KR101430088B1 - 통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법 - Google Patents

통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR101430088B1
KR101430088B1 KR1020117031018A KR20117031018A KR101430088B1 KR 101430088 B1 KR101430088 B1 KR 101430088B1 KR 1020117031018 A KR1020117031018 A KR 1020117031018A KR 20117031018 A KR20117031018 A KR 20117031018A KR 101430088 B1 KR101430088 B1 KR 101430088B1
Authority
KR
South Korea
Prior art keywords
voltage
measured
local
devices
address
Prior art date
Application number
KR1020117031018A
Other languages
English (en)
Other versions
KR20120019488A (ko
Inventor
당 느구옌
제이슨 아미스테드
브래들리 스코빌
밍 마르틴 팡
Original Assignee
오티스 엘리베이터 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오티스 엘리베이터 컴파니 filed Critical 오티스 엘리베이터 컴파니
Publication of KR20120019488A publication Critical patent/KR20120019488A/ko
Application granted granted Critical
Publication of KR101430088B1 publication Critical patent/KR101430088B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5092Address allocation by self-assignment, e.g. picking addresses at random and testing if they are already in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/69Types of network addresses using geographic information, e.g. room number

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Small-Scale Networks (AREA)

Abstract

본 발명에 따른 시스템 및 방법은 각각의 디바이스에 의하여 측정된 파라미터들을 토대로 하여 통신 버스에 연결되는 디바이스들로 고유한 주소들을 자동적으로 할당한다. 주소들의 할당은 제어기에 의해 중심적으로 제공되거나 또는 분배될 수 있으며, 여기에서 각각의 디바이스에 고유한 주소들을 할당하기 위해 각각의 디바이스가 다른 디바이스들과 절충한다.

