 통해, 화학제염과 같은 물질투입 및 그 화학제염공정을 제거할 수 있고, 탈착된 유기물을 산화시키기 위해 필요한 기존기술의 촉매산화공정을 제거할 수 있다.
상기의 방사성 핵종 탈리공정은 회수공정과 연결되어 있으며, 외부와는 차단된 상태를 유지하며, 약 1시간 내외로 가압상태에서 산화반응에 의한 탈리공정을 종료한 후에는 회수공정과의 연결을 차단하고, 감압가온공정을 수행하며, 이때 microwave의 가온 상태는 유지했다.
가온감압공정은 탈리공정 산화반응조 내의 잔존가스를 진공펌프를 이용하여 가압탱크로 보내며, 이때 도달되는 진공도는 1~300 torr까지 감압하며, 감압상태에서 유지시간은 약 1시간 내외로 했다. 이 단계를 종료한 후에는 음압상태에서 900도이상의 온도로 약 3시간 내외로 가온하여 폐공기 정화제를 화학적으로 안정한 형태로 전환시켰다. 제올라이트의 경우에는 더 이상 가스를 흡착할 수 없는 덩어리 형태로 만들기 위한 것이며, 활성탄의 경우에는 산화과정 중에 생성될 수 있는 carbonly group을 완전히 제거하여 극성분자를 포집할 수 없도록 하기 위함이다. 이러한 음압의 가온과정을 통해 폐공기 정화제는 화학적으로 안정하고, 미량으로 존재할 수 있는 H-3이나 C-14 가스 상을 흡착할 수 없는 상태로 얻어진다.
이러한 공정이 완료되면, 진공펌프 및 microwave의 가온을 중단했고, 가압탱크와의 연결을 차단함으로서, 탈리공정은 종료하였다.
실시예
2. 방사성 핵종의 회수공정
폐공기 정화제 내 방사성 핵종이 탈리되면서, CO2와 H2O의 형태로 배출되는 방사성 핵종은 MgO, CaO 및 BaO등과 같은 알칼리토 산화물을 이용하여 회수할 수 있다.
기존기술은 H2O로 존재하는 H-3은 응축시켜 회수하고, CO2로 존재하는 C-14는 Ca(OH)2등을 이용하여 각각 분리하여 회수한다. 그러나, 본 발명에서는 알칼리토 산화물을 이용하여, 두 가지 방사성 핵종을 동시에 불용성의 안정한 화합물로 회수할 수 있다. 알칼리토 산화물은 CO2와 H2O에 대해 다음과 같이 반응한다.
- CaO + H2O(g) = Ca(OH)2 : Ca1: type 1
- CaO + CO2(g) = CaCO3 : Ca2: type 2
- Ca(OH)2 + CO2 = CaCO3 + H2O(g) : Ca3 type 3
도 5는 각 알칼리토 산화물 및 수산화물의 반응깁스에너지를 나타낸 것으로, 알칼리토 산화물이 CO2와 반응하는 것이 가장 큰 음의 깁스에너지를 나타내기 때문에, 다른 두 반응보다 우선하여 반응한다. 알칼리토 산화물이 물과 반응하여 알칼리토 수산화물이 되고 그 수산화물이 CO2와 반응하여 포집된 물을 배출하는 기피되어야 하는 반응(type 3)은 알칼리토 산화물이 CO2와 탄산화 반응하는 것보다 낮은 반응깁스에너지를 가지므로, type 3의 반응은 일어날 가능성이 낮다.
따라서, 탈리되는 방사성 핵종은 알칼리토 산화물로 회수가 가능하며, MgO의 경우에는 공정온도가 300도 이하여야만 하며, CaO는 500도 이하, SrO는 700도 이하, BaO는 1000도 이하에서 공정이 수행되어야 하며, H2O는 알칼리토 수산화물의 형태로, CO2는 알칼리토 탄산화물 형태로 얻을 수 있다. 바람직하게는 넓은 공정온도범위를 가지는 BaO를 사용했다(본 발명의 회수공정에 사용되는 다공성 알칼리토 흡착제는 국내 등록특허 제10-1072004호를 이용하여 제조할 수 있다).
microwave를 이용하여 폐공기 정화제를 산화시키는 과정에서 본 회수공정은 서로 연결되어 있으며, 외부와는 밀폐된 상태를 유지했다. 탈리공정이 종료되면, 산화반응조와의 연결은 차단시키고, 내부의 방사성 핵종은 지속적으로 알칼리토 산화물과 반응을 진행했다.
