TW202017123A - 光子封裝及相關方法 - Google Patents

光子封裝及相關方法 Download PDF

Info

Publication number
TW202017123A
TW202017123A TW108136996A TW108136996A TW202017123A TW 202017123 A TW202017123 A TW 202017123A TW 108136996 A TW108136996 A TW 108136996A TW 108136996 A TW108136996 A TW 108136996A TW 202017123 A TW202017123 A TW 202017123A
Authority
TW
Taiwan
Prior art keywords
photonic
package
wafer
substrate
asic
Prior art date
Application number
TW108136996A
Other languages
English (en)
Inventor
蘇凱斯沃 肯納
卡爾 拉米
邁克爾 古爾德
尼可拉斯C 哈里斯
Original Assignee
美商萊特美特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商萊特美特股份有限公司 filed Critical 美商萊特美特股份有限公司
Publication of TW202017123A publication Critical patent/TW202017123A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

茲描述光子封裝。光子封裝包括光子晶片、特定應用積體電路和選擇性中介層。光子晶片包括光子微機電系統(MEMS)裝置。光子封裝可包括經圖案化包括凹部的材料層。凹部對齊光子MEMS裝置,以於光子MEMS裝置周圍形成封閉空腔。此配置可保持光子MEMS裝置的完整性。

Description

光子封裝及相關方法
本申請案根據專利法法規主張西元2018年10月15日申請、代理人文件編號L0858.70005US00、名稱為「PHOTONICS PACKAGING METHOD AND DEVICE」的美國臨時專利申請案第62/745,533號的優先權,該臨時專利申請案全文內容以引用方式併入本文中。
本申請案根據專利法法規主張西元2019年1月15日申請、代理人文件編號L0858.70006US00、名稱為「HIGH-EFFICIENCY DOUBLE-SLOT WAVEGUIDE NANO-OPTO-ELECTROMECHANICAL PHASE MODULATOR」的美國臨時專利申請案第62/792,720號的優先權,該臨時專利申請案全文內容以引用方式併入本文中。
本申請案係關於光子裝置封裝及相關方法。
光子積體電路可與電子積體電路共封裝(co-packaged)。電子設備可包括數位電路,用以控制光子設備操作。在一些實施方式中,光子積體電路和電子積體電路由接合線連接在一起。
一些實施例係關於光子封裝,包含:光子晶片,具有表面、形成於表面的第一凹部和至少部分設置在第一凹部的光子微機電系統(MEMS)裝置;基板,裝設在光子晶片的表面;及材料層,置於基板與光子晶片之間,材料層具有第二凹部,第二凹部對齊第一凹部。
在一些實施例中,第一凹部和第二凹部集體形成空腔,其中空腔大於各個第一凹部和第二凹部。
在一些實施例中,光子MEMS裝置包含懸浮光波導。
在一些實施例中,光子MEMS裝置包含光子調相器。
在一些實施例中,光子調相器包含輸入光波導;輸出光波導;及懸浮光學結構,光學耦合輸入光波導與輸出光波導。
在一些實施例中,懸浮光學結構包含第一、第二和第三光波導;及形成於第一與第二光波導間的第一槽縫和形成於第二與第三光波導間的第二槽縫。
在一些實施例中,材料層包含非導電材料。
在一些實施例中,光子封裝進一步包含複數個導電柱並電氣耦接基板與光子晶片。
在一些實施例中,複數個導電柱穿過材料層。
在一些實施例中,基板包含矽中介層。
在一些實施例中,光子封裝進一步包含特定應用積體電路(ASIC)並裝設在矽中介層上,使矽中介層位於光子晶片與ASIC之間。
在一些實施例中,基板包含ASIC。
在一些實施例中,表面係第一表面,光子晶片包含相對第一表面的第二表面,第二表面裝設於電路板。
在一些實施例中,基板的第一部分位於光子晶片上面,基板的第二部分位於電路板上面。
在一些實施例中,光子晶片的第二表面設置在電路板的凹陷,凹陷形成於電路板的頂表面。
在一些實施例中,電路板的頂表面和光子晶片的第一表面為實質共平面。
在一些實施例中,光子晶片邊緣耦合至光纖。
一些實施例係關於光子封裝,包含具複數個光子微機電系統(MEMS)調變器的光子晶片和置於光子晶片上的特定應用積體電路(ASIC),ASIC電氣連通複數個光子MEMS調變器。
在一些實施例中,光子封裝進一步包含矽中介層並置於光子晶片與ASIC之間。
在一些實施例中,光子封裝進一步包含非導電膜並置於光子晶片與ASIC之間,非導電膜經圖案化具有複數個凹部,其中複數個凹部對齊光子晶片的各個光子MEMS調變器。
在一些實施例中,光子封裝進一步包含複數個導電柱並電氣連接ASIC與複數個光子MEMS調變器,其中複數個導電柱穿過非導電膜。
在一些實施例中,複數個光子MEMS調變器中的至少一個包含光子調相器。
在一些實施例中,複數個光子MEMS調變器中的至少一個包含懸浮光波導。
在一些實施例中,光子晶片設置在形成於電路板的凹陷。
一些實施例係關於製造光子封裝的方法,方法包含取得具複數個光子微機電系統(MEMS)裝置的光子晶片;圖案化非導電膜,以形成複數個凹部;將圖案化非導電膜施用於基板;及將基板裝設於光子晶片,使複數個凹部各自對齊複數個光子MEMS裝置。
在一些實施例中,基板包含矽中介層,其中方法進一步包含將特定應用積體電路(ASIC)裝設於矽中介層。
在一些實施例中,基板包含ASIC。
在一些實施例中,方法進一步包含把光子晶片放到形成於電路板的凹陷。
在一些實施例中,方法進一步包含邊緣耦合光纖與光子晶片。
在一些實施例中,方法進一步包含在將圖案化非導電膜施用於基板前,將基板傳送到切晶帶。
在一些實施例中,方法進一步包含在將基板裝設於光子晶片後,固化圖案化非導電膜。
在一些實施例中,將基板裝設於光子晶片包含進行熱壓接合。
I. 綜述
發明人認知且意識到習知用於光子積體電路的封裝技術不適用光子微機電系統(MEMS)裝置。更特定言之,發明人已察知利用習知技術封裝光子MEMS裝置會產生許多缺點。
一方面,利用引線接合技術封裝光子MEMS裝置的功率效能很差。此係因為引線接合涉及長接合線,使得電感值較大。大電感進而造成信號衰減,意味著需饋送更多功率至接合線一端,才可於接合線的另一端接收具足夠功率的信號。此外,大電感會產生雜訊。
另一方面,習知三維(3D)封裝技術不適用光子MEMS裝置,因為光子MEMS裝置需要凹部,讓裝置受到驅動力刺激時自由移動,但習知封裝技術常常造成底部填膠洩漏到凹部內。洩漏材料不慎填充凹部會使光子MEMS裝置黏合到基板。另外,某些光子MEMS裝置形成在晶粒表面。是以使用阻擋壩(resist dam)(在一些情況下為用於防止團塊洩漏)將實質增大晶粒尺寸,以致實際無法使用。
明暸上述限制後,發明人乃開發適用低功率低雜訊的光子MEMS裝置封裝,此設計為保持光子MEMS裝置的完整性。一些實施例係針對光子封裝,其中特定應用積體電路(ASIC)堆疊在光子晶片頂部,其中材料層插設在ASIC與光子晶片之間。材料層包括圖案化凹部,當組裝封裝時,凹部對齊光子MEMS裝置。依此,形成封閉空腔可保護光子MEMS裝置不受外來材料侵入,以免外來材料將光子MEMS裝置黏合到基板。
II. 光子 MEMS 裝置
所述光子MEMS裝置類型包括光子裝置並具有當受到驅動力刺激時可相對供裝置形成於上的基板移動的部分。在一些實施例中,部分波導懸浮於底下基板上方。波導的懸浮區可形成懸臂、架橋或任何其他適合形狀。在懸浮區,波導可獨立於基板自由移動。
光子MEMS裝置可用於各種應用,包括如光子調變器(例如調相器和調幅器)、可變衰減器、光偵測器、光子開關、光子多工器與解多工器、光子循環器、微鏡等。在至少一些裝置中,裝置致動涉及驅動波導相對基板移動。為此可使用任何適合驅動器類型,包括機械驅動器、電氣驅動器或聲波驅動器等。波導作動可改變波導支持光場的一或更多光學特性,進而引起某種光學效應變化,例如電漿色散效應、自由載子吸收、量子侷限史塔克(Stark)效應、普克爾(Pockels)效應、光學相位匹配、拉曼(Raman)放大、熱光效應、聲光效應、電光效應、二色性、雙折射、克爾(Kerr)效應、自相位調變、跨相位調變、四波混合、二次諧波產生、三次諧波產生或其他線性或非線性效應。
