KR101449191B1 - 박막형 태양전지용 기판의 제조방법 - Google Patents

박막형 태양전지용 기판의 제조방법 Download PDF

Info

Publication number
KR101449191B1
KR101449191B1 KR1020120151565A KR20120151565A KR101449191B1 KR 101449191 B1 KR101449191 B1 KR 101449191B1 KR 1020120151565 A KR1020120151565 A KR 1020120151565A KR 20120151565 A KR20120151565 A KR 20120151565A KR 101449191 B1 KR101449191 B1 KR 101449191B1
Authority
KR
South Korea
Prior art keywords
solar cell
base substrate
coating layer
substrate
metal base
Prior art date
Application number
KR1020120151565A
Other languages
English (en)
Other versions
KR20140082115A (ko
Inventor
박영준
이재륭
김경보
백제훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120151565A priority Critical patent/KR101449191B1/ko
Publication of KR20140082115A publication Critical patent/KR20140082115A/ko
Application granted granted Critical
Publication of KR101449191B1 publication Critical patent/KR101449191B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 박막형 태양전지의 기판에 관한 것으로서, 보다 상세하게는 표면결함이 없고, 우수한 절연성을 확보할 수 있는 절연층을 제조하며, 연속생산 공정이 가능한 박막형 태양전지용 기판의 제조방법에 관한 것이다.

