KR101377696B1 - 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 - Google Patents
물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 Download PDFInfo
- Publication number
- KR101377696B1 KR101377696B1 KR1020117025879A KR20117025879A KR101377696B1 KR 101377696 B1 KR101377696 B1 KR 101377696B1 KR 1020117025879 A KR1020117025879 A KR 1020117025879A KR 20117025879 A KR20117025879 A KR 20117025879A KR 101377696 B1 KR101377696 B1 KR 101377696B1
- Authority
- KR
- South Korea
- Prior art keywords
- cells
- turbine
- water
- array
- movement
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/10—Submerged units incorporating electric generators or motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
- F03B13/264—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D31/00—Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution
- F16D31/02—Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution using pumps with pistons or plungers working in cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/40—Use of a multiplicity of similar components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/97—Mounting on supporting structures or systems on a submerged structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
- Y10S415/905—Natural fluid current motor
- Y10S415/906—Natural fluid current motor having specific features for water current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S416/00—Fluid reaction surfaces, i.e. impellers
- Y10S416/04—Fluid current motor and generator
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Power Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Hydraulic Turbines (AREA)
Abstract
물의 움직임을 통해 전력을 생성하기 위한 기계 및 시스템은 전기적으로 상호 접속된 전력 생성 셀들의 어레이를 포함하며, 상기 어레이는 상호 교환가능한 모듈러 양식으로 구성되며, 상기 셀들은 각 셀내의 전기 터빈의 움직임에 의해 전기를 생성하기 위해 물의 움직임으로부터 운동 에너지를 얻도록 위치한다. 상기 개별적 터빈들 및 셀들은 상대적으로 소량의 전기를 생성할 수 있으며 해양의 환경에 견디기 위해 임펠러들 내에서 중합체 자성 물질들을 사용하고 터빈 내에서 권선들을 사용하며, 설치와 교체의 용이성을 위채 전기적으로 전도성인 트레이들 상에 적층된다.
Description
본 발명은 전력 생성 분야에 관한 것으로, 더 자세하게는, 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템에 관한 것이다.
수자원에서 에너지를 추출하는 것은 오랫동안 인류의 염원이었다. 다양한 방법들은 수차(water wheels), 엔트레인먼트(entrainment), 수력발전 터빈들을 수반한다. 해양의 조수 움직임 또는 해류를 전력으로 전환하기 위한 종래의 시도들은 큰 스케일의 시스템들, 전통적 생성기들의 사용, 수력을 캡쳐하기 위한 다양한 터빈들을 수반한다.
종래 기술의 결점은 시스템들이 다른 셋팅들에 대해 쉽게 구성되지 않으며, 큰 스케일의 구조물을 요구하며, 상업적으로 실용적이지 않다는 점이다. 그들은 쉽게 운반되는 것에 적절하지 않으며, 지형학적으로 적응적이지도 않고 또한 물의 부식효과를 견디지도 않는다. 또한, 마그네트들과 구리선을 가지는 전통적인 생성기에 필요한 중량은 교체를 어렵게 만든다. 또한, 해양, 강물, 또는 다른 흐름의 움직임을 캡쳐하기 위해 병렬로 배열된 소형의 전력 셀들의 어레이를 상대적으로 소형인 생성기들을 하나의 대형 전력 생성 시스템에 통합시키기에 충분한 방법으로 사용하는 시스템은 없었다.
발명의 간단한 요약
물 구동 터빈은 움직이는 물(파도, 흐름, 조수, 또는 그외)에서 전기적 에너지를 추출하기 위해 사용된다. 터빈 팬은 각 독립적 터빈 팬 다음으로 움직이는 물로부터 추가적인 에너지를 추출하기 위해 수렴 노즐에서 독립적으로 회전할 것이다. 팬 블레이드들은 하우징 내부에서 독립적으로 회전한다. 하우징은 구리 또는 전도성 중합체(conductive polymer) 또는 다른 전도성 물질로 이루어진 권선들(windings)을 포함한다. 마그네토 중합체(magneto polymer), 동종 또는 이종의 중합체에 부유된 자기장을 생성하는 미립자 물질들, 또는 Fe, Co Ni, Gd, Sn, Nd, 또는 자기장을 나타내는 세라믹스들과 같은 전통적인 자기 물질로부터 생성된 자기장을 회전시킴으로써, 자기 물질을 포함하고 있는 독립적 터빈이 전도성 권선들을 통과할 때 전기적 에너지가 발생한다. 마그네토 중합체는 자기적 특징들이 중합체에 부유하는 미립자 혼합물과 반대되는 원자 레벨에서 존재한다는 것이 다르다. 중합체 하우징 내의 트러스(truss) 구조는 중합체 또는 섬유유리 강화 중합체(fiberglass reinforced polymer), 탄소 합성물, 또는 나노튜브 강화 중합체(nanotube reinforced polymer)로 구성된다. 트러스 구조는 중합체 터빈 하우징의 내부에서 터빈 블레이드 조립체의 중심축을 지지한다. 각 터빈에서 생성되는 전기적 에너지는 0.001 내지 5,000 와트(W)의 범위 내에 있어야하지만, 터빈 당 100,000 와트(W)만큼 커질 수 있다. 전기적 에너지는 각 터빈의 권선에서 전송되어, 구리선 또는 전기적으로 전도성인 중합체로 구성된 각 터빈 하우징의 내부에 있는 전력 전송 도관에 병렬로 접속된다. 전력은, 전력이 미터링(metering)과 그리드로 최후로 전송하기 위한 집합 시스템(collection system)에 전송될 수 있을 때까지 내부 도관을 통해 하나의 터빈 하우징에서 다음 터빈 하우징으로 전송된다. 하나의 생성기가 .001 내지 100,000 와트(W)를 생성하면, 2차원적 어레이에 병렬로 접속된 복수 개의 생성기들은 다중 메가와트(MW) 범위 내에서 상업적 양을 생성하기 위한 전위(potential)를 갖는다. 이 시스템은 중합체, 세라믹 또는 비철로 코팅된 금속으로 이루어져 있고, 터빈 내부에 있는 어떤 전위적으로 자성을 띈 부분이 물과 직접적으로 접촉하지 않으므로, 시스템은 부식하지 않고, 경량이며, 운반가능하고, 제조하고 교체하기에 비용이 저렴하며, 지형학적으로 구성가능하다. 또한, 어레이의 모듈러(셀룰러) 디자인은 어레이의 전체 전력 생성 용량을 오프라인으로 취하지 않고도 터빈들의 수리 및 유지를 가능하게 한다. 현실적으로는, 이차원 어레이에서 개별적 수직 적층(stack)들만이 그 적층 내의 터빈의 유지를 위해 오프라인으로 취해질 것이므로 전력 생성 용량의 부분적인 양만이 언제라도 한번은 오프라인으로 취해질 것이다.
본 발명의 바람직한 실시예에 따르면, 전기적으로 상호 접속된 전력 생성 셀들의 어레이를 가지는 물의 움직임을 통한 전력 생성을 위한 기계가 개시되며, 여기서 상기 어레이는 상호 교환가능한 모듈러 배열인 셀들로 구성되며, 상기 셀들은 물의 움직임으로부터 운동 에너지를 받도록 위치한다. 상기 셀들은 각 셀 내의 전기적 터빈의 움직임에 의해 에너지를 변환한다.