Description

통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법{SYSTEM AND METHOD FOR AUTOMATICALLY ADDRESSING DEVICES ON A COMMUNICATION NETWORK}
본 발명은 통신 네트워크에 관한 것이며, 특히 통신 네트워크에 연결되는 디바이스들에 자동적으로 주소를 할당하기 위한 시스템 및 방법에 관한 것이다.
통신 네트워크들은 디바이스들이 서로 통신할 수 있게 한다. 각각의 디바이스는 제어기가 네트워크에서 특정 디바이스와 메시지들을 연관시킬 수 있게 하는 고유한 식별인자(identification) 또는 주소를 갖는다. 엘리베이터들에서 채용되는 통신 네트워크들에서와 같은 몇몇 응용례에서, 제어기는 각각의 주소를 디바이스와 연관된 물리적 및/또는 기능적 특성(attribute)들과 연관시키는 매핑(mapping)을 유지시킨다. 예를 들어, 네트워크 관련 디바이스는 엘리베이터 호출이 이루어진 경우(기능) 제어기와 통신하는 역할을 하는 특정 층(물리적 위치)에 배치되는 홀 콜 버튼(hall call button)일 수 있다. 통상적으로, 제어기는 각각의 디바이스를 특정한 물리적 위치(예를 들어, 층)와 연관시키도록 프로그래밍된다.
이러한 타입의 시스템의 설치는, 기술자가 각각의 디바이스에 고유한 물리적 주소를 할당해야 하고, 디바이스가 설치될 물리적 위치에 각각의 할당된 물리적 주소를 매핑해야 하기 때문에 성가시다(tedious). 기술자가 각각의 층을 찾아가 상기 층의 콜 버튼을 작동시켜 제어기가 엘리베이터 캡을 정확한 층으로 보내도록 보장할 필요가 있기 때문에, 검사도 위와 유사하게 성가시다.
메시지-기반 통신 네트워크(message-based communication network)에서, 네트워크에 연결된 디바이스들의 물리적 위치를 나타내는 주소는 각각의 디바이스에 의하여 측정된 파라미터를 토대로 하여 자동적으로 할당되며, 각각의 디바이스에 의하여 측정된 파라미터는 디바이스의 물리적 위치를 토대로 하여 변한다. 측정된 파라미터는 통신되며 측정된 전압 크기를 토대로 하여 할당된다.
도 1은 본 발명의 일 실시예에 따른 통신 네트워크를 예시한 블록 다이어그램;
도 2는 본 발명의 일 실시예에 따른 각각의 CAN(controller area network; 제어기 영역 네트워크) 내에 포함되는 구성요소들을 예시한 블록 다이어그램;
도 3은 본 발명의 일 실시예에 따른 CAN 스테이션들의 중앙집중식 초기화(centralized initialization) 및 주소 할당을 예시한 플로우차트;
도 4는 각각의 CAN 스테이션과 연관된 다양한 통신 상태들 및 각각의 상태들 간에 허용된 천이(transition)들을 예시한 상태 다이어그램;
도 5a 내지 5e는 본 발명의 일 실시예에 따른 CAN 스테이션들의 분배식 초기화(distributed initialization) 및 주소 할당을 예시한 타이밍 다이어그램이다.
본 발명은 통신 네트워크에서 통신하는 디바이스들에 주소들을 자동적으로 할당하기 위한 시스템 및 방법을 제공한다. 각 디바이스의 물리적 위치의 함수로서 변하는 파라미터들을 모니터링함으로써, 본 발명은 각 디바이스의 물리적 위치를 판정할 수 있으며, 판정된 물리적 위치를 토대로 각 디바이스에 물리적 주소를 할당할 수 있다. '물리적 위치(physical location)'라는 용어는 디바이스들의 절대적인 물리적 위치들[예를 들어, GPS(global positioning system) 좌표들] 및/또는 상대적인 물리적 위치들(예를 들어, 서로에 대한 디바이스들의 위치들) 둘 모두를 지칭한다. '물리적 주소(physical address)'라는 용어는 물리적 위치를 토대로 특정 디바이스에 할당되는 주소(예를 들어, 네트워크 주소 등)를 지칭한다. 물리적 주소를 토대로 하는 특정 물리적 위치로부터 기인한 것이 이 메시지의 근원이 되는 물리적 위치를 식별함으로써, 디바이스로부터의 후속하는 메시지가 식별된다.
본 발명의 작동은 모니터링되는 파라미터가 전원(power supply)에 의하여 각각의 디바이스로 공급되는 전압의 크기인 특정 실시예에 대하여 기술된다. 각각의 디바이스가 전원으로부터 멀어질수록 전압의 크기는 감소된다. 따라서, 모니터링된 파라미터는 디바이스의 물리적 위치에 따라 변한다. 다른 실시예에서, 디바이스의 물리적 위치에 따라 변하는 다른 파라미터들, 예컨대 전류, 기압(barometric pressure), GPS 좌표들, 온도, 무선 주파수(RF) 전력 수신율(RSSI)[radio frequency (RF) power reception (RSSI)], 및 위치에 따라 변하는 다른 파라미터들이 채용될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 통신 네트워크(10)를 예시한 블록 다이어그램이다. 통신 네트워크(10)는 전원(12), 제어기(14), CAN 스테이션들(16-1, 16-2, 16-3, 및 16-4)[통칭하여, CAN 스테이션(16)], 부하(load; 18), CAN 버스(20), 및 전원 버스(22)를 포함한다. 이 실시예에서, 통신 네트워크(10)는 각 CAN 스테이션(16)이 빌딩의 상이한 층에 배치되는 콜 버튼과 같은 고정물 또는 디바이스를 나타내는 엘리베이터 응용례에 이용된다. 다른 실시예들에서, 네트워크를 초기화하기 위해 CAN 네트워크에서 디바이스들의 물리적 위치를 결정할 필요가 있는 여하한의 응용례에서 이용될 수 있다. 다른 실시예들에서는 어떠한 타입의 메시지-기반 통신 프로토콜도 채용될 수 있으나, 도 1에 나타낸 실시예에서는 CAN-타입 네트워크가 채용된다.
CAN 스테이션(16)은 전원 버스(22)로부터의 전력을 수용하고 CAN 버스(20)를 통해 제어기(14)로/로부터 메시지를 전송/수신한다. CAN 버스 스테이션들(16)에 의해 전달된 메시지들은 데이터 부분뿐만 아니라 메시지를 전송하는 CAN 스테이션의 CAN 식별기 부분(CAN identifier portion)을 포함한다. 제어기(14)와의 통신과 더불어, CAN 스테이션들(16)은 CAN 버스(20)를 통해 서로 통신할 수도 있다.
