KR101446943B1 - 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치 - Google Patents

양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치 Download PDF

Info

Publication number
KR101446943B1
KR101446943B1 KR1020097011585A KR20097011585A KR101446943B1 KR 101446943 B1 KR101446943 B1 KR 101446943B1 KR 1020097011585 A KR1020097011585 A KR 1020097011585A KR 20097011585 A KR20097011585 A KR 20097011585A KR 101446943 B1 KR101446943 B1 KR 101446943B1
Authority
KR
South Korea
Prior art keywords
delete delete
programmable
quantum
superconducting
signals
Prior art date
Application number
KR1020097011585A
Other languages
English (en)
Other versions
KR20090090326A (ko
Inventor
앤드류 제이. 버클리
폴 아이. 뷰닉
조디 로즈
Original Assignee
디-웨이브 시스템즈, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디-웨이브 시스템즈, 인코포레이티드 filed Critical 디-웨이브 시스템즈, 인코포레이티드
Publication of KR20090090326A publication Critical patent/KR20090090326A/ko
Application granted granted Critical
Publication of KR101446943B1 publication Critical patent/KR101446943B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06JHYBRID COMPUTING ARRANGEMENTS
    • G06J3/00Systems for conjoint operation of complete digital and complete analogue computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

확장성 있는 양자 프로세서 구조를 위한 시스템들, 방법들 및 장치. 장치 제어 파라미터(들)를 구현하는 신호를 메모리 레지스터에 공급하고, 상기 신호를 아날로그 신호로 변환하고, 상기 아날로그 신호를 하나 이상의 프로그램가능 소자에 제공함으로써 양자 프로세서는 국부적으로 프로그램가능 하다.
양자 프로세서, 프로그래밍, 확장성, 큐비트 파라미터 제어