根據一些實施例,光子MEMS裝置一例繪示於第1A圖至第1B圖。第1A圖係光子晶片100在平行yz平面的平面上的截面圖,第1B圖係光子晶片100在平行xz平面的平面上的截面圖。光子晶片100包括基板手把101、披覆層102、凹部103和波導104。基板手把101可包括或由半導體材料製成,例如矽、磷化銦、砷化鎵等。波導104可包括或由折射率大於披覆層102的折射率的材料製成,藉以產生全反射。在一實例中,波導104由矽製成,披覆層102由氧化矽製成。在另一實例中,波導104由氮化矽製成,披覆層102由氧化矽製成。在又一實例中,波導104由矽製成,披覆層102由氮化矽製成。在再一實例中,波導104和披覆層102均由某一III-V族半導體合金製成,但各自合金組成設計成使波導104的折射率大於披覆層102的折射率。其他組合物亦可行。
凹部103形成穿過部分披覆層102。凹部可藉由如移除部分披覆層102而形成,例如利用蝕刻。在一些實施例中,凹部103係利用反應離子蝕刻形成,然其他蝕刻技術類型亦可行。在第1A圖實例中,凹部103及達基板手把101的頂表面。是以基板手把101的頂表面暴露於空氣。然在其他實施例中,凹部可更淺,使殘留披覆層102覆蓋基板手把101的頂表面。
由於存在凹部103,部分波導104懸浮於空氣中。底切105沿z軸方向分開波導104與基板手把101的頂表面。波導104的兩端嵌入披覆層102而形成橋式波導。然在其他實施例中,波導的一端嵌入披覆層,波導的另一端為懸浮,從而形成懸臂。在第1A圖實例中,光模106在波導104中從左到右傳播通過懸浮區。
第1B圖圖示懸浮區的波導104在平行xz平面的平面上的截面。如圖所示,波導104被空氣包圍(然在一些實施例中,可移除凹部103的空氣而形成真空)。波導104兩側的兩個箭頭分別指示在懸浮區,波導104可獨立於基板手把101自由移位。虛線框說明波導104的機械模式(即指示波導作動範圍兩端的位置)。應理解並非所有光子MEMS裝置都限於如第1B圖所示在xy平面上作動,因為其他機械模式亦可行。
光子晶片100可包括驅動器(第1A圖至第1B圖未圖示),用以促使波導104作動。光子晶片可進一步包括用於控制驅動器操作的電路。或者,驅動電路可設在單獨基板,例如特定應用積體電路(ASIC)。波導104作動會引起各種光學效應。此一效應詳述於第10圖至第15圖,並圖示根據一些實施例的光子MEMS調相器。
III. 光子封裝
一些實施例係關於光子晶片封裝,光子晶片包括一或更多光子MEMS裝置。一些封裝可形成封閉空腔且配置以保護光子MEMS裝置形成區域。在一些實施例中,封裝可配置使基板(例如中介層或ASIC)放在光子晶片頂部。
根據一些實施例,此一封裝繪示於第2A圖至第2D圖。第2A圖圖示封裝包括電路板10、光子晶片100、中介層200和ASIC 300。光子晶片100包括第1A圖至第1B圖所述一或更多光子MEMS裝置類型(特例描述於下面第10圖至第15圖)。ASIC 300包括用於控制光子晶片100操作的電路,包括如用於控制光子MEMS裝置用驅動器的電路。ASIC 300可以任何適合數位控制器類型實行,包括處理器或場可程式閘陣列(FPGA)。
光源150可置於封裝外面,及提供光使光子晶片100能夠操作。光源150尤其可包括雷射(例如二極體雷射或垂直腔面射型雷射)或發光二極體(LED)。光源150可發射電磁光譜的可見、紅外(包括近紅外、中紅外與遠紅外)或紫外部分。在一些實施例中,發射波長為O頻帶、C頻帶或L頻帶。光源150產生的光可由光纖152耦合到光子晶片100。
蓋子12可用於封閉(或至少部分覆蓋)封裝。蓋子12可由導熱材料製成,以便散熱。穿過蓋子12的開口可提供以讓光纖152通過。
在第2A圖實例中,中介層200置於光子晶片100與FPGA 300之間。在其他實施例中(包括第3A圖實例,此將詳述於後),ASIC 300可直接置於光子晶片100的頂部。若光子晶片100的輸入/輸出端子配置不同於ASIC 300的輸入/輸出端子配置(例如倘若具有不同節距),則中介層200可用作扇出轉接器。中介層200的頂表面可具有適於與ASIC 300互接的輸入/輸出端子,中介層200的下表面可具有適於與光子晶片100互接的輸入/輸出端子。中介層200包括導電內連線(例如通孔及/或導電跡線),用以在光子晶片100與ASIC 300間繞送信號。中介層200可為矽中介層,然其他中介層類型亦可使用。
第2B圖詳示第2A圖的部分光子封裝。特別地,第2B圖圖示中介層200與光子晶片100互接區域。應注意為清楚起見,第2B圖省略第2A圖封裝的其他部件。如第2B圖所示,材料層202夾設在中介層200與光子晶片100之間。是以光子晶片100、材料層202和ASIC 200在z軸方向上形成堆疊。在一些實施例中,材料層202不導電。材料層202可由任何適合的非導電材料製成,包括如聚合物、介電質、玻璃或氧化物等。在一些實施例中,材料層202形成非導電膜(NCF)。
凹部204形成穿過材料層202。凹部204相對x軸與y軸方向對齊光子晶片100的凹部103(波導104及/或其他光子MEMS裝置放置處)。互相對齊後,每對凹部204、103形成封閉空腔。一或更多光子MEMS裝置設置在封閉空腔內。凹部204、103的側向延伸(例如朝x軸和y軸方向)可為相同或不同。無論何者,當凹部204對齊凹部103時,將有至少一區域為凹部彼此連通。
空腔可充滿空氣或處於真空。故存有空腔可確保內部光子MEMS裝置懸浮於空氣中(或真空),以容許裝置相對光子晶片的基板手把自由移動。另外,存有空腔可防止材料流入凹部103,以免將光子MEMS裝置黏合到光子晶片的基板手把。
在第2B圖實例中,凹部204從材料層202的底表面延伸到材料層202的頂表面。在其他實施例中,凹部較淺,從材料層202的底表面延伸到材料層202內部界定平面。空腔下端可以光子晶片100為界,上端以中介層200或材料層202的殘留部分為界。
導電柱206通過材料層202並沿z軸方向延伸。導電柱206可包括或由銅製成,然其他導電材料亦可使用。在一些實施例中,導電柱206包括微凸塊。導電柱206的下端可接觸形成於光子晶片100的各焊墊108。導電柱206的上端可接觸形成穿過中介層200的各通孔208。故導電柱206能讓信號在光子晶片100與中介層200間傳輸。
第2C圖詳示第2A圖的另一部分光子封裝。特別地,第2C圖圖示光子晶片100與電路板10互接區域。應注意為清楚起見,第2C圖省略第2A圖封裝的其他部件。電路板10包括用於繞送信號的導電跡線和選擇性用於處理信號的電子電路。電路板10可由剛性材料或撓性材料製成。在一些實施例中,電路板10由一或更多材料疊層製成。電路板10的下表面包括焊墊14,用以互接電路板與底下基板(例如母板)。
在一些實施例中,凹陷11形成於電路板10的頂表面(STOP ),光子晶片100設置在凹陷11。凹陷11的深度可選擇使光子晶片100設置在凹陷11時,電路板10的頂表面(STOP )和光子晶片100的頂表面(S1 )實質位於同一平面(例如S1 平面和STOP 平面偏離1度以下及/或偏移1微米(μm)以下)。電路板10的頂表面(STOP )與光子晶片100的頂表面(S1 )實質平齊將產生平坦界面。當部分中介層200位於光子晶片100上方且部分中介層位於電路板10上方時,如第2A圖實施例,平坦界面又對提供機械穩定性很重要。
在一些實施例中,黏著劑110用於附接光子晶片100與電路板10。
光纖組件154可用於連接光纖152與光子晶片100。在此實例中,光纖152耦合至光子晶片側邊(換言之,光纖152邊緣耦合到光子晶片100)。然其他耦合配置亦可行。在此一配置中,光纖可耦合至光子晶片100的頂表面S1 (換言之,光纖152表面耦合到光子晶片100)。在一些實施例中,光柵或稜鏡可形成於頂表面S1 ,以助於與光纖耦合。
第2D圖詳示第2A圖的又一部分光子封裝。特別地,第2D圖圖示中介層200與ASIC 300互接區域。應注意為清楚起見,第2D圖省略第2A圖封裝的其他部件。如第2D圖所示,材料層302夾設在ASIC 300與中介層200之間。在一些實施例中,材料層302不導電。例如,材料層302可包括非導電膠。
導電柱306通過材料層302並沿z軸方向延伸。導電柱306可包括或由銅製成,然其他導電材料亦可使用,或可包括微凸塊。導電柱306的下端可接觸形成於中介層200的頂表面的各焊墊。導電柱306的上端可接觸形成穿過ASIC 300的各通孔。故導電柱306能讓信號在ASIC 300與中介層200間傳輸。
在一些實施例中,熱界面材料(TIM)320置於ASIC300的頂表面。TIM 320可接觸蓋子12,促使熱從ASIC 300傳遞到蓋子12。
上述封裝包括置於ASIC 300與光子晶片100間的中介層。在其他實施例中,ASIC 300可直接與光子晶片100互接。此一實施例繪示於第3A圖至第3B圖。類似第2A圖至第2D圖的封裝,第3A圖至第3B圖的封裝包括電路板10、光子晶片100、ASIC 300和蓋子12。不像第2A圖至第2D圖的封裝,第3A圖至第3B圖的封裝沒有中介層200。缺少中介層的優點為需要較少封裝步驟,因而大大降低封裝成本。然缺少中介層有一些缺點。例如,導致用於操縱信號進出光子晶片100的ASIC 300的複雜度提高。