각각의 CAN 스테이션(16)은 전원 버스(22)의 다른 CAN 스테이션들과 병렬로(in parallel) 연결된다. 하지만, 각각의 CAN 스테이션(16)은 와이어의 게이지 및 인접한 CAN 스테이션들 간의 간격으로 정의되는 저항을 갖는 케이블의 길이만큼 인접한 CAN 스테이션들로부터 분리된다. 서로 병렬로 연결되기는 하지만, 와이어의 저항은 인접한 CAN 스테이션들(16) 간의 전압 강하(voltage drop)를 유도한다. 전압 강하의 크기는 인접한 CAN 스테이션들을 분리시키는 와이어의 저항 및 복수의 CAN 스테이션들이 끌어 쓰는 전류를 토대로 한다. 결과적으로, 각각의 CAN 디바이스(16)로 제공되는 전압의 크기는 각각의 CAN 스테이션(16)이 전원(12)으로부터 배치되는 거리와 관련하여 감소된다. 예를 들어, CAN 디바이스(16-4)로 제공되는 전압의 크기는, 인접한 디바이스들을 연결하는 와이어들과 연관된 전압 강하로 인해, CAN 디바이스(16-3)로 제공되는 전압의 크기보다 크다. 일 실시예에서는, 추가적인 전류를 끌어 써서 인접한 CAN 스테이션들(16) 간의 전압 차를 증대시키기 위해 부하(18)가 전원 버스(22)의 단부에 연결된다. 각각의 CAN 스테이션(16)이 전압 크기를 측정할 수 있는 정밀도에 따라, 부하(18)는 서로 구별될 수 있는 전압 크기들을 측정할 필요가 있을 수 있다. 각각의 디바이스에 의해 전압 크기들이 측정된 후에, 부하(18)는 시스템의 과도한 에너지 소모를 방지하기 위해 연결해제될 수 있다. 부하(18)는 물리적으로 제거되거나 또는 CAN 스테이션들(16) 중 하나에 의하여 자동적으로 연결해제될 수 있다.
다른 실시예들에서는, 각각의 CAN 스테이션(16)에 의하여, 전압이 아니라 위치에 따라 변하는 파라미터들, 예컨대 전류, 기압, GPS 좌표들, 온도, 무선 주파수(RF) 전력 수신율(RSSI), 및 위치에 따라 변하는 다른 파라미터들이 모니터링되거나 또는 측정될 수 있다.
각각의 CAN 스테이션(16)은 전원(12)으로부터 수신된 아날로그 전압 값을, 메시지의 일부로서 CAN 버스(20)를 통해 제어기(12) 및/또는 다른 디바이스들로 통신될 수 있는 디지털 신호로 변환시키는 아날로그-투-디지털 컨버터[analog-to-digital converter(도 2에 도시된 ADC)]를 포함한다.
물리적 주소[예를 들어, 층 번호들(floor numbers)]를 CAN 스테이션(16)에 자동으로 할당하는 것은 전원(12)에 의하여 제공되는 전압의 크기를 측정하기 위한 각각의 디바이스를 필요로 한다. 별개로 보면(in isolation), 각각의 CAN 스테이션(16)에 의하여 측정되는 전압 크기는 CAN 스테이션(16)의 위치(즉, 디바이스의 물리적 위치)를 결정하기에는 불충분하다. 일 실시예에서, 각각의 CAN 스테이션(16)은 측정된 전압 크기를 제어기(14)로 전달하고, 상기 제어기는 복수의 CAN 스테이션들(16) 각각에 의하여 제공되는 다양한 전압 크기들을 수집하고, 측정된 전압 크기들의 비교를 토대로 하여 각각의 CAN 스테이션(16)의 물리적 위치를 판정한다. 제어기(14)는 네트워크 주소를 각각의 CAN 스테이션(16)의 판정된 물리적 위치들과 연관시키고, 할당된 네트워크 주소를 각각의 CAN 스테이션(16)에 통신하여, 통신 네트워크(10)의 자동적 어드레싱을 제공한다.
다른 실시예에서, 물리적 주소들은 분배 방식(distributed manner)으로 할당되며, (도 5a 내지 5e에 대하여 보다 상세히 기술된 바와 같이) 각각의 CAN 스테이션(16)은 각각의 주소를 판정하기 위해 다른 CAN 스테이션들과 통신한다.
도 2는 본 발명의 일 실시예에 따른, CAN 스테이션(16) 내에 포함되는 구성요소들을 예시한 블록 다이어그램이다. 구성요소들은 아날로그-투-디지털 컨버터(ADC)(24), 마이크로 프로세서(26), CAN 통신 모듈(28), 및 타이머(30)를 포함한다.
CAN 스테이션(16)은 전원(12)으로부터 전력을 수용하고 CAN 네트워크 버스(20)를 통해 디지털 통신을 제공하도록 작동가능하게 연결된다. ADC(24)는 CAN 스테이션(16)에 제공되는 전압의 크기(아날로그 입력)를 모니터링하고, 상기 아날로그 입력을 디지털 값[마이크로프로세서(26)로 제공됨]으로 변환시키도록 연결된다. CAN 통신 모듈(28)은 마이크로프로세서(26)와 양방향으로(bi-directionally) 통신하며, 통신 버스(20)에서 메시지들을 송/수신하도록 작동가능하게 연결될 수 있다. 타이머(30)는 CAN 통신 모듈(28)에 의하여 송/수신된 메시지들을 토대로 하여 선택적으로 초기화되고 마이크로프로세서(26)에 적시의 입력(timed input)을 제공하는 디지털 타이머이다. 이러한 방식으로, CAN 스테이션(16)은 전원 버스(22)를 통해 제공되는 전원 전압의 크기를 측정할 수 있으며, 통신 버스(20) 상으로의 통신을 위해 측정된 아날로그 전압을 디지털 값으로 변환시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른, 각각의 CAN 스테이션(16)에 물리적 위치들을 자동적으로 할당하는 중앙집중식 방법을 예시한 플로우차트이다. 상기 플로우차트는 도 1에 도시된 바와 같이 통신 네트워크(10)와 관련하여 기술된다.
단계 40에서, 제어기(14)는, 전원 버스(22)에 의하여 각각의 CAN 스테이션(16)에서 제공되는 입력 전압을 측정하기 위하여 통신 버스(20)에 연결되는 각각의 CAN 스테이션(16)에 메시지가 전달되는 자동 어드레싱 모드로 작동한다. 제어기(14)는 초기화시 자동적으로 자동적 어드레싱(automatic addressing)을 초기화하거나, 또는 수동적으로는 자동적 어드레싱 모드로 배치될 수 있다.
단계 42에서, 각각의 CAN 스테이션(16)은, 제어기(14)에 의하여 전송된 어드레싱 메시지에 응답하여 전원 버스(22)에 의하여 제공되는 각각의 전압 크기를 측정한다. 전송된 전압은 통신 버스(20)를 통해 CAN 스테이션(16)으로부터 제어기(14)에 메시지의 일부로서 전달될 수 있도록 (도 2에 기술된 바와 같이) ADC(24)에 의해 디지털 신호로 변환된다.
단계 44에서, 각각의 CAN 스테이션(16)은 측정된 전압 크기를 제어기(14)에 전달한다. 일 실시예에서, 제어기(14)는, 전압 측정들을 요구하는 각각의 CAN 스테이션(16)으로 메시지를 전송한 후에 복수의 CAN 스테이션들(16)로부터의 응답을 위해 설정된 양의 시간 동안 대기한다. 일 실시예에서, 각각의 CAN 스테이션이 통신하는 순서(order)는 측정된 전압의 크기를 토대로 한다. 각각의 CAN 스테이션(16)에 의하여 측정되는 전압 크기는 전원(12)으로부터의 CAN 스테이션의 거리를 토대로 하여 변한다. 각각의 CAN 스테이션(16)에 의하여 측정된 전압 크기를 토대로 하여 각각의 CAN 스테이션이 통신하는 순서를 지시하는 것(dictating)은 각각의 CAN 스테이션이 상이한 시각에 통신하게 한다.
단계 46에서, 제어기(14)는 각각의 CAN 스테이션(16)에 의하여 전달된 전압 크기들을 토대로 하여 각각의 CAN 스테이션(16-1, 16-2, 16-3, 및 16-4)의 물리적 위치(예를 들어, 층의 위치)를 식별한다. 이 판정은, 예를 들어 빌딩과 연관된 층들의 총 개수, 1 층에서 꼭대기 층까지(또는 꼭대기 층에서 1 층으로 반전된 순서로) 전력이 제공되는지의 여부 등과 관련된 종래의 정보를 토대로 할 수도 있다.