Description

양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치{SYSTEMS, METHODS AND APPARATUS FOR LOCAL PROGRAMMING OF QUANTUM PROCESSOR ELEMENTS}
본 시스템들, 방법들 및 장치는 확장 가능한 양자 계산(scalable quantum computing) 및 양자 프로세서 요소들의 국부적 프로그래밍(local programming)에 관한 것이다.
<관련 출원에 대한 상호참조>
본 출원은 2006년 12월 5일에 출원된 미국 특허 가출원 제60/868,654호의 이익을 미국 특허법 35 U.S.C. 119(e)에 의거하여 주장하고 그 전체가 그대로 참조자료로서 본 출원에 추가된다.
튜링 기계(Turing machine)는 1936년에 아란 튜링(Alan Turing)에 의해 기술된 이론적인 계산 시스템이다. 어떤 다른 튜링 기계라도 효과적으로 모사(simulate) 할 수 있는 튜링 기계를 범용 튜링 기계(Universal Turing Machine, UTM)라 한다. 처치-튜링 명제(Church-Turing thesis)는 어떠한 실질적인 계산 모델도 UTM의 능력들(capabilities)과 동등하거나 그 부분집합(subset)에 해당하는 능력을 갖는다고 언명한다.
양자 컴퓨터는 계산 수행을 위해 하나 이상의 양자 효과를 이용하는 어떤 물리적 시스템이다. 어떤 다른 양자 컴퓨터라도 효과적으로 모사할 수 있는 양자 컴퓨터를 범용 양자 기계(Universal Quantum Computer, UQC)라 한다.
1981년에 리차드 피. 페인맨(Richard P. Feynman)은 양자 컴퓨터들이 특정 계산 문제들을 UTM보다 효율적으로 푸는데 사용될 수 있을 것이라는 처치-튜링 명제를 무력화하는(invalidate) 제안을 하였다. 예로서 페인맨의 "컴퓨터들을 이용한 물리현상의 모사" (International Journal of Theoretical Physics, Vol. 21, 1982, pp. 467-488) 참조. 예를 들어, 페인맨은 양자 컴퓨터가 어떤 다른 양자 시스템들을 모사하는데 사용될 수 있으며, 이 경우에 모사되는 양자 시스템의 어떤 특성들은 UTM을 사용하여 가능한 것보다 지수적으로(exponentially) 빠르게 계산하는 것이 가능하다고 지적하였다.
<양자 계산에 대한 접근방식>
양자 컴퓨터들의 설계 및 운용에 대하여 몇 가지 일반적인 접근방식들이 있다. 그 중의 하나는 양자 계산의 "회로 모델(circuit model)" 이다. 이 접근 방식에서는 어떤 알고리즘의 번역된(compiled) 표현인 일련의 논리적 게이트들(logical gates)에 의해 큐비트들(qubits)이 조작된다. 회로 모델 양자 컴퓨터들의 실용적인 구현에 여러 심각한 장애가 있다. 회로 모델에서는 단일 게이트 시간(single-gate time) 보다 훨씬 긴 시간 동안 큐비트들이 결맞음(coherent) 상태를 유지하여야 한다는 것이 요구된다. 이러한 요구사항은 회로 모델 양자 컴퓨터들이 동작을 위해 총괄적으로 양자 오류 보정(quantum error correction)이라 불리는 연산들을 요구한다는 것에 기인한다. 회로 모델 양자 컴퓨터의 큐비트들이 단일 게이트 시간의 1,000배에 해당하는 시간 동안 양자 결맞음 상태를 유지할 수 없으면 양자 오류 보정이 수행될 수 없다. 회로 모델 양자 컴퓨터들의 기본적인 정보 단위들을 형성하는데 충분한 결맞음을 갖는 큐비트들을 개발하는데 많은 연구가 집중되어 왔다. 예로서, 솔, 피. 더불유. (Shor,P. W.)의 "양자 알고리즘 입문" (arXiv.org:quant-ph/0005003, 2001, pp. 1-27) 참조. 실제적인 회로 모델 양자 컴퓨터들의 설계와 운영을 위해 충분한 수준으로 큐비트의 결맞음을 증가시키지 못함이 이 방식을 아직 제약하고 있다.
양자 계산에 대한 다른 접근방식은 결합된 양자 시스템들의 시스템이 자연적 물리적으로 전개(evolution)되는 것을 하나의 계산 시스템으로 사용하는 것을 포함한다. 이 접근 방식은 양자 게이트들과 회로들을 중요하게 사용하지 않는다. 그 대신에, 결합된 양자 시스템들의 시스템의 최종 상태가 풀어야 할 문제에 대한 해답에 관한 정보를 포함하도록, 알려진 초기의 해밀토니안(Hamiltonian)으로부터 시작하여, 그것은 결합된 양자 시스템들의 시스템-여기서, 풀어야 할 문제가 시스템의 해밀토니안형태로 부호화됨-의 유도된(guided) 물리적 전개에 의존한다. 이 접근 방식은 긴 큐비트 결맞음 시간을 요구하지 않는다. 이 접근 방식의 예로는 단열 양자 계산, 클러스터-상태 양자 계산, 단방향 양자 계산, 양자 어닐링(annealing) 및 고전적 어닐링을 들 수 있고, 예를 들어, 파르히, 이. (Farhi, E.)등의 "양자 단열 전개 알고리즘 대(vs.) 모사된 어닐링" (arXiv.org:quant-ph/0201031, 2002, pp 1-16)에 설명되어 있다.
<양자 컴퓨터의 실시예들>
양자 컴퓨터는 계산 문제들을 풀기 위해 중첩(superposition) 및 얽힘(entanglement)과 같은 양자 역학적 현상을 직접적으로 사용하는 임의의 계산 장치이다. 지금까지, 양자 컴퓨터들의 물리적 구현으로서 많은 다른 시스템들이 제안되고 연구되어 왔다. 이러한 시스템들의 예들로 다음과 같은 장치들이 있다: 이온 트랩들(ion traps), 양자 점들(quantum dots), 조화 진동자들(harmonic oscillators), 공동 양자 전기역학 장치들(cavity quantum electrodynamics devices, QED), 광자들 및 비선형 광학 매체들, 이종중합체들, 클러스터-상태들, 애니온들(anyons), 위상 시스템들(topological systems), 핵자기공명(NMR) 기반 시스템들 및 반도체들에서의 스핀들에 기반을 둔 시스템들. 이러한 시스템들에 관한 추가적 배경 지식은 다음을 참조: 닐슨(Nielsen)과 추앙(Chuang)의 "양자 계산 및 양자 정보"(Cambridge University Press, Cambridge, 2000, pp. 277-352) 윌리암스(Williams)와 크리어워터(Clearwater)의 "양자 계산에 대한 탐험" (Springer-Verlag, New York, Inc. 1998, pp. 241-265) 닐슨(Nielsen)과 미첼 에이.(Micheal A.)의 "클러스터-상태 양자 계산" (arXiv.org:quant-ph/0504097v2 , 2005, pp 1-15) 및 브레넨(Brennen)과 가빈 케이.(Gavin K.) 등의 "왜 누구나 애니온들을 이용한 계산에 관심을 가져야 하는가?" (arXiv.org:quant-ph/0704.2241, 2007, pp 1-19).
요약하자면, 이온 트랩 양자 컴퓨터의 예로서 전자기장들을 통하여 자유 공간에 구속된 이온들을 이용하는 컴퓨터 구조가 있다. 각 이온의 안정적인 전자적 상태들에 의해 큐비트들이 표현될 수 있다. 양자 점 양자 컴퓨터의 예로서 작은 영역들에 구속된 전자들을 이용하는 컴퓨터 구조가 있는데, 각 점이 다른 점들로부터 고립되도록 전자들의 에너지가 양자화될 수 있다. 조화 진동자의 예로서 포물선형 퍼텐셜 우물 속의 입자를 이용하는 컴퓨터 구조가 있다. 광학적 광양자 컴퓨터의 예로서 큐비트들이 빔 분리기들, 편광 필터들, 위상 이동기들 등을 이용하여 조작될 수 있는 개별적인 광학적 광자들에 의해 표현되는 컴퓨터 구조가 있다. 공동 QED 양자 컴퓨터의 예로서 광학 공동 내에서 제한된 수의 광학 모드들에 결합된 단원자들(single atoms)을 이용하는 컴퓨터 구조가 있다. NMR 양자 컴퓨터의 예로서 분자 샘플을 포함하는 원자들에서 적어도 하나의 핵의 스핀 상태들에서 큐비트들이 부호화되는 컴퓨터 구조가 있다. 이종중합체 양자 컴퓨터의 예로서 원자들의 선형 어레이를 메모리 셀들로 사용하는 컴퓨터 구조가 있는데, 여기서 원자들의 상태가 이진 산술의 기반을 제공한다. 반도체들에서 전자 스핀들을 이용하는 양자 컴퓨터의 예로서 케인(Kane) 컴퓨터가 있는데, 여기서 주개 원자들(donor atoms)은, 예를 들어, 실리콘의 결정 격자에 내장된다. 위상 양자 컴퓨터의 예로서 애니온들이라 불리고 그의 세계 선들(world lines)이 교차하여 3차원 시공간에서 노끈들(braids)을 형성하는 2차원 "준입자(quasiparticles)"를 사용하는 컴퓨터 구조가 있다. 그리고 이 노끈들이 컴퓨터 구조를 형성하는 논리 게이트들로서 사용될 수 있다. 마지막으로, 클러스터-상태 양자컴퓨터의 예로서 클러스터-상태라 지칭되는, 하나의 양자 상태에 얽힌 복수의 큐비트들을 사용하는 컴퓨터 구조가 있다. "클러스터-상태"는 일반적으로 특정한 양자 계산 방식을 지칭하고, 또한 이 분야의 당업자는 본 시스템들, 방법들 및 장치가 여러 하드웨어적 구현 및 알고리즘적 접근방식을 포함하는 모든 형태의 양자 계산을 포함할 수 있다고 인식할 것이다. 당업자는 또한 여기에 기재된 양자 컴퓨터들의 여러 실시예들에 대한 서술들이 오직 양자 계산에 대한 몇 개의 다른 물리적 구현들의 예로서 의도된 것이라는 것을 인식할 것이다. 본 시스템들, 방법들 및 장치는 결코 이러한 설명들에 의해 제한되거나 설명들에 국한되지 않는다. 당업자는 또한 양자 프로세서가 상기 서술된 시스템들 이외의 시스템에서도 구현될 수 있다고 인식할 것이다.
<큐비트>
상기한 바와 같이, 큐비트들은 양자 컴퓨터에 대한 정보의 기본적인 단위들로 사용될 수 있다. UTM들에서 비트(bit)의 경우와 같이, 큐비트들은 적어도 두 개의 다른 양들을 지칭할 수 있으며 큐비트가 정보가 저장되는 실제의 물리적 소자를 지칭할 수 있고, 또한 큐비트가 물리적 소자로부터 추상화된 정보의 단위 자체를 지칭할 수도 있다.
큐비트들은 고전적인 디지털 비트의 개념을 일반화한다. 고전적인 정보저장 소자는 대개 "0"과 "1"로 식별되는 두 가지의 이산적 상태들을 부호화할 수 있다. 물리적으로 이러한 두 이산적 상태들은 고전적인 정보저장 소자의, 자기장, 전류 또는 전압의 방향이나 크기 등과 같은, 서로 다르고 구별되는 두 가지 물리적 상태들에 의해 표현되는데, 비트의 상태를 부호화하는 물리량은 고전물리 법칙에 따라 거동한다. 큐비트 또한 "0"과 "1"로 식별될 수 있는 두 가지의 이산적 물리적 상태들을 포함한다. 물리적으로 이러한 두 이산적 상태들은 양자 정보저장 소자의, 자 기장, 전류 또는 전압의 방향이나 크기 등과 같은, 서로 다르고 구별되는 두 가지 물리적 상태들에 의해 표현되는데, 비트의 상태를 부호화하는 물리량은 양자물리 법칙들에 따라 거동한다. 만약 이 상태들을 저장하는 물리량이 양자역학적으로 거동한다면, 그 소자는 추가로 0과 1의 중첩에 위치될 수 있다. 즉, 큐비트는 동시에 "0"과 "1" 상태에 존재할 수 있고, 양 상태들에서 동시에 계산을 수행할 수 있다. 일반적으로, N 큐비트들은 2N 상태들의 중첩에 있을 수 있다. 양자 알고리즘들은 특정 계산을 빠르게 하기 위해 중첩 특성을 이용한다.