類似第2A圖至第2D圖的封裝,光子晶片100放在形成於電路板10的凹陷。電路板10的頂表面與光子晶片100的頂表面共平面,從而提供ASIC 300平坦界面。
第3B圖詳示第3A圖的部分光子封裝。特別地,第3B圖圖示光子晶片100與ASIC 300互接區域。應注意為清楚起見,第3B圖省略第3A圖封裝的其他部件。材料層202夾設在ASIC 300與光子晶片100之間。如上述第2B圖,凹部204形成穿過材料層202。凹部204對齊光子晶片100的凹部103。互相對齊後,每對凹部204、103形成封閉空腔。存有空腔可確保內部光子MEMS裝置懸浮於空氣中(或真空),以容許裝置相對光子晶片的基板手把自由移動。如第3B圖所示,凹部204從材料層202的底表面延伸到材料層202的頂表面,或可更淺。
導電柱206通過材料層302並沿z軸方向延伸。導電柱206能讓信號在光子晶片100與ASIC 300間傳輸。
應理解所述光子封裝類型可偕同光子MEMS裝置以外的光學裝置使用。例如,所述光子封裝類型可結合未披覆光子晶片使用。此類光子晶片尤其可用於氣體感測。
IV. 光子封裝製造
至少在一些實施例中,所述光子封裝類型可利用覆晶技術製造。第4A圖至第4B圖、第5A圖至第5B圖、第6A圖至第6C圖、第7圖、第8A圖至第8B圖和第9圖圖示根據一些實施例,用於製造第2A圖至第2D圖所示封裝類型的製程流程。應理解圖式呈現步驟順序僅為舉例說明,因在一些實施例中,順序當可改變。
首先,提供光子晶片100。如第1A圖至第1B圖所述,光子晶片100包括一或更多光子MEMS裝置。在第4A圖的製程步驟中,光子晶片100經蝕刻形成光纖溝槽120。溝槽120可形成於光子晶片100的邊緣並穿過基板手把101。溝槽120可塑形及按尺寸製作來容納光纖端部,以實現邊緣耦合。溝槽120可具任何適合形狀,包括如V形或U形或上述組合物。在一些實施例中,溝槽120可藉由沿晶向蝕刻基板手把101而形成。在一些實施例中,蝕刻製程為異向性。
在第4B圖的製程步驟中,提供電路板10。電路板經蝕刻形成凹陷11。在一些實施例中,蝕刻可利用雷射蝕刻進行。蝕刻深度可選擇使光子晶片100設置於內時,電路板10和光子晶片100的頂表面實質共平面。隨後,光子晶片100置於凹陷11。在一些實施例中,如第4B圖所示,黏著劑110置於凹陷11,光子晶片100再放到黏著劑110的頂部。在其他實施例中,黏著劑先附接光子晶片,光子晶片再放到凹陷11。無論何者,黏著劑都位於光子晶片與電路板之間。在其他實施例中,黏著劑可省略。光子晶片100可設置使底表面S2 靠近電路板,頂表面S1 (其中凹部103形成)遠離電路板。光纖端部(第4B圖未圖示)可放在溝槽120內。
在第5A圖的製程步驟中,提供中介層200。中介層包括基板手把201(例如矽基板手把)和中介裝置層210。中介裝置層210可包括導電內連線,例如通孔及/或導電跡線。焊墊212可形成在中介裝置層210上面。矽貫孔208(TSV)或其他通孔類型可形成穿過部分基板手把201。
在第5B圖的製程步驟中,翻轉中介層200,及薄化基板手把201。基板手把經薄化直到TSV 208的端部露出為止。此外,中介層200可置於載具220(例如玻璃載具)上。此外,導電柱206形成接觸TSV 208。在一些實施例中,第5A圖至第5B圖的製程步驟係依晶圓級進行,然在其他實施例中,可進行晶粒級處理。
在第6A圖的製程步驟中,材料層202放在支撐件230上。在此階段,材料層202處於展性狀態。此外,具複數個突部702的印模700施加至材料層202上,以形成複數個凹部204(如第2B圖所示)。
在第6B圖的製程步驟中,自載具220釋放中介層200,及把中介晶圓250放到切晶帶260上。此外,圖案化材料層202施用於中介晶圓250上。此外,中介層200例如利用晶粒切割單粒化。
第6C圖圖示施用圖案化材料層202後的中介層200。如圖所示,複數個凹部204形成穿過材料層202。
在第7圖的製程步驟中,中介層200接合光子晶片100。在一些實施例中,部分中介層200位於電路板10上面,部分中介層200位於光子晶片100上面。在一些實施例中,中介層200利用熱壓接合來接合,然其他接合技術亦可使用。此外,材料層202可固化以提供固體界面。一旦接合,導電柱206便接觸光子晶片100的各焊墊及/或電路板10的各焊墊。
在第8A圖的製程步驟中,提供ASIC 300。ASIC 300包括基板手把301和ASIC裝置層310。ASIC裝置層310包括電路,例如用於控制光子晶片100操作的電路,包括用於控制光子MEMS裝置操作的電路。ASIC裝置層310更包括用於繞送信號的導電跡線。焊墊312形成在ASIC裝置層310上面。
在第8B圖的製程步驟中,導電柱306形成於焊墊312上。導電柱306可包括銅柱、微凸塊或任何其他連接器類型。儘管第8B圖未圖示,材料層302可以熔融或展性狀態施用於ASIC 300。
在第9圖的製程步驟中,ASIC 300接合中介層200,例如利用熱壓接合。一旦接合,導電柱306便接觸焊墊212。此外,熱界面材料(第9圖未圖示)320可施用於ASIC 300,並裝設蓋子12(第9圖未圖示)而得第2A圖封裝。
第3A圖封裝可以類似方式製造。在第6B圖的製程步驟中,圖案化材料層202施用於ASIC晶圓、而非中介晶圓。隨後,在第7圖的製程步驟中,ASIC 300和材料層202一起直接置於光子晶片100上。在一些實施例中,部分ASIC 300位於電路板10上面,部分ASIC 300位於光子晶片100上面。材料層202可固化以在ASIC 300與光子晶片100間提供固體界面。
V. 光子調相器
可根據所述技術封裝的光子MEMS裝置實例包括奈米光機電系統(NOEMS)調相器。一些實施例係關於具多個懸浮光波導的NOEMS調相器,光波導彼此相鄰設置且於其間形成複數個槽縫。所述NOEMS調相器類型可整合到光子晶片100。槽縫尺度乃夠小來形成槽式波導,藉此可將大部分(例如過半)的模態能量侷限在槽縫本身。該等模態在此稱作縫模。將大部分模態能量侷限於槽縫,可藉著使槽縫尺度改變而調變模態的有效折射率和體現模態的光信號相位。在一些實施例中,相位調變可藉由施加機械力致使槽縫尺度改變而達成。
所述NOEMS調相器類型係用於各種應用的光子MEMS裝置,包括如電信與數據通信(包括區域網路、都會網路、廣域網路、資料中心網路、衛星網路等)、類比應用(例如光纖無線電)、全光開關、同調光達、相位陣列、同調成像、機器學習和其他人工智慧應用類型。此外,如若結合Mach Zehnder調變器,則NOEMS調變器可用作部分調幅器。例如,可提供Mach Zehnder調變器,其中NOEMS調相器設在Mach Zehnder調變器的一或更多臂部。數個調變方案可利用NOEMS調相器達成,包括如幅移鍵控(ASK)、正交調幅(QAM)、相移鍵控(BPSK)、正交相移鍵控(QPSK)與高階QPSK、偏移正交相移鍵控(OQPSK)、雙極化正交相移鍵控(DPQPSK)、幅相位移鍵控(APSK)等。此外,NOEMS調相器可用於光信號相位易無預警漂移的應用做為相位校正器。在一些實施例中,所述NOEMS調相器類型可用作部分光子處理系統。
第10A圖係根據一些非限定實施例,奈米光機電系統(NOEMS)調相器的上視圖。NOEMS調相器1000包括輸入波導1102、輸出波導1104、輸入過渡區1140、輸出過渡區1150、懸浮多槽式光學結構1120、機械結構1130與1132和機械驅動器1160與1162。NOEMS調相器1000可利用矽光子技術製造。例如,NOEMS調相器1000可製造於矽基板上,例如塊材矽基板或矽覆絕緣(SOI)基板。在一些實施例中,NOEMS調相器1000進一步包括配置以控制機械驅動器1160與1162操作的電子電路。電子電路可製造在收容第10A圖部件的相同基板或個別基板上。當置於個別基板時,基板可以任何適合方式彼此接合,包括3D接合、覆晶接合、引線接合等。
至少一部分的NOEMS調相器1000形成於溝渠1106。如下文進一步詳述,所述溝渠類型可藉由蝕刻部分披覆層而形成。在第10A圖實例中,溝渠1106具矩形形狀,然具任何其他適合形狀的溝渠亦可使用。在此實例中,溝渠1106具有四個側壁。側壁1112、1114沿z軸(在此稱作傳播軸)彼此分隔,另兩個側壁(在第10A圖未標記)沿x軸彼此分隔。
在一些實施例中,側壁1112與1114間沿z軸的離距可小於或等於50 μm、小於或等於30 μm、或小於或等於20 μm。故NOEMS調相器的調變區明顯短於其他需數百微米來調變光信號相位的調相器類型。較短長度可由下列一或更多因子達成。第一,具有多個槽縫可改善光調變區耦合,進而縮減過渡區長度。改善耦合乃增強多槽式結構的模態對稱性的結果。第二,將機械驅動器自光調變區解耦能就每單位長度施以更大調變,因而有更短調變區。