단계 48에서, 제어기(14)는 특정 CAN 스테이션에 할당된 물리적 주소와 함께 CAN 스테이션에 의하여 제공된 전압 측정에 의하여 특정 CAN 스테이션[예를 들어, CAN 스테이션(16-1)]을 식별하는 메시지를 브로드캐스팅한다(broadcast)(즉, 모든 CAN 스테이션들로 전송한다). 예를 들어, 제어기(14)는 14.76 볼트의 전압 크기 및 1 층과 연관된 식별된 물리적 위치를 포함하는 메시지를 전송할 수 있다.
단계 50에서, 제어기(14)에 의하여 브로드캐스팅된 전압 크기와 대응되는 전압 크기를 측정한 CAN 스테이션[예를 들어, CAN 스테이션(16-1)]은 제어기(14)에 의하여 식별된 물리적 위치를 수신한다. 대응되는 전압 크기와 연관된 CAN 스테이션은 메모리에 물리적 위치를 저장하고, 식별된 물리적 위치의 수신(acceptance)을 나타내는 제어기(14)에 응답한다. CAN 스테이션에 의하여 제공되는 후속 메시지들은 할당된 물리적 위치를 포함할 것이다. 예를 들어, CAN 스테이션(16-1)이 홀 콜 버튼인 경우, CAN 스테이션(16-1)에 의하여 제공되는 후속 메시지들은 콜의 위치(즉, 1 층)뿐만 아니라 스테이션에 의하여 제공되는 기능(즉, 홀 콜)을 나타낼 것이다.
단계 52에서, 제어기(14)는 모든 식별된 물리적 위치들이 전달되었는지의 여부를 판정한다. 추가적인 물리적 위치가 전달되어야만 하는 경우에는, 흐름(flow)이 단계 48로 다시 진행되고, 제어기(14)는 제어기(14)에 의하여 CAN 스테이션에 할당된 특정 주소와 함께 CAN 스테이션에 의하여 제공되는 전압 측정에 의하여 다른 특정 CAN 스테이션[예를 들어, CAN 스테이션(16-2)]을 식별하는 다른 메시지를 브로드캐스팅한다. 모든 물리적 주소들이 할당된 경우에는, 흐름은 제어기(14)가 자동 어드레싱 모드로부터 빠져 나오는(exit) 단계 54로 진행한다. 이는 제어기에 의해 자동적으로 이행되거나, 또는 모든 물리적 주소들이 할당된 제어기(14)에 의하여 제공되는 지표(indication)에 반응하여 작업자가 수동으로 이행할 수 있다.
도 4 내지 5e는, CAN 스테이션(16)이 제어기(14)로부터의 개입 없이 서로에 대한 각각의 CAN 스테이션의 물리적 위치를 자동적으로 판정하고, 이들 판정들을 토대로 하여 물리적 주소들을 할당하는 분배식(distributed) 실시예에 대해 개시하고 있다.
도 4는 본 발명의 일 실시예에 따른 CAN 스테이션들(16)의 작동 상태들을 예시한 상태 다이어그램이다. 각각의 CAN 스테이션은, 각각의 상태를 1 이상의 인접한 상태들과 연결하는 화살표들에 의하여 예시된 다양한 상태들 간의 허용된 천이(transition)들과 함께, 여하한의 주어진 시각에 한가지 상태로만 작동한다. 이실시예에서, CAN 스테이션(16)은 상태 0, 상태 1, 상태 2, 및 상태 3으로 표기된 4 가지 상태 중 하나의 상태로 작동한다.
상태 0은 셋업 모드이고, 상태 1은 전압 전송 및 분류(sorting) 모드이고, 상태 2는 주소 요청 및 절충 모드(address request and negotiation mode)이며, 상태 3은 전송 대기 모드(즉, 주소 획득 모드)이다. CAN 스테이션들(16)은 셋업 모드(상태 0)로부터 전압 전송 및 분류 모드(상태 1)로 천이한다. 상태 1로부터, CAN 스테이션들은 주소 요청 및 절충 모드(초기 설치 동안에 통상적인 상태 2) 또는 주소 획득 모드(상태 3) 중 어느 하나의 모드로 천이한다. 상태 3은 CAN 스테이션에 주소가 할당되었고, 재초기화된 고정물(reinitialized fixture)로 그 주소를 전달 또는 전송하기 위해 대기 중인 상태를 나타낸다. 상태 3으로부터, CAN 스테이션들은 시스템이 재시동(이 경우에, 각각의 CAN 스테이션은 상태 0으로 재초기화됨) 되지 않는 한, 다른 상태들로 천이되지 않는다. CAN 스테이션(16)의 작동 및 다양한 상태 천이들은 도 5a 내지 5e에 대하여 보다 상세히 기술된다.
도 5a는 (도 1에 도시된 바와 같이) CAN 스테이션들(16-1, 16-2, 16-3, 및 16-4)과 전원(12)과의 연결, 및 전원(12)까지의 각각의 CAN 스테이션(16)의 상대적 거리와 각각의 CAN 스테이션에 의해 측정된 결과적 전압 크기를 예시한 타이밍 다이어그램이다. 예를 들어, CAN 스테이션(16-1)은 전원(12)으로부터 가장 멀리에 배치되고, CAN 스테이션(16-4)은 전원(12) 가장 가까이에 배치된다. 또한, 도 5a는 전류 상태, 할당된 물리적 주소 및 고정물들(즉, CAN 스테이션들)의 수의 카운트(count)와 관련하여 각각의 CAN 스테이션(16)에 의해 유지되는 내부 변수들을 예시하고 있다.
예를 들어, 도 5a에서 각각의 CAN 스테이션(16)은 초기화 모드(상태 0)로 작동중에 있고, 저장된 물리적 주소가 '1'이며, 네트워크에서 작동하는 고정물들 또는 CAN 디바이스들의 수의 카운트는 '1'이다. 이 실시예에서는, CAN 스테이션들(16)로 전력을 제공할 때, 각각의 디바이스들은 초기화 모드로 작동되기 시작하고, 상기 모드 동안에는 CAN 스테이션(16)이 전원(12)에 의해 제공된 전압의 크기를 측정한다. 이 실시예에서, CAN 스테이션(16-1)은 전원(12)으로부터 가장 멀리에 있고, 결과적으로 가장 낮은 전압 크기(예를 들어, 29.90 볼트)를 측정하고, CAN 스테이션(16-2)은 두 번째로 낮은 전압 크기(예를 들어, 29.92 볼트)를 측정하고, CAN 스테이션(16-3)은 세 번째로 낮은 전압 크기(예를 들어, 29.94 볼트)를 측정하며, 전원(12) 가장 가까이에 있는 CAN 스테이션(16-4)은 가장 높은 전압 크기(예를 들어, 29.97 볼트)를 측정한다.
각각의 CAN 스테이션(16)은 초기화 상태(상태 0)로부터 전압 전송 및 분류 상태(상태 1)로 천이하는 때를 판정하는 데 사용되는 내부 타이머(30)(도 2에 나타냄)를 포함한다. 이 실시예에서, CAN 스테이션들(16)은 2 초 후에 각각의 천이가 이루어지도록 프로그래밍된다. 다른 실시예들에서, CAN 스테이션들(16)은 제어기(14)의 요청시 초기화 모드로 들어가지만, 제어기(14)로부터의 추가적인 개입 없이 물리적 주소들의 자동적 할당을 제공한다.
도 5b는 도 5a에 대하여 기술된 바와 같은 CAN 스테이션들(16)을 예시한 타이밍 다이어그램이며, 초기화 상태(상태 0)로부터 전압 전송 및 분류 상태(상태 1)로의 CAN 스테이션들(16)의 천이가 이어진다. 특히, 도 5b는 각각의 CAN 스테이션(16)이 통신 버스(20)에 연결되는 다른 CAN 스테이션들(16)로 측정된 전압 크기들을 전달하는 순위부여 방법(ordered method)을 예시하고 있다. 이 실시예에서, 각각의 CAN 스테이션(16)은 측정된 전압 크기와 일정한 값을 곱하여 각각의 CAN 스테이션들(16)이 통신할 시각을 판정하며, 여기서 가장 낮게 측정된 전압 크기를 갖는 CAN 스테이션[예를 들어, CAN 스테이션(16-1)]은 가장 먼저 통신하고, 가장 높게 측정된 전압 크기를 갖는 CAN 스테이션[예를 들어, CAN 스테이션(16-4)]은 가장 나중에 통신한다. 예를 들어, CAN 스테이션(16-1)은 1.39825 초에 가장 먼저 통신하도록 예정되고, 다음에 CAN 스테이션(16-2)이 1.40 초에 통신하고, CAN 스테이션(16-3)은 1.40175 초에 통신하며, CAN 스테이션(16-4)은 1.4035 초에 통신한다.