표준 표기법에서, 큐비트의 기저 상태들(basis states)은 상태들(|0〉, |1〉)로 지칭된다. 양자 계산 동안, 어떤 큐비트의 상태는 일반적으로 기저 상태들의 중첩이 있어서 상기 큐비트는 기저 상태(|0〉)를 취할, 0이 아닌 확률과 기저 상태(|1〉)를 취할, 0이 아닌 확률을 동시에 갖는다. 수학적으로, 기저 상태들의 중첩은 상기 큐비트의 전체적인 상태(|Ψ〉로 나타냄)가 형태(|Ψ〉= a|0〉+ b|1〉)를 갖는다는 것을 의미하는데, 여기서 a와 b는 각각 확률(|a|2)과 확률(|b|2)에 해당하는 계수이다. 계수(a)와 계수(b)는 각기 실수부와 허수부를 갖기 때문에 상기 큐비트의 위상이 특징 지워질 수 있다. 큐비트의 양자적 특성은 주로 그 큐비트가 기저 상태들의 결맞는 중첩에 존재할 수 있는 능력에서 유도된 것이고, 큐비트의 상태가 위상을 가질 수 있게 한다. 큐비트는 비결맞음(decoherence)의 원천들로부터 충분히 분리될 경우에 기저 상태들의 결맞는 중첩으로 존재할 수 있는 능력을 보유한다.
큐비트를 이용한 계산을 완결하기 위해, 그 큐비트의 상태가 측정(즉, 판독(read out))된다. 대개, 큐비트가 측정될 때, 그 큐비트의 양자적 특성이 일시적으로 상실되고 기저 상태들의 중첩은 기저 상태(|0〉)이거나 기저 상태(|1〉)로 붕괴되어 고전적인 비트와의 유사성이 나타난다. 붕괴 후에 큐비트의 실제 상태는 판독 연산 직전의 확률(|a|2)과 확률(|b|2)에 의해 결정된다.
<초전도 큐비트들>
양자 계산에 대한 하드웨어적 접근방식의 하나는 알루미늄이나 니오비움과 같은 초전도 재료들로 형성된 집적회로들을 사용하는 것이다. 초전도 집적회로들을 설계하고 제조하는데 채용되는 기술들 및 공정들은 고전적인 집적회로들에 채용되는 그것들과 유사하다.
초전도 큐비트들은 초전도 집적회로에 포함될 수 있는 초전도 소자의 한 유형이다. 초전도 큐비트들은 정보를 부호화하는데 사용되는 물리적 특성에 따라 몇 가지 카테고리들로 구분될 수 있다. 예를 들면, 마크린(Makhlin) 등의 논문(Reviews of Modern Physics 73, 2001, pp. 357-400)에 논의된 바와 같이, 그들은 전하(charge), 플럭스(flux) 및 위상 소자들로 구분될 수 있다. 전하 소자들은 그 소자의 전하 상태들에 정보를 저장하고 조작하는데, 요소 전하들(elementary charges)은 쿠퍼 쌍(Cooper pairs)으로 불리는 전자들의 쌍으로 이루어진다. 하나의 쿠퍼 쌍은 2e의 전하를 갖고, 예를 들면, 포논 상호작용(phonon interaction)에 의해 결합된 두 개의 전자들로 구성된다. 예로서, 닐슨 및 추앙의 저서 (양자 계산 및 양자 정보, Cambridge University Press, Cambridge, 2000, pp. 343-345) 참조. 플럭스 소자들은 상기 소자의 어떤 부분을 통과하는 자기 플럭스(magnetic flux)에 연관된 변수에 정보를 저장한다. 위상 소자들은 그 위상 소자의 두 영역들 사이에 존재하는 초전도 위상의 차이에 연관된 변수에 정보를 저장한다. 최근에, 전하, 플럭스 및 위상 자유도 중 둘 이상을 이용하는 혼성 소자들이 개발되었다. 예로서, 미국 특허 제6,838,694호 및 미국 특허출원 제2005-0082519호 참조.
사용될 수 있는 플럭스 큐비트들의 예로는 rf-SQUID들과 지속전류(persistent current) 큐비트들이 있으며, 상기 rf-SQUID들은 하나의 조셉슨 접합 또는 복합 접합(단일 조셉슨 접합이 두 개의 병렬 조셉슨 접합들로 대치됨)에 의해 차단되는 초전도 루프를 포함하며, 상기 지속전류 큐비트는 세 개의 조셉슨 접합들에 의해 차단되는 초전도 루프를 포함한다. 예로서, 무이즈(Mooij) 등의 논문(Science 285, 1036, 1999), 올란도(Orlando) 등의 논문(Phys. Rev. B 60, 15398, 1999) 참조. Il' 이체브(Il'ichev) 등의 논문(Phys. Rev. Lett. 91, 097906, 2003), 브래터(Blatter) 등의 논문(Phys. Rev. B 63, 174511, 2001), 프리드만(Friedman) 등의 논문(Nature 406, 43, 2000) 등에서 초전도 큐비트들의 다른 예들을 찾아볼 수 있다. 또한, 혼성 전하-위상 큐비트들도 사용될 수 있다.
상기 큐비트들은 상응하는 국부적 바이어스 소자(local bias device)를 포함할 수 있다. 상기 국부적 바이어스 소자들은 초전도 큐비트에 가깝게 외부 플럭스 바이어스를 상기 큐비트에 제공하는 금속 루프를 포함할 수 있다. 상기 국부적 바이어스 소자는 또한 복수 개의 조셉슨 접합들을 포함할 수 있다. 상기 양자 프로세 서에서 각 초전도 큐비트는 상응하는 국부적 바이어스 소자를 갖거나, 국부적 바이어스 소자들이 큐비트들보다 그 수가 적을 수 있다. 어떤 실시예들에서는, 전하 기반 판독 및 국부적 바이어스 소자들이 사용될 수 있다. 상기 판독 소자(들)는 복수의 dc-SQUID 자력계들을 포함할 수 있는데, 각 dc-SQUID 자력계는 토폴로지 내의 다른 큐비트에 유도적으로(inductively) 연결된다. 상기 판독 소자는 전압 또는 전류를 공급할 수 있다. dc-SQUID 자력계들은 대개 적어도 하나의 조셉슨 접합에 의해 차단되는 초전도 재료의 루프를 포함한다.
<초전도 양자 프로세서>
컴퓨터 프로세서는 초전도 양자 프로세서와 같은 양자 프로세서처럼 아날로그 프로세서의 형태를 취할 수 있다. 초전도 양자 프로세서는 여러 개의 큐비트들 (예를 들면, 둘 이상의 초전도 큐비트들)과 관련된 국부적 바이어스 소자들을 포함할 수 있다. 본 시스템들, 방법들 및 장치에 관련되어 사용될 수 있는 초전도 양자 프로세서들의 더 구체적 사항과 실시예들은 다음에 서술되어 있다: 미국 특허 공개 제2006-0225165호 미국 특허 가출원 제60/872,414호 (2007년 1월 12일 출원, 명칭 "연결된 프로세서 토폴로지를 위한 시스템, 장치들 및 방법들"); 미국 특허 가출원 제60/956,104호 (2007년 8월 16일 출원, 명칭 "연결된 프로세서 토폴로지를 위한 시스템들, 장치들 및 방법들"); 미국 특허 가출원 제60/986,554호 (2007년 11월 8일 출원, 명칭 "아날로그 처리를 위한 시스템들, 장치들 및 방법들").
초전도 양자 프로세서는 개별적인 큐비트 쌍들을 선택적으로 결합시킬 수 있는 복수의 결합기들(coupling devices)을 포함할 수 있다. 초전도 결합기들의 예로 는 플럭스에 의해 큐비트들을 결합시키는 rf-SQUID들과 dc-SQUID들이 있다. SQUID들은 하나의 조셉슨 접합(rf-SQUID) 또는 두 개의 조셉슨 접합(dc-SQUID)에 의해 차단되는 초전도 루프를 포함한다. 상기 결합기들은, 연결된 토폴로지 내에서 사용되는 방식에 따라, 강자성 및 반강자성 결합을 모두 할 수 있다. 플럭스 결합인 경우, 강자성 결합은 평행 플럭스들이 에너지적으로 선호됨을 의미하고, 반강자성 결합은 반평행(anti-parallel) 플럭스들이 에너지적으로 선호됨을 의미한다. 대안으로, 전하 기반 결합기들이 사용될 수 있다. 다른 결합기들의 예를 다음에서 찾아볼 수 있다: 미국 특허 공개 제2006-0147154호 및 미국 특허 가출원 제60/886,253호(2007년 1월 23일 출원, 명칭 "제어 가능하게 큐비트들을 결합하기 위한 시스템들, 장치들 및 방법들"). 큐비트들 사이에, 예를 들어, 강자성 또는 반강자성 결합을 제공하기 위해, 결합기들의 개별적인 결합강도는 0에서 최대값 사이에서 조절될 수 있다.
구현되는 구체적인 하드웨어에 관계없이, 하나의 큐비트의 관리는 여러 파라미터에 대한 제어를 요구할 수 있다. 종래에는, 이러한 요구사항은 각 큐비트와의 외부 통신(즉, 양자 프로세서 구조의 외부로부터의 통신)을 필요로 하였다. 그러나 양자 컴퓨터의 전체적인 처리능력은 시스템 내 큐비트들의 수와 함께 증가한다. 따라서, 종래의 슈퍼컴퓨터들의 능력을 넘어서는 고용량 양자 컴퓨터들은 많은 수의 큐비트들을 관리해야만 하고, 각 개별 큐비트에 대하여 여러 파라미터의 외부 제어를 사용하는 종래의 접근방식은 큐비트 파라미터들의 프로그래밍을 위한 복잡한 시스템을 요구한다.
따라서, 양자 프로세서들의 확장성은 큐비트 파라미터 제어 시스템의 복잡도에 의해 제한되므로, 확장성 있는 큐비트 파라미터 제어 시스템에 대한 필요성이 본 발명의 분야에 있다.
적어도 하나의 실시예는 복수의 프로그램가능 소자들 및 메모리 관리 시스템을 포함하는 양자 프로세서로 요약될 수 있는데, 상기 각 프로그램가능 소자는 적어도 하나의 통신 관로에 연결되고, 상기 메모리 관리 시스템은 적어도 하나의 상기 통신 관로를 통하여 적어도 하나의 프로그램가능 소자에 연결된다.
적어도 하나의 실시예는 적어도 하나의 프로그램가능 소자를 포함하는 양자 프로세서에 대한 프로그래밍 방법으로 요약될 수 있는데, 상기 프로그래밍 방법은 적어도 하나의 프로그램가능 소자 제어 파라미터를 구현하는 데이터 신호를 사용하여 적어도 하나의 정보 저장 소자를 국부적으로 프로그래밍하는 단계 상기 데이터 신호를 아날로그 신호로 변환하는 단계 및 상기 아날로그 신호를 상기 프로그램가능 소자에 제공하는 단계를 포함한다.
도면들에서, 동일한 참조 부호는 유사한 구성요소 또는 동작을 가리킨다. 도면들에서, 구성요소들의 크기들 및 상대적인 위치들은 일정한 비례로 그려진 것이 아닐 수 있다. 예를 들면, 여러 가지 구성요소들의 형태들과 각도들은 일정한 비례로 그려진 것이 아니고 이중의 일부는 가독성을 높이기 위해 임의로 확대 및 배치된다. 또한, 구성요소들의 형태들은 해당 요소들의 실제 형태에 관한 정보를 전달하고자 그려진 것이 아니고, 단지 도면들에서 인식의 편의를 위해 선택된 것이다.
도 1A는 본 시스템들, 방법들 및 장치에 따른 양자 프로세서 요소들의 국부적 프로그래밍에 대한 실시예를 보여주는 개략도이다.
도 1B는 양자 프로세서 요소들의 국부적 프로그래밍에 대한 다른 실시예를 보여주는 개략도이다.
도 2A 및 2B는 각기 양자 프로세서 요소들에 대한 프로그래밍 방법과 판독 방법의 실시예들을 보여주는 흐름도이다.
도 3은 디멀티플렉서 회로를 통한 양자 프로세서의 국부적 프로그래밍에 대한 실시예를 보여주는 개략도이다.
다음의 기술에서, 어떤 구체적인 사항들은 개시된 여러 실시예들에 대한 완전한 이해를 제공하기 위해 포함된 것이다. 그러나 실시예들이 이러한 제시된 사항들의 일부가 없이, 또는 다른 방법들, 구성요소들, 및 재료들 등과 함께 실시 가능할 수 있다는 것을 본 발명의 당업자는 인지하게 될 것이다. 다른 예들에서, 양자 소자들, 결합 소자들, 및 마이크로프로세서들과 구동회로를 포함하는 제어 시스템들과 같이, 양자 프로세서들에 관련된 널리 알려진 구조들은 본 시스템들, 방법들 및 장치의 실시예들에 대한 기술을 불필요하게 흐리지 않도록 도시되지 않거나 상세하게 기술되지 않았다. 본 명세서를 통틀어, 단어 "요소(element)" 및 "요소들(elements)"은 양자 프로세서들과 연관된 모든 구조들, 시스템들 및 장치들과 더 불어 이들에 관련된 프로그래밍 가능한 파라미터들을 포괄하도록, 그러나 그들에 한정되지 않도록, 사용된다.