操作期間,光信號可提供至輸入波導1102。在一實例中,光信號可為連續波(CW)信號。相位調變可於懸浮多槽式光學結構1120中進行。相位調變光信號可從輸出波導1104離開NOEMS調相器1000。過渡區1140可確保在輸入波導1102與懸浮多槽式光學結構1120間的光學耦合無損失或幾無損失。同樣地,過渡區1150可確保在懸浮多槽式光學結構1120與輸出波導1104間的光學耦合無損失或幾無損失。在一些實施例中,過渡區1140、1150包括漸變波導,此將進一步詳述於後。如上所述,過渡區的長度可較其他實施方式短。
輸入光信號可具有任何適合波長,包括、但不限於O頻帶、E頻帶、S頻帶、C頻帶或L頻帶的波長。或者,波長可為850 nm頻帶或可見頻帶。應理解NOEMS調相器1000可由任何適合材料製成,只要材料可讓擬定波長穿透或至少部分穿透,且核心區的折射率比周圍披覆層的折射率大。在一些實施例中,NOEMS調相器1000由矽製成。例如,輸入波導1102、輸出波導1104、輸入過渡區1140、輸出過渡區域1150、懸浮多槽式光學結構1120和機械結構1130與1132可由矽製成。已知矽的光學能隙較低(近似1.12電子伏特(eV)),矽尤其適用近紅外波長。在另一實例中,NOEMS調相器1000由氮化矽或鑽石製成。已知氮化矽和鑽石的光學能隙較高(分別為近似5 eV和近似5.47 eV),該等材料尤其適用可見波長。然其他材料亦可行,包括磷化銦、砷化鎵及/或任何適合的III-V或II-VI族合金。
在一些實施例中,輸入波導1102和輸出波導1104可按尺寸製作以在操作波長下支持單模(然多模波導亦可使用)。例如,若NOEMS調相器設計成在1550 nm下操作(當然,並非所有實施例都限於此態樣),則輸入和輸出波導1102、1104可在1550 nm下支持單模。依此,可增強波導內的模態侷限,從而減少散射及反射引起的光損失。波導1102、1104可為脊狀波導(例如具矩形截面)或可具任何其他適合形狀。
如上所述,部分NOEMS調相器1000可形成在溝渠1106內,使調變區的波導被空氣包圍並得在空間中自由移動。包括溝渠的缺點為沿傳播路徑形成披覆層/空氣界面和空氣/披覆層界面。故輸入光信號會在抵達調變進行區域前通過披覆層/空氣界面(對應側壁1112),及在調變區後通過空氣/披覆層界面(對應側壁1114)。界面可能引入反射損失。在一些實施例中,把過渡區1140設置在溝渠1106內部、而非外部,可減少反射損失(如第10A圖所示)。依此,過渡區相關模態展開發生在光信號已通過披覆層/空氣界面處。換言之,當通過披覆層/空氣界面時,模態受到嚴格侷限,但利用過渡區在溝渠中展開,以耦合到懸浮多槽式結構1120。同樣地,過渡區1150可形成在溝渠1106內,藉以在抵達側壁1114前空間上重新侷限模態。
第10B圖詳示根據一些非限定實施例的懸浮多槽式光學結構1120。在第10B圖實例中,多槽式光學結構1120包括三個波導(1121、1122、1123)。槽縫1124隔開波導1121與波導1122,槽縫1125隔開波導1122與波導1123。槽縫的寬度(d1 和d2 )可小於用於形成縫模的臨界寬度(在操作波長下),是以大部分的模態能量(例如,大於40%、大於50%、大於60%或大於75%)係在槽縫內。例如,d1 和d2 各自可等於或小於200 nm、等於或小於1150 nm、或等於或小於100 nm。最小寬度可由微影解析度設定。
第10C圖係根據一些非限定實施例,波導1121、1122、1123支持的光模實例。更特定言之,該曲線圖圖示模態幅度(例如電場Ex 、Ey 或Ez 或磁場Hx 、Hy 或Hz )。如圖所示,總能量大部分侷限在槽縫內,其中模態展現幅度峰值。在一些實施例中,比起任一個別波導,有更多光能量在槽縫。在一些實施例中,比起一起考量的所有波導,有更多光能量在槽縫。在外部波導的外壁外面,模態能量衰減(例如呈指數)。
寬度d1 和d2 彼此可相等或不同。槽縫和波導的寬度可沿z軸固定不變(如第10B圖所示)或變化。在一些實施例中,波導1121、1122、1123的寬度小於輸入波導1102的寬度。在一些實施例中,當操作波長在C頻帶時,波導1121、1122、1123的寬度可為200 nm至400 nm、250nm至350nm或在任何其他適合範圍內,無論在此範圍以內或以外。
儘管第10B圖實例圖示懸浮多槽式光學結構1120具有三個波導和兩個槽縫,但任何其他適當數量的波導和槽縫亦可使用。在其他實例中,懸浮多槽式光學結構1120可包括五個波導和四個槽縫、七個波導和六個槽縫、九個波導和八個槽縫等。在一些實施例中,結構包括奇數個波導(因而有偶數個槽縫),如此僅對稱模態遭激發,非對稱模態仍未激發。發明人已明白增強模態的對稱性可增強耦合至槽縫結構內,故可實質減小過渡區的長度。然具偶數個波導的實施方式亦可行。
如下文所詳述,藉由促使外部波導(第10B圖的1121、1123)相對中心波導(第10B圖的1122)沿x軸移動,可進行相位調變。當波導1121在x軸上相對波導1122移動時,槽縫1124的寬度改變,結構支持的模態形狀相應改變。是以結構支持模態的有效折射率產生變化,從而進行相位調變。可使用機械結構1130、1132來誘發外部波導作動。
根據一些非限定實施例,機械結構1130一例繪示於第10D圖。機械結構1132(參見第10A圖)可具有類似配置。在第10D圖實例中,機械結構1130包括樑柱1133、1134、1135和1136。樑柱1133連接機械驅動器1160與樑柱1134。樑柱1135、1136連接樑柱1134與外部波導。為限制光損失,樑柱1135、1136分別在過渡區1140、1150、而非調變區中附接外部波導(如第10E圖所示,此將說明於後)。然將樑柱1135、1136附接外部波導而至調變區亦可行。除了第10D圖所示樑柱,或可或另可使用具不同形狀、尺寸和定向的樑柱。
機械結構1130可將機械驅動器1160產生的機械力傳遞到波導1121,致使波導1121相對波導1122移動。機械驅動器1160、1162可以任何適合方式實行。在一實例中,機械驅動器包括壓電裝置。在一實例中,機械驅動器包括導電指部。當電壓施加至相鄰指部間時,指部經加速而施予機械力至機械結構。在一些實施例中,機械驅動器可用具編碼圖案的電信號驅動。依此,調變將使圖案施予到輸入光信號的相位。
應理解由於懸浮多槽式光學結構1120的波導係由外部機械驅動器驅動,而非如某些習知調相器般由電信號直接供應,波導的導電率可放寬,進而減少自由載子吸收損失和動態損失。此不同於一些習知調相器,其中波導本身經摻雜當作加熱器或載子累積區。在一些實施例中,波導1121、1122、1123可由未摻雜或低摻雜半導體材料(例如未摻雜矽或矽摻雜濃度小於1014 cm-3 )製成。在一些實施例中,波導形成材料的電阻率可大於11300歐姆公分(Ωcm)。
第10E圖圖示根據一些非限定實施例的過渡區1140一例。在此實施方式中,波導1122與輸入波導1102相連(例如為延伸部分)。如圖所示,波導1122在過渡區呈漸變使寬度越接近懸浮多槽式光學結構1120越小。反之,波導1121、1123在過渡區呈漸變使寬度離懸浮多槽式光學結構1120越遠越大。漸變波導容許在輸入波導1102的模態與懸浮多槽式光學結構1120的模態間絕熱耦合,以限制耦合損失。類似配置可用於過渡區1150。因多槽式結構支持模態的對稱性增強,過渡區1140、1150明顯短於其他實施方式。在一些實施例中,過渡區可短至10 μm或以下、或5 μm或以下,然其他值亦可行。
第11圖係根據一些非限定實施例,沿通過波導1122的yz平面(參見第10B圖的平面1190)截切NOEMS調相器1000的截面圖。輸入波導1102和輸出波導1104被披覆層包圍,披覆層由折射率小於核心材料折射率的材料製成(例如氧化矽)。下披覆層1202位於波導與底下基板1201之間。上披覆層1206形成在波導上面。
為讓懸浮多槽式光學結構1120的波導能自由作動,溝渠1106乃形成穿過部分上披覆層1206。在一些實施例中,懸浮多槽式光學結構下面的部分下披覆層1202經移除形成底切1204。是以波導1121、1122、1123懸浮於空氣中,並響應機械力自由移動。披覆層/空氣界面存於溝渠側壁1112,空氣/披覆層界面存於溝渠側壁1114。側壁可實質垂直,如若溝渠由反應離子蝕刻(RIE)形成時,或可屈斜。如第11圖所示,若使用等向性蝕刻,底切1204可具彎曲側壁,或可實質垂直。在一些實施例中,溝渠1106和底切1204可依部分相同蝕刻形成,在其他實施例中,可利用不同蝕刻形成。
第12圖係根據一些非限定實施例,沿通過波導1121、1122、1123的xy平面(參見第10B圖的平面1191)截切NOEMS調相器1000的截面圖。第12圖圖示波導1121、1122、1123和樑柱1134為共平面(至少在此實例),並懸浮於基板1201上方的空氣中。如圖進一步所示,波導1121、1122、1123於此截面不接觸下披覆層1202。當機械驅動器1160、1162啟動時,樑柱1134和波導1121、1123沿x軸振盪,從而改變槽縫1124、1125的寬度。根據一些非限定實施例,波導1121、1123的振盪運動一例集體繪示於第13A圖至第13C圖。第13A圖圖示未施加機械力的情況。是以槽縫寬度未受干擾。在第13B圖中,一對力施加使波導1121、1123均朝波導1122移動,此如箭頭所示。是以槽縫寬度減小。在第13C圖中,一對力施加使波導1121、1123均移動遠離波導1122,此亦如箭頭所示。是以槽縫寬度增加。在一些實施例中,力可以週期方式及/或依循驅動電信號圖型施加。在一些實施例中,力可差別施加至波導1121、1123,如此相同強度施加至二波導,但具有相反正負號。