Description

박막형 태양전지용 기판의 제조방법{METHOD FOR MANUFACTURING THIN FILM SOLLAR CELL SUBSTRATE}
본 발명은 박막형 태양전지의 기판에 관한 것으로서, 금속 소재가 사용된 박막태양전지용 기판을 제조하는 방법에 관한 것이다.
태양전지는 반도체의 원리를 이용한 것으로서, p-n 접합된 반도체에 일정 수준 이상의 에너지를 갖춘 빛을 조사하면 상기 반도체의 가전자가 자유롭게 이동될 수 있는 가전자로 여기되어 전자와 정공의 쌍(EHP: electron hole pair)이 생성된다. 생성된 전자와 정공은 서로 반대쪽에 위치하는 전극으로 이동하여 기전력을 발생시키게 된다.
상기 태양전지의 가장 최초 형태는 실리콘 기판에 불순물(B)을 도핑하여 p형 반도체를 형성시킨 다음 그 위에 또다른 불순물(P)을 도핑시켜 층의 일부를 n형 반도체화 함으로써 p-n 접합이 이루어지도록 한 실리콘계 태양전지로서 1세대 태양전지로 많이 불린다.
상기 실리콘계 태양전지는 에너지 전환효율과 셀 전환효율(실험실 최고의 에너지 전환효율에 대한 양산시 전환효율의 비율)이 비교적 높기 때문에, 가장 상용화 정도가 높다. 그러나, 상기 실리콘계 태양전지 모듈을 제조하기 위해서는 우선 소재로부터 잉곳을 제조하고 상기 잉곳을 웨이퍼화한 후 셀을 제조하고 모듈화한다고 하는 다소 복잡한 공정단계를 거쳐야 할 뿐만 아니라, 벌크 재질의 재료를 사용하기 때문에, 재료소비가 증가하여 제조비용이 높다는 문제가 있다.
이러한 실리콘계 태양전지의 단점을 해결하기 위하여, 2세대 태양전지로 불리우는 소위 박막형 태양전지가 제안되게 되었다. 박막형 태양전지는 상술한 과정으로 태양전지를 제조하는 것이 아니라, 기판 위에 순차적으로 필요한 박막층을 적층하는 형태로 제조하기 때문에, 그 과정이 단순하며, 두께가 얇아 재료비용이 저렴하다는 장점을 가진다.
상기 박막형 태양전지의 기판으로서 주로 유리재를 이용한 기판이 사용되고 있다. 그러나, 이러한 유리 기판은 충격에 약할 뿐만 아니라, 롤 투 롤 공법과 같은 연속 생산 공정이 적용될 수 없기 때문에 대량 생산이 용이하지 않다는 문제가 있다. 이에 따라, 최근에는 충격에 강하고, 연속적인 생산공정이 가능하며, 생산단가의 측면을 고려하여 압연방식으로 제조된 금속 소재를 기판으로 활용하고자 하는 방안이 논의되고 있다.
상기 금속 소재 중에서도 비용이 저렴하고, 연속공정이 가능한 스틸 소재가 주목을 받고 있다. 그러나, 상기 스틸(steel) 소재는 표면 조도가 높고, 박판으로의 제조시에 표면에 발생된 결함(예를 들면, 스파이트(spike), 덴트(dent) 등)이 존재한다. 도 1 (a)는 태양전지 기판에 사용될 수 있는 스테인리스 스틸의 표면을 광학 현미경으로 관찰한 사진이다. 도 1(a)에 나타난 바와 같이, 그 표면에 압연롤 방향으로 미세한 줄무늬 및 홈 등의 결함이 다수 존재하는 것을 알 수 있다. 또한, 도 1(b)는 상기 도 1(a)의 표면거칠기를 확인할 수 있는 AFM 사진이다. 도 1(b)에 나타난 바와 같이, 상기 스테인리스 스틸은 표면의 거칠기가 매우 크다(Ra: 23.2㎚)는 것을 알 수 있다. 이러한 표면 결함과 거칠기 때문에, 태양전지 기판으로 사용되기 위해서는 표면을 평탄화하는 작업이 필요하다. 또한, 상기 금속 소재는 전기전도도가 높기 때문에, 이를 절연하기 위한 코팅층이 필요하다.
상기와 같이 금속 소재를 태양전지 기판으로 활용하기 위해서는 평탄화 및 절연을 위한 처리가 필요하다. 이를 위해, 통상적으로는 상기 금속 소재의 기판상에 절연층을 형성한다. 상기 절연층을 형성하는 방법으로는 PECVD 코팅 등의 방법이 시도되고 있다.
상기 절연층은 550~600℃ 이상의 고온에서도 열적으로 안정해야 되며, 금속 베이스 기판과 금속전극층(Mo 등)과의 밀착성이 우수해야 할 뿐만 아니라, 롤-투-롤(roll-to-roll)과 같은 연속 생산 공정에 적합하여야 한다. 그러나, 현재까지 이러한 절연층 코팅 방법은 개발되지 않아, 산업적으로 적용되고 있지 않다.