후속의 명세서 및 청구항들을 통틀어, 문맥에 의하여 다르게 해석될 필요가 없는 한, 단어 "포함하다(comprise)"와 그 변형들인 "포함하다(comprises)" 및 "포함하는(comprising)"은 개방적 및 포괄적인 의미 즉, "포함하되, 이에 한정되지 않는"의 의미로 해석되어야 한다.
본 명세서에서 "일 실시예" ("one embodiment", "an embodiment") 또는 "다른 실시예"("another embodiment")에 대한 참조는 해당 실시예와 관련하여 언급된 특정한 특징, 구성 또는 특성이 적어도 하나의 실시예에 포함되었다는 것을 뜻한다. 따라서, 이 명세서의 여러 곳에 나타난 "실시예에서" 또는 "다른 실시예에서"가 반드시 동일한 실시예를 가리킬 필요는 없다. 더욱이, 특정한 특징들, 구성들 또는 특성들이 어떤 적절한 형태로 하나 이상의 실시예에서 결합될 수도 있다.
본 명세서 및 첨부된 청구항들에 사용된 바와 같이, 단수형("a," "an" 및 "the")의 지시대상은 내용에 의하여 분명하게 달리 해석되지 않는 한 복수형의 지시대상을 포함한다는 것에 유의한다. 따라서, 예를 들어, "양자 프로세서"는 단일 양자 프로세서 또는 둘 이상의 양자 프로세서들을 지칭한다. 또한, 내용에 의하여 분명하게 달리 해석되지 않는 한, "또는(or)"의 의미는 "및/또는(and/or)"의 의미를 포함하는 것으로 사용됨에 유의하여야 한다.
덧붙여, 비록 본 명세서 및 후속 청구항들의 일부가 초전도 플럭스 큐비트들을 포함하는 양자 프로세서에서 본 개시 내용을 적용하는 것을 기술하고 있으나, 본 기술 분야의 당업자는 여기서 기술된 방법들이 용이하게 개조되어 다른 형태의 양자 프로세서들에 적용될 수 있다는 것을 이해할 것이다.
여기에 사용된 표제어들(headings)은 단지 편의를 위하여 제공된 것이고 실시예들의 범위 또는 의미를 해석하는 것이 아니다.
본 시스템들, 방법들 및 장치에 따라, 양자 프로세서 요소들에 대한 국부적 프로그래밍을 포함하는 확장성 있는 양자 계산 기법이 기술된다. 본 명세서 및 후속 청구항들을 통틀어, "양자 프로세서"라는 용어는 적어도 두 개의 큐비트 및 적어도 두 개의 큐비트들 사이의 정보 교환을 위한, 큐비트 결합기(qubit coupler)와 같은, 적어도 하나의 소자를 포함하는 시스템을 기술하는데 사용된다. 양자 프로세서의 어떤 실시예들은 수십, 수백, 수천, 또는 수백만 개의 큐비트들과 큐비트 결합기들을 포함할 수 있다. 어떤 실시예들에서는, 양자 프로세서의 구성요소들이 초전도 양자 프로세서 칩과 같은 단일 구조에 완전히 포함될 수 있다. 다른 실시예들에서는, 양자 프로세서의 구성요소들이 복수의 구조들에 그 사이의 정보 교환 수단과 함께 분산될 수 있다.
도 1A에, 메모리 관리 시스템(101)과 세 개의 프로그램가능 소자들(121,122,123)을 포함하는 양자 프로세서(100)의 실시예가 도시되어 있다. 본 명세서 및 후속 청구항들에 걸쳐서, "프로그램가능 소자(programmable device)" 및 "프로그램가능 소자들"이라는 용어는 양자 프로세서에서 프로그래밍이 요청되는 여러 가지 구성요소들 중의 하나를 서술하는데 사용된다. 프로그램가능 소자들의 예로서 큐비트들, 큐비트 결합기들, 큐비트들 및 큐비트 결합기들의 특정 구성요소들 등이 있다. 예를 들어, 초전도 플럭스 큐비트는 닫힌 초전도 전류 경로 및 복합 조셉슨 접합의 두 가지 구성요소들을 포함할 수 있고, 다른 데이터 신호들이 이 구성요소들 모두에 개별적으로 프로그램될 수 있다.
단순히 도 1A에 나타난 소자들을 확장함으로써 양자 프로세서(100)가 어떠한 개수의 소자들이라도 포함하도록 확장될 수 있다는 것을 당업자는 인식할 것이다. 더구나, 도 1A에는 양자 프로세서(100)가 단일한 물리적 구조로 나타나 있지만, 양자 프로세서(100)의 구성요소들은 통신 관로들(conduits)의 시스템에 의해 통신 가능하도록 연결된 복수의 별도의 물리적 단위들로 나누어질 수 있다. 예를 들면, 양자 프로세서(100)는 복수의 구분되는 프로세서 칩들 또는 하나의 다중-칩 모듈을 포함할 수 있는데, 여기서 공간적으로 분리된 구성요소들은 통신 관로들의 시스템에 의해 통신 가능하도록 연결될 수 있다. 본 명세서 및 후속 청구항들에 걸쳐서, "통신 관로" 또는 복수의 "통신 관로"에 대한 참조는, 전기 배선, 전도성 트레이스(traces), 자기(유도) 결합, 용량 결합, 섬유광학 등을 포함하되 이들에 제한되지 않는, 모든 신호 전달 수단을 포괄한다.
도 1A에서, 메모리 관리 시스템(101)은 일련의 메모리 레지스터들(111,112,113)을 포함하는데, 상기 메모리 레지스터들(111,112,113)은 양자 프로세서(100)의 각 프로그램가능 소자(121-123)에 대해 N-비트 디지털 신호와 같은 데이터를 표현하는 신호들을 관리하는(administer)데 사용된다. 여기서, 용어 "관리하다(administer)", "관리하는(administering)", "관리(administration)" 등은 데이터 신호들의 발생, 관리, 저장, 조작, 전달 등을 포괄하되 이들에 제한되지는 않 는 방식으로 사용된다는 것을 당업자는 이해할 것이다. 프로그램가능 소자들(121-123)의 거동에 영향을 미치는 여러 파라미터를 표현하기 위해 N-비트 신호들은 프로그램될 수 있다. 예를 들어, 8-비트 신호들 및 직렬로 연결된 8-비트 메모리 레지스터들(111-113)이 도 1A에 나타나 있으나, 당업자는 임의의 비트 길이 또는 해상도의 신호들이 사용될 수 있다는 것을 이해할 것이며, 또한, 당업자는 메모리 레지스터들(111-113)이 다른 방식으로 연결되거나 또는 전혀 연결되지 않을 수도 있다는 것을 이해할 것이다: 즉, 그들은 병렬로 연결되거나, X-Y 주소지정가능 어레이 형태로 연결되거나, 또는 디멀티플렉서 회로를 통하여 적어도 하나의 패킷 라우터를 포함하는 네트워크 형태로 연결될 수도 있고 또는 그들은 독립적으로 제어될 수 있고 각기 통신 선로들(A, B, C, D)을 보유할 수도 있다.
도 1A에 나타난 바와 같이, 메모리 레지스터들(111-113)에 의해 관리되는 데이터 신호들은 디지털 신호이지만, 당업자는 다른 형태의 데이터 신호들 또한 사용될 수 있다는 것을 인식할 것이다. 프로그램가능 소자들(121-123)에 인가되기 전에, 상기 디지털 신호들은 디지털-아날로그 변환기들(DAC, 131, 132, 133)에 의해 아날로그 신호들로 변환될 수 있다. 각 DAC(131-133)는 N-비트 신호의 디지털 비트들을 받아 이 N-비트 디지털 신호를 이용하여 적어도 하나의 프로그램가능 소자들(121-123)에 공급될 수 있는 적어도 하나의 아날로그 신호를 생성할 수 있다. 어떤 실시예들에서는, 도 1A에 나타난 바와 같이, 이러한 관리가 중간 결합기들(141, 142, 143)을 통하여 달성될 수 있다. 상기 중간 결합기들(141-143) 각각은 결합기 활성화 선에 연결될 수 있고, 상기 결합기 활성화 선에 의해 활성화/비활성화될 수 있다. 어떤 실시예들에서는, 중간 결합기들(141-143)이 도 1A에 나타난 바와 같이 하나의 결합기 활성화 선에 직렬로 연결될 수 있다. 따라서, 이러한 실시예들에서는, 상응하는 중간 결합기들(141-143) 중의 하나가 결합기 활성화 선에 의해 활성화될 때에, 신호가 DAC들(131-133) 중의 하나로부터 프로그램가능 소자들(121-123) 중의 하나로 오직 제공 또는 인가된다. 예를 들면, 중간 결합기(141)가 결합기 활성화 선에 의해 활성화될 때, 신호가 DAC(131)로부터 프로그램가능 소자(121)로 제공된다. 어떤 실시예들에서는, 결합기 활성화 선이 아날로그 변수일 수 있는데 이 경우에 중간 결합기들(141-143)이 DAC들(131-133)과 프로그램가능 소자들(121-123) 사이에 제어 가능한 수준의 부분 결합(partial coupling)을 제공할 수 있다. 어떤 실시예들에서는, 결합기 활성화 선이 온/오프로만 제어가능 할 수 있는데 이 경우에 중간 결합기들(141-143)이 DAC들(131-133)과 프로그램가능 소자들(121-123) 사이에 제어 가능한 온/오프 결합만을 제공할 수 있다. 본 시스템들, 방법들 및 장치의 다른 실시예들에서는, 중간 결합기들(141-143)이 생략되는 대신 신호들이 DAC들(131-133)로부터 프로그램가능 소자들(121-123)로 직접 결합될 수 있다.
본 시스템들, 방법들 및 장치에 따르면, 외부 입력이 통신 선로들(A-D)을 통한 N-비트 신호들의 프로그래밍을 포함하고, 어떤 실시예들에서는, 적어도 하나의 결합기 활성화 선을 통한 중간 결합기들(141-143)의 제어를 더 포함하는 동안에, 제어 통신의 적어도 일부가 양자 프로세서(100) 내에 포함될 수 있다. 그러므로 양자 프로세서(100)를 외부의 시스템에 연결하는데 요구되는 통신 선로들의 수가 크게 감소하여 양자 프로세서(100)의 프로그램가능 소자들의 수에 대해 실질적으로 독립적으로 된다.
신호의 방향에 따라, 디지털 신호들을 아날로그 신호들로, 아날로그 신호들을 디지털 신호들로, 또는 양쪽 연산을 동시에 또는 교대로 변환하는데 DAC가 적용될 수 있다고 당업자는 인식할 것이다. 그러므로 도 1A에 나타난 시스템은 또한 역으로 동작될 수 있는데, 이때 프로그램가능 소자들(121-123)로부터 나온 신호들은 중간 결합기들(141-143)을 통하여 DAC들(131-133)에 결합된다. 그리고 상기 신호들은 메모리 레지스터들(111-113)에 제공 또는 인가될 수 있는 디지털 표현으로 변환되어 외부 판독 시스템으로 전달될 수 있다.