산화반응조의 가온감압공정이 종료되고, 탈리공정이 가압탱크와 연결이 차단되면, 회수반응조와 가압탱크를 연결하여 가압탱크 내에 존재하는 CO2 및 H2O를 회수했다. 이때는 상온상태에서 약 3시간 동안 알칼리토 산화물과 반응을 수행하여 잔존 방사성 핵종가스상을 완전히 포집한 후, 회수공정을 종료하였다.
회수공정이 종료되면, 모든 반응조 및 가압탱크는 N2로 purge하여 내부반응기 및 라인 내에 극미량으로 존재할 수 있는 방사성 가스상 등을 제거하므로서, 폐공기정화제내 방사성 핵종의 탈리 및 회수공정을 종료했다.
실시예
3. 방사성 핵종의 회수공정에서 배출되는 알칼리토 생성물의 고화공정
회수된 알칼리토 생성물은 알칼리토 수산화물과 알칼리토 탄산화물의 혼합물로 구성되어 있으며, 미반응 CaO도 일부 존재할 수 있다. 얻어진 알칼리토 생성물은 분쇄과정 없이 시멘트 고화가 가능하다.
얻어진 알칼리토 산화물을 시멘트와 혼합하는데 있어서, 알칼리토 생성물의 혼합비는 최대 40wt%로 하였다. 혼합된 시멘트 및 알칼리토 생성물의 무게 1에 대하여 시멘트 고화에 필요한 물의 양은 다음과 같은 방법으로 구했다.
- 시멘트의 무게 1에 대하여 물 투입량: 0.3
- 알칼리토 생성물 무게 1에 대하여 물 투입량: 0.5
- 시멘트와 알칼리 생성물의 혼합물에 대하여 시멘트 고화에 필요한 물의 양: 0.6×0.3+0.4×0.5=0.38
상기의 비율로 혼합하자, 시멘트 페이스트는 적정작업도(19~21)를 얻을 수 있었다. 따라서, 상기의 비율로 상온에서 28일간 시멘트 고화체를 양생할 경우, 저준위 고화체의 처분기준 압축강도를 만족하는 고화체를 얻을 수 있다는 것을 확인하였다.
이상의 과정을 거쳐, 폐공기 정화제는 규제해제기준 이하의 화학적으로 안정한 형태로 얻을 수 있으며, 방사성 핵종은 안정한 고화체로 제조하여 처분할 수 있다.
(
실험예
)
(
실험예
1~
실험예
5)
울진 원전 발생 KI 폐활성탄을 이용하여 다음과 같이 14C/3H 탈착 실험을 수행하였다. 먼저 약 20 g ~ 1.2 kg의 폐활성탄을 반응기에 넣고 질소기체를 약 30분정도 흘려보내 기체 분위기를 조절하였다. 기체 분위기를 조절한 후 폐활성탄 내부에 삽입된 열전대를 이용하여 최대 500 ℃까지 원하는 설정 온도로 장치를 가열하면서 최대 10시간 동안 운전을 수행한다. 운전이 종료되면 반응기로부터 폐활성탄을 꺼내어 14C/3H 방사능을 분석하였다. 상기의 실험예를 이용하여 폐활성탄 방사능 저감실험을 위한 실험조건을 표 1에 정리하였고, 이에 따른 14C/3H 탈착 실험에 의한 방사능 측정결과 및 방사능 제거율을 표 2에 나타내었다.