본 발명의 다른 바람직한 실시예에 따르면, 전기적으로 전도성인 권선들을 가지는 하우징, 하우징 내에서 임펠러의 회전시 유도된 전기적 에너지를 생성하는 중합체 자기 부재들(magnetic element)을 갖는 하우징 내에서 변위되는 임펠러(impeller), 및 임펠러 위에서 물로부터 운동 에너지를 받기 위한 블레이드들, 을 포함하는 물의 움직임을 통한 전력 생성을 위한 기계가 개시되며, 여기서 상기 임펠러는 블레이드를 가로지르는 물의 움직임에 의해 구동된다.
본 발명의 다른 바람직한 실시예에 따르면, 터빈들의 임펠러 내에서 변위되는 자성 중합체를 가지는 복수 개의 터빈들을 포함하는 물의 움직임을 통한 전력 생성을 위한 시스템이 개시되며, 여기서 상기 임펠러들은 임펠러들을 중심으로 하우징 내에서 변위되는 전기적으로 전도성인 권선들로 둘러싸여지며, 터빈들은 모듈러 배열로 어레이되며 전기적으로 상호 접속되며, 상기 임펠러들은 전기를 생성하기 위해 물의 움직임을 통해 구동된다.
본 발명의 다른 바람직한 실시예에 따르면, 복수 개의 에너지 셀들을 가지는 물의 움직임을 통한 전력 생성을 위한 시스템이 개시되며, 여기서 각 셀은 개별적으로 5,000 와트 미만을 생성하며, 상기 시스템은 상기 셀들을 하나 또는 그 이상의 셀들과 중합체 내부에 있는 전기 도관을 통해 전기적 접속하에 지지하는 트레이를 포함하며, 상기 셀들은 바다에서 수직적으로 적층된 어레이들 내에 배열되며, 해수의 조수 움직임에 대해 수직으로 배열되며, 상기 어레이들은 전기적 그리드(grid)와 전기적으로 접속되어 있다.
도면들은 본 명세서의 부분을 구성하며, 여러형태들로 실시되는 본 발명에 따른 예시적 실시예들을 포함한다. 몇몇 예들에서 본 발명의 다양한 측면들이 본 발명의 이해를 돕기 위해 과장되거나 확대되어 도시될 수 있다는 것을 유념해야한다.
도 1은 해양 심해 지역에서 수심(water depth)의 대응함수로서 평균 해류 속도를 도시한 그래프.
도 2는 해양 방파제 지역에서 수심의 대응함수로서 물의 속도를 도시한 그래프.
도 3은 상업적 크기의 생성 사이트(site)를 위한 전력 셀들의 어레이를 도시한 개략적인 도.
도 4는 심해 지역에서 일방향의 흐름을 위해 배향된 어레이의 일부 내부에 셀들의 수직 적층을 도시한 개략적인 도.
도 5는 심해 지역에서 양방향의 흐름을 위해 배향된 어레이의 일부 내부에 셀들의 수직 적층을 도시한 개략적인 도.
도 6은 어레이에서 전기적 접속을 위해 하우징 내부에 세팅된 하나의 스테이지(stage)에 복수 개의 팬 블레이드들을 포함하는 원뿔형의 임펠러의 측면 입면도.
도 7은 복수 개의 블레이드들을 가지는 임펠러의 정면 입면도.
도 8은 셀들의 적층들을 전기적으로 장착하기 위한 전기 접속 트레이를 도시한 개략적인 도.
도 9a는 해수의 흐름에 직교적으로 배향된 양방향의 셀들의 어레이를 도시한 개략적인 도.
도 9b는 닻들과 부표(flotation marker)를 가지는 양방향 셀들의 어레이와 전기적 접속들을 도시한 개략적인 도.
도 10a 내지 10d는 원뿔형상의 터빈 생성기 및 셀들의 어레이를 생성하기 위한 전기 집합 트레이의 여러 도면들.
도 11a 및 11b는 복수 개의 임펠러들을 가지는 터빈 생성기의 측면 및 정면/후면도.
도 12는 그리드와 전기적으로 접속된 전력 생성 셀들의 어레이들의 그룹을 도시한 도.
도 2는 해양 방파제 지역에서 수심의 대응함수로서 물의 속도를 도시한 그래프.
도 3은 상업적 크기의 생성 사이트(site)를 위한 전력 셀들의 어레이를 도시한 개략적인 도.
도 4는 심해 지역에서 일방향의 흐름을 위해 배향된 어레이의 일부 내부에 셀들의 수직 적층을 도시한 개략적인 도.
도 5는 심해 지역에서 양방향의 흐름을 위해 배향된 어레이의 일부 내부에 셀들의 수직 적층을 도시한 개략적인 도.
도 6은 어레이에서 전기적 접속을 위해 하우징 내부에 세팅된 하나의 스테이지(stage)에 복수 개의 팬 블레이드들을 포함하는 원뿔형의 임펠러의 측면 입면도.
도 7은 복수 개의 블레이드들을 가지는 임펠러의 정면 입면도.
도 8은 셀들의 적층들을 전기적으로 장착하기 위한 전기 접속 트레이를 도시한 개략적인 도.
도 9a는 해수의 흐름에 직교적으로 배향된 양방향의 셀들의 어레이를 도시한 개략적인 도.
도 9b는 닻들과 부표(flotation marker)를 가지는 양방향 셀들의 어레이와 전기적 접속들을 도시한 개략적인 도.
도 10a 내지 10d는 원뿔형상의 터빈 생성기 및 셀들의 어레이를 생성하기 위한 전기 집합 트레이의 여러 도면들.
도 11a 및 11b는 복수 개의 임펠러들을 가지는 터빈 생성기의 측면 및 정면/후면도.
도 12는 그리드와 전기적으로 접속된 전력 생성 셀들의 어레이들의 그룹을 도시한 도.
바람직한
실시예들의
상세한 설명
바람직한 실시예의 상세한 설명이 여기에 제공된다. 그러나, 본 발명은 다양한 형태로 구현될 수 있다는 것을 이해해야 한다. 그러므로, 여기서 개시된 특정 세부적 설명은 한정하는 것으로 해석되지 않으며, 오히려, 당업자가 가상의 적당한 세부 시스템, 구조, 또는 방법에서 본 발명을 채용하도록 알려주는 대표적인 토대로서 해석된다.
도 1을 참조하면, 해양 심해 지역에서 수심(12)의 대응함수로서 평균 또는 중간 해류 속도(10)를 도시한 그래프이다. 속도는 어떤 상한선과 하한선 사이에서 심해 지역에서 상대적으로 일정하다는 것이 관찰되며, 임의의 목적을 위해 본 발명에 적용되는 물 에너지의 원천이 될 수 있다. 대서양의 걸프 스트림과 태평양의 쿠로시오 해류는, 본 발명이 여기서 설명되는 바와 같이 배열된 복수 개의 셀들을 구동하기 위해 사용할 수 있는 안정된 심해 해류의 예들을 제공한다. 그러나, 심해 지역에서는, 수력을 이용하고 전력 생성 유닛들의 어레이들을 유지하는 것이 어렵다. 반대로, 방파제 지역, 비대전된 저수지, 강, 또는 수로(aqueduct)에서의 물의 움직임은 본 발명의 장점들과 이점들에 더 유리하다.
도 2는 해양의 방파제 지역에서 수심(22)의 대응함수로서 물의 속도(20)를 나타내는 그래프이다. 수심이 감소할수록, 즉, 파도가 해안에 다가갈수록, 물의 속도는 증가하여 파도가 담고 있는 에너지를 방산시킨다는 것이 관찰되었다. 이것은 여기서 설명되는 타입의 셀들의 어레이를 위한 에너지의 신속하고 재생가능한 원천을 제공한다. 아래에서 더 자세하게 이해하겠지만, 여기서 보여주는 해안선 에너지 캡쳐링 시스템들의 존재는 이러한 현상으로부터 이득을 취하여 값싸고 신뢰할 수 있는 에너지를 생성한다. 이러한 방법은 주어진 횡단면 영역에 대해 상당히 일정한 속도를 가진 접근 가능한 움직이는 물의 몸체에 대해 작용할 것이다.