본 시스템들, 방법들 및 장치는 특정한 형태의 양자 프로세서 및 그에 연관된 프로그램가능 소자들과 연계되지 않는다. 오히려, 본 시스템들, 방법들 및 장치는 어떤 형태의 양자 프로세서에라도 적용될 수 있다. 어떤 실시예들에서는, 양자 프로세서(100)가 복수의 프로그램 가능한 큐비트 결합기들에 의해 결합되는 복수의 초전도 플럭스 큐비트들을 포함하는 초전도 양자 프로세서일 수 있는데, 그 예로는 다음에 기술된 것들이 있다: 미국 특허 공개 제2006-0225165호 및 제2006-0147154호, 그리고 해리스, 알.(Harris, R.)등의 "초전도 플럭스 큐비트들을 위한 부호 및 크기 조절 가능한 결합기" (arXiv.org: cond-mat/0608253, 2006, pp 1-5). 이러한 큐비트들과 이들에 연관된 결합기들은 플럭스 신호들을 감당하도록 설계되기 때문에, 메모리 레지스터들(111-113)로부터 나오는 N-비트 신호들은 이산적 자기 플럭스 양자들(discrete magnetic flux quanta)의 형태로 관리될 수 있다. 그러면, 메모리 레지스터들(111-113)은 단일 플럭스 양자(SFQ) 시프트 레지스터들이나 플럭스 기반 초전도 시프트 레지스터들과 같은 초전도 시프트 레지스터들의 형태가 될 수 있는데, 그 예로는 다음에 기술된 것이 있다: 미국 특허 가출원 제60/913,980호(2007년 4월 25일 출원, 명칭 "단열 초전도 큐비트 논리 소자들과 방법들"). 어떤 실시예들에서는, 상기 초전도 시프트 레지스터들이 도 1A에 나타난 바와 같이 직렬로 연결되거나, 그들이 병렬로 연결되거나, 그들이 X-Y 주소지정 가능한 어레이 형태로 연결되거나, 또는 그들이 라우팅 시스템에 연결될 수도 있다. 각 레지스터에 적재된 N-비트 신호는 초전도 시프트 레지스터들 내에서 이산적 자기 플럭스 양자들에 의해 디지털 방식으로 표현될 수 있다. 각 초전도 시프트 레지스터(111-113)는 초전도 DAC(131-133)에 유도적으로 또는 직류적으로(galvanically) 결합될 수 있는데, 상기 디지털 자기 플럭스 양자들은 적어도 하나의 아날로그 초전도 전류를 발생하는데 사용될 수 있다. 따라서, 어떤 실시예들에서는, 메모리 레지스터(111)와 같은 메모리 레지스터 및 DAC(131)과 같은 DAC가 동일한 물리적 구조 내에 구현될 수 있다. 초전도 DAC들의 예들이 다음에 기술되어 있다: 미국 특허 가출원 제60/917,884호(2007년 5월 14일 출원, 명칭 "초전도 인턱터 사다리꼴 회로를 이용한 확장 가능한 초전도 플럭스 디지털-아날로그 변환"); 미국 특허 가출원 제60/917,891호(2007년 5월 14일 출원, 명칭 "확장 가능한 초전도 플럭스 디지털-아날로그 변환기를 위한 시스템들, 방법들 및 장치"); 미국 특허 가출원 제60/975,487호(2007년 9월 26일 출원, 명칭 "차동 초전도 플럭스 디지털-아날로그 변환기를 위한 시스템들, 방법들 및 장치").
어떤 실시예들에서는, DAC에 의해 출력되는 상기 적어도 하나의 초전도 전류 는 적어도 하나의 프로그램가능 소자(121-123)에 결합기 활성화 선을 활성화함으로써 적어도 하나의 중간 결합기(141-143)를 통하여 유도적으로 결합될 수 있다. 다른 실시예들에서는, 상기 적어도 하나의 초전도 전류는 적어도 하나의 프로그램가능 소자(121-123)에 유도적으로 직접적으로 결합될 수 있다. 앞서 기술한 바와 같이, 어떤 실시예들에서는, 시스템이 또한 역으로 동작되어, 하나 이상의 프로그램가능 소자들(121-123)로부터 나온 아날로그 입력에 근거하여 SFQ 시프트 레지스터들로부터 디지털 출력을 산출할 수 있다.
본 시스템들, 방법들 및 장치의 어떤 실시예들에서는, 복수의 DAC들이 단일 프로그램가능 소자에 결합될 수 있다. 도 1B는 양자 프로세서 요소들의 국부적 프로그래밍에 대한 이러한 실시예를 보여주는 개략도이다. 도 1B에서 두 DAC들(132,133)이 메모리 레지스터들(112,113) 각각에 결합되어 있는 동시에 상기 두 DAC들(132,133)이 단일 프로그램가능 소자(124)에 결합된 것을 제외하고, 도 1B에 나타낸 실시예는 도 1A에 나타낸 실시예와 유사하다. 이러한 결합 방식은 프로그램가능 소자(124)가 초기 상태(X)로부터 프로그램된 상태(Y)로 프로그램되는 비율(rate)에 대한 제어를 제공할 수 있어서, 임의의 파형 발생기를 효과적으로 구현한다. 도 1A에 나타낸 실시예에서, 각 프로그램가능 소자(121-123)는 하나의 DAC(131-133)에 각기 결합되므로, 각 프로그램가능 소자(121-123)는 같은 시간에 같은 비율로 프로그램된다. 그러나 도 1B에 나타낸 실시예에서는, 하나의 프로그램가능 소자(124)가 두 DAC들(132,133)에 결합되어 프로그램가능 소자(124)가 프로그램되는 시간과 비율에 대한 어느 정도의 제어가 가능하다. 도 1B에서 단지 하나의 프로그램가능 소자(124)가 두 DAC들(132,133)에 결합되는 것으로 나타나 있지만, 양자 프로세서 내의 모든 또는 임의 개수의 프로그램가능 소자들이 둘 또는 임의 개수의 DAC에 결합될 수 있다는 것을 당업자는 인식할 것이다.
도 2A는 본 시스템들, 방법들 및 장치의 실시예에 따른 양자 프로세서(예를 들어, 도 1A의 양자 프로세서(100))의 요소들을 프로그래밍하는 방법(200)을 보여주는 흐름도이다. 도 2A는 모든 소자들을 단수형으로 참조하지만, 당업자는 방법(200)이 복수의 소자들에 적용될 수 있다는 것을 인식할 것이다. 방법(200)의 단계(201)에서, 하나의 이진 신호가 메모리 레지스터(도 1A에서 메모리 레지스터들(111-113)의 하나 또는 그 이상과 같은)에 프로그램 또는 기록된다. 단계(202)에서, 상기 이진 신호는 아날로그 신호로 변환된다. 단계(203)에서, 상기 아날로그 신호가 양자 프로세서의 하나 이상의 프로그램가능 소자들(도 1A에서 프로그램가능 소자들(121-123)과 같은)에 전달 또는 인가된다. 따라서, 단계들(201-203)이 양자 프로세서의 범위(dimensions) 내에서 모두 완결될 수 있으므로, 외부 프로그래밍 시스템들과의 통신의 필요성이 줄어든다.
도 2B는 상기 방법(200)을 실질적으로 역으로 가동하여 판독가능 소자들로부터 정보를 판독하는 방법(250)을 보여주는 흐름도이다. 도 2B는 모든 소자들을 단수형으로 참조하지만, 당업자는 방법(250)이 복수의 소자들에 적용될 수 있다는 것을 인식할 것이다. 단계(251)에서, 하나의 신호가 판독가능 소자로부터 출력 또는 판독되어 디지털 표현으로 변환된다. 단계(252)에서, 상기 신호의 디지털 표현이 타 시스템으로 출력되거나 타 시스템에 의해 판독된다. 역시, 단계들(251,252)이 양자 프로세서의 범위 내에서 완결될 수 있으므로, 외부 프로그래밍 시스템들과의 통신의 필요성이 줄어든다.
전술한 바와 같이, 메모리 레지스터들(111-113)과 같은 데이터 저장 소자들을 프로그램하기 위해 다양한 결합 방식들이 구현될 수 있다. 예를 들어, 도 1A 및 1B에 도시된 바와 같이 메모리 레지스터들(111-113)은 통신 선로들(A-D)에 직렬로 결합될 수 있다. 다른 실시예들에서는, 메모리 레지스터들(111-113)이 유사한 통신 선로들에 병렬로 결합될 수 있다. 본 시스템들, 방법들 및 장치의 어떤 실시예들에서는, 상기 데이터 저장 소자들이 라우팅 시스템을 통해 프로그램될 수 있는데, 이러한 라우팅 시스템의 예가 디멀티플렉서 회로이다.
도 3은 디멀티플렉서 회로(350)를 통한 양자 프로세서(300)의 국부적 프로그래밍에 대한 실시예를 보여주는 개략도이다. 도 3을 참조하면, 양자 프로세서(300)는 메모리 관리 시스템(301)을 포함하는데, 상기 메모리 관리 시스템(301)은 데이터 저장 소자들(311-313)에 신호를 배분하는데 사용될 수 있는 디멀티플렉서 회로(350)를 포함한다는 것을 제외하고는 도 1A의 메모리 관리 시스템(101)과 유사하다. 동작시에, 디멀티플렉서(350)는 통신 선로들(A, B) 중에서 적어도 하나를 통해 신호를 수신할 수 있고, 내부의 라우팅 절차들을 통해 상기 신호를 특정 출력 채널로 향하게 할 수 있다. 특정 출력 채널은 데이터 저장 소자들(311-313) 중의 적어도 하나에 해당할 수 있다. 디멀티플렉서의 일반적인 동작은 본 발명의 분야에 알려져 있다 그러므로, 당업자는 디멀티플렉서(350)가 추가적인 신호 입력 선로들을 포함할 수 있다고 인식할 것이다. 어떤 실시예들에서는, 디멀티플렉서(350)가 논리 적인 이진 트리를 형성하도록 논리적 열들을 지어 배치된 복수의 라우팅 소자들을 포함할 수 있다. 라우팅 소자들의 각 논리적 열이 하나의 신호 입력 선로에 의해 제어되도록 디멀티플렉서(350)가 추가적인 신호 입력 선로들(미도시)을 포함할 수 있다.
예시된 실시예들에 대한 위의 서술은 모든 사항을 망라하거나 실시예를 개시된 정확한 형태로 제한하고자 하는 것이 아니다. 특정 실시예들이나 예들이 여기에 예시의 목적으로 서술되었으나, 당업자가 인식할 수 있듯이, 개시의 사상 및 범위를 벗어남이 없이 여러 균등한 변형들이 만들어질 수 있다. 여기에 제공된 여러 실시예의 내용(teachings)은, 앞서 일반적으로 설명된 바람직한 양자 계산 시스템들, 방법들 및 장치에만 아니라, 다른 양자 계산 시스템들, 방법들 및 장치에 적용될 수 있다.
예를 들면, 전술된 상세한 서술은 블록도들, 개략도들 및 예들을 사용하여 시스템들, 방법들 및 장치에 대한 여러 가지 실시예들을 제시하였다. 이러한 블록도들, 개략도들 및 예들이 하나 이상의 기능 및/또는 동작을 포함하는 한, 이 블록도들, 순서도들 또는 예들에 포함된 각 기능 및/또는 동작은 개별적 및/또는 집단적으로 광범위한 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합에 의해 구현될 수 있다는 것을 당업자는 이해할 것이다.
전술한 여러 실시예들이 결합되어 추가적인 실시예들을 제공할 수 있다.
본 명세서에서 참조된 미국 특허들, 미국 특허 공개들, 미국 특허출원들, 해외 특허들, 해외 특허출원들 및 비특허 공개 자료들의 모든 것은 다음의 것을 포함 하되 이들에 한정되지는 않으며: 미국 특허 제6,838,694호 미국 특허공개 제2005-0082519호 미국 특허공개 제2006-0225165호 미국 특허 가출원 제60/872,414호 (2007년 1월 12일 출원, 명칭 "연결된 프로세서 토폴로지를 위한 시스템, 장치들 및 방법들"); 미국 특허 가출원 제60/956,104호 (2007년 8월 16일 출원, 명칭 "연결된 프로세서 토폴로지를 위한 시스템들, 장치들 및 방법들") 미국 특허 가출원 제60/986,554호 (2007년 11월 8일 출원, 명칭 "아날로그 처리를 위한 시스템들, 장치들 및 방법들"); 미국 특허 공개 제2006-0225165호 미국 특허 공개 제2006-0147154호 미국 특허 가출원 제60/913,980호 (2007년 4월 25일 출원, 명칭 "단열 초전도 큐비트 논리 소자들 및 방법들"); 미국 특허 가출원 제60/917,884 (2007년 5월 14일 출원, 명칭 "초전도 인턱터 사다리꼴 회로를 이용한 확장 가능한 초전도 플럭스 디지털-아날로그 변환"); 미국 특허 가출원 제60/917,891 (2007년 5월 14일 출원, 명칭 "확장 가능한 초전도 플럭스 디지털-아날로그 변환기를 위한 시스템들, 방법들 및 장치"); 및 미국 특허 가출원 제60/975,487 (2007년 9월 26일 출원, 명칭 "차동 초전도 플럭스 디지털-아날로그 변환기를 위한 시스템들, 방법들 및 장치")은 그대로 모든 목적을 위해 본 명세서에 참조자료로 추가된다. 실시예들의 측면들은 다른 실시예를 제공하기 위해, 필요시에, 여러 특허, 출원들 및 공개자료들의 시스템들, 회로들 및 개념들을 채용하여 변경될 수 있다.
이러한 그리고 다른 변경들이 상기한 상세한 서술에 비추어 실시예에 가해질 수 있다. 일반적으로 다음의 청구항들에서 사용된 용어는 명세서에 개시된 실시예 들 및 청구항들을 한정하기 위한 것으로 해석되어서는 안 되고, 청구항들에 허용된 균등성의 전 범위와 함께 모든 가능한 실시예들을 포함하기 위한 것으로 해석되어야 한다. 따라서, 본 발명의 범위는 다음의 청구항들에 의해서만 해석되고 정의되어야 할 것이다.