실험예 | 폐활성탄 처리양(g) |
질소기체 유량 (L/min) |
열처리 온도 (oC) |
열처리 시간 (hr) |
실험예1 | 20.5 | 1 | 150 | 10 |
실험예2 | 20.2 | 1 | 200 | 10 |
실험예3 | 20.1 | 1 | 300 | 10 |
실험예4 | 20.3 | 1 | 400 | 10 |
실험예5 | 20.2 | 1 | 500 | 10 |
실험예 | 방사능 (Bq/g) | 방사능 제거율 (%) | ||
14C | 3H | 14C | 3H | |
폐활성탄 처리 전 | 125.5 ± 11.57 | 286 ± 26.4 | ||
실험예1 | 87.2 ± 8.80 | 121 ± 12.48 | 30.5 | 57,7 |
실험예2 | 65.3 ± 6.39 | 68.5 ± 9.148 | 48.0 | 76.0 |
실험예3 | 61.2 ± 6.17 | 35.7 ± 3.162 | 51.2 | 87.5 |
실험예4 | 58.5 ± 5.70 | 25.8 ± 1.96 | 53.4 | 91.0 |
실험예5 | 56.4 ± 5.12 | 14.5 ± 1.38 | 55.1 | 94.9 |
3H의 경우 온도가 증가함에 따라 제거율은 높아졌고 400 ℃ 이상에서는 90% 이상을 나타내었으며, 200 ℃로 열처리할 경우에도 자체 처분 기준치인 100 Bq/g 이하를 보였다. 따라서 3H 핵종은 상기의 실험예를 이용하여 폐활성탄으로부터 쉽게 자체 처분 기준치 이하로 제거가 가능하였다.
열처리 반응을 통한 14C 제거 성능 실험 결과, 14C 제거율은 온도가 증가함에 따라 높아졌지만 500 ℃에서 제거율은 55%로 나타나 자체 처분 기준치인 1 Bq/g에 미치지 못하였다.
(
실험예
6~
실험예
9)
상기의 실험예를 이용하여 반응시간 및 온도에 따른 폐활성탄 방사능 저감특성을 알아보고자 표 3과 같은 실험조건으로 14C/3H 탈착 실험을 수행하였고, 이에 따른 방사능 측정결과를 표 4에 나타내었다.
실험예 | 폐활성탄 처리양(g) |
질소기체 유량 (L/min) |
열처리 온도 (oC) |
열처리 시간 (hr) |
실험예6 | 1,200 | 5 | 500 | 3 |
실험예7 | ~1,200 | 5 | 500 | 6 |
실험예8 | ~1,200 | 5 | 500 | 10 |
실험예9 | 600 | 8 | 850 | 10 |
실험예 | 방사능 (Bq/g) | |
14C | 3H | |
폐활성탄 처리 전 (실험예6~8) |
144 ± 15.6 | 309 ± 33.4 |
실험예6 | 53.5 | 8.29 |
실험예7 | 55.3 | 8.64 |
실험예8 | 55.5 | 10.17 |
폐활성탄 처리 전 (실험예9) |
50.2 ± 5.49 | 13.4 ± 1.55 |
실험예9 | 51.4 | 8.44 |
약 500 ℃에서 단순 열처리할 경우 14C 방사능을 63% ~ 65% 범위만큼 제거할 수 있는 것으로 나타났지만 자체 처분 기준인 1 Bq/g 보다는 크게 높은 값을 보여주었다. 850℃에서 10시간 추가 열처리할 경우에도 전체적으로 14C 방사능은 시료 전체 평균으로 보면 51.4 Bq/g로서 1차 실증시험 결과와 비교하여 거의 차이가 없었다.
(
실험예
10~
실험예
16)
상기의 실험예를 이용하여 감압조건에 의한 폐활성탄 방사능 저감특성을 알아보고자 표 5와 같은 실험조건으로 14C/3H 탈착 실험을 수행하였고, 이에 따른 방사능 측정결과를 표 6에 나타내었다.