第14圖圖示根據一些非限定實施例,在懸浮多槽式光學結構1120中傳播模態的有效折射率(Neff)如何隨寬度d1 (波導1121與1122間的槽縫寬度)變化的曲線圖。類似響應可繪示為d2 的函數。有效折射率變化由下列引起:由於波導間的離距受施加機械力作用而改變,模態形狀相對第10C圖所示偏離。當寬度隨時間變化,模態有效折射率亦然,故模態相位隨之改變。
第15圖圖示根據一些非定實施例,用於製造NOEMS調相器的方法實例流程圖。應理解下述方法步驟可依任何適合順序進行,因為製造製程不限於第15圖所示特定順序。
製造方法1600始於步驟1602:取得晶片。在一些實施例中,晶片可為矽覆絕緣晶片或塊材矽晶片。晶片可具有基板和下列任一層:下披覆層、半導體層和上披覆層。在一些實施例中,下披覆層包含氧化矽。在一些實施例中,半導體層包含矽、氮化矽及/或摻雜氧化矽。上披覆層可包含和形成下披覆層一樣的材料或不同材料。第12圖圖示具下披覆層(披覆層1202)、半導體層(波導層1121、1122、1123)和上披覆層(披覆層1206)的基板實例(基板1201)。應理解當晶片抵達製造設施(在此製造NOEMS調相器)時,上述任一層可已存於晶片,或可依部分製造製程在設施形成。
在步驟1604中,半導體層經圖案化形成具第一和第二槽縫(或多於兩個的任何其他槽縫數量)的多槽式光學結構。在第12圖實例中,波導1121、1122、1123於步驟1604形成。圖案化半導體層涉及沉積光阻層、微影曝光及蝕刻穿過半導體層。在一些實施例中,任一機械結構1130與1132、機械驅動器1160與1162、波導1102與1104和過渡區1140與142(參見第10A圖)依部分相同微影曝光製造,然並非所有實施例都限於此,因為可採用一或更多個別微影曝光。在一些實施例中,在步驟1604中,機械驅動器1160可利用如離子植入摻雜。在一些實施例中,多槽式光學結構可保持不摻雜。
在步驟1606中,溝渠形成穿過上披覆層。溝渠一例(溝渠1106)繪示於第12圖。溝渠可利用如乾蝕刻形成,例如反應離子蝕刻。然或可或另可使用濕蝕刻。溝渠形成涉及移除步驟1604所形成多槽式光學結構上方區域的部分上披覆層。是以多槽式光學結構可部分或全部暴露於空氣。
在步驟1608中,於下披覆層形成底切。底切一例(底切1204)繪示於第12圖。底切可利用如濕蝕刻形成,然或可或另可使用乾蝕刻。底切形成涉及移除多槽式光學結構下方區域的部分下披覆層。是以至少一部分的多槽式光學結構可懸浮於空氣中。
VI. 結論
茲已描述本申請案的數個技術態樣和實施例,應理解本領域一般技術人士很容易作各種更動、潤飾及改善。該等更動、潤飾及改善擬落在申請案所述技術的精神和範圍內。因此,應理解前述實施例僅為舉例說明且落在後附申請專利範圍和均等物內,發明實施例可以不同於具體敘述的方式實踐。此外,若所述二或更多特徵、系統、物件、材料及/或方法不相互矛盾,則該等特徵、系統、物件、材料及/或方法的任一組合物皆包括在本發明的範圍內。
又如所述,一些態樣可體現成一或更多方法。依部分方法進行的動作可按任何適合方式排序。因此,實施例可建構使動作按不同於所示的順序進行,包括同時進行一些動作,即使示例性實施例顯示為相繼動作。
本文定義及所用所有釋義應理解為控制字典定義、併入參考文件的定義及/或定義術語的一般含義。
除非清楚指明,否則說明書和申請專利範圍所用不定冠詞「一」應理解為意指「至少一」。
說明書和申請專利範圍所用「及/或」一詞應理解為意指結合元件的「任一或二者」,即元件在一些情況下為共同存在,在其他情況下為分開存在。
說明書和申請專利範圍提及一或更多元件清單時所用「至少一」一詞應理解為意指選自元件清單中一或更多元件的至少一元件,但不必然包括元件清單具體列出的至少一元件,且不排除元件清單的任何元件組合物。此定義亦容許除了以「至少一」一詞指稱元件清單中具體指出元件以外的元件選擇性存在,無論與具體指出元件有關或無關。
術語「近似」和「約」可用於表示在一些實施例中為目標值的±20%以內,在一些實施例中為目標值的±10%以內,在一些實施例中為目標值的±5%以內,又在一些實施例中為目標值的±2%以內。術語「近似」和「約」可包括目標值。
10:電路板 11:凹陷 12:蓋子 14:焊墊 100:光子晶片 101:基板手把 102:披覆層 103:凹部 104:波導 105:底切 106:光模 108:焊墊 110:黏著劑 120:溝槽 150:光源 152:光纖 154:光纖組件 200:中介層 201:基板手把 202:材料層 204:凹部 206:導電柱 208:通孔 210:裝置層 212:焊墊 220:載具 230:支撐件 250:中介晶圓 260:切晶帶 300:ASIC 301:基板手把 302:材料層 306:導電柱 310:裝置層 312:焊墊 320:TIM 700:印模 702:突部 1000:調相器 1102:輸入波導 1104:輸出波導 1106:溝渠 1112、1114:側壁 1120:光學結構 1121、1122、1123:波導 1124、1125:槽縫 1130、1132:機械結構 1133、1134、1135、1136:樑柱 1140、1150:過渡區 1160、1162:機械驅動器 1190、1191:平面 1201:基板 1202、1206:披覆層 1204:底切 1600:方法 1602、1604、1606、1608:步驟 d1、d2:寬度 S1、S2:表面 STOP:頂表面
本申請案的各種態樣和實施例將參考以下附圖描述。應理解圖式不必然按比例繪製。凡多圖中出現的品項在所有示圖中以相同的元件符號表示。
第1A圖係根據所述一些技術實施例,包括光子微機電系統(MEMS)裝置的光子晶片截面圖。
第1B圖係根據所述一些技術實施例,第1A圖光子晶片的另一截面圖。
第2A圖係根據所述一些技術實施例,包括第1A圖光子晶片的光子封裝截面圖。
第2B圖詳示根據所述一些技術實施例,第2A圖的部分光子封裝。
第2C圖詳示根據所述一些技術實施例,第2A圖的另一部分光子封裝。
第2D圖詳示根據所述一些技術實施例,第2A圖的又一部分光子封裝。
第3A圖係根據所述一些技術實施例,包括第1A圖光子晶片的另一光子封裝截面圖。
第3B圖詳示根據所述一些技術實施例,第3A圖的部分光子封裝。
第4A圖係根據所述一些技術實施例,包括光纖溝槽的光子晶片側視圖。
第4B圖圖示根據所述一些技術實施例的製造步驟,其中光子晶片裝設於電路板。
第5A圖係根據所述一些技術實施例,中介層的截面圖。
第5B圖係根據所述一些技術實施例,把中介層放到載具上後的第5A圖中介層截面。
第6A圖圖示根據所述一些技術實施例的製造步驟,其中材料層經圖案化具有複數個凹部。
第6B圖圖示根據所述一些技術實施例的製造步驟,其中圖案化材料層施用於中介晶圓。
第6C圖係根據所述一些技術實施例,施用圖案化材料層後的中介層截面圖。
第7圖圖示根據所述一些技術實施例的製造步驟,其中中介層裝設於光子晶片。
第8A圖係根據所述一些技術實施例,特定應用積體電路(ASIC)的截面圖。
第8B圖係根據所述一些技術實施例,複數個導電柱形成於上後,第8A圖ASIC的截面圖。
第9圖圖示根據所述一些技術實施例的製造步驟,其中ASIC裝設於中介層。
第10A圖係根據所述一些技術實施例,奈米光機電系統(NOEMS)調相器的上視圖。
第10B圖係根據所述一些技術實施例,第10A圖NOEMS調相器的懸浮多槽式光學結構的上視圖。
第10C圖係根據所述一些技術實施例,第10B圖懸浮多槽式光學結構產生的光模實例圖。
第10D圖係根據所述一些技術實施例,第10A圖NOEMS調相器的機械結構的上視圖。
第10E圖係根據所述一些技術實施例,第10A圖NOEMS調相器的過渡區的上視圖。
第11圖係根據所述一些技術實施例,沿yz平面截切第10A圖NOEMS調相器的截面圖,並圖示懸浮波導。
第12圖係根據所述一些技術實施例,沿xy平面截切第10A圖NOEMS調相器的截面圖,並圖示部分懸浮多槽式光學結構。
第13A圖至第13C圖係根據所述一些技術實施例,如何機械驅動懸浮多槽式光學結構以改變波導間的槽縫寬度的截面示意圖。
第14圖係根據所述一些技術實施例,懸浮多槽式光學結構的有效折射率如何隨槽縫寬度變化的示意圖。
第15圖係根據所述一些技術實施例,用於製造NOEMS調相器的方法實例流程圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
10:電路板
12:蓋子
100:光子晶片
150:光源
152:光纖
200:中介層
300:ASIC