Claims (47)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 외부 프로그래밍 시스템;
    양자 프로세서; 및
    상기 외부 프로그래밍 시스템과 상기 양자 프로세서 사이의 통신을 제공하는 복수의 통신 선로들을 포함하고,
    상기 양자 프로세서는, 복수의 프로그래밍가능 소자들 및 복수의 통신 관로들을 포함하는 메모리 관리 시스템을 포함하고;
    상기 메모리 관리 시스템은, 상기 통신 관로들 중 적어도 일부 사이의 통신을 제공하여 상기 외부 프로그래밍 시스템에서 상기 프로그래밍가능 소자들로 데이터 신호들을 제공(administer)하며;
    상기 복수의 프로그래밍가능 소자들 개수는, 상기 통신 선로들의 개수를 초과하는 것을 특징으로 하는 양자 컴퓨팅(computing) 시스템.
  37. 제 36항에 있어서,
    상기 양자프로세서는 적어도 하나의 프로그래밍가능 소자를 포함하고,
    상기 적어도 하나의 프로그래밍가능 소자는, 임계 온도 미만에서 초전도하는 재료로 형성되는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  38. 제 36항에 있어서,
    상기 메모리 관리 시스템의 상기 통신 관로들 중 적어도 하나는 임계 온도 미만에서 초전도하는 재료로 형성되는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  39. 제 36항에 있어서,
    상기 양자 프로세서는 특정 그룹에서 선택된 적어도 하나의 프로그래밍가능 소자를 포함하고,
    상기 특정 그룹은 닫힌 초전도 전류 경로, 복합 조셉슨 접합, 초전도 플럭스 큐비트, 초전도 전하 큐비트, 초전도 위상 큐비트, 초전도 하이브리드 큐비트, 큐비트 결합기, 초전도 큐비트 결합기, 양자 점, 트랩된 이온(trapped ion), 트랩된 중성 원자, 불순물(impurity), 핵 스핀 큐비트(nuclear spin qubit), 전자 스핀 큐비트, 및 광학적 큐비트를 포함하는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  40. 제 36항에 있어서,
    상기 메모리 관리 시스템은 적어도 하나의 디지털-아날로그 컨버터(DAC)를 포함하는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  41. 제 40항에 있어서,
    상기 DAC는 초전도 DAC를 포함하고,
    상기 디지털 신호는 이산 자기 플럭스 양자들(discrete magnetic flux quanta)인 것을 특징으로 하는 양자 컴퓨팅 시스템.
  42. 제 36항에 있어서,
    상기 메모리 관리 시스템은 X-Y 주소지정가능 어레이를 포함하는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  43. 제 36항에 있어서,
    상기 메모리 관리 시스템은 디멀티플렉서 회로를 포함하는 것을 특징으로 하는 양자 컴퓨팅 시스템.
  44. 복수의 프로그래밍가능 소자들 및 메모리 관리 시스템을 포함하는 양자 프로세서를 프로그래밍 하는 방법에 있어서,
    외부 프로그래밍 시스템에 의해, 상기 프로그래밍가능 소자들의 개수에 대응하는 복수의 프로그래밍가능 파라미터를 정의(define)하는 과정;
    상기 프로그래밍가능 소자들의 개수보다 작은 수의 통신 선로들을 통해 상기 외부 프로그래밍 시스템에서 상기 메모리 관리 시스템으로 상기 복수의 프로그래밍가능 파라미터를 구현(embodying)하는 복수의 신호들을 전송하는 과정; 및
    상기 메모리 관리 시스템에 의해, 상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들에게로 제공(administering)하는 과정을 포함하는 것을 특징으로 하는 양자 프로세서를 프로그래밍 하는 방법.
  45. 제 44항에 있어서,
    상기 메모리 관리 시스템은 적어도 하나의 디지털-아날로그 컨버터(DAC)를 포함하고,
    상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들은 디지털 신호들이며,
    상기 적어도 하나의 DAC에 의해 상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들에게로 제공하기 전에, 상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 디지털 신호들에서 아날로그 신호들로 변환하는 과정을 더 포함하는 것을 특징으로 하는 양자 프로세서를 프로그래밍 하는 방법.
  46. 제 44항에 있어서,
    상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들에게로 제공하는 상기 과정은,
    X-Y 주소지정가능한 어레이를 통해 상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들로 라우팅(routing)하는 것을 특징으로 하는 양자 프로세서를 프로그래밍 하는 방법.
  47. 제 44항에 있어서,
    상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들에게로 제공하는 상기 과정은,
    디멀티플렉서 회로를 통해 상기 복수의 프로그래밍가능 파라미터들을 구현하는 상기 복수의 신호들을 상기 복수의 프로그래밍가능 소자들로 라우팅하는 것을 특징으로 하는 양자 프로세서를 프로그래밍 하는 방법.
KR1020097011585A 2006-12-05 2007-12-04 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치 KR101446943B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86865406P 2006-12-05 2006-12-05
US60/868,654 2006-12-05
PCT/CA2007/002192 WO2008067664A1 (en) 2006-12-05 2007-12-04 Systems, methods and apparatus for local programming of quantum processor elements