도 3은 본 발명의 바람직한 실시예에 따라 정렬되는 어레이 세트(30)를 도시한다. 어레이 세트(30)는 조수의 움직임을 받기 위해 해양의 방파제 지역에서 해안가(32)에 대해 평행한 방파제 지역에서 배치되는 일련의 개별적 어레이들(34)로 구성된다. 이러한 어레이들은 해류 움직임에서 이득을 취할 수 있는 심해 지역에서는 우세하는 해류의 이점을 취하기 위해, 또는 다른 위치에서는 국부화된 해류의 이득을 취하기 위해 강의 흐름에 대해 가로지르게 배열될 수 있다. 각 어레이(34)는 어떤 양식으로 함께 적층된 에너지 셀들을 통해 물의 움직임에 의해 개별적으로 구동되는 일련의 적층된 에너지 셀들이다. 셀들은 전기 접속 트레이(도 8 참조)를 통해 서로 접속됨으로써, 각 어레이 세트(30)는 에너지 셀들로부터 전기적 에너지의 합을 생성한다. 다음, 어레이 세트(30)는 최후로 전력 그리드로 접속된다.
도 4는 도 3에 도시된 대형 어레이에서 에너지 셀들(42)의 하나의 적층(40)의 측면도이다. 도 4는 심해 지역 또는 강, 또는 심지어 방파제 지역에서 일방향의 물의 흐름을 수용하기 위한 에너지 셀들(42)의 하나의 적층(40)을 도시한다. 물이 좌측을 가리키는 화살표(44) 방향으로 도시된 에너지 셀들을 가로질러 흐를 때, 에너지 셀들(42)은 운동 에너지를 받으며, 이것은 차례로 전력을 생성한다. 개별적 에너지 셀들(42)은 적층되며, 인버터 또는 전력 그리드로 라인들(49)을 통해 전송되는 전력을 생성하기 위해 양 및 음의 극들(46)에 전기적으로 서로 접속된다. 각 개별적 에너지 셀(42)은 소량의 에너지를 생성할 수 있지만, 병렬로 접속된 에너지 셀들(42)의 적층들(40)은 실질적은 에너지를 생성한다. 적층(40)은 관련 기술에서 잘 알려진 종래의 수단에 의해 해저면에 닻(48)에 고정된다. 그렇게 배열된 어레이들은 유동가능하고 물에 부유하면서, 동시에 최대 전력 생성을 위해 물의 흐름에 가로질러서 자신을 나타낸다.
전력 어레이의 모듈화의 중요한 이점은 바람직한 실시예에서 0.001-5,000 와트의 범위의 전력 아웃풋을 가질 수 있는 소형 전력 장치들을 사용한다는 것이다. 이것은 0.001 내지 50,000 세제곱 인치(in3)의 스케일인 전형적인 전력 생성 터빈들보다 현저하게 작을 수 있는 장치들의 사용을 허용한다.
이러한 소형 장치들을 사용함으로써, 대형 어레이의 창출은 크게 용이하며, 특정 기간 동안 전력 생성에 영향을 미치지 않고 비 기능성 장치들의 신속한 교환을 허용한다. 전력 생성 장치의 이러한 소형화는 마이크로 생성기 또는 마이크로 장치로 불리어진다. 다중 장치를 어레이로 통합시키는 것은 합쳤을 때 더 큰 하나의 생성기와 동일한 아웃풋을 가진다.
도 5는 방파제 지역에서 양방향의 물의 흐름을 최대로 수용하기 위한 에너지 셀들(52)의 하나의 적층(50)을 나타낸다. 물이 좌측 우측을 향하는 화살표(54) 방향으로 에너지 셀들(52)을 가로질러 흐를 때, 에너지 셀들(52)은 운동 에너지를 받으며, 이것은 차례로 전력을 생성한다. 물의 흐름은 썰물과 밀물을 가진 조수 작용을 통해 두 방향으로 이루어질 수 있으며, 그럼으로써 양방향의 물의 움직임으로부터 이득을 얻기 위해 고안되고 위치된 셀들을 활성화시킨다. 도 5는 도 3에 도시된 대형 어레이에서 셀들(52)의 하나의 적층(50)의 측면도를 나타내며, 여기서 셀들은 도 4에 도시된 비슷한 양식으로 양과 음의 극에 의해 전기적으로 서로 접속된다.
도 6은 운동 에너지를 전기적 에너지로 변환하기 위한 복수 개의 핀들(fins)(도 7 참조)을 포함하는 하나의 셀 임펠러(impeller)(60)의 측면도이다. 개별적인 셀은 누적 전력 생성을 창출하는 병렬적 양식으로 다른 셀들과 전기적 접속(64)을 갖도록 구성된다. 임펠러(60)(터빈)는 전기를 생성하도록 적절하게 구성된 하우징 내부에 위치한다. 하우징은 추가된 안정성을 위해 직교 브레이스(brace)(도 7에 도시)를 포함한다. 생성기는 하우징 내부에 블레이드들을 위해 마그네트들 또는 자성 물질을 위치시키고, 임펠러(60)를 둘러싸는 하우징 내부에 권선들을 위치시킴으로써 형성된다. 임펠러(60)가 물의 작용으로 회전할 때, 전자기적 힘이 생성되어 해류를 권선들에 전달하고 차례로 전기를 생성한다. 셀들을 병렬적 전기 접속으로 구성함으로써 개별 셀에 의해 생성되는 소량의 에너지가 서로 부가되어 대량의 전기적 에너지를 생산한다.
관련기술 분야에서 잘 알려진 종래의 중합체 제조 수단을 사용하는 바람직한 실시예에서, 자성 중합체들 또는 마그네토 중합체들이 기준 마그네트들과 구리 권선들을 대체하도록 사용되는 터빈들과 하우징들이 제조될 수 있다. 사용되는 자성 중합체 또는 마그네토 중합체의 양 및 그것의 적절한 위치는 특정 응용에 바람직한 자성 인력의 정도에 대응함수이다. 여기서 바람직한 와트량을 생성하기에 충분한 자력 및 전도성은 그러한 물질들을 사용함으로써 달성가능하고, 경량의 그리고 물의 부식성을 허용하지 않는 생성기를 가능하게 한다.
하나의 터빈은 길이 방향의 축을 따라 최대의 작업을 끌어내도록 하기 위해 독립적인 블레이드 링들(66)과 피팅될 수 있으며, 터빈은 터빈 내의 노즐의 압축으로 인해 흐름의 속도를 증가시키기 위해 외주(68)를 따라 테이퍼질 수 있다.
도 7은 물의 움직임으로부터 에너지의 최대량을 캡쳐링하기에 유리한 하나의 터빈 하우징(70)과 복수 개의 팬 블레이드들(74)을 가진 임펠러(72)의 단부 도면이다. 직교 브레이스(76)는 부가된 안정성을 제공한다.
도 8은 도 3에 도시된 대형 어레이들을 형성하기 위해 다중 셀 적층들을 부착하기 위한 전기 접속 트레이(80)를 도시한다. 트레이(80)는 셀들의 적층에 전기적으로 접속하기 위한 전기적 포스트 채널 양극판(82)과 음극판(84)을 가진다. 수직적으로 적층된 셀들의 각 그룹은 트레이 상에 놓여진다.