센더(sender) CAN 스테이션에 의하여 감지되는 측정된 전압 크기를 포함하는, CAN 스테이션[예를 들어, CAN 스테이션(16-1)]에 의하여 제공되는 통신에 응답하여, 메시지를 전송하지 않은 각각의 CAN 스테이션[예를 들어, CAN 스테이션들(16-2, 16-3, 및 16-4)]은 메시지를 수신하고, 전달된 전압 크기와 자체 측정된 전압 크기와의 비교를 토대로 하여 물리적 주소를 조정해야하는지의 여부를 판정한다. 또한, 각각의 CAN 스테이션은 또한 다른 CAN 스테이션들(16)로부터 수신된 통신들을 토대로 하여 증가될 수 있는, 통신 버스(20)에서 연결되는 고정물들(예를 들어, CAN 스테이션들)의 수의 카운트를 포함할 수 있다.
예를 들어, CAN 스테이션(16-1)은 가장 낮은 전압 크기를 측정하였고, 따라서 1.39825 초에 가장 먼저 통신한다. 메시지는 CAN 스테이션들(16-2, 16-3 및 16-4)에 의하여 수신되고 처리된다. 이 실시예에서, CAN 스테이션들(16-2, 16-3, 및 16-4) 각각은 CAN 스테이션(16-1)에 의하여 측정 및 전달된 전압 크기를 초과하는 측정된 전압 크기들을 갖는다. 이와 같이, 이들 CAN 스테이션들 중 어느 것도 그들의 저장된 물리적 주소를 증가시키지 않아서, 각각의 물리적 주소가 '1'의 값으로 변하지 않고 남게 된다. 하지만, 수신된 통신에 반응하여, 메시지를 수신한 CAN 스테이션들[예를 들어, CAN 스테이션들(16-2, 16-3, 및 16-4)] 각각이 연결된 고정물들의 수의 카운트를 증가시킨다[예를 들어, Num Fixtures = 2].
CAN 스테이션(16-2)은 다음으로 낮은 전압 크기를 측정하였으며, 따라서 1.4 초에 다음으로 통신한다. 한번 더, CAN 스테이션(16-2)으로부터의 통신은 CAN 스테이션(16-2)에 의하여 측정된 전압 크기(예를 들어, 29.92 볼트)를 포함한다. CAN 스테이션들(16-1, 16-3 및 16-4)은 통신을 수신하고 전달된 전압 크기와 그들 자체 측정된 전압 크기들을 비교하여 그들의 물리적 주소를 증가시킬지의 여부를 판정한다. 예를 들어, CAN 스테이션(16-1)은 자체 측정된 전압 크기(29.90 V)와 CAN 스테이션(16-2)에 의하여 제공된 전압 크기(예를 들어, 29.92 V)를 비교한다. CAN 스테이션(16-2)에 의하여 측정된 전압 크기가 CAN 스테이션(16-1)에 의하여 측정된 전압 크기보다 크기 때문에, CAN 스테이션(16-1)에 의하여 저장된 물리적 주소는 1에서 2로 1만큼 증가된다. CAN 스테이션들(16-3 및 16-4)[이들 둘 모두는 CAN 스테이션(16-2)의 전압 크기보다 크게 측정된 전압 크기들을 가짐]은 그들 각각의 물리적 주소를 증가시키지 않는다. 하지만, 통신을 수신한 CAN 스테이션들(16-1, 16-3 및 16-4) 각각은 그들의 고정물의 수의 카운트를 증가시킨다[예를 들어, CAN 스테이션들(16-3 및 16-4)에 대해 Num Fixtures = '3'].
CAN 스테이션(16-3)은 다음으로 낮은 전압 크기(예를 들어, 29.94 V)를 측정하였으며, 따라서 1.40175 초에 다음으로 통신한다. 한번 더, CAN 스테이션(16-3)으로부터의 통신은 CAN 스테이션(16-3)에 의하여 측정된 전압 크기(예를 들어, 29.94 볼트)를 포함한다. CAN 스테이션들(16-1, 16-2 및 16-4)은 통신을 수신하고 전압 크기와 그들 자체 측정된 전압 크기들을 비교하여 그들의 물리적 주소를 증가시킬지의 여부를 판정한다. 결과적으로, CAN 스테이션들(16-1 및 16-2)[이들 둘 모두는 CAN 스테이션(16-3)의 전압 크기보다 작게 측정된 전압 크기들을 가짐]은 그들의 물리적 주소를 1만큼 증가시킨다. 하지만, 16-4의 물리적 주소는 CAN 스테이션(16-4)에 의하여 측정된 전압 크기가 CAN 스테이션(16-3)에 의해 측정된 것을 초과하기 때문에 변하지 않고 유지된다. 마찬가지로, CAN 스테이션들(16-1, 16-2 및 16-4) 각각은 그들의 고정물들의 수의 카운트를 증가시킨다.
CAN 스테이션(16-4)은 다음으로 낮은 전압 크기(예를 들어, 29.97 V)를 측정하였으며, 따라서 1.4035 초에 최종적으로 통신한다. 각각 CAN 스테이션(16-4)보다 작은 측정된 전압 크기들을 갖는 CAN 스테이션들(16-1, 16-2, 및 16-3)은 그들의 물리적 주소들을 증가시킨다. CAN 스테이션들(16-1, 16-2, 16-3 및 16-4)에 의하여 수행된 분배 전압 분류(distributed voltage sorting)의 결과로서, 각각의 CAN 스테이션은 이제 고유한 물리적 주소를 갖는다. 이 경우에, 각각의 고정물과 연관된 물리적 주소는 1 층[예를 들어, CAN 스테이션(16-1)]에서 꼭대기 층[예를 들어, CAN 스테이션(16-4)]까지 내림차순으로 진행된다. 도 5b에 도시된 실시예에서, 각 CAN 스테이션(16)의 물리적 주소들은 상기 물리적 주소들이 1 층에서 꼭대기 층까지 오름차순으로 주소가 매겨지도록 반전된다. 각각의 CAN 스테이션에 의하여 유지되는 고정물들의 총 수의 정보를 토대로, 각각의 CAN 스테이션에 의하여 유지되는 고정물들의 총 수로부터, CAN 스테이션에 의해 유지된 물리적 주소로부터 1을 차감한 결과를 차감함으로써 정확한 물리적 주소가 할당된다(즉, NumFixtures - (물리적_주소 - 1)). 다른 실시예들에서는, 전원의 적용 및 위치를 토대로 하여, 이 단계를 필요로 하지 않을 수도 있다. 각각의 CAN 스테이션(16)에 의하여 제공되는 전압 분류 및 후-처리의 결과로서, 각각의 CAN 스테이션의 물리적 위치(예를 들어, 층)과 대응되는 각각의 CAN 스테이션(16)에 물리적 주소가 할당된다. 도 5b의 우측에 나타낸 바와 같이, CAN 스테이션들(16) 각각은 2초에 해당되는 시간에 분류 상태(상태 1)에서 대기 상태(상태 3)로 천이된다.
도 5c는 도 5a 및 5b에 대하여 기술된 바와 같이 CAN 스테이션들(16)을 예시한 다이어그램이며, 천이 상태(상태 1)에서 대기 상태(상태 3)로의 CAN 스테이션들(16)의 천이가 이어진다. 또한, 도 5c는 단일 CAN 스테이션이 정확한 물리적 주소를 어떻게 획득하는 지를 예시하기 위하여 CAN 스테이션(16-2)의 연결해제 및 새로운 CAN 스테이션(16-2')의 '핫 플러그-인(hot plug-in)'을 나타내고 있다.