실험예 | 폐활성탄 처리양(g) |
질소기체 유량 (L/min) |
압력 | 열처리 온도 (℃) |
열처리 시간 (hr) |
실험예10 | 20 | 1 | 감압 (-500 torr) |
270 | 10 |
실험예11 | 20 | 1 | 감압 (-600 torr) |
270 | 10 |
실험예12 | 20 | 1 | 감압 (-600 torr) |
50 | 10 |
실험예13 | 20 | 1 | 감압 (-600 torr) |
120 | 10 |
실험예14 | 20 | 1 | 감압 (-600 torr) |
200 | 10 |
실험예15 | 20 | 1 | 감압 (-600 torr) |
270 | 10 |
실험예16 | 20 (실험예9의 850℃ 열처리 후의 폐활성탄 이용) |
1 | 감압 (-600 torr) |
270 | 10 |
실험예 | 방사능 (Bq/g) | |
14C | 3H | |
폐활성탄 처리 전 (실험예10~11) |
45.5 ± 4.97 | 226 ± 24.5 |
실험예10 | 16.2 ± 1.80 | 1.46 ± 0.248 |
실험예11 | 12.4 ± 1.39 | 0.376 ± 0.148 |
폐활성탄 처리 전 (실험예12~15) |
130 ± 14.1 | |
실험예12 | 107 ± 11.6 | |
실험예13 | 87.5 ± 9.50 | |
실험예14 | 33.1 ± 3.63 | |
실험예15 | 23.1 ± 2.45 | |
실험예16 | 51.7 ± 4.40 |
열처리 온도 270 ℃, 진공 조건하에 실증시험 결과, 14C 제거율은 진공도를 -600 torr로 할 경우 기존 단순 열처리할 경우보다 약 8 % 정도 증가하여 진공에 의한 영향이 어느 정도 있는 것으로 나타났으나, 자체 처분 기준치를 만족하지는 못하였다.
진공도 -600 torr 조건에서 열처리 온도 변화별(상온 ~ 270℃) 14C 제거율을 보면, 열처리 온도 증가에 따라 처리된 폐활성탄 내 14C 방사능은 감소함을 알 수 있다. 열처리 온도는 200 ℃ 이상이 14C제거에 바람직하다.
850 ℃에서 10시간 동안 단순 열처리한 폐활성탄 시료(실험예9)를 270 ℃, -600 torr의 진공조건에서 열처리한 실험 결과를 보면, 실험예 9 처리 후의 14C 방사능(51.4 Bq/g)과 비교하여 변화가 없었다 이는 고온에서 단순 열처리한 폐활성탄의 경우와 더 낮은 온도에서 진공 조건에서 열처리한 경우의 14C 제거율이 비슷하다는 것을 의미한다.
3H의 경우 진공 열처리할 경우 제거율이 99% 이상으로 매우 효율적으로 자체 처분 기준 이하로 제거되었다.
(
실험예
17~
실험예
18)
산성용액을 이용한 습식처리방법을 통한 폐활성탄 방사능 저감특성을 알아보고자, 다음과 같은 실험을 수행하였다. 산성용액 100 ml에 폐활성탄 5g을 투입하여 질소기체로 bubbling 및 교반을 1.5시간 수행한 후, 질소기체를 중단하고 교반만 수행하였다. 각 실험조건을 표 7에 나타내었으며, 이에 따른 방사능 측정결과를 표 8에 나타내었다.
실험예 | 산성용액 | 농도 | 폐활성탄(g)/산성용액(ml) |
실험예17 | HNO3 | 6 mol/L | 5 g/100 ml |
실험예18 | HCl | 6 mol/L | 5 g/100 ml |
실험예 | 방사능 (Bq/g) | |
14C | 3H | |
실험예17 | 15.3 ± 1.70 | 0.569 ± 0.162 |
실험예18 | 24.9 ± 2.75 | 0.633 ± 0.170 |
습식 처리를 통한 14C 제거 성능 실험 결과, 14C 제거율은 45% ~ 65%로 나타났으며, 염산보다는 질산 용액을 사용할 경우 14C 제거율이 증가하였으나, 자제 처분 기준 이하로 제거되지는 않았다. 3H의 경우 자체 처분 기준 (1 Bq/g)으로 제거되었다.
(
실험예
19~
실험예
22)
14C을 추가적으로 제거하기 위하여 진공 열처리(실험예10~실험예16) 이전에 오존처리를 수행하였다. 구체적인 실험방법은 다음과 같다. 오존 기체 농도가 약 7,000 ppm인 질소기체를 이용하여 진공 열처리하기 전에 오존으로 전처리하고, 2단계 공정으로서 진공 열처리(실험예10~실험예16)를 수행하였고 이를 표 9에 나타내었다. 오존 전처리후 진공 열처리 시험에 대한 폐활성탄 내 14C 방사능 분석 결과를 표 10에 나타내었다.