제 1 수직 적층(85), 제 2 수직 적층(86), 및 N 수직 적층(88)은 전기적 병렬 접속(82, 84)으로 서로 이웃하며 위치하며, 차례로 셀들의 서로 인접하는 적층들은 적층 베이스를 통해 전기적으로 상호 접속되어 있다. 쉽게 알 수 있듯이, 트레이(80)는 모두가 전기적으로 상호 접속된 복수 개의 수직 적층들을 수용한다. 따라서, 임의의 개수의 수직적 적층들이 이러한 양식으로 배열될 수 있으며, 각 적층은 특정 응용을 위해 바람직한 셀들의 몇몇을 가질 수 있다. 이러한 중합체 전이 플레이트는, 전기적 상호 접속을 제공하고 따라서 전력을 어레이에서 정류기/인버터로 전송시켜 그 다음으로 그리드로 전송시키는 것을 허용하기 위해, 추가적인 적층을 위한 복수개의 셀들의 상부에 장착될 수 있다. 이러한 배열은 용이한 설치 및 용이한 수리를 가능하게 한다.
도 9a는 해양 측(94)으로부터 물의 흐름을 받거나 또는 해안가 측(95)으로부터 물의 흐름을 받기 위해 정렬된 복수 개의 셀들을 가지는 셀 어레이(92)의 사시도이다. 이러한 양식으로 셀들을 배치함으로써, 개별적 셀들은 물의 밀물과 썰물로부터 운동 에너지를 최대한으로 변환하도록 위치한다. 본 실시예에서, 특정 셀은 일방향 또는 타방향으로 정렬되며, 그 셀의 전력 생성 터빈은 그 터빈에 맞춰진 방향의 흐름을 받을 때 최적으로 돌아간다.
도 9b는 여기서 설명된 전기적으로 상호 접속된 셀들의 적층에서 양방향의 흐름을 받기 위한 셀들의 전체 배열의 측면도를 도시한다. 적층들은 해수의 흐름에 견디고 궂은 날씨에도 안정성을 유지하도록 견고하지만 경량인 하우징들(95)에 장착되는 것이 바람직하다. 셀들의 어레이는 더 큰 안정성을 제공하기 위해 닻(97)에 의해 해저면에 고정될 수 있다. 부유 장치(98)가 배향과 위치 목적을 위해 채용될 수 있다. 셀들은 어레이를 형성하기 위해 적층 트레이들 위에 장착된 후, 전방으로 전송되는 전력을 생성하기 위해 전기적 접속 동작을 통해 전기적으로 합쳐진다. 셀들의 어레이에서 생산되는 축적된 에너지는 종래의 와이어 수단(99)을 통해 전달되어 초전도성 케이블 또는 관련기술에서 잘 알려진 다른 전기적 전달수단을 통해 그리드로 전달된다.
*도 10a, 10b, 10c 및 10d는 중심축(100)을 가지는 원뿔형 터빈 생성기의 도면들을 나타내며, 스테이지(102)와 같은 다중 스테이지들에 복수 개의 임펠러 블레이드들이 축을 중심으로 설치된다. 어떤 실시예들에서는, 단일의 스테이지를 갖는 것이 바람직할 수 있다. 임펠러 하우징은 그 안에 삽입된 마그네트들(104) 또는 하우징 내부에 내장된 자성 중합체를 갖는다. 터빈의 외부 하우징(108)은 전기적 커넥터들(106) 및 견고한 지지체(107)를 통해 단말 통로를 가지며, 그럼으로써 개별적 유닛듯의 적층을 허용한다. 도 10d는 셀들의 어레이를 형성하기 위한 전기 집합 트레이(111)를 나타낸다. 트레이는 구리선 또는 전도성 중합체(109)를 통해 전기적 접속을 갖는다.
터빈들의 혁신적인 구성은 각 개별적인 터빈의 대량 생산을 위한 중합체 주형들에서의 사용을 위한 중합체들의 사용에 의해 달성된다. 터빈의 자기 부재들은 터빈 내에 내장될 것이며, 그들 중 다양한 물질들 중 하나는 철, 세라믹, 또는 자성 중합체(마그네토 중합체 희토류 마그네트(NdFeB) 타입들)이다. 장치 및 장치 어레이에서 내장된 전송 시스템 내에 음극(cathode)과 양극(anode)을 위한 전기적으로 전도성인 중합체를 사용하는 것은 중량을 줄이며, 소형 터빈들의 제조를 효과적이고 경제적으로 만든다. 또한, 그러한 터빈의 사용은 전력 생성기간 동안 CO2, CO, NOx, SOx, 또는 오존 물질들의 제로 생성을 이룰 것이다. 도 10에 도시된 임펠러 구성은 수렴 하우징 또는 노즐과 연계하여 최대의 작업을 끌어내기 위해 중합체로 설계된다.
내부식성, 낮은 비용의 제조, 대량 생산을 위한 중합체들의 용도, 및 임펠러 블레이드들 또는 다중이지만 독립적인 임펠러들을 위한 중합체들의 용도. 대량 생산을 위한 중합체 주형들에서의 사용을 위한 중합체들의 용도, 및 해양으로부터 전력을 생성할 때 사용을 위한 중합체 생성기에서 다음 마그네트 유형들의 용도: 철, 세라믹, 자성 중합체(마그네토 중합체 희토류 마그네트(NdFeB) 타입들). 또한, 장치 및 장치 어레이에서 내장된 전송 시스템 내에서 음극과 양극을 위한 전기적인 전도성 중합체의 용도.
도 11A 및 11B는 여러 스테이지들에서 복수 개의 임펠러를 가지는 터빈 생성기의 측면 및 정면/후면도이다. 어떤 실시예들에서 에너지를 끌어내기 위해 단일의 스테이지를 가지는 것이 바람직할 수 있다. 터빈은 수직적 양식으로 다중 셀들을 적층하도록 허용하기 위해 전기적으로 상호접속 가능한 베이스(111)에 대형 어레이의 부분으로 하우징된다. 직교 브레이스(112)는 부가된 지지를 제공한다. 구리선 권선들 또는 전도 중합체 권선들은, 임펠러 하우징 내에 내장된 마그네트들 또는 자성 물질이 자속을 형성하는 터빈 임펠러와 함께 돌아갈 때, 해류를 형성하기 위해 임펠러를 중심으로 구성될 것이다.
도 12는 그리드(122)에 전기적으로 접속된 전력 생성 셀들의 어레이들(120) 그룹을 나타낸다. 어레이들은 해양 조수의 흐름에 대해 직각으로 정렬되어 있으며, 병렬로 전기적으로 접속되어 있다. 부유물(124)이 정렬, 위치, 및 트레킹 목적으로 어레이들의 상부에 제공된다. 바람직한 실시예에서, 어레이들은 해안가 가까이에서 에너지의 최대량을 캡쳐링하기 위해 방파 지점 가깝게 위치한다.
본 발명은 바람직한 실시예와 관련해서 설명되었지만, 발명의 범주를 서술한 특정 형태에 한정하는 것을 의도하지 않지만, 반대로, 본 발명의 정신 및 범주내에 포함될 수 있는 대안, 수정, 동등물을 포함하도록 의도된다.