0 초의 시각에, (천이 이후 타이머의 리셋을 가정) 각각의 CAN 스테이션(16)은 대기 상태(상태 3)에서 작동 중이다. 이 상태에서, 각각의 CAN 스테이션(16)에 물리적 주소가 할당되었으며 제어기(14)와의 통신을 위해 대기하고 있다. CAN 스테이션(16)에 의하여 제공되는 메시지들은, 제어기(14)가 메시지로부터 기인한 위치(예를 들어, 층)를 식별할 수 있도록 하기 위해, 통신하는 CAN 스테이션(16)과 연관된 물리적 주소를 포함할 수 있다. CAN 스테이션(16-2')은 전력 공급이 끊기고(powered down), 네트워크로부터 연결해제되며('연결해제'라 표시됨), 새로운 CAN 스테이션(16-2')이 연결되어 순차적인 시각에 전력이 공급된다('연결'이라 표시됨). 이는 통상적으로 네트워크의 나머지가 연결되고 작동상태로 유지되는 동안 디바이스가 교체되는 '핫 플러그-인'이라 지칭된다.
네트워크에 연결될 때, CAN 스테이션(16-2')은 통신 버스와 연관된 비트 레이트(bit rate)를 획득한다. 비트 레이트를 성공적으로 획득하면, CAN 스테이션(16-2')은 물리적 주소 및 고정물의 수의 카운트가 0의 값으로 디폴트(default)되는 초기화 상태(상태 0)로 작동된다. 앞에서와 같이, CAN 스테이션(16-2')은 상태들 간의 천이를 지시하기 위해 이용되는 타이머를 포함하며, CAN 스테이션(16-2')은 2 초의 임의로 선택된 시간 동안 각각의 상태로 작동한다. 초기화 상태(상태 0) 동안, CAN 스테이션(16-2')은 전원 버스(22)에 제공되는 전압의 크기를 측정하고 아날로그 값을 디지털 값으로 변환시킨다.
도 5d는 초기화 상태(상태 0)에서 전압 전송 및 분류 상태(상태 1)로의 CAN 스테이션(16-2')의 천이를 예시한 타이밍 다이어그램이다. 도 5b와 관련하여 기술된 바와 같이, 전압 분류 상태 동안 CAN 스테이션(16-2')은 측정된 전압 크기를 토대로 하여 CAN 스테이션(16-2')이 다른 CAN 스테이션들로 자체 측정된 전압을 전달하기 위한 시간을 계산한다. 지정된 시간에, CAN 스테이션(16-2')은 측정된 전압 크기를 전달한다. 하지만, 도 5b에서와는 달리, 다른 CAN 스테이션들(16-1, 16-3 및 16-4)은 대기 상태(상태 3)에서 작동 중이며, 따라서 CAN 스테이션(16-2')에 의하여 제공되는 통신에 반응하지 않고 그들의 측정된 전압 크기들과 관련된 그들 자체의 통신들을 제공하지 않는다. CAN 스테이션(16-2')에 의하여 유지되는 타이머가 2 초의 카운트에 도달[다음 상태로의 CAN 스테이션(16-2')의 예측된 천이를 표시]한 다음, CAN 스테이션(16-2')이 다른 CAN 스테이션들 중 여하한의 CAN 스테이션으로부터 전송을 수신하지 않았다면, CAN 스테이션(16-2')은 전압 분류 상태(상태 1)로부터 주소 요청 및 절충 상태(상태 2)로 천이한다. 상기 주소 요청 및 절충 상태(상태 2)로의 천이에 응답하여, CAN 스테이션(16-2')은 모든 연결된 CAN 스테이션들(16)로 주소를 전송한다.
도 5e는 연결된 CAN 스테이션들(16)로 전송된 주소들에 대한 요청에 반응하여, 절충 상태(상태 2) 동안 CAN 스테이션(16-2')의 작동을 예시한 타이밍 다이어그램이다. 전압 분류 모드(상태 1)와는 대조적으로, 절충 모드(상태 2)에서는 측정된 전압 크기가 아니라 현재 점유되지 않은 가장 낮은 주소를 토대로 하여 새로 부가된 CAN 스테이션(16-2)에 물리적 주소가 할당된다. 주소 요청에 응답하여, 각각의 연결된 CAN 스테이션(16)은 CAN 스테이션과 연관된 측정된 전압 크기뿐만 아니라 CAN 스테이션에 할당된 물리적 주소를 포함하는 순서부여 통신(ordered communication)을 전송한다.
(CAN 스테이션이 절충 상태에서 작동하는 것을 제외하고) 각각의 CAN 스테이션에 의하여 제공되는 순서부여 통신은 각각의 CAN 스테이션(16)에 의하여 저장된 측정된 전압 크기들을 토대로 하여 판정된다. 이와 같이, 먼저 CAN 스테이션(16-1)이 통신하고, 다음에 CAN 스테이션(16-3)이 통신하며, 마지막으로 CAN 스테이션(16-4)이 통신한다. 각각의 통신에 의해, CAN 스테이션(16-2')은 통신에서 제공되는 주소와 자체 주소를 비교한다. 통신에서 제공되는 주소가 CAN 스테이션(16-2')에 의해 저장된 주소와 매칭되는 경우에는, 새로 부가된 CAN 스테이션(16-2')은 그것의 물리적 주소를 1만큼 증가시키고, 마찬가지로 측정된 전압의 저장된 디지털 값이 전달된 전압 크기보다 1만큼 더 커지도록(예를 들어, 디지털 값 0x31F이 0×320까지 증가되도록) 증가시킨다. CAN 스테이션(16-1)로부터의 통신에 대하여, CAN 스테이션(16-2')은 물리적 주소들을 비교하고, 둘 모두가 '1'에 해당되기 때문에 저장된 물리적 주소를 '2'까지 증가시킨다.
CAN 스테이션들(16-3 및 16-4)로부터의 후속하는 통신들에 대해서도 동일한 프로세스가 수행된다. 예를 들어, CAN(16-3)으로부터의 통신은 '3'의 물리적 주소를 포함한다. 하지만, CAN 스테이션(16-3)에 의하여 제공되는 물리적 주소는 CAN 스테이션(16-2')의 물리적 주소(예를 들어, 2)보다 크기 때문에, CAN 스테이션(16-2')의 물리적 주소는, 측정된 전압의 저장된 크기와 마찬가지로, 변하지 않고 유지된다. 타이머의 만료(expiration)(즉, 타이머가 2초에 이름)에 이어, CAN 스테이션(16-2')은 주소 요청 및 절충 상태(상태 2)에서 대기 상태(상태 3)로 천이한다. 이 시점에서, 모든 CAN 스테이션(16)은 대기 상태(상태 3)에서 작동 중에 있고, 각각 CAN 스테이션과 연관된 위치(예를 들어, 층)를 식별하는 고유한 물리적 주소가 할당된다.
본 발명은 각각의 디바이스에 의하여 측정되는 전압 크기들을 토대로 하여 통신 버스에 연결되는 디바이스들에 고유한 주소들을 자동적으로 할당하는 시스템 및 방법을 제공한다. 주소들의 할당은 제어기에 의해 중심적으로 제공되거나 분배될 수 있으며, 여기에서 고유한 물리적 주소들을 각각의 디바이스에 할당하기 위해 각각의 디바이스가 다른 디바이스들과 절충한다.
본 발명의 실시예(들)을 기준으로 설명되었으나, 당업자라면 본 발명의 범위를 벗어나지 않는 다양한 변경이 가해지고 그들의 요소들이 등가적 요소들로 대체될 수도 있음을 이해할 것이다. 또한, 본 발명의 기본적인 범위를 벗어나지 않고 본 발명의 개시내용에 맞게 특정한 상황이나 재료가 구성되도록 하는 많은 수정들이 가해질 수도 있다. 따라서, 본 발명은 개시된 특정 실시예(들)로만 제한되지 않으며, 후속 청구범위 내에 속하는 모든 실시예들을 포괄하도록 의도되어 있다.