본 발명의 일측면은 금속 소재를 베이스 기판으로 하여 그 표면에 절연층을 형성함에 있어서, 표면결함이 없고, 우수한 절연성을 확보할 수 있는 절연층을 제조하며, 연속생산 공정이 가능한 박막형 태양전지용 기판의 제조방법을 제공하고자 하는 것이다.
본 발명 일태양은 금속 베이스 기판을 준비하는 단계;
상기 금속베이스 기판에 졸-겔(sol-gel) 코팅 용액을 코팅하여 코팅층을 형성하는 단계; 및
상기 코팅층이 형성된 금속 베이스 기판에 열처리하여 절연층을 형성하는 단계를 포함하는 박막형 태양전지용 기판의 제조방법을 제공한다.
본 발명에 의하면, 스틸 등의 금속 소재에 표면의 요철이나 결함을 제거할 수 있는 절연층을 용이하게 형성할 수 있으며, 특히, 절연층을 고속으로 형성할 수 있기 때문에, 유연 박막 태양전지의 생산성을 향상시킬 수 있는 장점이 있다.
도 1(a)는 태양전지용 기판에 적용될 수 있는 스테인리스 스틸의 표면을 관찰한 사진이고, 도 1(b)는 상기 스테인리스 스틸 표면의 표면거칠기를 관찰한 AFM 사진이다.
도 2(a)는 본 발명에 의해 절연층이 형성된 스테인리스 스틸의 표면을 관찰한 사진이고, 도 2(b)는 이때의 표면거칠기를 관찰한 AFM 사진이다.
도 3은 실시예에서 발명예와 비교예의 태양전지 효율을 측정한 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예에서 본 발명의 방법으로 제조된 발명예의 열 안정성 평가를 관찰한 사진이다.
본 발명의 발명자들은 금속 소재를 이용하여 태양전지 기판으로 활용하는 방안을 연구하였다. 금속 소재를 태양전지 기판으로 활용하는 경우에, 금속 표면상의 결함이나, 큰 조도가 문제됨을 인지하게 되었다. 이러한 문제를 해결하기 위해서, 금속 베이스 기판에 평탄화 및 절연을 위한 절연층을 형성하는 과정에서 종래 PECVD와 같은 방식에 의하면 연속적인 공정이 불가능하다는 것을 인지하고 본 발명에 이르게 되었다.
한편, 졸-겔 코팅방법을 이용하여 절연층을 형성하는 경우에, 롤-투-롤과 같은 연속공정은 그 공정속도가 매우 빠르기 때문에 절연층이 고속으로 경화되어야 하지만, 지금까지 알려진 졸-겔 코팅방법은 롤-투-롤의 연속공정에는 적합하지 않았다. 본 발명은 이러한 과제들을 해결하고자 도출된 것이다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 박막형 태양전지용 기판을 제조하는 방법은 금속 베이스 기판을 준비하는 단계; 상기 금속베이스 기판에 졸-겔(sol-gel) 코팅 용액을 코팅하여 코팅층을 형성하는 단계; 및 상기 코팅층이 형성된 금속 베이스 기판에 열처리하여 절연층을 형성하는 단계를 포함한다.
상기 금속 베이스 기판은 박막형 태양전지에 사용될 수 있는 유연기판이면 그 종류를 특별히 제한하는 것은 아니며, 롤 투 롤(roll-to-roll)과 같은 연속제조공정에 사용될 수 있는 것이면 충분하다. 바람직한 예로는 스틸(steel) 소재가 있으며, 스테인리스 스틸(STS)이 대표적이라고 할 수 있다.
상기 금속 베이스 기판에 졸-겔 코팅 용액을 코팅하여 코팅층을 형성한다. 상기 코팅층은 이후 열처리를 통한 경화과정을 통해 최종 절연층으로 형성된다. 상기 졸-겔 코팅 용액은 SiO2용 전구체, Al2O3용 전구체, TiO2용 전구체 중 1 종 이상을 주요 성분으로 하고, 이소프로필 알코올을 용제로 사용하여 희석한다.
상기 SiO2용 전구체는 헥사메틸다이실란(hexamethyldisilazane), Al2O3용 전구체로는 알루미늄 이소프로포사이드(aluminum isopropoxide), TiO2용 전구체로 티타늄 테트라이소프로포사이드(titanium tetraisopropoxide) 분자들을 기본으로 하고 있으며, 상기 SiO2 의 경우 직경 10㎚ 내외의 나노입자를 주성분으로 하는 전구체를 사용한다.