실험예 | 오존 농도 (ppm) | 오존 처리온도 (℃) | 오존 처리시간 (hr) | 진공 열처리 조건 | ||
압력 | 열처리 온도 (℃) |
열처리 시간 (hr) |
||||
실험예19 | 7,000 | 상온 | 3 | 감압 (-600 torr) |
220 | 5 |
실험예20 | 7,000 | 110 | 5 | 진공열처리 미수행 | ||
실험예21 | 7,000 | 110 | 3 | 감압 (-600 torr) |
220 | 5 |
실험예22 | 7,000 | 180 | 3 | 감압 (-600 torr) |
220 | 5 |
실험예 | 방사능 (Bq/g) |
14C | |
폐활성탄 처리 전 (실험예19~22) |
145 ± 16.1 |
실험예19 | 27.3 ± 3.00 |
실험예20 | 129 ± 14.0 |
실험예21 | 19.8 ± 2.20 |
실험예22 | 21.5 ± 2.37 |
진공 열처리하지 않고 7,000 ppm 오존 기체만을 이용하여 110 ℃에서 열처리 시험한 결과, 폐활성탄 내 14C 핵종은 거의 제거되지 않았다(실험예 20). 오존 기체에 의한 14C 유기물 산화는 크게 나타나지 않는 것으로 판단된다.
2단계 공정 조건으로 진공도 -600 torr, 220 ℃, 5시간으로 일정하게 하고, 오존 기체로 전처리시 온도 변화 영향을 보면, 폐활성탄 내 14C 핵종 제거 정도는 상온 및 180 ℃ 조건에서 거의 큰 차이를 보이지 않았다. 즉 폐활성탄 내 14C 핵종 제거는 오존 기체에 의한 열처리 온도보다 진공 정도가 지배적이고, 오존 기체에 의한 영향은 거의 없었다.
(
실험예
23~
실험예
24)
폐활성탄 내의 방사성 핵종인 14C/3H을 자체 처분 기준 이하로 제거하고자 상기의 열처리방법(실험예1~실험예9), 진공열처리 방법(실험예10~실험예16), 산성용액처리 방법(실험예17~실험예18), 오존처리 방법(실험예19~실험예22)을 실시하였고, 이로부터 3H은 자체 처분 기준 이하로 핵종 탈착이 가능하였으나, 14C의 경우 탈착 후에도 자체 처분 기준 이상의 핵종이 존재하였다. 이를 해결하고자, 다음과 같이 마이크로웨이브를 이용한 열처리 실험을 통하여 14C 탈착 실험을 수행하였다. 약 100 g의 활성탄을 알루미나 도가니에 장입 후, 2kW의 마이크로웨이브를 통한 열처리를 2분간 수행하였으며, 이때, 균일한 마이크로웨이브 조사를 위하여 시료판을 회전하였다. 이때 폐활성탄은 약 800 ℃ 수준으로 가열되었다. 수분의 영향을 알아보고자 증류수 미흡착/흡착 폐활성탄을 처리하였다. 마이크로웨이브 열처리 조건 및 폐활성탄의 무게 변화를 표 11에 나타내었고, 이에 따른 방사능 측정결과를 표 12에 나타내었다.
실험예 | 마이크로웨이브 처리조건 |
시료상태 | 온도 (℃) |
처리 전 무게 (g) |
처리 후 무게 (g) |
감량율 (%) |
실험예23 | 2 kW, 2 min. | Dry | ~800 | 101.9 | 100.6 | 1.28 |
실험예24 | 2 kW, 2 min. | H2O | ~800 | 100.2 | 98.5 | 1.70 |
실험예 | 처리 전 방사능 (Bq/g) | 처리 후 방사능 (Bq/g) | 방사능 제거율 (%) | |||
14C | 3H | 14C | 3H | 14C | 3H | |
실험예23 | 21.6±1.22 | 65.4±3.68 | 2.00±0.18 | <0.354 | 90.74 | 99.46 |
실험예24 | 21.1±3.10 | 71.1±10.9 | 1.57±0.07 | <0.352 | 92.56 | 99.50 |
마이크로웨이브 열처리를 통하여 폐활성탄 내 14C 및 3H 탈착실험 결과, dry 조건 및 H2O 조건에서 방사능 제거율은 H2O조건의 경우 더 크나, 비슷한 것으로 나타났다. 3H의 경우 실험예 23 및 24 모두 약 99.5%의 제거율 수준으로 자체 처분 기준 이하로 효율적으로 제거되었다. 14C의 경우 또한 90% 이상의 높은 제거율로 폐활성탄으로부터 제거되었으며, 자체 처분 기준인 1 Bq/g 수준인 1.5~2 Bq/g 수준으로 탈착이 되었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.