Claims (22)

  1. 메시지-기반 통신 네트워크(message-based communication network)에 연결되는 디바이스들에 주소들을 자동적으로 할당하는 방법에 있어서,
    로컬 파라미터(local parameter)를 측정하는 단계 - 상기 측정된 파라미터는 상기 디바이스의 물리적 위치의 함수임 - ;
    상기 측정된 로컬 파라미터를 포함하는 메시지를 전송하기 위한 시간을 계산하는 단계 - 상기 계산된 시간은 상기 측정된 로컬 파라미터의 크기를 토대로 하는 단계 - ;
    상기 계산된 시간에 상기 통신 네트워크에 연결되는 디바이스들로 상기 로컬 파라미터를 포함하는 메시지를 전송하는 단계;
    상기 통신 네트워크에 연결되는 디바이스들 각각으로부터의 메시지를 수신하는 단계 - 상기 각각의 메시지는 상기 디바이스들 중 하나에 의하여 측정되는 파라미터를 포함함 - ;
    상기 측정된 로컬 파라미터와 상기 통신 네트워크에 연결되는 다른 디바이스들로부터 수신된 각각의 측정된 파라미터들과의 비교를 토대로 하여 고유 로컬 주소를 판정하는 단계; 및
    상기 로컬 디바이스에 의해 전송된 후속 메시지들에 포함하기 위해 상기 판정된 로컬 주소를 저장하는 단계를 포함하는 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 고유 로컬 주소를 판정하는 단계는:
    다른 디바이스들로부터의 통신시 수신된 측정된 파라미터와 상기 측정된 로컬 파라미터를 비교하는 단계; 및
    상기 다른 디바이스들로부터 수신된 각각의 측정된 파라미터가 상기 측정된 로컬 파라미터보다 큰 경우 상기 로컬 디바이스와 연관된 주소 값을 증가시키는 단계를 포함하며,
    다른 디바이스들로부터 수신된 각각의 측정된 파라미터와의 비교들에 의해 유도된 주소 값은 상기 고유 로컬 주소인 방법.
  4. 제 1 항에 있어서,
    상기 측정된 파라미터는 전압 크기, 전류 크기, 기압, GPS 좌표들, 온도, 및 무선 주파수(RF) 전력 수신(RSSI)으로 이루어진 그룹으로부터 선택되는 방법.
  5. 메시지-기반 통신 네트워크 상으로의 연결을 위한 통신 디바이스에 있어서,
    전원 버스(power supply bus)로부터의 전력을 수용하는 전력 입력부(power input);
    메시지-기반 통신 버스로/로부터 메시지들을 전송 및 수신하기 위한 통신 입력부(communication input);
    상기 전원 버스에 의하여 제공되는 전압의 크기를 측정하고 상기 측정된 전압을 디지털 값으로 변환시키기 위하여 상기 전력 입력부에 작동가능하게 연결되는 아날로그-투-디지털 컨버터(analog-to-digital converter: ADC); 및
    상기 ADC로부터 측정된 로컬 전압을 나타내는 디지털 값을 수신하고 상기 메시지-기반 통신 네트워크에 연결되는 다른 디바이스들에 의하여 제공되는 전압 값들을 수신하기 위하여 작동가능하게 연결되는 마이크로프로세서를 포함하며,
    상기 마이크로프로세서는 상기 통신 디바이스의 로컬 주소를 판정하기 위하여 다른 통신 디바이스들로부터 수신된 전압 값과 상기 측정된 로컬 전압 값을 비교하고,
    상기 마이크로 프로세서는 상기 측정된 로컬 전압 값의 크기를 토대로 계산된 시간에 상기 측정된 로컬 전압 값을 통신하는 통신 디바이스.
  6. 제 5 항에 있어서,
    상기 마이크로프로세서는 상기 통신 네트워크에 연결되는 다른 디바이스들로 상기 측정된 로컬 전압 값을 전달하고(communicate), 상기 측정된 로컬 전압 값과 상기 다른 통신 디바이스들에 의하여 제공된 전압 값들 간의 비교들을 토대로 하여 상기 로컬 주소를 증가시키는 통신 디바이스.
  7. 제 5 항에 있어서,
    상기 디바이스의 로컬 주소 값은 1의 값으로 초기화되며, 다른 통신 디바이스로부터 수신된 전압 값이 상기 측정된 로컬 전압 값보다 클 때마다 증가되는 통신 디바이스.
  8. 제 5 항에 있어서,
    상기 마이크로프로세서는 상기 통신 네트워크에 연결되는 디바이스들의 수의 카운트(count of the number of devices)를 유지하고 상기 디바이스들의 수의 카운트를 토대로 하여 상기 로컬 주소를 수정하는 통신 디바이스.
  9. 제 5 항에 있어서,
    상기 통신 디바이스는 엘리베이터 작동과 관련된 고정물(fixture)이며, 상기 통신 디바이스에 할당되는 물리적 주소는 상기 고정물이 배치되는 층과 관련되는 통신 디바이스.
  10. 제 5 항에 있어서,
    타이머를 더 포함하며,
    상기 마이크로프로세서는 상기 타이머가 제 1 값에 도달할 경우, 상기 마이크로프로세서가 상기 ADC에 상기 로컬 전압 크기를 측정하도록 명령하는 초기화 모드로부터 전압 분류 모드로 천이시키는 통신 디바이스.
  11. 제 10 항에 있어서,
    상기 전압 분류 모드 동안, 상기 마이크로프로세서는 상기 측정된 전압 크기를 토대로 하여 계산되는 시간에 상기 측정된 로컬 전압 값을 전달하고, 상기 측정된 로컬 전압 값과 다른 디바이스들로부터 수신된 측정된 전압들의 비교들을 토대로 하여 주소 값을 증가시키는 통신 디바이스.
  12. 제 11 항에 있어서,
    상기 마이크로프로세서는, 상기 타이머가 제 2 값에 도달할 경우 전압 분류 모드로부터 대기 모드로 천이시키고,
    상기 대기 모드 동안 상기 디바이스는 상기 전압 분류 모드 동안 통신 버스에 할당된 로컬 주소를 포함하는 통신 버스의 메시지들을 제공하는 통신 디바이스.
  13. 제 12 항에 있어서,
    상기 마이크로프로세서가 상기 전압 분류 모드 동안 상기 통신 버스에 연결되는 다른 디바이스들로부터 측정된 전압들을 수신하지 않은 경우에는, 상기 마이크로프로세서가, 상기 네트워크에 연결되는 다른 디바이스들로부터의 주소들을 요청하고, 상기 네트워크에 연결되는 디바이스들로부터 각각의 디바이스에 할당된 주소들을 포함하는 순서부여 통신들(ordered communications)을 수신하며, 상기 네트워크에 연결되는 디바이스들로부터 수신된 통신들을 토대로 하여 로컬 주소를 할당하는 주소 절충 모드(address negotiation mode)로 천이시키는 통신 디바이스.
  14. 통신 네트워크의 디바이스들에 물리적 주소들을 할당하는 방법에 있어서,
    로컬 디바이스가 전원 버스를 통해 상기 디바이스로 제공되는 전력과 연관된 전압 크기를 측정하는 초기화 모드에서 작동하는 단계 - 상기 측정된 전압 크기는 상기 로컬 디바이스의 물리적 위치의 함수임 - ;
    상기 초기화 모드로부터 전압 분류 모드로 변화시키는 단계 - 각각의 디바이스가 상기 측정된 전압의 크기를 토대로 계산되는 시간에 상기 통신 네트워크에 연결되는 다른 디바이스들로 상기 초기화 모드 동안 측정된 전압을 전달하며, 각각의 디바이스는 상기 네트워크에 연결되는 다른 디바이스들에 의하여 제공되는 전압들과 측정된 로컬 전압을 비교함으로써 물리적 주소를 증가시킴 - ; 및
    상기 전압 분류 모드로부터, 상기 전압 분류 모드 동안 물리적 주소들의 할당이 유도되는 대기 모드로 변화시키는 단계 - 상기 네트워크에 연결되는 각각의 디바이스에는 각각의 디바이스에 의하여 측정된 전압에 따라 정해지는 물리적 주소가 할당됨 - 를 포함하는 방법.
  15. 제 14 항에 있어서,
    상기 초기화 모드에서의 작동 동안, 각각의 디바이스에 의하여 저장되는 물리적 주소는 '1'이며, 상기 통신 네트워크에서 작동하는 디바이스들의 수의 카운트는 '1'인 방법.
  16. 제 14 항에 있어서,
    상기 전압 분류 모드에서의 작동 동안, 상기 통신 네트워크에 연결되는 다른 디바이스들에 상기 측정된 로컬 전압을 전달하기 위한 시간을 계산하기 위하여 각각의 로컬 디바이스가 상기 측정된 로컬 전압 크기에 상수 값을 곱하는 방법.
  17. 제 14 항에 있어서,
    상기 전압 분류 모드에서의 작동 동안, 각각의 로컬 디바이스는 수신된 전압 크기가 상기 측정된 로컬 전압 크기보다 클 경우 자신의 물리적 주소를 증가시키고, 각각의 수신된 통신에 대해 상기 통신 네트워크에서 작동하는 디바이스들의 수의 카운트를 증가시키는 방법.
  18. 제 14 항에 있어서,
    현재 점유되지 않은 물리적 주소를 판정하기 위해 상기 통신 네트워크에 연결되는 디바이스들과의 통신들을 토대로 하여 새로 부가된 로컬 디바이스에 물리적 주소가 할당되는 절충 모드에서 작동하는 단계를 더 포함하는 방법.
  19. 제 18 항에 있어서,
    상기 절충 모드에서의 작동 동안, 물리적 주소가 할당된 각각의 디바이스는 상기 측정된 전압의 크기에 의하여 판정된 시간에 상기 통신 네트워크에 연결된 다른 디바이스들로 자신의 물리적 주소를 전달하며,
    상기 새로 부가된 디바이스는 상기 디바이스들로부터 수신된 물리적 주소들과 자신의 로컬 물리적 주소를 비교하고, 수신된 물리적 주소가 상기 로컬 물리적 주소보다 큰 경우 상기 로컬 물리적 주소를 증가시키는 방법.
  20. 연결된 디바이스들의 자동적 어드레싱을 제공하는 메시지-기반 통신 시스템에 있어서,
    인접한 디바이스들 간의 물리적 거리에 의하여 정의되는 길이를 갖는 케이블들에 의하여 전원과 병렬로 연결되는 복수의 디바이스들 - 상기 각각의 디바이스는 상기 디바이스로 하여금 상기 디바이스와 상기 전원 간의 거리에 따라 크기가 변하는 상기 전원에 의해 제공되는 전압 크기를 측정할 수 있게 하는 아날로그-투-디지털 컨버터(analog-to-digital converter)를 가짐 - ; 및
    메시징 버스(messaging bus)에 의하여 상기 복수의 디바이스들 각각에 연결되는 제어기 - 상기 제어기는 상기 각각의 디바이스에 의하여 측정되는 전압 크기를 포함하는 상기 각각의 디바이스로부터의 메시지들을 수신하고 상기 전압 크기의 비교를 토대로 하여 상기 각각의 디바이스에 물리적 주소를 할당하며, 상기 제어기는 상기 할당된 주소 및 상기 측정된 전압 크기를 포함하는 할당 메시지들을 생성함 - 을 포함하며;
    상기 복수의 디바이스들 각각은 상기 할당 메시지들을 수신하고, 상기 할당 메시지에 제공되는 상기 전압 크기와 매칭되는 측정된 전압 크기를 갖는 디바이스는 상기 제어기에 의하여 할당되고 상기 할당 메시지에 제공되는 주소를 저장하고,
    상기 디바이스들은 각 디바이스에 의해 측정된 전압 크기를 토대로 계산된 시간에 상기 메시지들을 상기 제어기에 송신하는 메시지-기반 통신 시스템.
  21. 제 20 항에 있어서,
    상기 전원은 상기 연결된 디바이스들의 자동적 어드레싱 동안 및 상기 메시지-기반 통신 시스템의 정상적인 작동 동안 동일하게 유지되는 메시지-기반 통신 시스템.
  22. 제 20 항에 있어서,
    상기 연결된 디바이스들의 자동적 어드레싱 동안에만 상기 복수의 디바이스들과 병렬로 상기 전원에 연결되는 부하(load)를 더 포함하는 메시지-기반 통신 시스템.
KR1020117031018A 2009-06-05 2009-06-05 통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법 KR101430088B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/046377 WO2010141026A1 (en) 2009-06-05 2009-06-05 System and method for automatically addressing devices on a communication network