Claims (15)
- 물의 움직임을 통한 전력 생성 기계로서,
인접한 전력 생성 셀들의 어레이를 포함하며, 상기 어레이는 전기적으로 상호 접속된 배열인 상기 셀들로 구성되고;
상기 셀들은 상기 어레이 내에서 서로 독립적으로 구동하고, 상기 어레이 내에서 복수 개의 위치에서 상호 교환 가능하며;
상기 셀들은 물의 움직임으로부터 운동 에너지를 얻도록 위치하며, 여기서 상기 셀들은 각 셀내의 전기 터빈의 움직임에 의해 상기 에너지를 변환하며,
상기 셀들은 서로 상하로 배치되며,
각각의 셀은 상기 터빈 및 상기 터빈의 회전을 통해 전기 에너지를 생성하는 수단을 포함하는 독립적인 유닛이며,
상기 터빈은,
하우징; 및
상기 하우징 내부에 위치하는 임펠러;를 포함하며,
상기 하우징은 상기 터빈의 부가된 안정성을 위해 직교하여 배치되는 직교 브레이스를 포함하며,
상기 임펠러에는 자성 중합체가 위치되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 삭제
- 제 1 항에 있어서,
상기 셀들은 연직으로 적층되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 1 항에 있어서,
상기 셀들은 복수의 셀들을 지지할 수 있는 트레이를 통해 상기 전기적 그리드와 전기적으로 상호 접속되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 4 항에 있어서,
상기 셀들은 수평으로 적층되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 물의 움직임을 통한 전력 생성 기계로서,
물의 흐름에 직교하게 위치되는 수직으로 배열된 전력 생성 셀들의 어레이를 포함하며;
상기 어레이는 전기적으로 상호 접속된 모듈 구조인 상기 셀들로 구성되며;
상기 셀들은 상기 어레이 내에서 서로 독립적으로 구동하고, 상기 어레이 내에서 복수 개의 위치에서 상호 교환 가능하며;
여기서, 상기 셀들은 각 셀 내의 전기 터빈에 대향한 물의 움직임에 의해 에너지를 변환하며,
상기 셀들은 서로 상하로 배치되며,
각각의 셀은 상기 터빈 및 상기 터빈의 회전을 통해 전기 에너지를 생성하는 수단을 포함하는 독립적인 유닛이며,
상기 터빈은,
하우징; 및
상기 하우징 내부에 위치하는 임펠러;를 포함하며,
상기 하우징은 상기 터빈의 부가된 안정성을 위해 직교하여 배치되는 직교 브레이스를 포함하며,
상기 임펠러에는 자성 중합체가 위치되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 6 항에 있어서,
상기 셀들은 터빈 생성기들인 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 6 항에 있어서,
상기 셀들은 상기 셀 상의 양극 및 음극의 접속(mating)을 통해 전기적으로 상호 접속되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 6 항에 있어서,
두 방향에서 상기 물의 흐름과 직교하는 대향 방향으로 배치되는 셀들을 더 포함하는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 물의 움직임을 통한 전력 생성 기계에 있어서,
상기 전력 생성 기계는 전력 생성 셀들의 기둥을 포함하며,
상기 전력 생성 셀들은 물의 흐름을 받도록 위치되고, 운반 가능하며,
상기 기둥은 전기적으로 상호 접속된 모듈 구조인 상기 셀들로 구성되며,
상기 셀들은 상기 기둥 내에서 서로 독립적으로 구동하고, 상기 기둥 내에서 복수 개의 위치에서 상호 교환 가능하며;
상기 셀들은 물의 움직임으로부터 운동 에너지를 얻도록 위치하며, 여기서 상기 셀들은 각 셀내의 전기 터빈의 움직임에 의해 상기 에너지를 변환하며,
상기 셀들은 서로 상하로 배치되며,
각각의 셀은 상기 터빈 및 상기 터빈의 회전을 통해 전기 에너지를 생성하는 수단을 포함하는 독립적인 유닛이며,
상기 터빈은,
하우징; 및
상기 하우징 내부에 위치하는 임펠러;를 포함하며,
상기 하우징은 상기 터빈의 부가된 안정성을 위해 직교하여 배치되는 직교 브레이스를 포함하며,
상기 임펠러에는 자성 중합체가 위치되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 제 10 항에 있어서,
상기 셀들은 전기 도관을 통해 상호 접속되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 기계. - 물의 움직임을 통한 전력 생성 시스템으로서,
물의 흐름에 직교하게 위치되는 수직으로 배열된 전력 생성 셀들의 어레이를 포함하며;
상기 어레이는 전기적으로 상호 접속된 모듈 구조인 상기 셀들로 구성되며;
상기 셀들은 상기 어레이 내에서 서로 독립적으로 구동하고, 상기 어레이 내에서 복수 개의 위치에서 상호 교환 가능하며;
상기 셀들은 물의 움직임으로부터 운동 에너지를 얻도록 위치하며, 여기서 상기 셀들은 각 셀내의 전기 터빈의 움직임에 의해 상기 에너지를 변환하며,
상기 셀들은 서로 상하로 배치되며,
각각의 셀은 상기 터빈 및 상기 터빈의 회전을 통해 전기 에너지를 생성하는 수단을 포함하는 독립적인 유닛이며,
상기 터빈은,
하우징; 및
상기 하우징 내부에 위치하는 임펠러;를 포함하며,
상기 하우징은 상기 터빈의 부가된 안정성을 위해 직교하여 배치되는 직교 브레이스를 포함하며,
상기 임펠러에는 자성 중합체가 위치되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 시스템. - 제 12 항에 있어서,
상기 어레이는 복수의 셀들의 기둥들로 구성되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 시스템. - 제 12 항에 있어서,
상기 어레이는 일련의 전기적으로 상호 접속된 셀들의 기둥들로 구성되는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 시스템. - 제 12 항에 있어서,
상기 셀들이 전기적으로 상호 접속되도록 하고 전력을 전송시키는 것을 허용하는 전이 플레이트를 더 포함하는 것을 특징으로 하는 물의 움직임을 통한 전력 생성 시스템.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/851,604 | 2004-05-21 | ||
US10/851,604 US6955049B2 (en) | 2003-05-29 | 2004-05-21 | Machine and system for power generation through movement of water |
PCT/US2004/033134 WO2005119053A1 (en) | 2004-05-21 | 2004-10-06 | A machine and system for power generation through movement of water |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067023992A Division KR20070024530A (ko) | 2004-05-21 | 2004-10-06 | 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110125678A KR20110125678A (ko) | 2011-11-21 |
KR101377696B1 true KR101377696B1 (ko) | 2014-03-21 |
Family
ID=35462972
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117025879A KR101377696B1 (ko) | 2004-05-21 | 2004-10-06 | 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 |
KR1020067023992A KR20070024530A (ko) | 2004-05-21 | 2004-10-06 | 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067023992A KR20070024530A (ko) | 2004-05-21 | 2004-10-06 | 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 |
Country Status (14)
Country | Link |
---|---|
US (2) | US6955049B2 (ko) |
EP (1) | EP1747371B1 (ko) |
JP (1) | JP5149621B2 (ko) |
KR (2) | KR101377696B1 (ko) |
CN (1) | CN101069014B (ko) |
AU (1) | AU2004320413B2 (ko) |
BR (1) | BRPI0418844A (ko) |
CA (1) | CA2567065C (ko) |
EC (1) | ECSP067005A (ko) |
MX (1) | MXPA06012336A (ko) |
NO (1) | NO20065897L (ko) |
RU (1) | RU2368798C2 (ko) |
WO (1) | WO2005119053A1 (ko) |
ZA (1) | ZA200609238B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11313350B2 (en) | 2017-10-11 | 2022-04-26 | Niels Ravn | Wind-driven energy converting device |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20012086A0 (fi) * | 2001-10-26 | 2001-10-26 | Top Shark Oy | Menetelmä ja laitteisto aaltoenergian hyödyntämiseksi |
GB0222466D0 (en) * | 2002-09-27 | 2002-11-06 | Marine Current Turbines Ltd | Improvements in rotor blades and/or hydrofoils |
GB0229042D0 (en) * | 2002-12-13 | 2003-01-15 | Marine Current Turbines Ltd | Hydraulic speed-increasing transmission for water current powered turbine |
US20060266038A1 (en) * | 2003-05-29 | 2006-11-30 | Krouse Wayne F | Machine and system for power generation through movement of water |
GB0329589D0 (en) * | 2003-12-20 | 2004-01-28 | Marine Current Turbines Ltd | Articulated false sea bed |
US7215036B1 (en) * | 2005-05-19 | 2007-05-08 | Donald Hollis Gehring | Current power generator |
US7456514B2 (en) * | 2005-09-22 | 2008-11-25 | Verdant Power | Kinetic hydropower generation from slow-moving water flows |
FR2898941A1 (fr) * | 2006-03-25 | 2007-09-28 | Max Sardou | Energie renouvelable l'hydrolienne flottante |
US7291936B1 (en) * | 2006-05-03 | 2007-11-06 | Robson John H | Submersible electrical power generating plant |