상기 코팅방법은 슬롯 다이(slot-die) 방법으로 행하는 것이 바람직하다. 상기 슬롯 다이 방법에 대해 설명하면, 졸-겔 코팅 용액을 편평한 스테이지 위에 놓인 베이스 기판 상에 1~10㎛의 코팅 두께로 ±5% 수준의 두께 균질도로 코팅하는 기술로서, ㎛ 수준의 극박막의 코팅 두께를 정밀하게 코팅하는데 사용된다. 상기 슬롯 다이 코팅을 위한 장치는 용액이 수 ㎛의 랩을 가지는 슬롯을 통하여 연속적으로 토출되는 슬롯 다이부와 이를 제어하는 장치 및 코팅된 기판을 가열하여 건조/경화시키는 장치와 부속 제어 장치로 구성되며, 용액 코팅 직후에 극평탄화 시편을 제조하기 위해 시편의 이동없이 바로 건조된다.
상기 코팅층의 두께는 3~10㎛인 것이 바람직하다. 상기 코팅층의 두께가 너무 얇으면, 상기 코팅층으로부터 제조된 절연층에 충분한 절연 효과를 확보할 수 없으며, 금속 베이스 기판 표면에 형성된 결함을 충분히 덮을 수 없기 때문에 3㎛ 이상인 것이 바람직하다. 한편, 코팅층의 두께가 10㎛를 초과하는 경우에는 두께가 두꺼워짐에 따른 기술적 효과를 더 이상 확보하기 어렵고, 오히려 태양전지의 두께가 두꺼워지는 문제가 있으므로, 그 상한을 10㎛로 하는 것이 바람직하다.
상기 코팅층을 형성한 후, 코팅층이 형성된 금속 베이스 기판을 열처리하여 금속 베이스 기판상에 절연층을 형성한다.
상기 열처리는 다음의 가열과 냉각 열패턴(heat-pattern)으로 행하는 것이 바람직하다.
1 단계) 코팅층이 형성된 상온의 금속 베이스 기판의 코팅층을 80~85℃까지 승온한다. 이는 상기 졸-겔 코팅 용액에 포함된 용제를 휘발시키는 단계로 광조사를 이용하는 것이 바람직하다. 그 이유는 용액을 균일하게 가열시켜 표면에 핀홀과 같은 결함이 발생하지 않도록 하기 위함이다.
2 단계) 상기 승온 후 , 코팅층의 온도를 220~250℃까지 가열하는 제1 경화단계를 포함한다. 이는 졸-겔 반응이 코팅 표면에 균일하게 가열시켜 표면에 핀홀과 같은 결함이 발생하지 않도록 하기 위함이다. 이때의 가열도 광조사를 이용하는 것이 바람직하다.
3 단계) 제1 경화 후, 상기 금속 베이스 기판을 350~400℃까지 가열하는 제2 경화단계를 포함한다. 이는 상기 졸-겔 반응을 완전히 시키고, 미반응 잔류 물질을 제거하여 태양전지 효율 저하를 막기 위함이다. 즉, 고온의 태양전지 제조 공정시 코팅 성분 중 일부라도 열분해가 된다면 이것이 오염물질로 작용하여 태양전지 효율을 저하시킬 수 있기 때문이다. 이때의 가열은 열경화 방법을 이용하는 것이 바람직하다.
4 단계) 이후, 상온까지 냉각한다. 상기 냉각은 제조된 베이스 기판을 권취하기 위해 냉각하는 과정으로, 수냉 또는 공냉에 의한다. 상기 경화단계 이후에 냉각되지 않으며, 코팅물질이 코일에 감기면서 반대편에 전사되는 경우가 있으므로, 냉각을 행하는 것이 바람직하다.
상기 승온 및 제1 경화단계에서 광조사는 근적외선(NIR, Near Infra Red) 또는 적외선(IR, Infra Red)을 이용하여 행하는 것이 바람직하며, 보다 바람직하게는 근적외선(NIR)을 이용한다. 상기 제2 경화단계에서 열경화는 인덕션 히터(induction heater) 또는 열풍을 이용하여 행하는 것이 바람직하며, 보다 바람직하게는 인덕션 히터(induction heater)을 이용한다.
한편, 도 2(a)는 앞선 도 1의 스테인리스 스틸을 본 발명의 방법으로 절연층을 형성한 후의 표면을 관찰한 사진이다. 도 1(a)와 비교할 때, 도 2(a)에서는 스틸 소재 자체의 결함이나 줄무늬가 거의 발견되지 않아, 우수한 평탄도를 확보할 수 있음을 알 수 있다. 한편, 도 2(b)는 이때의 AFM 사진으로서, 표면의 거칠기를 관찰한 것인데, 도 1(b)에 비해 매우 낮은 거칠기(Ra: 0.8㎚)를 얻을 수 있음을 알 수 있다.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하고자 하는 것은 아니다.
(실시예)
1. 발명예
STS 430을 베이스 기판으로 하여, slot die coater 한판 스테이지에 진공으로 밀착시킨 후, SiO2 용 전구체, Al2O3 용 전구체, TiO2 용 전구체가 혼합된 졸-겔 용액(고형분 30%)을 slot-die를 이용하여 습도막 두께 10~20㎛의 두께로 코팅하였다.