Publications (2)

Publication Number Publication Date
KR20120019488A KR20120019488A (ko) 2012-03-06
KR101430088B1 true KR101430088B1 (ko) 2014-08-13

Family

ID=43297989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117031018A KR101430088B1 (ko) 2009-06-05 2009-06-05 통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법

Country Status (7)

Country Link
US (1) US8930506B2 (ko)
EP (1) EP2438777B1 (ko)
JP (1) JP5449541B2 (ko)
KR (1) KR101430088B1 (ko)
CN (1) CN102598757B (ko)
ES (1) ES2729927T3 (ko)
WO (1) WO2010141026A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874815B2 (en) * 2008-10-27 2014-10-28 Lennox Industries, Inc. Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network
WO2013040941A1 (zh) * 2011-09-22 2013-03-28 中兴通讯股份有限公司 整流器识别方法及装置
TWI474700B (zh) * 2011-10-06 2015-02-21 Hope Bay Technologies Inc 網路位址自動分配方法及其所適用之資料中心
JP5826121B2 (ja) * 2012-06-18 2015-12-02 株式会社安川電機 機械制御プログラム作成装置、機械制御プログラム作成方法、プログラム及び情報記憶媒体
DE102012022299A1 (de) * 2012-11-14 2014-05-15 Bürkert Werke GmbH BUS-System, Verfahren zum Betrieb eines BUS-Systems und fluidisches System mit einem BUS-System
PL3061212T3 (pl) 2013-10-23 2018-12-31 Inventio Ag Sposób oraz urządzenie do rozruchu przy oddaniu do eksploatacji instalacji dźwigowej
KR101599905B1 (ko) * 2014-04-14 2016-03-07 주식회사 어서 네트워크의 자동 구성을 제공하는 무선 통신 모듈 및 방법
EP2953328B1 (en) * 2014-06-05 2018-12-05 Alcatel Lucent Generation of a network address based on operating condition parameters
JP6499912B2 (ja) * 2015-05-07 2019-04-10 矢崎総業株式会社 車両ネットワークシステム
CN105236219A (zh) * 2015-10-26 2016-01-13 广州日滨科技发展有限公司 电梯外召板楼层id设定的方法及装置
JP6587510B2 (ja) * 2015-11-06 2019-10-09 矢崎総業株式会社 車載通信システム
US10565107B2 (en) * 2016-06-10 2020-02-18 Semiconductor Components Industries, Llc Auto addressing using functional connection
DE102017209669A1 (de) * 2016-06-10 2017-12-14 Semiconductor Components Industries, Llc Automatisches Adressieren unter Verwendung einer Funktionsverbindung
US10126799B2 (en) 2016-07-22 2018-11-13 Rockwell Automation Technologies, Inc. Intelligent power tap with zone control and safety zone control
US10154006B2 (en) * 2016-07-22 2018-12-11 Rockwell Automation Technologies, Inc. Systems, methods and apparatus for supporting multiple network addressing modes
US10440620B2 (en) 2016-07-22 2019-10-08 Rockwell Automation Technologies, Inc. Systems and methods for bidirectional network geography delivery
US10108216B2 (en) 2016-07-22 2018-10-23 Rockwell Automation Technologies, Inc. Power tap with adjustable configuration
US10218699B2 (en) 2016-07-22 2019-02-26 Rockwell Automation Technologies, Inc. Systems and methods for adding a non-inherent component to a device key of a networked device
US10108238B2 (en) 2016-07-22 2018-10-23 Rockwell Automation Technologies, Inc. Intelligent power tap for providing power and communicating in industrial automation applications
US10289592B1 (en) * 2017-11-09 2019-05-14 Funai Electric Co., Ltd. Location-based address adapter and system
CN112204925B (zh) * 2018-07-13 2022-10-28 三菱电机楼宇解决方案株式会社 具有误操作防止功能的电梯系统
CN110963376B (zh) * 2018-09-28 2023-10-13 奥的斯电梯公司 装置器自动配置方法、装置器和电梯
EP3867182A1 (en) * 2018-10-16 2021-08-25 KONE Corporation Network commisioning of transportation infrastructure peripheral devices
FI3868079T3 (fi) 2018-10-16 2023-12-13 Kone Corp Dataverkkopalvelujen löytäminen kuljetusinfrastruktuurin hallintaverkossa
DE102019131773B4 (de) * 2019-11-25 2022-01-13 Krohne Messtechnik Gmbh Verfahren zum Initialisieren eines Bussystems für eine Prozessanlage und Bussystem
DE102022202455B4 (de) 2022-03-11 2023-10-12 Vitesco Technologies GmbH Gerät mit einer Kommunikationseinrichtung zur Datenübertragung über einen Datenübertragungsbus, sowie Datenübertragungssystem mit derartigen Geräten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392558B1 (en) * 1998-08-13 2002-05-21 Motorola, Inc. System for address initialization of generic nodes in a distributed command and control system and method therefor
WO2003041379A1 (en) * 2001-11-02 2003-05-15 Motorola Inc. Method and communication network for routing a real-time communication message based on a subscriber profile
JP2005051507A (ja) * 2003-07-29 2005-02-24 Yaskawa Electric Corp 通信システムおよびそのアドレス設定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746258A (ja) * 1993-07-28 1995-02-14 Matsushita Electric Works Ltd アドレス設定方法
US5675830A (en) 1994-02-28 1997-10-07 Eaton Corporation Addressing scheme for control network having remote address request device
US5551053A (en) 1994-02-28 1996-08-27 Eaton Corporation System and Method for assigning addresses to I/O devices in a control network and for verifying the assigned address of the devices
US5914957A (en) 1996-12-19 1999-06-22 Otis Elevator Company Automatic node configuration with identical nodes
US5946321A (en) 1996-12-19 1999-08-31 Otis Elevator Company Multi-topology network communication link interface
JPH11214166A (ja) * 1998-01-27 1999-08-06 Matsushita Electric Works Ltd 照明装置
US6363083B1 (en) 1999-03-12 2002-03-26 Otis Elevator Company Bilevel node identifiers in control area network (CAN) protocol
JP4476413B2 (ja) * 2000-02-21 2010-06-09 三菱電機株式会社 エレベーター制御システム用通信装置
EP1284556A1 (en) 2001-08-17 2003-02-19 Saia-Burgess Murten AG A method for initializing a control system and a control system
ATE409378T1 (de) * 2004-06-03 2008-10-15 Elmos Semiconductor Ag Verfahren zur adressierung der teilnehmer eines bussystems
DE102004052075A1 (de) 2004-10-26 2006-04-27 Jungheinrich Ag Knoten für ein Bus-Netzwerk, Bus-Netzwerk und Verfahren zum Konfigurieren des Netzwerks
US7929535B2 (en) * 2006-07-07 2011-04-19 Qualcomm Incorporated Geolocation-based addressing method for IPv6 addresses
KR100902486B1 (ko) * 2007-10-01 2009-06-10 에스케이 텔레콤주식회사 측위기술에 의해 측정된 위치 정보에 기반한 네트워크 주소 할당 방법 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392558B1 (en) * 1998-08-13 2002-05-21 Motorola, Inc. System for address initialization of generic nodes in a distributed command and control system and method therefor
WO2003041379A1 (en) * 2001-11-02 2003-05-15 Motorola Inc. Method and communication network for routing a real-time communication message based on a subscriber profile
JP2005051507A (ja) * 2003-07-29 2005-02-24 Yaskawa Electric Corp 通信システムおよびそのアドレス設定方法

Also Published As

Publication number Publication date
EP2438777A1 (en) 2012-04-11
EP2438777A4 (en) 2014-10-08
EP2438777B1 (en) 2019-03-20
WO2010141026A1 (en) 2010-12-09
ES2729927T3 (es) 2019-11-07
JP2012529221A (ja) 2012-11-15
JP5449541B2 (ja) 2014-03-19
US20120066356A1 (en) 2012-03-15
CN102598757B (zh) 2017-04-19
CN102598757A (zh) 2012-07-18
KR20120019488A (ko) 2012-03-06
US8930506B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
KR101430088B1 (ko) 통신 네트워크에서 디바이스들을 자동적으로 어드레싱하기 위한 시스템 및 방법
US7707434B2 (en) Power control bus for carrying power control information indicating a power supply voltage variability
US20060109203A1 (en) Method for the allocation of short addresses in illumination systems
CN102484880A (zh) 通信装置、通信终端装置、通信系统以及通信方法
EP1983772B1 (en) Communication system and information management method
RU2716567C2 (ru) Питаемое устройство, устройство с оборудованием для снабжения питанием, сетевая система питания через ethernet и способы для них
US20110016212A1 (en) Remote monitoring system
US9548913B2 (en) Communication system and transmission unit employed in same
WO2009123204A1 (ja) 監視システム
CN114572783A (zh) 一种用于机器人与电梯信号交互的控制板卡及控制方法
US20150018006A1 (en) Method for operating a field device, field device and server for a wide-area automation network
CN112369078B (zh) 通信装置、接入点管理装置、选择性通信连接方法和非暂时性计算机可读介质
JP2002271355A (ja) パケット通信システム及び識別子割付方法及び網側装置
US20140286353A1 (en) Communication system and transmission unit employed in same
US20200301397A1 (en) Wireless communication apparatus that manages process in factory, and process management method
JP2008294771A (ja) 集中管理システム、論理ネットワーク情報設定方法および集中管理装置
CN111432369B (zh) 气象信息的无线采集方法和无线采集装置
CN110708692B (zh) 一种多无线类型的家用网关系统及配网方法
JP7114223B2 (ja) 機器制御システム、通信方法、無線端末及び制御装置
CN104980893B (zh) 基于iBeacon协议的分组监听方法及其装置
JP2009130585A (ja) 電力線通信装置、電力線通信方法、および系統判定方法
CN210927994U (zh) 一种多无线类型的家用网关系统
JP2002077218A (ja) ブリッジ装置及び制御コマンド中継方法
KR101826631B1 (ko) 스마트 탭 자동등록 방법 및 이를 이용한 사물인터넷 환경의 통합 네트워크 시스템 제어방법
CN117794777A (zh) 调整电动车辆的充电过程

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 6