Claims (32)

  1. 一種光子封裝,包含: 一光子晶片,具有一表面、形成於該表面的一第一凹部和至少部分設置在該第一凹部的一光子微機電系統(MEMS)裝置;一基板,裝設在該光子晶片的該表面;及一材料層,置於該基板與該光子晶片之間,該材料層具有一第二凹部,該第二凹部對齊該第一凹部。
  2. 如請求項1所述之光子封裝,其中該第一凹部和該第二凹部集體形成一空腔,其中該空腔大於各個該第一凹部和該第二凹部。
  3. 如請求項1所述之光子封裝,其中該光子MEMS裝置包含一懸浮光波導。
  4. 如請求項1所述之光子封裝,其中該光子MEMS裝置包含一光子調相器。
  5. 如請求項4所述之光子封裝,其中該光子調相器包含: 一輸入光波導;一輸出光波導;及一懸浮光學結構,光學耦合該輸入光波導與該輸出光波導。
  6. 如請求項5所述之光子封裝,其中該懸浮光學結構包含: 一第一光波導、一第二光波導和一第三光波導;及形成於該第一光波導與該第二光波導間的一第一槽縫和形成於該第二光波導與該第三光波導間的一第二槽縫。
  7. 如請求項1所述之光子封裝,其中該材料層包含一非導電材料。
  8. 如請求項1所述之光子封裝,進一步包含複數個導電柱,電氣耦接該基板與該光子晶片。
  9. 如請求項8所述之光子封裝,其中該複數個導電柱穿過該材料層。
  10. 如請求項1所述之光子封裝,其中該基板包含一矽中介層。
  11. 如請求項10所述之光子封裝,進一步包含一特定應用積體電路(ASIC),裝設在該矽中介層上,使該矽中介層位於該光子晶片與該ASIC之間。
  12. 如請求項1所述之光子封裝,其中該基板包含一ASIC。
  13. 如請求項1所述之光子封裝,其中該表面係一第一表面,該光子晶片包含相對該第一表面的一第二表面,該第二表面裝設於一電路板。
  14. 如請求項13所述之光子封裝,其中該基板的一第一部分位於該光子晶片上面,該基板的一第二部分位於該電路板上面。
  15. 如請求項13所述之光子封裝,其中該光子晶片的該第二表面設置在該電路板的一凹陷,該凹陷形成於該電路板的一頂表面。
  16. 如請求項15所述之光子封裝,其中該電路板的該頂表面和該光子晶片的該第一表面為實質共平面。
  17. 如請求項1所述之光子封裝,其中該光子晶片邊緣耦合至一光纖。
  18. 一種光子封裝,包含: 一光子晶片,具有複數個光子微機電系統(MEMS)調變器;及一特定應用積體電路(ASIC),置於該光子晶片上,該ASIC電氣連通該複數個光子MEMS調變器。
  19. 如請求項18所述之光子封裝,進一步包含一矽中介層,置於該光子晶片與該ASIC之間。
  20. 如請求項18所述之光子封裝,進一步包含一非導電膜,置於該光子晶片與該ASIC之間,該非導電膜經圖案化具有複數個凹部,其中該複數個凹部對齊該光子晶片的各個光子MEMS調變器。
  21. 如請求項20所述之光子封裝,進一步包含複數個導電柱,電氣連接該ASIC與該複數個光子MEMS調變器,其中該複數個導電柱穿過該非導電膜。
  22. 如請求項18所述之光子封裝,其中該複數個光子MEMS調變器中的至少一個包含一光子調相器。
  23. 如請求項18所述之光子封裝,其中該複數個光子MEMS調變器中的至少一個包含一懸浮光波導。
  24. 如請求項18所述之光子封裝,其中該光子晶片設置在形成於一電路板的一凹陷。
  25. 一種製造光子封裝的方法,該方法包含: 取得一光子晶片,該光子晶片具有複數個光子微機電系統(MEMS)裝置;圖案化一非導電膜,以形成複數個凹部;將該圖案化非導電膜施用於一基板;及將該基板裝設於該光子晶片,使該複數個凹部各自對齊該複數個光子MEMS裝置。
  26. 如請求項25所述之方法,其中該基板包含一矽中介層,其中該方法進一步包含將一特定應用積體電路(ASIC)裝設於該矽中介層。
  27. 如請求項25所述之方法,其中該基板包含一ASIC。
  28. 如請求項25所述之方法,進一步包含把該光子晶片放到形成於一電路板的一凹陷。
  29. 如請求項25所述之方法,進一步包含邊緣耦合一光纖與該光子晶片。
  30. 如請求項25所述之方法,進一步包含在將該圖案化非導電膜施用於該基板前,將該基板傳送到一切晶帶。
  31. 如請求項25所述之方法,進一步包含在將該基板裝設於該光子晶片後,固化該圖案化非導電膜。
  32. 如請求項25所述之方法,其中將該基板裝設於該光子晶片包含進行一熱壓接合。
TW108136996A 2018-10-15 2019-10-15 光子封裝及相關方法 TW202017123A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862745533P 2018-10-15 2018-10-15
US62/745,533 2018-10-15
US201962792720P 2019-01-15 2019-01-15
US62/792,720 2019-01-15