Publications (2)

Publication Number Publication Date
KR20090090326A KR20090090326A (ko) 2009-08-25
KR101446943B1 true KR101446943B1 (ko) 2014-10-06

Family

ID=39491618

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097011585A KR101446943B1 (ko) 2006-12-05 2007-12-04 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치

Country Status (8)

Country Link
US (3) US7876248B2 (ko)
EP (1) EP2126800A4 (ko)
JP (1) JP5313912B2 (ko)
KR (1) KR101446943B1 (ko)
CN (1) CN101548288B (ko)
AU (1) AU2007329156B2 (ko)
CA (1) CA2669816C (ko)
WO (1) WO2008067664A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011412A1 (en) * 2019-07-12 2021-01-21 D-Wave Systems Inc. Systems and methods for simulating a quantum processor
US11847534B2 (en) 2018-08-31 2023-12-19 D-Wave Systems Inc. Systems and methods for operation of a frequency multiplexed resonator input and/or output for a superconducting device
US11900185B2 (en) 2018-01-22 2024-02-13 1372934 B.C. Ltd. Systems and methods for improving performance of an analog processor
US12033033B2 (en) 2020-06-11 2024-07-09 D-Wave Systems Inc. Input/output systems and methods for superconducting devices

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
KR101446943B1 (ko) 2006-12-05 2014-10-06 디-웨이브 시스템즈, 인코포레이티드 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치
WO2008122128A1 (en) 2007-04-05 2008-10-16 D-Wave Systems Inc. Physical realizations of a universal adiabatic quantum computer
JP2010525431A (ja) * 2007-04-19 2010-07-22 ディー−ウェイブ システムズ,インコーポレイテッド 自動画像認識用のシステム、方法、および装置
US8098179B2 (en) * 2007-05-14 2012-01-17 D-Wave Systems Inc. Systems, methods and apparatus for digital-to-analog conversion of superconducting magnetic flux signals
US20080313430A1 (en) * 2007-06-12 2008-12-18 Bunyk Paul I Method and system for increasing quantum computer processing speed using digital co-processor
US8244650B2 (en) * 2007-06-12 2012-08-14 D-Wave Systems Inc. Systems, methods, and apparatus for recursive quantum computing algorithms
US8670807B2 (en) 2007-08-21 2014-03-11 D-Wave Systems Inc. Systems, methods, and apparatus for controlling the elements of superconducting processors
US8169231B2 (en) * 2007-09-24 2012-05-01 D-Wave Systems Inc. Systems, methods, and apparatus for qubit state readout
US7932515B2 (en) * 2008-01-03 2011-04-26 D-Wave Systems Inc. Quantum processor
WO2009114805A2 (en) * 2008-03-14 2009-09-17 D-Wave Systems Inc. System, devices and methods for coupling qubits
US8421053B2 (en) 2008-03-24 2013-04-16 D-Wave Systems Inc. Oubit based systems, devices, and methods for analog processing
EP2324444B1 (en) * 2008-05-20 2021-04-07 D-Wave Systems Inc. Systems, methods, and apparatus for calibrating, controlling, and operating a quantum processor
US8229863B2 (en) 2008-05-28 2012-07-24 D-Wave Systems Inc. Method and apparatus for evolving a quantum system using a mixed initial hamiltonian comprising both diagonal and off-diagonal terms
CA2726048A1 (en) * 2008-06-03 2009-12-10 D-Wave Systems Inc. Systems, methods and apparatus for superconducting demultiplexer circuits
US8279022B2 (en) 2008-07-15 2012-10-02 D-Wave Systems Inc. Input/output systems and devices for use with superconducting devices
EP2340572B1 (en) 2008-09-03 2017-07-26 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
CN102334206B (zh) 2009-02-27 2016-06-29 D-波系统公司 用于制造超导集成电路的系统及方法
US8620855B2 (en) * 2009-04-17 2013-12-31 Microsoft Corporation Use of topological charge measurements to change between different qubit encodings
US8700689B2 (en) 2009-06-17 2014-04-15 D-Wave Systems Inc. Systems and methods for solving computational problems
WO2010151581A2 (en) 2009-06-26 2010-12-29 D-Wave Systems Inc. Systems and methods for quantum computation using real physical hardware
US8977576B2 (en) 2010-11-19 2015-03-10 D-Wave Systems Inc. Methods for solving computational problems using a quantum processor
US9379303B2 (en) 2011-06-14 2016-06-28 Glocbalfoundries Inc. Modular array of fixed-coupling quantum systems for quantum information processing
EP2729903B1 (en) 2011-07-06 2020-04-01 D-Wave Systems Inc. Quantum processor based systems and methods that minimize an objective function
US9026574B2 (en) 2011-11-15 2015-05-05 D-Wave Systems Inc. Systems and methods for solving computational problems
WO2013180780A2 (en) 2012-03-08 2013-12-05 D-Wave Systems Inc. Systems and methods for fabrication of superconducting integrated circuits
US9396440B2 (en) 2012-04-19 2016-07-19 D-Wave Systems Inc. Systems and methods for solving combinatorial problems
US9178154B2 (en) 2012-10-09 2015-11-03 D-Wave Systems Inc. Quantum processor comprising a second set of inter-cell coupling devices where a respective pair of qubits in proximity adjacent unit cells crossed one another
US9875215B2 (en) 2012-12-18 2018-01-23 D-Wave Systems Inc. Systems and methods that formulate problems for solving by a quantum processor using hardware graph decomposition
US9501747B2 (en) 2012-12-18 2016-11-22 D-Wave Systems Inc. Systems and methods that formulate embeddings of problems for solving by a quantum processor
SG11201505617UA (en) 2013-01-18 2015-09-29 Univ Yale Methods for making a superconducting device with at least one enclosure
KR102178986B1 (ko) 2013-01-18 2020-11-18 예일 유니버시티 적어도 하나의 인클로저를 구비하는 초전도 디바이스
US9207672B2 (en) 2013-01-25 2015-12-08 D-Wave Systems Inc. Systems and methods for real-time quantum computer-based control of mobile systems
EP2954416B1 (en) 2013-02-05 2021-05-12 D-Wave Systems, Inc. Systems and methods for error correction in quantum computation
JP6300830B2 (ja) * 2013-02-08 2018-03-28 ディー−ウェイブ システムズ,インコーポレイテッド 量子プロセッサの要素を較正するためのシステムおよび方法
US9471880B2 (en) 2013-04-12 2016-10-18 D-Wave Systems Inc. Systems and methods for interacting with a quantum computing system
US9424526B2 (en) 2013-05-17 2016-08-23 D-Wave Systems Inc. Quantum processor based systems and methods that minimize a continuous variable objective function
WO2014197001A1 (en) 2013-06-07 2014-12-11 Amin Mohammad H S Systems and methods for operating a quantum processor to determine energy eigenvalues of a hamiltonian
US10318881B2 (en) 2013-06-28 2019-06-11 D-Wave Systems Inc. Systems and methods for quantum processing of data
WO2014210368A1 (en) 2013-06-28 2014-12-31 D-Wave Systems Inc. Systems and methods for quantum processing of data
US9727823B2 (en) 2013-07-23 2017-08-08 D-Wave Systems Inc. Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters
US9495644B2 (en) 2013-07-24 2016-11-15 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor by reducing errors
US9183508B2 (en) 2013-08-07 2015-11-10 D-Wave Systems Inc. Systems and devices for quantum processor architectures
US10541659B2 (en) 2013-10-15 2020-01-21 Yale University Low-noise josephson junction-based directional amplifier
US10037493B2 (en) 2013-10-22 2018-07-31 D-Wave Systems Inc. Universal adiabatic quantum computing with superconducting qubits
US10275422B2 (en) 2013-11-19 2019-04-30 D-Wave Systems, Inc. Systems and methods for finding quantum binary optimization problems
AU2014373701C1 (en) 2014-01-06 2019-06-20 Google Llc Constructing and programming quantum hardware for quantum annealing processes
US9634224B2 (en) 2014-02-14 2017-04-25 D-Wave Systems Inc. Systems and methods for fabrication of superconducting circuits
US9948254B2 (en) 2014-02-21 2018-04-17 Yale University Wireless Josephson bifurcation amplifier
US9892365B2 (en) 2014-02-28 2018-02-13 Rigetti & Co., Inc. Operating a multi-dimensional array of qubit devices
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
US9710758B2 (en) 2014-04-23 2017-07-18 D-Wave Systems Inc. Quantum processor with instance programmable qubit connectivity
WO2016028363A2 (en) 2014-06-06 2016-02-25 Massachusetts Institute Of Technology Methods, systems, and apparatus for programmable quantum photonic processing
US10769545B2 (en) 2014-06-17 2020-09-08 D-Wave Systems Inc. Systems and methods employing new evolution schedules in an analog computer with applications to determining isomorphic graphs and post-processing solutions
EP3195377B1 (en) 2014-08-13 2021-12-15 D-Wave Systems Inc. Method of forming superconducting wiring layers with low magnetic noise
CN107077642B (zh) * 2014-08-22 2021-04-06 D-波系统公司 可用于量子计算的用于求解问题的系统和方法
US10552755B2 (en) 2014-08-22 2020-02-04 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor to reduce intrinsic/control errors
US10031887B2 (en) 2014-09-09 2018-07-24 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor via reduced readouts
GB2531517A (en) * 2014-10-20 2016-04-27 Nokia Technologies Oy Method and apparatus for adiabatic quantum annealing
KR102299862B1 (ko) * 2014-12-23 2021-09-08 삼성전자주식회사 신호 처리 장치 및 방법
US11797641B2 (en) 2015-02-03 2023-10-24 1Qb Information Technologies Inc. Method and system for solving the lagrangian dual of a constrained binary quadratic programming problem using a quantum annealer
CA2881033C (en) 2015-02-03 2016-03-15 1Qb Information Technologies Inc. Method and system for solving lagrangian dual of a constrained binary quadratic programming problem
WO2016138395A1 (en) 2015-02-27 2016-09-01 Yale University Techniques for coupling plannar qubits to non-planar resonators and related systems and methods
KR102493109B1 (ko) 2015-02-27 2023-01-30 예일 유니버시티 조셉슨 접합-기반 서큘레이터 및 관련 시스템 및 방법
US10404214B2 (en) 2015-02-27 2019-09-03 Yale University Techniques for producing quantum amplifiers and related systems and methods
SG11201708202TA (en) 2015-04-17 2017-11-29 Univ Yale Wireless josephson parametric converter
EP3266063B1 (en) 2015-05-14 2020-03-18 D-Wave Systems Inc. Frequency multiplexed resonator input and/or output for a superconducting device
US10248491B1 (en) * 2015-05-29 2019-04-02 Rigetti & Co, Inc. Quantum computing in a three-dimensional device lattice
CN106294193B (zh) * 2015-06-03 2019-10-15 杭州海康威视系统技术有限公司 存储设备及基于该存储设备的分块存储方法
WO2017027733A1 (en) 2015-08-13 2017-02-16 D-Wave Systems Inc. Systems and methods for creating and using higher degree interactions between quantum devices
US9438246B1 (en) * 2015-09-04 2016-09-06 Northrop Grumman Systems Corporation System and method for qubit readout
JP6873120B2 (ja) 2015-10-27 2021-05-19 ディー−ウェイブ システムズ インコーポレイテッド 量子プロセッサにおける縮退軽減のためのシステムと方法
US11184006B2 (en) 2016-01-15 2021-11-23 Yale University Techniques for manipulation of two-qubit quantum states and related systems and methods
WO2017139683A1 (en) * 2016-02-12 2017-08-17 Yale University Techniques for control of quantum systems and related systems and methods
US10599988B2 (en) 2016-03-02 2020-03-24 D-Wave Systems Inc. Systems and methods for analog processing of problem graphs having arbitrary size and/or connectivity
WO2017152289A1 (en) 2016-03-11 2017-09-14 1Qb Information Technologies Inc. Methods and systems for quantum computing
US10789540B2 (en) 2016-04-18 2020-09-29 D-Wave Systems Inc. Systems and methods for embedding problems into an analog processor
JP6945553B2 (ja) 2016-05-03 2021-10-06 ディー−ウェイブ システムズ インコーポレイテッド 超伝導回路及びスケーラブルな計算において使用される超伝導デバイスのためのシステム及び方法
US10044638B2 (en) 2016-05-26 2018-08-07 1Qb Information Technologies Inc. Methods and systems for quantum computing
US9870273B2 (en) 2016-06-13 2018-01-16 1Qb Information Technologies Inc. Methods and systems for quantum ready and quantum enabled computations
EP3465302B1 (en) 2016-06-02 2022-05-04 Massachusetts Institute of Technology Apparatus and methods for optical neural network
JP7002477B2 (ja) 2016-06-07 2022-01-20 ディー-ウェイブ システムズ インコーポレイテッド 量子プロセッサトポロジ用のシステム及び方法
WO2017214293A1 (en) 2016-06-08 2017-12-14 D-Wave Systems Inc. Systems and methods for quantum computation
US20180046933A1 (en) * 2016-08-11 2018-02-15 Board Of Regents, The University Of Texas System System and method for controlling a quantum computing emulation device
US10050630B2 (en) 2016-08-19 2018-08-14 Rigetti & Co, Inc. Flux-tunable qubit device with multiple Josephson junctions
US10628752B2 (en) 2016-09-26 2020-04-21 International Business Machines Corporation Routing quantum signals in the microwave domain using time dependent switching
JP7134949B2 (ja) 2016-09-26 2022-09-12 ディー-ウェイブ システムズ インコーポレイテッド サンプリングサーバからサンプリングするためのシステム、方法、及び装置
WO2018063206A1 (en) * 2016-09-29 2018-04-05 Intel Corporation On-chip control logic for qubits
US10528886B2 (en) * 2016-10-06 2020-01-07 D-Wave Systems Inc. Quantum flux parametron based structures (e.g., muxes, demuxes, shift registers), addressing lines and related methods
CA3041610A1 (en) * 2016-10-24 2018-05-03 Google Llc Simulating materials using quantum computation
US11263547B2 (en) 2017-01-30 2022-03-01 D-Wave Systems Inc. Quantum annealing debugging systems and methods
CN110462857B (zh) 2017-02-01 2024-02-27 D-波系统公司 用于制造超导集成电路的系统和方法
US10387791B2 (en) * 2017-03-22 2019-08-20 Accenture Global Solutions Limited Quantum computing improvements to transportation
US10634851B2 (en) 2017-05-17 2020-04-28 Massachusetts Institute Of Technology Apparatus, systems, and methods for nonblocking optical switching
US11017309B2 (en) 2017-07-11 2021-05-25 Massachusetts Institute Of Technology Optical Ising machines and optical convolutional neural networks
WO2019118442A1 (en) 2017-12-11 2019-06-20 Yale University Superconducting nonlinear asymmetric inductive element and related systems and methods
EP3707649A1 (en) * 2017-12-14 2020-09-16 Google LLC Qubit calibration
WO2019118644A1 (en) 2017-12-14 2019-06-20 D-Wave Systems Inc. Systems and methods for collaborative filtering with variational autoencoders
CN111788588A (zh) 2017-12-20 2020-10-16 D-波系统公司 量子处理器中耦合量子位的系统和方法
US11449384B2 (en) 2018-01-05 2022-09-20 Yale University Hardware-efficient fault-tolerant operations with superconducting circuits
US10158343B1 (en) * 2018-01-11 2018-12-18 Northrop Grumman Systems Corporation Push-pull tunable coupling
US11074382B2 (en) 2018-01-30 2021-07-27 International Business Machines Corporation Quantum computing device design
US11373089B2 (en) 2018-02-06 2022-06-28 Massachusetts Institute Of Technology Serialized electro-optic neural network using optical weights encoding
WO2019168721A1 (en) 2018-02-27 2019-09-06 D-Wave Systems Inc. Systems and methods for coupling a superconducting transmission line to an array of resonators
US11100418B2 (en) 2018-02-28 2021-08-24 D-Wave Systems Inc. Error reduction and, or, correction in analog computing including quantum processor-based computing
US11481354B2 (en) 2018-04-24 2022-10-25 D-Wave Systems Inc. Systems and methods for calculating the ground state of non-diagonal Hamiltonians
JP7431811B2 (ja) 2018-05-11 2024-02-15 ディー-ウェイブ システムズ インコーポレイテッド 射影測定のための単一磁束量子発生源
WO2019222150A1 (en) 2018-05-15 2019-11-21 Lightmatter, Inc. Algorithms for training neural networks with photonic hardware accelerators
CA3100326A1 (en) 2018-05-15 2019-11-21 Lightmatter, Inc. Photonic processing systems and methods
US11105866B2 (en) 2018-06-05 2021-08-31 D-Wave Systems Inc. Dynamical isolation of a cryogenic processor
US10608663B2 (en) 2018-06-04 2020-03-31 Lightmatter, Inc. Real-number photonic encoding
US11507818B2 (en) 2018-06-05 2022-11-22 Lightelligence PTE. Ltd. Optoelectronic computing systems
TWI735886B (zh) 2018-06-05 2021-08-11 美商光子智能股份有限公司 計算系統
US10873019B2 (en) 2018-06-20 2020-12-22 equal1.labs Inc. Topological programmable scalable quantum computing machine utilizing chord line quasi unidimensional aperature tunneling semiconductor structures
US10845496B2 (en) 2018-06-20 2020-11-24 equal1.labs Inc. Multistage semiconductor quantum detector circuit incorporating anticorrelation
US10868119B2 (en) 2018-06-20 2020-12-15 equal1.labs Inc. Semiconductor quantum structures using preferential tunneling through thin insulator layers
US10861940B2 (en) 2018-06-20 2020-12-08 equal1.labs Inc. Semiconductor process for quantum structures with staircase active well incorporating shared gate control
US10822231B2 (en) 2018-06-20 2020-11-03 equal1.labs Inc. Semiconductor controlled quantum ancillary interaction gate
US10854738B2 (en) 2018-06-20 2020-12-01 equal1.labs Inc. Semiconductor process for quantum structures with staircase active well
US11423322B2 (en) 2018-06-20 2022-08-23 equal1.labs Inc. Integrated quantum computer incorporating quantum core and associated classical control circuitry
US11450760B2 (en) 2018-06-20 2022-09-20 equal1.labs Inc. Quantum structures using aperture channel tunneling through depletion region
US10903413B2 (en) 2018-06-20 2021-01-26 Equal!.Labs Inc. Semiconductor process optimized for quantum structures
US20190392352A1 (en) * 2018-06-25 2019-12-26 Intel Corporation Adaptive programming of quantum dot qubit devices
US11386346B2 (en) 2018-07-10 2022-07-12 D-Wave Systems Inc. Systems and methods for quantum bayesian networks
US10510943B1 (en) * 2018-08-28 2019-12-17 International Business Machines Corporation Structure for an antenna chip for qubit annealing
US10592626B1 (en) * 2018-10-09 2020-03-17 International Business Machines Corporation Visualizing or interacting with a quantum processor
TW202017123A (zh) 2018-10-15 2020-05-01 美商萊特美特股份有限公司 光子封裝及相關方法
US11593174B2 (en) 2018-10-16 2023-02-28 D-Wave Systems Inc. Systems and methods for scheduling programs for dedicated execution on a quantum processor
WO2020092899A1 (en) 2018-11-02 2020-05-07 Lightmatter, Inc. Matrix multiplication using optical processing
US11604978B2 (en) 2018-11-12 2023-03-14 Massachusetts Institute Of Technology Large-scale artificial neural-network accelerators based on coherent detection and optical data fan-out
US20200152851A1 (en) 2018-11-13 2020-05-14 D-Wave Systems Inc. Systems and methods for fabricating superconducting integrated circuits
US11461644B2 (en) 2018-11-15 2022-10-04 D-Wave Systems Inc. Systems and methods for semantic segmentation
CA3121561A1 (en) * 2018-12-06 2020-06-11 1Qb Information Technologies Inc. Artificial intelligence-driven quantum computing
US11223355B2 (en) 2018-12-12 2022-01-11 Yale University Inductively-shunted transmon qubit for superconducting circuits
US11468293B2 (en) 2018-12-14 2022-10-11 D-Wave Systems Inc. Simulating and post-processing using a generative adversarial network
US11734556B2 (en) 2019-01-14 2023-08-22 Lightelligence PTE. Ltd. Optoelectronic computing systems
US10884313B2 (en) 2019-01-15 2021-01-05 Lightmatter, Inc. High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator
WO2020149871A1 (en) 2019-01-16 2020-07-23 Lightmatter, Inc. Optical differential low-noise receivers and related methods
US11537926B2 (en) 2019-01-17 2022-12-27 D-Wave Systems Inc. Systems and methods for hybrid algorithms using cluster contraction
US11791818B2 (en) 2019-01-17 2023-10-17 Yale University Josephson nonlinear circuit
US11157804B2 (en) 2019-01-25 2021-10-26 Northrop Grumman Systems Corporation Superconducting neuromorphic core
US11900264B2 (en) 2019-02-08 2024-02-13 D-Wave Systems Inc. Systems and methods for hybrid quantum-classical computing
US11625612B2 (en) 2019-02-12 2023-04-11 D-Wave Systems Inc. Systems and methods for domain adaptation
WO2020176393A1 (en) 2019-02-25 2020-09-03 Lightmatter, Inc. Path-number-balanced universal photonic network
CA3130114A1 (en) 2019-02-26 2020-09-03 Lightmatter, Inc. Hybrid analog-digital matrix processors
US11567779B2 (en) 2019-03-13 2023-01-31 D-Wave Systems Inc. Systems and methods for simulation of dynamic systems
CN109961149B (zh) * 2019-03-22 2021-05-04 清华大学 一种寻址操控系统
US11513418B2 (en) 2019-03-22 2022-11-29 Tsinghua University Addressing system, addressing apparatus and computing apparatus
US11593695B2 (en) 2019-03-26 2023-02-28 D-Wave Systems Inc. Systems and methods for hybrid analog and digital processing of a computational problem using mean fields
US11556769B2 (en) 2019-04-29 2023-01-17 Massachusetts Institute Of Technology Superconducting parametric amplifier neural network
US11288073B2 (en) 2019-05-03 2022-03-29 D-Wave Systems Inc. Systems and methods for calibrating devices using directed acyclic graphs
US11422958B2 (en) 2019-05-22 2022-08-23 D-Wave Systems Inc. Systems and methods for efficient input and output to quantum processors
WO2020255076A1 (en) 2019-06-19 2020-12-24 1Qb Information Technologies Inc. Method and system for mapping a dataset from a hilbert space of a given dimension to a hilbert space of a different dimension
US11402671B2 (en) * 2019-07-24 2022-08-02 IonQ, Inc. Scalable and programmable coherent waveform generators
WO2021021787A1 (en) 2019-07-29 2021-02-04 Lightmatter, Inc. Systems and methods for analog computing using a linear photonic processor
US11551128B2 (en) 2019-07-30 2023-01-10 International Business Machines Corporation Branched heteropolymer lattice model for quantum optimization
US11839164B2 (en) 2019-08-19 2023-12-05 D-Wave Systems Inc. Systems and methods for addressing devices in a superconducting circuit
US11714730B2 (en) 2019-08-20 2023-08-01 D-Wave Systems Inc. Systems and methods for high availability, failover and load balancing of heterogeneous resources
US11790259B2 (en) * 2019-09-06 2023-10-17 D-Wave Systems Inc. Systems and methods for tuning capacitance in quantum devices
EP4062561A4 (en) 2019-11-22 2024-01-10 Lightmatter, Inc. LINEAR PHOTOMIC PROCESSORS AND ASSOCIATED METHODS
US11373112B2 (en) * 2020-01-24 2022-06-28 United States Of America As Represented By The Secretary Of The Navy Quantum computer based method for analyzing cyber data and spectra while performing optimization based on the analysis
US11409426B2 (en) 2020-02-24 2022-08-09 D-Wave Systems Inc. User in interface, programmer and/or debugger for embedding and/or modifying problems on quantum processors
USD1002664S1 (en) 2020-02-24 2023-10-24 D-Wave Systems Inc. Display screen or portion thereof with graphical user interface
TWI806042B (zh) 2020-04-29 2023-06-21 新加坡商光子智能私人有限公司 光電處理設備、系統及方法
WO2021239215A1 (en) 2020-05-26 2021-12-02 Zurich Instruments Ag A fast controller device for controlling a quantum processor
KR20230042333A (ko) 2020-07-24 2023-03-28 라이트매터, 인크. 광자 프로세서에서 광자 자유도를 이용하기 위한 시스템들 및 방법들
US20220147824A1 (en) 2020-11-12 2022-05-12 equal1.labs Inc. Accelerated Learning In Neural Networks Incorporating Quantum Unitary Noise And Quantum Stochastic Rounding Using Silicon Based Quantum Dot Arrays
CN114912619A (zh) * 2021-02-08 2022-08-16 合肥本源量子计算科技有限责任公司 一种量子计算任务调度方法、装置及量子计算机操作系统
WO2023069181A2 (en) * 2021-08-20 2023-04-27 The University Of Chicago Quantum data center
US11809839B2 (en) 2022-01-18 2023-11-07 Robert Lyden Computer language and code for application development and electronic and optical communication
CN116666190B (zh) * 2023-07-25 2023-09-26 华翊博奥(北京)量子科技有限公司 一种电磁感应透明冷却的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942997A (en) * 1997-08-29 1999-08-24 Trw Inc. Correlated superconductor single flux quantum analog-to-digital converter
US20060225165A1 (en) * 2004-12-23 2006-10-05 Maassen Van Den Brink Alec Analog processor comprising quantum devices