이후, 상온에서 80~85℃까지 3~5분간 NIR 건조기를 이용하여 승온시켜, 상기 용액상에 포함된 용제를 서서히 휘발시켰다. 이후, 220~250℃까지 NIR을 적용하여 2분내에 승온시키고, 350~400℃까지 인덕션 히터(induction heater)로 2분내에 승온시켜, 미반응 잔류 물질을 반응시키고, 이후, 상온까시 냉각하였다.
이렇게 제조된 코팅층을 포함하는 기판의 표면을 관찰한 결과, 도 2에 나타난 바와 같이, 표면조도가 약 8㎛ 정도로 평탄해지는 것을 확인할 수 있었다. 한편, 이것을 진공가열기에서 600℃로 1시간동안 가열한 후 색상변화를 관찰하여, 이를 도 4(a)에 나타내었다. 도 4(a)에 나타난 바와 같이, 본 발명의 발명예는 고온에서 색상변화가 관측되지 않아, 열에 대한 안정성이 우수한 것을 확인할 수 있다. 한편, 본 발명에서 적용된 코팅 및 열처리 방법이 아닌, 일반적인 바 코터(bar coater) 및 롤 코터(roll coater)를 이용하여 제조된 경우에는 도 4(b)에 나타난 바와 같이, 갈색으로 변색되어, 열분해가 이루어진 것을 알 수 있었다. 따라서, 본 발명에 의하면 우수한 열적 안정성을 확보할 수 있음을 알 수 있다.
이렇게 제조된 기판에 몰리브덴 전극을 형성하고, 그 위에 CIGS 층을 1.2~1.5㎛ 두께로 형성하였다. 이때, 상기 CIGS에서 Ca/(In+Ga)의 비율을 0.3이 되도록 조정하였고, Cu(In+Ga)를 0.9가 되도록 조정하여, 태양전지를 제조하였고, 이렇게 제조된 태양전지의 단락전류밀도(Jsc), 개방전압(Voc), 채움인자(Fill Factor, FF), 효율(Eff)을 반복적으로 측정하여 그 결과를 표 1에 나타내었고, 이때의 효율(Eff)은 도 3에 함께 나타내었다.
2. 비교예
상기 발명예와 비교하기 위해서, 동일 베이스 기판에 SiOX 층을 1~2㎛ 두께로 PECVD(Plazma-enhanced chemical vapor deposition) 장비를 이용하여 증착하였다. 이때 주요 소스 가스로는 SiH4를 사용하였으며, 증착온도는 250℃를 적용하였다.
한편, 상기 발명예와 동일하게 금속전극 및 CIGS를 형성하고, 태양전지 성능을 측정하여 그 결과를 하기 표 1에 나타내었다.
상기 태양전지의 성능 시험은 태양광의 스펙트럼을 나타낼 수 있는 제논 램프(xenonlamp)와 air-mass 필터를 이용한 solar simulation(XEC-301S, SAN-EI ELECTRIC 사)을 사용하였으며, AM(air mass) 1.5G(grobal)의 환경조건에서 태양전지의 특성을 평가하였다. 인공 태양광원 상에서 박막 태양전지의 광상태에 따른 I-V 특성을 측정하기 위하여 sourcemeter(2400sourcemeter, Keithley 사)를 PC와 연동하여 박막 태양전지의 개압전압(Voc), 단락전류(Jsc) 및 채움인자(FF)를 측정하였다.
상기 박막태양전지는 pin diode 구조로 형성이 되는데, 태양전지의 특성을 규정하는 주요 인자들로는 단락전류밀도(Jsc), 개방전압(Voc), 채움인자(Fill Factor, FF), 효율(Eff)이 있다. 이러한 특성 요소들은 전류밀도-전압 곡선에서 정의된다. Diode 구조의 태양전지에서 빛을 흡수하면 흡수한 에너지의 의해 전자-정공 쌍이 분리하여 전자는 n-층으로 정공은 p-층으로 분리되면서 양단 사이에 전압차가 발생하게 된다. 이 전압차가 전류값이 0인 점의 전압, 즉 개방전압, Voc에 해당하며, 양단 사이에 저항성분 (load)이 연결되어 닫힌 회로가 되면 단락전류(Isc) 가 흐르게 된다. Isc를 면적으로 나누어 주면 단락전류밀도(Jsc)가 된다. 또한 이 특성곡선에서 최대출력 값을 Voc x Jsc 로 나눈 값을 채움인자 (FF)로 정의한다. 그리고 효율(Eff)은 다음 식과 같이 정의한다. 여기서 Pinput은 input power에 해당하는데, 통상 태양전지의 측정시 100mW/cm2의 input power를 사용한다.
Figure 112012106799009-pat00001