Publications (1)

Publication Number Publication Date
TW202017123A true TW202017123A (zh) 2020-05-01

Family

ID=70160072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136996A TW202017123A (zh) 2018-10-15 2019-10-15 光子封裝及相關方法

Country Status (3)

Country Link
US (1) US11256029B2 (zh)
TW (1) TW202017123A (zh)
WO (1) WO2020081533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555316A (zh) * 2021-07-20 2021-10-26 佛山慧鑫众创科技有限公司 一种智能功率模块及其制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749603B2 (en) * 2016-07-14 2020-08-18 Ayar Labs, Inc. Laser module for optical data communication system within silicon interposer
TW202017123A (zh) 2018-10-15 2020-05-01 美商萊特美特股份有限公司 光子封裝及相關方法
FR3089310A1 (fr) * 2018-12-04 2020-06-05 Stmicroelectronics (Grenoble 2) Sas Dispositif électronique comprenant une puce électronique pourvue d’un câble optique
JP7135871B2 (ja) * 2019-01-10 2022-09-13 日本電信電話株式会社 光モジュール
US10884313B2 (en) 2019-01-15 2021-01-05 Lightmatter, Inc. High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator
US10951003B1 (en) * 2020-02-25 2021-03-16 Inphi Corporation Light source for integrated silicon photonics
US11165509B1 (en) 2020-06-05 2021-11-02 Marvell Asia Pte, Ltd. Method for co-packaging light engine chiplets on switch substrate
US11726383B2 (en) * 2020-10-14 2023-08-15 California Institute Of Technology Modular hybrid optical phased arrays
US11300740B1 (en) * 2021-03-17 2022-04-12 Oprocessor Inc Optical module package
US11835764B2 (en) * 2022-01-31 2023-12-05 Globalfoundries U.S. Inc. Multiple-core heterogeneous waveguide structures including multiple slots