Claims (8)
- 하기 단계를 포함하는 폐공기 정화제 내 방사성 핵종의 탈리 방법:
1) 폐공기 정화제를 반응조에 투입하고, 알칼리토 산화물을 회수반응조에 투입하는 단계;
2) 상기 반응조 및 회수반응조에 질소(N2) 및 산소(O2)의 혼합가스를 주입하는 단계;
3) 상기 반응조에 마이크로파를 조사하여 폐공기 정화제를 1 내지 60분 동안 가온하고, 상기 반응조에서 발생된 이산화탄소(CO2) 및 물(H2O)은 상기 회수반응조 내의 알칼리토 산화물에 화학흡착시키는 단계;
4) 상기 회수반응조와 반응조를 물리적으로 차단하고, 반응조에서 폐공기 정화제 내에 잔존하는 방사성 핵종을 탈리한 가스를 가압탱크에 포집하는 단계;
5) 상기 반응조와 가압탱크를 물리적으로 차단하고, 상기 반응조에 포함된 폐공기 정화제를 가온하며, 상기 가압탱크와 회수반응조를 연결하여 상기 탈리된 방사성 핵종을 포집하는 단계; 및
6) 상기 반응조, 회수반응조 및 가압탱크 내부 잔존가스를 질소를 이용해 제거하는 단계.
- 제 1항에 있어서,
상기 단계 6) 이후, 방사성 핵종이 화학흡착된 알칼리토 산화물을 1 내지 40 중량%로 포틀란트 시멘트와 혼합하여 고화처리하는 단계를 더 포함하는 것을 특징으로 하는, 방법.
- 제 1항에 있어서,
상기 알칼리토 산화물은 산화칼슘(CaO), 산화바륨(BaO), 및 산화마그네슘(MgO)으로 이루어지는 군으로부터 선택되는 하나 이상의 산화물인 것을 특징으로 하는, 방법.
- 제 1항에 있어서,
상기 2)단계의 산소 농도는 1 내지 20%인 것을 특징으로 하는, 방법.
- 제 1항에 있어서,
상기 2)단계에서 압력은 10 내지 760 torr인 것을 특징으로 하는, 방법.
- 제 1항에 있어서,
상기 3)단계에서 가온은 100 내지 900 ℃로 가열되는 것을 특징으로 하는, 방법.
- 제 1항에 있어서,
상기 4)단계에서 반응조의 내부압력은 1 내지 300 torr의 음압상태로 유지하는 것을 특징으로 하는, 방법.