US20070269304A1 (en) * | 2006-05-17 | 2007-11-22 | Burg Donald E | Fluid rotor with energy enhancements power generation system |
US7453166B2 (en) * | 2006-06-06 | 2008-11-18 | Oceana Energy Company | System for generating electricity from fluid currents |
US7682126B2 (en) * | 2006-06-09 | 2010-03-23 | David Joseph Parker | Tethered propgen |
WO2008051455A2 (en) * | 2006-10-20 | 2008-05-02 | Ocean Renewable Power Company, Llc | Submersible turbine-generator unit for ocean and tidal currents |
DE502006007442D1 (de) * | 2006-10-28 | 2010-08-26 | Hoernig Maria | Windkraftanlage sowie Verfahren zur Erzeugung von elektrischer Energie aus bewegter Umgebungsluft |
US7980832B2 (en) * | 2007-04-19 | 2011-07-19 | Ahdoot Ned M | Wave energy converter |
US9145875B2 (en) | 2007-05-01 | 2015-09-29 | Pliant Energy Systems Llc | Ribbon transducer and pump apparatuses, methods and systems |
US7554215B1 (en) | 2007-07-03 | 2009-06-30 | Paul Caragine | Generator and method for generating electricity from subsurface currents |
US7595565B2 (en) * | 2007-08-14 | 2009-09-29 | Jetpro Technology Inc. | Do-it-yourself wind power generation wall |
US7997870B2 (en) * | 2007-08-14 | 2011-08-16 | B N Balance Energy Solutions, Llc | Turbine rotor for electrical power generation |
NL1034952C2 (nl) * | 2008-01-25 | 2009-07-30 | Antonie Ten Bosch | Een vaarbare getijdenstroom turbinemuur energiecentrale. |
US7478974B1 (en) | 2008-04-17 | 2009-01-20 | William Lowell Kelly | Apparatus for hydroelectric power production expansion |
WO2010002778A2 (en) * | 2008-07-01 | 2010-01-07 | Oceana Energy Company | Systems and methods for supporting underwater energy conversion devices |
US20110109090A1 (en) * | 2009-11-09 | 2011-05-12 | Bolin William D | Fin-Ring Propeller For A Water Current Power Generation System |
WO2010008368A1 (en) * | 2008-07-16 | 2010-01-21 | Anadarko Petroleum Corporation | Water current power generation system |
US20100032955A1 (en) * | 2008-08-06 | 2010-02-11 | Chen Shih H | Mobile wind power generating device |
US20100032957A1 (en) * | 2008-08-11 | 2010-02-11 | Timothy Joseph Stephany | Energy Generation System for Reduced Visual Pollution and Cost |
US20100123316A1 (en) * | 2008-11-18 | 2010-05-20 | Fowler Benjamin P | Power generator barge |
CA2647773A1 (en) * | 2008-12-23 | 2010-06-23 | Organoworld Inc. | Multiple augmented turbine assembly |
US8651798B2 (en) * | 2009-02-12 | 2014-02-18 | Sheer Wind, Inc. | Kinetic hydropower generation system and intake therefore |
GB0904408D0 (en) * | 2009-03-13 | 2009-04-29 | Firth Tidal Energy Ltd | Apparatus for generating electricity from a tidal water flow |
BRPI1009841A2 (pt) * | 2009-03-26 | 2017-08-22 | Hydro Green Energy Llc | Método e aparelho para a geração melhorada de potência hídrica em reservatórios existentes |
EP2282048A1 (de) * | 2009-07-02 | 2011-02-09 | Bayer MaterialScience AG | Verfahren Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen |
BR112012001556A2 (pt) * | 2009-07-21 | 2021-01-12 | Pliant Energy Systems Llc | gerador de energia, mecanismo para extrair energia a partir de um fluxo direcional de um fluido, aparelho e sistema de extração de energia, e, métodos para extrair energia de um fluido de escoamento, e para formar um aparelho para extrair energia. |
US7812472B2 (en) * | 2009-08-25 | 2010-10-12 | Quality Research, Development & Consulting, Inc. | Power generating skin structure and power generation system therefor |
WO2011059708A2 (en) | 2009-10-29 | 2011-05-19 | Oceana Energy Company | Energy conversion systems and methods |
GB2478743A (en) * | 2010-03-16 | 2011-09-21 | Verderg Ltd | Series of venturi pump water power generators |
CA2797735A1 (en) | 2010-04-30 | 2011-11-03 | Clean Current Limited Partnership | Unidirectional hydro turbine with enhanced duct, blades and generator |
DE102010017343B4 (de) * | 2010-06-11 | 2014-04-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Strömungsenergieanlage |
TR201007767A2 (tr) * | 2010-09-22 | 2011-06-21 | Kabayel Fuat | Su hareketlerinden enerji üreten portatif elektrik üreteci. |
GB2497460B (en) | 2010-12-30 | 2014-11-05 | Cameron Int Corp | Method and apparatus for energy generation |
NO334144B1 (no) * | 2011-09-12 | 2013-12-16 | Aker Subsea As | Roterende undervannsinnretning |
CA2755849C (en) * | 2011-10-11 | 2013-12-31 | Haisam Yakoub | Economical urban wind turbine station (euwts) |
US9291148B2 (en) | 2011-11-30 | 2016-03-22 | Sheer Wind, Inc. | Intake assemblies for wind-energy conversion systems and methods |
US9328713B2 (en) | 2012-04-13 | 2016-05-03 | Steven D. Beaston | Turbine apparatus and methods |
US10036365B2 (en) | 2012-05-10 | 2018-07-31 | The Boeing Company | System and method for converting fluid motion into electrical power |
CN103423075A (zh) * | 2012-05-17 | 2013-12-04 | 厦门锐思达机电科技有限公司 | 一种潮汐能发电模块及阵列 |
RU2499910C1 (ru) * | 2012-05-22 | 2013-11-27 | Виктор Маркович Гурвич | Проточный электрогенератор и подводная электростанция на стационарной платформе |
DE102012020456A1 (de) * | 2012-10-17 | 2014-04-30 | Technische Universität München | Mehrschachtanlagen |
US10011910B2 (en) | 2012-10-29 | 2018-07-03 | Energystics, Ltd. | Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof |
US8629572B1 (en) | 2012-10-29 | 2014-01-14 | Reed E. Phillips | Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof |
US9624900B2 (en) | 2012-10-29 | 2017-04-18 | Energystics, Ltd. | Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof |
DE102012224188A1 (de) * | 2012-12-21 | 2014-06-26 | Wobben Properties Gmbh | Verfahren zur Steuerung eines Wasserschütz-Antriebs für ein Wasserschütz mit einer elektrischen Maschine, Betriebsschaltung, Wasserschütz-Antrieb und Wasserkraftanlage |
GB2512963A (en) * | 2013-04-11 | 2014-10-15 | Hangzhou Lhd Inst Of New Energy Llc | Ocean energy generating device and built-in module thereof |