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567569A (en) 1982-12-15 1986-01-28 Battelle Development Corporation Optical systolic array processing
GB2154772B (en) 1984-02-25 1987-04-15 Standard Telephones Cables Ltd Optical computation
GB2220780B (en) 1988-07-05 1992-12-23 Mitsubishi Electric Corp Neurocomputer
US5004309A (en) 1988-08-18 1991-04-02 Teledyne Brown Engineering Neural processor with holographic optical paths and nonlinear operating means
US5077619A (en) 1989-10-25 1991-12-31 Tacan Corporation High linearity optical transmitter
JP2795015B2 (ja) 1991-01-09 1998-09-10 松下電器産業株式会社 空間光変調素子および神経ネットワーク回路
US5699449A (en) 1994-11-14 1997-12-16 The University Of Connecticut Method and apparatus for implementation of neural networks for face recognition
US6005998A (en) 1998-02-20 1999-12-21 Lucent Technologies Inc. Strictly non-blocking scalable matrix optical switch
US6392233B1 (en) * 2000-08-10 2002-05-21 Sarnoff Corporation Optomechanical radiant energy detector
US20020197025A1 (en) 2001-06-25 2002-12-26 Vladimir Vaganov Photonic device packaging method and apparatus
AUPR726901A0 (en) 2001-08-24 2001-09-20 Uniquest Limited Quantum optical cnot gate
IL145245A0 (en) 2001-09-03 2002-06-30 Jtc 2000 Dev Delaware Inc System and method including vector-matrix multiplication
KR20050042243A (ko) 2001-11-06 2005-05-06 더 존스 홉킨스 유니버시티 단일 양자들의 양자 상태들을 이용하는 논리 연산들을수행하기 위한 기술들
US7317574B2 (en) 2002-05-20 2008-01-08 Magiq Technologies, Inc. Long-distance quantum communication
ATE278274T1 (de) 2002-06-24 2004-10-15 Cit Alcatel Vorrichtung für ein passives optisches netzwerk
AU2003304482A1 (en) 2002-12-09 2005-04-11 The Johns Hopkins University Method and apparatus for single-photon source and quantum memory
US20050013557A1 (en) * 2003-07-14 2005-01-20 Daoqiang Lu Optical packages and methods for controlling a standoff height in optical packages
US7133173B2 (en) 2004-07-26 2006-11-07 Hewlett-Packard Development Company, L.P. Nonlinear electromagnetic quantum information processing
US7492983B2 (en) 2004-08-04 2009-02-17 The Furukawa Electric Co., Ltd. Optical circuit device
US7660533B1 (en) 2004-08-04 2010-02-09 The United States Of America As Represented By The Secretary Of The Army Quantum Fourier transform based information transmission system and method
US8560282B2 (en) 2005-07-11 2013-10-15 D-Wave Systems Inc. Quantum processor-based systems, methods and apparatus for solving problems as logic circuits
WO2007041807A1 (en) 2005-10-13 2007-04-19 National Ict Australia Limited Method and apparatus for automated identification of signal characteristics
US8023828B2 (en) 2005-10-17 2011-09-20 Hewlett-Packard Development Company, L.P. Quantum information conversion between matter and light representations
CA2637071A1 (en) 2006-01-27 2007-08-02 D-Wave Systems, Inc. Methods of adiabatic quantum computation
KR100890389B1 (ko) 2006-12-05 2009-03-26 한국전자통신연구원 편광 무의존 단방향 양자 암호 수신 및 송수신 장치
AU2007329156B2 (en) 2006-12-05 2012-09-13 D-Wave Systems Inc. Systems, methods and apparatus for local programming of quantum processor elements
US8548334B2 (en) 2006-12-06 2013-10-01 Mohammad Mazed Dynamic intelligent bidirectional optical access communication system with object/intelligent appliance-to-object/intelligent appliance interaction
US7985965B2 (en) 2007-03-29 2011-07-26 Raytheon Company Quantum computing device and method including qubit arrays of entangled states using negative refractive index lenses
US7843209B2 (en) 2007-04-25 2010-11-30 D-Wave Systems Inc. Architecture for local programming of quantum processor elements using latching qubits
US7539375B2 (en) 2007-05-04 2009-05-26 Massachusetts Institute Of Technology Optical coupled resonator structures based on loop-coupled cavities and loop coupling phase
US20090154872A1 (en) 2007-12-18 2009-06-18 Sherrer David S Electronic device package and method of formation
US8190553B2 (en) 2007-12-20 2012-05-29 Routt Thomas J Methods and systems for quantum search, computation and memory
JP5091717B2 (ja) 2008-02-21 2012-12-05 株式会社東芝 量子計算方法および量子計算機
JP2011513995A (ja) 2008-03-07 2011-04-28 スリーエム イノベイティブ プロパティズ カンパニー 模様付き裏材を備えるダイシングテープ及びダイアタッチ接着剤
US8639074B2 (en) 2008-04-09 2014-01-28 Yale University Nanomechanical photonic devices
CN101630178B (zh) 2008-07-16 2011-11-16 中国科学院半导体研究所 一种硅基集成化的光学向量-矩阵乘法器
JP4786727B2 (ja) 2009-03-27 2011-10-05 株式会社東芝 量子計算方法、量子計算機およびプログラム
US8076666B2 (en) 2009-04-17 2011-12-13 Microsoft Corporation Use of sack geometry to implement a single qubit phase gate
CA2759790A1 (en) * 2009-05-01 2010-11-04 The University Of Western Ontario Photonic crystal pressure sensor
US8427738B2 (en) 2009-09-11 2013-04-23 The United States Of America, As Represented By The Secretary Of The Navy Nonlinear frequency conversion in nanoslot optical waveguides
WO2011114753A1 (ja) 2010-03-19 2011-09-22 日本電信電話株式会社 光変調器
US9069139B2 (en) 2011-07-28 2015-06-30 Jds Uniphase Corporation Multicast optical switch
US8837544B2 (en) 2011-10-28 2014-09-16 Hewlett-Packard Development Company, L.P. Quantum optical device
US10534189B2 (en) 2012-11-27 2020-01-14 The Board Of Trustees Of The Leland Stanford Junior University Universal linear components
FR3002654A1 (fr) 2013-02-26 2014-08-29 St Microelectronics Sa Modulateur optique avec correction de polarisation automatique
US10371890B2 (en) 2013-02-26 2019-08-06 Furukawa Electric Co., Ltd. Optical waveguide element
CN105191029B (zh) 2013-03-08 2018-01-09 国立研究开发法人科学技术振兴机构 二维光子晶体面发光激光器
CN105143938A (zh) 2013-04-24 2015-12-09 日本电气株式会社 偏振分束器和光学器件
US9633715B2 (en) 2013-05-31 2017-04-25 Hitachi, Ltd. Semiconductor device capable of attaining ground state in an ising model
KR101771064B1 (ko) * 2013-06-28 2017-08-24 인텔 아이피 코포레이션 주문형 집적 회로(asic) 상의 마이크로 전자기계 시스템(mems)
WO2015006494A1 (en) 2013-07-09 2015-01-15 Board Of Trustees Of The Leland Stanford Junior University Computation using a network of optical parametric oscillators
WO2016028363A2 (en) 2014-06-06 2016-02-25 Massachusetts Institute Of Technology Methods, systems, and apparatus for programmable quantum photonic processing
US9768901B2 (en) * 2014-11-20 2017-09-19 Kaiam Corp. Planar lightwave circuit active connector
US9753224B2 (en) 2015-03-25 2017-09-05 The Board Of Trustees Of The Leland Stanford Junior University Field-programmable optical component
US9588298B2 (en) 2015-06-04 2017-03-07 Elenion Technologies, Llc Edge coupler
US9786641B2 (en) 2015-08-13 2017-10-10 International Business Machines Corporation Packaging optoelectronic components and CMOS circuitry using silicon-on-insulator substrates for photonics applications
US10126572B2 (en) 2016-03-31 2018-11-13 Huawei Technologies Co., Ltd. Automatic endless polarization controller for a silicon-on-insulator platform
WO2017210550A1 (en) 2016-06-02 2017-12-07 Massachusetts Institute Of Technology Apparatus and methods for optical neural network
US10228511B2 (en) 2016-09-28 2019-03-12 LGS Innovations LLC Integrated low-voltage CMOS-compatible electro-optic modulator
WO2018098230A1 (en) 2016-11-22 2018-05-31 Massachusetts Institute Of Technology Systems and methods for training neural networks
US10634851B2 (en) 2017-05-17 2020-04-28 Massachusetts Institute Of Technology Apparatus, systems, and methods for nonblocking optical switching
US11424195B2 (en) * 2018-04-02 2022-08-23 Intel Corporation Microelectronic assemblies having front end under embedded radio frequency die
US10560765B2 (en) * 2018-04-25 2020-02-11 Western Digital Technologies, Inc. Node with combined optical and electrical switching
TW202017123A (zh) 2018-10-15 2020-05-01 美商萊特美特股份有限公司 光子封裝及相關方法
US10884313B2 (en) 2019-01-15 2021-01-05 Lightmatter, Inc. High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555316A (zh) * 2021-07-20 2021-10-26 佛山慧鑫众创科技有限公司 一种智能功率模块及其制造方法
CN113555316B (zh) * 2021-07-20 2023-10-31 佛山慧鑫众创科技有限公司 一种智能功率模块及其制造方法

Also Published As

Publication number Publication date
US20200116930A1 (en) 2020-04-16
US11256029B2 (en) 2022-02-22
WO2020081533A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
TW202017123A (zh) 光子封裝及相關方法
JP6683535B2 (ja) 光結合方式
Heck et al. Hybrid silicon photonic integrated circuit technology
US11281068B2 (en) High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator
US20140264723A1 (en) Devices including a diamond layer
TW201725408A (zh) 用於基板上晶圓上晶片總成之方法及系統
US10901146B2 (en) Single edge coupling of chips with integrated waveguides
CN103998961A (zh) 用于平面光子电路的垂直光学耦合器
JP2007178550A (ja) 光機能素子、その駆動方法及び製造方法
TW201135310A (en) Nested mach-zehnder modulator
EP3118661A1 (en) Optical interconnection device, optoelectronic chip system, and optical signal sharing method
WO2001090798A2 (en) Frustrated total internal reflection-based micro-opto-electro-mechanical modulator/demodulator
CN113848609A (zh) 光子集成耦合结构、光子集成器件
CN109564363B (zh) 光学iso调制器
KR20160087960A (ko) 전계흡수 광변조 소자 및 그 제조 방법
Krishnamoorthy et al. Optical proximity communication with passively aligned silicon photonic chips
US20060285799A1 (en) Integrated circuit device with optically coupled layers
US11934007B2 (en) Assembly of an active semiconductor component and of a silicon-based passive optical component
La Porta et al. Scalable optical coupling between silicon photonics waveguides and polymer waveguides
WO2021178727A1 (en) Evanescent coupler mode converters
CN108886236B (zh) 用于硅光子学中的iii-v芯片的宽带后视镜
CN113325613A (zh) 一种光学调制器以及相关装置
Bogaerts et al. Technologies and building blocks for on-chip optical interconnects
JP7187623B1 (ja) エタロン補償を備えた高帯域幅フォトニック集積回路
WO2023084610A1 (ja) 光モジュールおよびその作製方法