- 제1항에 있어서,
상기 5)단계에서 가온은 900℃ 이상의 온도로 수행되는 것을 특징으로 하는, 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140030542A KR101545440B1 (ko) | 2014-03-14 | 2014-03-14 | 폐공기 정화제의 처리 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140030542A KR101545440B1 (ko) | 2014-03-14 | 2014-03-14 | 폐공기 정화제의 처리 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101545440B1 true KR101545440B1 (ko) | 2015-08-18 |
Family
ID=54061365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140030542A KR101545440B1 (ko) | 2014-03-14 | 2014-03-14 | 폐공기 정화제의 처리 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101545440B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190004396A (ko) * | 2017-07-03 | 2019-01-14 | 한국원자력연구원 | 폐활성탄 내 방사성물질의 제거 방법 및 장치 |
KR20210121730A (ko) | 2020-03-31 | 2021-10-08 | 한국원자력연구원 | 방사성 탄소 함유 이산화탄소 처리용 결정성 실리카계 포집제, 이의 제조방법 및 이를 이용한 방사성 탄소 함유 이산화탄소 처리 시스템 |
US11810684B2 (en) | 2020-08-25 | 2023-11-07 | Korea Atomic Energy Research Institute | Method of treating radioactive waste resin and an equipment therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101113706B1 (ko) | 2011-04-13 | 2012-02-27 | 김진길 | 폐활성탄 처리장치 및 이를 이용한 폐활성탄 처리방법 |
-
2014
- 2014-03-14 KR KR1020140030542A patent/KR101545440B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101113706B1 (ko) | 2011-04-13 | 2012-02-27 | 김진길 | 폐활성탄 처리장치 및 이를 이용한 폐활성탄 처리방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190004396A (ko) * | 2017-07-03 | 2019-01-14 | 한국원자력연구원 | 폐활성탄 내 방사성물질의 제거 방법 및 장치 |
KR102001232B1 (ko) * | 2017-07-03 | 2019-07-19 | 한국원자력연구원 | 폐활성탄 내 방사성물질의 제거 방법 및 장치 |
KR20210121730A (ko) | 2020-03-31 | 2021-10-08 | 한국원자력연구원 | 방사성 탄소 함유 이산화탄소 처리용 결정성 실리카계 포집제, 이의 제조방법 및 이를 이용한 방사성 탄소 함유 이산화탄소 처리 시스템 |
US11810684B2 (en) | 2020-08-25 | 2023-11-07 | Korea Atomic Energy Research Institute | Method of treating radioactive waste resin and an equipment therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101233542B1 (ko) | 방사성 폐활성탄의 처리방법 및 장치 | |
KR102001232B1 (ko) | 폐활성탄 내 방사성물질의 제거 방법 및 장치 | |
KR900004292B1 (ko) | 방사성폐수지의 처리방법 | |
KR101113706B1 (ko) | 폐활성탄 처리장치 및 이를 이용한 폐활성탄 처리방법 | |
KR101545440B1 (ko) | 폐공기 정화제의 처리 방법 | |
KR101743263B1 (ko) | 우라늄 폐기물 처리방법 | |
JP2012215551A (ja) | 放射性セシウム、ストロンチウムおよびヨード化合物のフィルター型捕集材および捕集方法 | |
KR20150069089A (ko) | 방사성 폐건조제의 삼중수소와 방사성탄소 제거시스템 | |
KR101474384B1 (ko) | 방사성 폐활성탄 처리공정 제어를 위한 실시간 모니터링 방법 | |
KR102160108B1 (ko) | 방사성 세슘 흡착제 및 이를 이용한 방사성 세슘의 제거방법 | |
JP2015160888A (ja) | 使用済みイオン交換樹脂の処理方法及び処理装置 | |
JP2014237090A (ja) | 酸化エチレンガスを含む廃ガスの処理装置及び処理方法 | |
JP2014016210A (ja) | 放射性汚染水除染システム及び放射性汚染水除染プロセス | |
CN102491570A (zh) | 一种利用高能电子束处理城市污水的方法 | |
JP7247343B2 (ja) | イオン交換樹脂のコンディショニング方法およびそれを実行するための装置 | |
KR102253121B1 (ko) | 유해가스와 이산화탄소 흡착용 조성물의 제조 및 재생방법 | |
JP2014074694A (ja) | 放射性セシウム除去方法 | |
CN103551137A (zh) | 一种骨架为污泥基活性炭的固体催化剂的制备及其应用 | |
JP6373748B2 (ja) | 放射性物質吸着剤の処分方法及び処分装置 | |
JP2017096948A (ja) | 放射性核種を含む廃イオン交換樹脂の処理方法及び装置 | |
JP2011214971A (ja) | 使用済みイオン交換樹脂の処理方法及び処理装置 | |
US20230182116A1 (en) | Regenerating agent for radionuclide adsorbent, method for regenerating spent radionuclide adsorbent using same, and method for treating spent regenerating agent | |
JP2003302493A (ja) | 放射性ヨウ素ガスの固定化剤及びその固定化法 | |
KR102716938B1 (ko) | 폐흡착제의 폐기처리방법 | |
KR101766861B1 (ko) | 에탄올아민 처리를 위한 복합흡착제 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190626 Year of fee payment: 5 |