WO2015013231A2 (en) | 2013-07-25 | 2015-01-29 | Tidal Fan, Llc | Electrical generation system based on tidal flow |
GB201404884D0 (en) * | 2014-03-18 | 2014-04-30 | Ocean Current Energy Llc | Apparatus for generating electricity from a tidal or ocean current water flow |
GB201404883D0 (en) * | 2014-03-18 | 2014-04-30 | Ocean Current Energy Llc | Apparatus for generating electricity from a tidal or ocean current water flow |
JP6032760B2 (ja) * | 2014-05-27 | 2016-11-30 | 伊佐男 安田 | アンカー |
US20160169028A1 (en) * | 2014-12-11 | 2016-06-16 | Makis A. Havadijias | Low flow power generation |
CN105298715A (zh) * | 2015-08-10 | 2016-02-03 | 方祖彭 | 深水能源发电站、动力站、船舶动力装置及其海上浮城 |
GB2544074A (en) * | 2015-11-04 | 2017-05-10 | Ocean Current Energy Llc | Apparatus for generating electricity using water movement |
IT201600117369A1 (it) * | 2016-11-21 | 2018-05-21 | Enrico Bozano | Impianto per la produzione di energia elettrica che sfrutta il moto ondoso del mare |
CN108194250A (zh) * | 2017-12-28 | 2018-06-22 | 张建洲 | 一种水流发电装置 |
US10047717B1 (en) | 2018-02-05 | 2018-08-14 | Energystics, Ltd. | Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof |
TWI640685B (zh) * | 2018-03-19 | 2018-11-11 | 錢維安 | Multi-wave wave power generation system |
RU185644U1 (ru) * | 2018-06-27 | 2018-12-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" | Бесплотинная гидроэлектростанция |
US10947953B2 (en) * | 2018-08-20 | 2021-03-16 | Hydrospark, Inc. | Secondary electric power system and method |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1312021A (en) * | 1919-08-05 | Stone | ||
US2949540A (en) * | 1957-06-27 | 1960-08-16 | Mark M Clayton | Combination hydraulic turbine and electric generator |
JPS50129837A (ko) * | 1974-04-01 | 1975-10-14 | ||
US3986787A (en) * | 1974-05-07 | 1976-10-19 | Mouton Jr William J | River turbine |
US4034231A (en) * | 1975-04-28 | 1977-07-05 | Conn J L | Ocean tide and wave energy converter |
US4383182A (en) * | 1975-06-11 | 1983-05-10 | Bowley Wallace W | Underwater power generator |
US4095918A (en) * | 1975-10-15 | 1978-06-20 | Mouton Jr William J | Turbine wheel with catenary blades |
US4039847A (en) * | 1975-10-20 | 1977-08-02 | Diggs Richard E | Tidewater power plant |
US4163904A (en) * | 1976-03-04 | 1979-08-07 | Lawrence Skendrovic | Understream turbine plant |
US4079264A (en) * | 1976-05-03 | 1978-03-14 | Nathan Cohen | Wind or water operated power plant |
US4204799A (en) * | 1978-07-24 | 1980-05-27 | Geus Arie M De | Horizontal wind powered reaction turbine electrical generator |
US4524285A (en) * | 1979-09-14 | 1985-06-18 | Rauch Hans G | Hydro-current energy converter |
US4424451A (en) * | 1979-12-17 | 1984-01-03 | Friedrich Schmidt | Water turbine |
US4448020A (en) * | 1980-02-11 | 1984-05-15 | Sea Energy Associates Ltd. | Energy generating device |
GB2074795A (en) | 1980-03-14 | 1981-11-04 | Plot Ltd C | A wound core |
US4363564A (en) * | 1980-09-09 | 1982-12-14 | Hydrodynamic Energy Systems Corporation | Water power generator |
US4324984A (en) * | 1981-02-03 | 1982-04-13 | Hydrodynamic Energy Systems Corp. | Portable hydrogenerating apparatus |
CH659851A5 (de) * | 1981-06-05 | 1987-02-27 | Escher Wyss Ag | Turbine. |
US4468153A (en) * | 1982-05-12 | 1984-08-28 | Gutierrez Atencio Francisco J | Symmetric tidal station |
US4422820A (en) * | 1982-09-29 | 1983-12-27 | Grumman Aerospace Corporation | Spoiler for fluid turbine diffuser |
EP0151118A1 (en) * | 1982-11-29 | 1985-08-14 | WOOD, Peter | Wave power converter |
US4516907A (en) * | 1983-03-14 | 1985-05-14 | Edwards Samuel S | Wind energy converter utilizing vortex augmentation |
US4600360A (en) * | 1984-06-25 | 1986-07-15 | Quarterman Edward A | Wind driven turbine generator |
US4742241A (en) * | 1986-04-01 | 1988-05-03 | Melvin Kenneth P | Wave energy engine |
US4686376A (en) * | 1986-07-22 | 1987-08-11 | Philip Retz | Tide turbine |
US4816697A (en) * | 1987-02-05 | 1989-03-28 | Nalbandyan Nikolaes A | Portable hydroelectric power unit |
US4789302A (en) * | 1987-02-06 | 1988-12-06 | Josip Gruzling | Propeller shroud |
US4804855A (en) * | 1987-02-13 | 1989-02-14 | Obermeyer Henry K | Hydromotive machine apparatus and method of constructing the same |
US4850190A (en) * | 1988-05-09 | 1989-07-25 | Pitts Thomas H | Submerged ocean current electrical generator and method for hydrogen production |
US4868408A (en) | 1988-09-12 | 1989-09-19 | Frank Hesh | Portable water-powered electric generator |
CA1311195C (en) * | 1989-09-13 | 1992-12-08 | Normand Levesque | Plastic hydraulic turbine |
US5136173A (en) * | 1991-08-26 | 1992-08-04 | Scientific Applications & Research Associates, Inc. | Ocean wave energy conversion system |
JPH0628915A (ja) * | 1992-07-08 | 1994-02-04 | Ebara Corp | 導電性高分子材料からなる線材及び該線材を用いたコイル |
US5440176A (en) * | 1994-10-18 | 1995-08-08 | Haining Michael L | Ocean current power generator |
US5592816A (en) * | 1995-02-03 | 1997-01-14 | Williams; Herbert L. | Hydroelectric powerplant |
DE19504356A1 (de) | 1995-02-10 | 1996-08-14 | Oejvind Boltz | Einrichtung zur Umwandlung der Wellenenergie von Gewässern in elektrische Energie |
US5611668A (en) * | 1995-06-16 | 1997-03-18 | Bosch Automotive Motor Systems, Inc. | Multi-part injection-molded plastic fan |
GB2314124B (en) | 1996-06-10 | 2000-10-18 | Applied Res & Tech | Wave energy converter |
US6177735B1 (en) * | 1996-10-30 | 2001-01-23 | Jamie C. Chapman | Integrated rotor-generator |
US5868408A (en) * | 1996-12-17 | 1999-02-09 | M & R Innovations Llc | Turf board |
US5876610A (en) * | 1997-03-19 | 1999-03-02 | Clack Corporation | Method and apparatus for monitoring liquid flow through an enclosed stream |
EP0931931A1 (en) * | 1998-01-27 | 1999-07-28 | Entry-Technology | Magneto hydro dynamical tidal and ocean current converter |