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496854A (en) 1982-03-29 1985-01-29 International Business Machines Corporation On-chip SQUID cascade
EP0257342B1 (de) * 1986-08-13 1992-01-02 Siemens Aktiengesellschaft SQUID-Magnetometer für eine ein- oder mehrkanalige Vorrichtung zur Messung sehr schwacher Magnetfelder
JP2807518B2 (ja) * 1989-12-26 1998-10-08 富士通株式会社 超伝導装置
JPH04129426A (ja) * 1990-09-20 1992-04-30 Res Dev Corp Of Japan 超伝導デジタル・アナログ変換器
US5629889A (en) * 1995-12-14 1997-05-13 Nec Research Institute, Inc. Superconducting fault-tolerant programmable memory cell incorporating Josephson junctions
US5812078A (en) * 1997-05-22 1998-09-22 Northrop Grumman Corporation Josephson junction digital to analog converter for accurate AC waveform synthesis
GB9925213D0 (en) 1999-10-25 1999-12-22 Univ Cambridge Tech Magnetic logic elements
US6627916B2 (en) * 2001-03-31 2003-09-30 D-Wave Systems, Inc. High sensitivity, directional DC-squid magnetometer
US6978070B1 (en) * 2001-08-14 2005-12-20 The Programmable Matter Corporation Fiber incorporating quantum dots as programmable dopants
US6979836B2 (en) * 2001-08-29 2005-12-27 D-Wave Systems, Inc. Superconducting low inductance qubit
FR2839389B1 (fr) 2002-05-03 2005-08-05 Commissariat Energie Atomique Dispositif de bit quantique supraconducteur a jonctions josephson
FR2840467A1 (fr) * 2002-05-28 2003-12-05 St Microelectronics Sa Coupleur haute frequence
EP1593089A4 (en) * 2003-02-14 2009-11-25 Clearsight Systems Inc METHOD AND PROGRAMMABLE APPARATUS FOR QUANTUM CALCULATION
CN100483975C (zh) * 2003-07-08 2009-04-29 中国科学技术大学 量子网络寻址方法及量子网络路由器
CA2537602A1 (en) 2003-09-05 2005-03-17 D-Wave Systems, Inc. Superconducting phase-charge qubits
US7418283B2 (en) * 2004-03-29 2008-08-26 D-Wave Systems Inc. Adiabatic quantum computation with superconducting qubits
US7619437B2 (en) 2004-12-30 2009-11-17 D-Wave Systems, Inc. Coupling methods and architectures for information processing
US7870087B2 (en) * 2006-11-02 2011-01-11 D-Wave Systems Inc. Processing relational database problems using analog processors
KR101446943B1 (ko) 2006-12-05 2014-10-06 디-웨이브 시스템즈, 인코포레이티드 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942997A (en) * 1997-08-29 1999-08-24 Trw Inc. Correlated superconductor single flux quantum analog-to-digital converter
US20060225165A1 (en) * 2004-12-23 2006-10-05 Maassen Van Den Brink Alec Analog processor comprising quantum devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Frank Schmuser et al. Quantum analog-to-digital and digital-to-analog conversion. Physical Review A, vol 72, no 4, 2005.10.24., pp.042324-1~8. *
Frank Schmuser et al. Quantum analog-to-digital and digital-to-analog conversion. Physical Review A, vol 72, no 4, 2005.10.24., pp.042324-1~8.*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11900185B2 (en) 2018-01-22 2024-02-13 1372934 B.C. Ltd. Systems and methods for improving performance of an analog processor
US11847534B2 (en) 2018-08-31 2023-12-19 D-Wave Systems Inc. Systems and methods for operation of a frequency multiplexed resonator input and/or output for a superconducting device
WO2021011412A1 (en) * 2019-07-12 2021-01-21 D-Wave Systems Inc. Systems and methods for simulating a quantum processor
US12033033B2 (en) 2020-06-11 2024-07-09 D-Wave Systems Inc. Input/output systems and methods for superconducting devices

Also Published As

Publication number Publication date
CA2669816A1 (en) 2008-06-12
US8604944B2 (en) 2013-12-10
US20120005456A1 (en) 2012-01-05
CN101548288B (zh) 2013-04-24
CA2669816C (en) 2017-03-07
EP2126800A1 (en) 2009-12-02
KR20090090326A (ko) 2009-08-25
US20110055520A1 (en) 2011-03-03
CN101548288A (zh) 2009-09-30
US7876248B2 (en) 2011-01-25
US8035540B2 (en) 2011-10-11
US20080215850A1 (en) 2008-09-04
JP5313912B2 (ja) 2013-10-09
AU2007329156A1 (en) 2008-06-12
EP2126800A4 (en) 2012-07-11
JP2010511946A (ja) 2010-04-15
AU2007329156B2 (en) 2012-09-13
WO2008067664A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
KR101446943B1 (ko) 양자 프로세서 요소들의 국부적 프로그래밍을 위한 시스템들, 방법들 및 장치
US8018244B2 (en) Architecture for local programming of quantum processor elements using latching qubits
US10885459B2 (en) Physical realizations of a universal adiabatic quantum computer
US8786476B2 (en) Systems, methods and apparatus for digital-to-analog conversion of superconducting magnetic flux signals
CA2698132C (en) Systems, methods, and apparatus for qubit state readout
US20080238531A1 (en) Systems, devices, and methods for controllably coupling qubits
US20100148853A1 (en) Systems, devices, and methods for controllably coupling qubits
US20040000666A1 (en) Encoding and error suppression for superconducting quantum computers
CA2606286A1 (en) Qubit state copying
Burton et al. Unitary R-matrices for topological quantum computing
Feldman et al. Superconducting Quantum Computing Without Switches
KWEK et al. QUANTUM COMPUTER: HOW FEASIBLE IS THE IDEA?

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 6