구분 Voc(V) Jsc(mA/㎠) FF(%) Eff.(%)
비교예 0.474 31.9 55.3 8.36
0.198 29.0 24.7 1.42
0.419 31.4 38.8 5.11
0.479 33.0 61.1 9.65
0.484 32.3 57.6 9.00
0.370 31.1 31.7 3.65
0.480 32.5 59.8 9.33
0.245 28.1 23.7 1.64
발명예 0.486 31.6 58.2 8.94
0.469 30.6 55.8 8.00
0.446 30.7 51.2 7.01
0.466 31.6 55.0 8.09
0.470 31.8 50.3 7.52
0.466 32.5 52.5 7.95
0.462 31.8 54.3 7.99
상기 표 1 및 도 3의 결과를 보면, 본 발명의 발명예는 태양전지의 효율(Eff.)이 평균 8% 정도이며, 그 편차는 약 0.5%로 매우 균일한 값을 가지는 것을 확인할 수 있다. 반면, 비교예는 평균 효율이 약 6% 정도에 불과할 뿐만 아니라, 그 편차가 4.5% 정도로서, 그 편차가 너무 심하여 태양전지로 사용하기에는 매우 부적합함을 확인할 수 있다.

Claims (8)

  1. 금속 베이스 기판을 준비하는 단계;
    상기 금속베이스 기판에 졸-겔(sol-gel) 코팅 용액을 코팅하여 코팅층을 형성하는 단계; 및
    상기 코팅층이 형성된 금속 베이스 기판에 열처리하여 절연층을 형성하는 단계를 포함하고, 상기 열처리는 코팅층이 형성된 금속 베이스 기판의 코팅층을 80~85℃까지 승온하는 단계, 이후, 상기 코팅층을 220~250℃까지 가열하는 제1 경화단계, 상기 제1 경화 후 금속 베이스 기판을 350~400℃까지 가열하는 제2 경화단계 및 상온까지 냉각하는 단계를 포함하는 열패턴으로 행하는 박막형 태양전지용 기판의 제조방법.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 승온단계 및 제1 경화단계는 광조사 방법을 이용하여 행하고, 제2 경화단계는 열경화 방법을 이용하여 행하는 박막형 태양전지용 기판의 제조방법.
  4. 청구항 3에 있어서,
    상기 광조사 방법은 근적외선(NIR) 조사 또는 적외선(IR) 조사를 이용하여 행하는 박막형 태양전지 기판의 제조방법.
  5. 청구항 3에 있어서,
    상기 열경화 방법은 인덕션 히터(induction heater) 또는 열풍을 이용하여 행하는 박막형 태양전지 기판의 제조방법.
  6. 청구항 1에 있어서,
    상기 졸-겔 코팅 용액은 SiO2용 전구체, Al2O3용 전구체 및 TiO2용 전구체 중 1종 이상을 포함하는 박막형 태양전지용 기판의 제조방법.
  7. 청구항 1에 있어서,
    상기 코팅층의 두께는 3~10㎛인 박막형 태양전지용 기판의 제조방법.
  8. 청구항 1에 있어서,
    상기 졸-겔 코팅층은 슬롯-다이(slot-die) 방식으로 행하는 박막형 태양전지용 기판의 제조방법.
KR1020120151565A 2012-12-21 2012-12-21 박막형 태양전지용 기판의 제조방법 KR101449191B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120151565A KR101449191B1 (ko) 2012-12-21 2012-12-21 박막형 태양전지용 기판의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120151565A KR101449191B1 (ko) 2012-12-21 2012-12-21 박막형 태양전지용 기판의 제조방법

Publications (2)

Publication Number Publication Date
KR20140082115A KR20140082115A (ko) 2014-07-02
KR101449191B1 true KR101449191B1 (ko) 2014-10-16

Family

ID=51733111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120151565A KR101449191B1 (ko) 2012-12-21 2012-12-21 박막형 태양전지용 기판의 제조방법

Country Status (1)

Country Link
KR (1) KR101449191B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295035A (ja) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 絶縁層が形成された太陽電池用基板およびその製造方法、ならびにそれを用いた太陽電池およびその製造方法
KR20070027705A (ko) * 2004-06-15 2007-03-09 브라곤 오와이 혼성 금속 산화물질을 합성하는 방법 및 그것의 응용
JP2011077252A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 太陽電池モジュール
JP2011077229A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 光電変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027705A (ko) * 2004-06-15 2007-03-09 브라곤 오와이 혼성 금속 산화물질을 합성하는 방법 및 그것의 응용
JP2006295035A (ja) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 絶縁層が形成された太陽電池用基板およびその製造方法、ならびにそれを用いた太陽電池およびその製造方法
JP2011077252A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 太陽電池モジュール
JP2011077229A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 光電変換装置

Also Published As

Publication number Publication date
KR20140082115A (ko) 2014-07-02

Similar Documents

Publication Publication Date Title
Chen et al. Accelerating hole extraction by inserting 2D Ti 3 C 2-MXene interlayer to all inorganic perovskite solar cells with long-term stability
Ding et al. Low-temperature SnO 2-modified TiO 2 yields record efficiency for normal planar perovskite solar modules
CN108269921B (zh) 一种钙钛矿平面异质结太阳能电池及其制备方法
Lu et al. Si/PEDOT: PSS core/shell nanowire arrays for efficient hybrid solar cells
Guo et al. Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer
Brown et al. Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil
TWI587528B (zh) 鈍化膜、塗佈型材料、太陽電池元件及帶有鈍化膜的矽基板
Chen et al. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
Lancellotti et al. Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells
Ashery et al. Tailoring the electrical characterization of epitaxialCuInGaSe2 thin film-based device for photodiode appliances
KR100844505B1 (ko) 질화-산화알루미늄 박막 내의 음성 고정전하를 이용한 박판실리콘 태양전지의 제조방법
JP2012038852A (ja) 太陽電池及びその製造方法
CN110993707B (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
Xiao et al. Flexible perovskite solar cells fabricated by a gradient heat treatment process
Cojocaru et al. Hybrid evaporation/spray-coating process for a simplified and controllable production of perovskite solar cells
CN109037034B (zh) 硒化锑薄膜及其制备方法、应用其的太阳能电池
KR101449191B1 (ko) 박막형 태양전지용 기판의 제조방법
CN110690351A (zh) 一种制造钙钛矿太阳能电池的方法
Li et al. Molecule occupancy by an-butylamine treatment to facilitate the conversion of PbI 2 to perovskite in sequential deposition
Selvakumar et al. Formation of PbSe–ZnO thin film based heterostructure for solar cell applications
JP5173370B2 (ja) 光電変換素子の製造方法
TW202218175A (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
Li et al. P3HT: spiro-OMeTAD blending system as a hole conductor for solid-state hybrid solar cells with a dendritic TiO 2/Sb 2 S 3 nanorod composite structure
CN103928534B (zh) 一种金属卤氧化物纳米薄膜/Si复合电池片及其制备方法
Wu et al. Effect of pre-annealing of Mo foil substrate on CZTSSe thin films and Mo (S, Se) 2 interface layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6