US6091161A (en) * | 1998-11-03 | 2000-07-18 | Dehlsen Associates, L.L.C. | Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine |
US6168373B1 (en) * | 1999-04-07 | 2001-01-02 | Philippe Vauthier | Dual hydroturbine unit |
US6139255A (en) * | 1999-05-26 | 2000-10-31 | Vauthier; Philippe | Bi-directional hydroturbine assembly for tidal deployment |
JP2000337240A (ja) * | 1999-05-28 | 2000-12-05 | Nishihara Tekko Kk | 水流発電装置 |
US6281597B1 (en) * | 1999-08-13 | 2001-08-28 | Syndicated Technologies, Llc. | Hydroelectric installation and method of constructing same |
US6247308B1 (en) * | 2000-04-17 | 2001-06-19 | Worldwide Solutions Company, Llc | Bidirectional rotary motion-converter, wave motors, and various other applications thereof |
JP3974315B2 (ja) * | 2000-07-25 | 2007-09-12 | 三菱電機株式会社 | 交流発電機 |
US6246125B1 (en) * | 2000-07-25 | 2001-06-12 | Robert C. Axtell | Portable wind and hydro electric generating system |
US6472768B1 (en) * | 2000-09-26 | 2002-10-29 | Darwin Aldis Salls | Hydrokinetic generator |
US6531788B2 (en) * | 2001-02-22 | 2003-03-11 | John H. Robson | Submersible electrical power generating plant |
JP2001298902A (ja) * | 2001-04-26 | 2001-10-26 | Nakano Denki Kk | タービン一体型発電機 |
WO2002090768A1 (en) | 2001-05-04 | 2002-11-14 | Brumfield Donald U | Tidal/wave compressed air electricity generation |
US6800955B2 (en) * | 2001-05-31 | 2004-10-05 | Mcdavid, Jr. William K. | Fluid-powered energy conversion device |
US6856036B2 (en) * | 2001-06-26 | 2005-02-15 | Sidney Irving Belinsky | Installation for harvesting ocean currents (IHOC) |
EP1467093A1 (en) * | 2001-07-11 | 2004-10-13 | Hydra Tidal Energy Technology AS | Generator for water current turbine with counter-rotating rotors. |
US20030052487A1 (en) * | 2001-09-20 | 2003-03-20 | Fred Weingarten | Method and means of generating , storing , and using electricity by a motion driven turbine in a fluid medium |
GB0123802D0 (en) * | 2001-10-04 | 2001-11-21 | Rotech Holdings Ltd | Power generator and turbine unit |
AT411369B (de) * | 2001-12-20 | 2003-12-29 | Va Tech Hydro Gmbh & Co | Verfahren zur herstellung einer wasserkraftanlage |
JP4089341B2 (ja) * | 2002-04-16 | 2008-05-28 | 日立金属株式会社 | ロータおよび回転機 |
US6982498B2 (en) * | 2003-03-28 | 2006-01-03 | Tharp John E | Hydro-electric farms |
US7385303B2 (en) * | 2005-09-01 | 2008-06-10 | Roos Paul W | Integrated fluid power conversion system |
-
2004
- 2004-05-21 US US10/851,604 patent/US6955049B2/en not_active Expired - Lifetime
- 2004-10-06 EP EP04794475.6A patent/EP1747371B1/en not_active Expired - Lifetime
- 2004-10-06 CA CA2567065A patent/CA2567065C/en not_active Expired - Fee Related
- 2004-10-06 WO PCT/US2004/033134 patent/WO2005119053A1/en active Application Filing
- 2004-10-06 MX MXPA06012336A patent/MXPA06012336A/es active IP Right Grant
- 2004-10-06 AU AU2004320413A patent/AU2004320413B2/en not_active Ceased
- 2004-10-06 BR BRPI0418844-6A patent/BRPI0418844A/pt not_active IP Right Cessation
- 2004-10-06 RU RU2006138427/06A patent/RU2368798C2/ru not_active IP Right Cessation
- 2004-10-06 CN CN2004800430470A patent/CN101069014B/zh not_active Expired - Fee Related
- 2004-10-06 KR KR1020117025879A patent/KR101377696B1/ko not_active IP Right Cessation
- 2004-10-06 KR KR1020067023992A patent/KR20070024530A/ko not_active Application Discontinuation
- 2004-10-06 JP JP2007527179A patent/JP5149621B2/ja not_active Expired - Fee Related
-
2005
- 2005-05-25 US US11/137,002 patent/US20050248162A1/en not_active Abandoned
-
2006
- 2006-11-06 ZA ZA200609238A patent/ZA200609238B/en unknown
- 2006-11-14 EC EC2006007005A patent/ECSP067005A/es unknown
- 2006-12-19 NO NO20065897A patent/NO20065897L/no not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11313350B2 (en) | 2017-10-11 | 2022-04-26 | Niels Ravn | Wind-driven energy converting device |
Also Published As
Publication number | Publication date |
---|---|
US20040250537A1 (en) | 2004-12-16 |
NO20065897L (no) | 2007-02-16 |
CN101069014A (zh) | 2007-11-07 |
US20050248162A1 (en) | 2005-11-10 |
US6955049B2 (en) | 2005-10-18 |
ZA200609238B (en) | 2008-07-30 |
RU2368798C2 (ru) | 2009-09-27 |
MXPA06012336A (es) | 2007-03-28 |
KR20110125678A (ko) | 2011-11-21 |
AU2004320413B2 (en) | 2010-09-09 |
WO2005119053A1 (en) | 2005-12-15 |
BRPI0418844A (pt) | 2007-11-13 |
WO2005119053A8 (en) | 2007-02-22 |
EP1747371A4 (en) | 2012-07-25 |
EP1747371A1 (en) | 2007-01-31 |
CA2567065C (en) | 2011-09-13 |
CN101069014B (zh) | 2013-04-03 |
AU2004320413A1 (en) | 2005-12-15 |
JP2008500495A (ja) | 2008-01-10 |
EP1747371B1 (en) | 2016-04-13 |
CA2567065A1 (en) | 2005-12-15 |
KR20070024530A (ko) | 2007-03-02 |
ECSP067005A (es) | 2006-12-29 |
RU2006138427A (ru) | 2008-06-27 |
JP5149621B2 (ja) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101377696B1 (ko) | 물의 움직임을 통한 전력 생성을 위한 기계 및 시스템 | |
US20060266038A1 (en) | Machine and system for power generation through movement of water | |
US4110630A (en) | Wave powered electric generator | |
US8446032B2 (en) | Hydroelectric power generator and related methods | |
Mueller et al. | Current and novel electrical generator technology for wave energy converters | |
US7554215B1 (en) | Generator and method for generating electricity from subsurface currents | |
US20130313831A1 (en) | Hydroelectricity Generating Unit Capturing Marine Wave Energy and Marine Current Energy | |
KR20140049544A (ko) | 해파 발전기 및 해파 발전 시스템 | |
US9062427B2 (en) | Extracting energy from flowing fluids | |
CN213867608U (zh) | 一种拼装式发电消波浮堤 | |
JP2002322975A (ja) | 波力潮力発電装置 | |
CN100526635C (zh) | 一种单管双通道液态金属磁流体波浪能直接发电单元装置 | |
Ornes | Turning water into watts | |
Szabó et al. | Linear generators for wave power plants to be set up near the Romanian coasts of the Black Sea | |
KR20100084239A (ko) | 조력 발전장치 | |
Charlier et al. | Dreams and Realities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |