KR101368905B1 - 박막형 태양전지의 제조방법 - Google Patents

박막형 태양전지의 제조방법 Download PDF

Info

Publication number
KR101368905B1
KR101368905B1 KR1020070134265A KR20070134265A KR101368905B1 KR 101368905 B1 KR101368905 B1 KR 101368905B1 KR 1020070134265 A KR1020070134265 A KR 1020070134265A KR 20070134265 A KR20070134265 A KR 20070134265A KR 101368905 B1 KR101368905 B1 KR 101368905B1
Authority
KR
South Korea
Prior art keywords
semiconductor layer
type semiconductor
forming
hydrogen
solar cell
Prior art date
Application number
KR1020070134265A
Other languages
English (en)
Other versions
KR20090066634A (ko
Inventor
이창호
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020070134265A priority Critical patent/KR101368905B1/ko
Publication of KR20090066634A publication Critical patent/KR20090066634A/ko
Application granted granted Critical
Publication of KR101368905B1 publication Critical patent/KR101368905B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 기판 상에 전면전극층을 형성하는 제1공정; 상기 전면전극층 상에 P형 반도체층을 형성하는 제2공정; 상기 P형 반도체층의 표면 균일도를 증가시키기 위해서 상기 P형 반도체층의 상면을 식각하는 제3공정; 상기 P형 반도체층 상에 I형 반도체층을 형성하는 제4공정; 상기 I형 반도체층 상에 N형 반도체층을 형성하는 제5공정; 및 상기 N형 반도체층 상에 후면전극층을 형성하는 제6공정을 포함하여 이루어진 박막형 태양전지에 관한 것으로서,
본 발명에 따르면 P형 반도체층의 상면을 식각함으로써 P형 반도체층의 표면 균일도가 증가되어, P형 반도체층과 그 상면에 형성되는 I형 반도체층 사이의 결함 발생 가능성이 억제되고, 태양전지의 발전효율이 향상된다.
박막형 태양전지, 격벽

Description

박막형 태양전지의 제조방법{Method for manufacturing Thin film type Solar Cell}
본 발명은 태양전지(Thin film type Solar Cell)에 관한 것으로서, 보다 구체적으로는 박막형 태양전지에 관한 것이다.
태양전지는 반도체의 성질을 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치이다.
태양전지의 구조 및 원리에 대해서 간단히 설명하면, 태양전지는 P(positive)형 반도체와 N(negative)형 반도체를 접합시킨 PN접합 구조를 하고 있으며, 이러한 구조의 태양전지에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 반도체 내에서 정공(hole) 및 전자(electron)가 발생하고, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공(+)는 P형 반도체쪽으로 이동하고 상기 전자(-)는 N형 반도체쪽으로 이동하게 되어 전위가 발생하게 됨으로써 전력을 생산할 수 있게 되는 원리이다.
이와 같은 태양전지는 기판형 태양전지와 박막형 태양전지로 구분할 수 있다.
상기 기판형 태양전지는 실리콘과 같은 반도체물질 자체를 기판으로 이용하여 태양전지를 제조한 것이고, 상기 박막형 태양전지는 유리 등과 같은 기판 상에 박막의 형태로 반도체를 형성하여 태양전지를 제조한 것이다.
상기 기판형 태양전지는 상기 박막형 태양전지에 비하여 효율이 다소 우수하기는 하지만, 공정상 두께를 최소화하는데 한계가 있고 고가의 반도체 기판을 이용하기 때문에 제조비용이 상승되는 단점이 있다.
상기 박막형 태양전지는 상기 기판형 태양전지에 비하여 효율이 다소 떨어지기는 하지만, 얇은 두께로 제조가 가능하고 저가의 재료를 이용할 수 있어 제조비용이 감소되는 장점이 있어 대량생산에 적합하다.
상기 박막형 태양전지는 유리 등과 같은 기판 상에 전면전극을 형성하고, 상기 전면전극 위에 반도체층을 형성하고, 상기 반도체층 위에 후면전극을 형성하여 제조되는데, 이하, 도면을 참조로 종래의 박막형 태양전지에 대해서 설명하기로 한다.
도 1은 종래의 박막형 태양전지의 개략적인 단면도이다.
도 1에서 알 수 있듯이, 종래의 박막형 태양전지는 기판(10), 상기 기판(10) 상에 형성된 전면전극층(20), 상기 전면전극층(20) 상에 형성된 반도체층(30), 상기 반도체층(30) 상에 형성된 후면전극층(40)을 포함하여 이루어진다.
상기 전면전극층(20)은 태양전지의 (+)전극을 구성하는 것으로서, 상기 전면전극층(20)은 태양광이 입사되는 면에 형성되기 때문에 ZnO와 같은 투명한 도전물질로 이루어진다. 또한, 입사되는 태양광이 다양한 각으로 산란하도록 하여 태양광 의 흡수율을 최대화할 수 있도록, 상기 전면전극층(20)의 상면은 요철구조로 형성한다.
상기 반도체층(30)은 실리콘과 같은 반도체물질을 이용하여 형성하는데, 보다 구체적으로는 P(positive)형 반도체층(32), I(Intrinsic)형 반도체층(34) 및 N(Negative)형 반도체층(36)으로 이루어진 소위 PIN구조로 형성한다. 전술한 바와 같이 전면전극층(20)의 상면이 요철구조로 형성됨에 따라서, 상기 반도체층(30)을 구성하는 P(positive)형 반도체층(32), I(Intrinsic)형 반도체층(34) 및 N(Negative)형 반도체층(36)도 요철구조로 형성된다.
상기 후면전극층(40)은 태양전지의 (-)전극을 구성하는 것으로서, 상기 후면전극층(40)은 Al과 같은 도전금속으로 이루어진다.
이와 같은 종래의 박막형 태양전지는 다음과 같은 문제점이 있다.
첫째, 전술한 바와 같이, 태양광의 흡수율을 최대화할 수 있도록 전면전극층(20)의 상면을 요철구조로 형성할 경우, 그로 인해서 상기 전면전극층(20) 상에 형성되는 P형 반도체층(32) 또한 요철구조로 형성되게 된다.
그러나, P형 반도체층(32)이 요철구조로 형성될 경우 P형 반도체층(32)의 두께 균일도가 떨어져 태양전지의 발전효율이 저하되는 문제점이 있으며, 또한, P형 반도체층(32)의 상면이 요철구조로 형성될 경우 P형 반도체층(32)과 그 상면에 형성되는 I형 반도체층(34) 사이에서 결함(Defect)이 발생할 가능성이 커지게 되는 문제점이 있다.
둘째, 반도체층(30)의 재료로서 비정질 실리콘이 주로 이용되는데, 이와 같 이 비정질 실리콘을 이용하여 반도체층(30)을 형성할 경우 P형 반도체층(32)에 다수의 미결합(dangling bond) 사이트가 존재하게 되어 태양전지의 발전효율이 저하되는 문제점이 있다. 특히, I형 반도체층(34)에서 생성된 전자는 N형 반도체층(36)으로 이동하여 전위를 생성시켜야 하는데, 이와 같이 P형 반도체층(32)에 미결합 사이트가 존재하게 되면, I형 반도체층(34)에서 생성된 전자가 P형 반도체층(32)으로 쉽게 이동하게 되어 전지효율이 저하되게 된다.
본 발명은 전술한 종래의 박막형 태양전지의 문제점을 해결하기 위해 고안된 것으로서,
본 발명은 P형 반도체층의 두께 균일도를 증진시킴으로써, 태양전지의 발전효율을 향상시키고, P형 반도체층과 그 상면에 형성되는 I형 반도체층 사이의 결함 발생 가능성을 억제하는 것을 목적으로 한다.
본 발명은 또한, P형 반도체층에 존재하는 다수의 미결합(dangling bond) 사이트를 제거함으로써 태양전지의 발전효율을 증진시키는 것을 다른 목적으로 한다.
본 발명은 상기 목적을 달성하기 위해서, 기판 상에 전면전극층을 형성하는 제1공정; 상기 전면전극층 상에 P형 반도체층을 형성하는 제2공정; 상기 P형 반도체층의 표면 균일도를 증가시키기 위해서 상기 P형 반도체층의 상면을 평탄화하는 제3공정; 상기 P형 반도체층 상에 I형 반도체층을 형성하는 제4공정; 상기 I형 반도체층 상에 N형 반도체층을 형성하는 제5공정; 및 상기 N형 반도체층 상에 후면전극층을 형성하는 제6공정을 포함하여 이루어진 박막형 태양전지의 제조방법을 제공한다.
상기 제3공정은, 수소분위기에서 플라즈마 처리하여 발생된 수소 플라즈마를 이용하여 수행할 수 있다.
상기 제2공정은 플라즈마 화학기상증착공정을 이용하여 수행하고, 상기 제3 공정은 상기 제2공정보다 고밀도의 수소플라즈마를 발생시킬 수 있다.
상기 제3공정은 상기 제2공정보다 높은 전력 및 낮은 압력하에서, 상기 제2공정보다 적은 양의 수소가스를 공급하여 수행할 수 있다.
상기 제3공정 및 제4공정 사이에, 상기 P형 반도체층에 수소를 주입하여 상기 P형 반도체층 내에 존재하는 미결합 사이트를 제거하는 공정을 추가로 포함할 수 있다.
상기 P형 반도체층에 수소를 주입하는 공정은 수소분위기에서 플라즈마 처리하는 공정으로 이루어질 수 있다.
상기 제2공정은 플라즈마 화학기상증착공정을 이용하여 수행하고, 상기 P형 반도체층에 수소를 주입하는 공정은, 상기 제2공정보다 저밀도의 수소플라즈마를 발생시킬 수 있다.
상기 P형 반도체층에 수소를 주입하는 공정은, 상기 제2공정보다 낮은 전력 및 높은 압력하에서, 상기 제2공정보다 많은 양의 수소가스를 공급하여 수행할 수 있다.
상기 제1공정은 상기 전면전극층의 표면을 요철구조로 형성하기 위한 텍스쳐 가공공정을 포함할 수 있다.
본 발명은 또한, 기판 상에 전면전극층을 형성하는 (a) 공정; 상기 전면전극층 상에 플라즈마 화학기상증착공정을 이용하여 P형 반도체층을 형성하는 (b)공정; 상기 P형 반도체층의 표면 균일도를 증가시키기 위해서, 상기 (b)공정보다 고밀도의 수소플라즈마를 이용하여 상기 P형 반도체층의 상면을 평탄화하는 (c)공정; 상 기 P형 반도체층 내에 존재하는 미결합 사이트를 제거하기 위해서, 상기 (b)공정보다 저밀도의 수소플라즈마를 이용하여 상기 P형 반도체층에 수소를 주입하는 (d) 공정; 상기 P형 반도체층 상에 I형 반도체층을 형성하고, 상기 I형 반도체층 상에 N형 반도체층을 형성하는 (e)공정; 상기 N형 반도체층 상에 투명도전층을 형성하는 (f)공정; 및 상기 투명도전층 상에 후면전극층을 형성하는 (g)공정을 포함하여 이루어진 박막형 태양전지의 제조방법을 제공한다.
상기 (c)공정은, 상기 (b)공정보다 높은 전력 및 낮은 압력하에서, 상기 (b)공정보다 적은 양의 수소가스를 공급하여 수행할 수 있다.
상기 (d)공정은, 상기 (b)공정보다 낮은 전력 및 높은 압력하에서, 상기 (b)공정보다 많은 양의 수소가스를 공급하여 수행할 수 있다.
상기 (b)공정 내지 상기 (e)공정은 동일한 챔버내에서 연속공정으로 수행할 수 있다.
상기 (a)공정은 상기 전면전극층의 표면을 요철구조로 형성하기 위한 텍스쳐 가공공정을 포함할 수 있다.
상기와 같은 본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 본 발명은 고밀도 수소 플라즈마 처리를 통해 P형 반도체층의 상면을 식각함으로써 P형 반도체층의 표면 균일도가 증가된다. 따라서, P형 반도체층과 그 상면에 형성되는 I형 반도체층 사이의 결함 발생 가능성이 억제되고, 태양전지의 발전효율이 향상된다.
둘째, 본 발명은 저밀도 수소 플라즈마 처리를 통해 P 형 반도체층 내의 미결합 사이트를 제거할 수 있다. 따라서, P형 반도체층에 밴드갭 에너지 장벽이 형성되어 전자가 P형 반도체층으로 쉽게 이동하지 못하게 되어 태양전지의 효율 저하가 방지된다.
이하, 도면을 참조로 본 발명의 바람직한 실시예에 대해서 상세히 설명하기로 한다.
도 2a 내지 도 2g는 본 발명의 일 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도이다.
우선, 도 2a에서 알 수 있듯이, 기판(100) 상에 전면전극층(200)을 형성한다.
상기 기판(100)은 유리 또는 투명한 플라스틱을 이용할 수 있다.
상기 전면전극층(200)은 ZnO, ZnO:B, ZnO:Al, ZnO:H, SnO2, SnO2:F, 또는 ITO(Indium Tin Oxide) 등과 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다.
상기 전면전극층(200)은 태양광의 흡수율을 최대화하기 위해서 텍스처(texturing) 가공공정 등을 통해 그 표면을 울퉁불퉁한 요철구조로 형성한다.
상기 텍스처 가공공정이란 물질 표면을 울퉁불퉁한 요철구조로 형성하여 마치 직물의 표면과 같은 형상으로 가공하는 공정으로서, 포토리소그라피법(photolithography)을 이용한 식각공정, 화학용액을 이용한 이방성 식각공정(anisotropic etching), 또는 기계적 스크라이빙(mechanical scribing)을 이용한 홈 형성 공정 등을 통해 수행할 수 있다.
다음, 도 2b에서 알 수 있듯이, 상기 전면전극층(200) 상에 P형 반도체층(320)을 형성한다.
상기 전면전극층(200)의 상면이 요철구조로 이루어지기 때문에, 전면전극층(200) 상에 형성되는 P형 반도체층(320)도 요철구조로 형성되게 된다.
상기 P형 반도체층(320)은 비정질 실리콘을 플라즈마 CVD공정을 이용하여 형성하는데, 구체적으로는 플라즈마 CVD 챔버 내에 SiH4, H2, CH4, 및 PH3 가스를 공급하면서 플라즈마를 발생시켜 상기 전면전극층(200) 상에 a-SiC로 이루어진 비정질 실리콘층을 형성한다. 이와 같은 플라즈마 CVD공정은 소정의 전력(Power) 및 소정의 압력(Pressure)하에서 소정양의 가스를 공급하면서 수행하게 되며, 전력과 압력의 세기, 및 공급되는 가스의 양은 플라즈마 CVD공정에서 수행되는 통상적인 범위내이다.
비정질 실리콘으로는 상기 a-SiC 이외에 a-Si을 이용할 수도 있는데, a-SiC은 광학밴드갭(Optical band Gap)이 2.0eV이상으로 a-Si보다 높기 때문에, a-Si보다 많은 태양광을 투과시킬 수 있는 장점이 있다.
다음, 도 2c에서 알 수 있듯이, 수소 플라즈마를 이용하여 상기 P형 반도체층(320)의 상면을 평탄화한다. 즉, 수소분위기에서 플라즈마 처리를 통해 발생된 수소 플라즈마가 상기 P형 반도체층(320)의 상면을 평탄화함으로써 상기 P형 반도체층(320)의 표면 균일도를 증가시키는 것이다.
이와 같은 도 2c에 따른 공정은 전술한 도 2b에 따른 공정과 동일한 챔버 내 에서 수행할 수 있기 때문에, 도 2b에 따른 공정과 연속공정으로 수행할 수 있다.
즉, 전술한 도 2b에 따른 공정은 플라즈마 CVD 챔버 내에 SiH4, H2, CH4, 및 PH3으로 이루어진 반응가스를 공급하여 수행하는데, 상기 반응가스들 중에서 SiH4, CH4, 및 PH3의 공급을 차단함으로써 수소분위기 하에서 플라즈마 처리가 가능하게 된다.
한편, 도 2c와 같이 상기 P형 반도체층(320)의 상면을 평탄화하기 위해서는 고밀도의 수소 플라즈마를 발생시켜야 하는 것이 요구된다. 여기서 고밀도의 수소 플라즈마라 함은 도 2b에서 수행되는 통상적인 수소 플라즈마의 밀도보다 큰 밀도 범위를 갖는 수소 플라즈마를 의미한다. 구체적으로, 상기 고밀도의 수소 플라즈마는, 도 2b에서의 통상적인 전력보다 높은 전력(High Power) 및 도 2b에서의 통상적인 압력보다 낮은 압력(Low Pressure)하에서, 도 2b에서의 통상적인 수소가스공급량 보다 적은 양의 수소가스(Low H2 gas)를 공급함으로써 발생시킬 수 있다.
이와 같은 조건으로 고밀도의 수소 플라즈마를 발생시키게 되면, 고밀도의 수소 플라즈마가 상기 P형 반도체층(320)의 표면에 충돌하여 상기 P형 반도체층(320)의 표면을 균일하게 한다.
다음, 도 2d에서 알 수 있듯이, 수소분위기에서 플라즈마 처리하여 상기 P형 반도체층(320) 내에 존재하는 미결합 사이트를 제거한다. 즉, 수소 플라즈마 처리를 하여 수소원자를 상기 P 형 반도체층(320) 내로 주입함으로써, 상기 P형 반도체층(320) 내의 미결합 사이트에 상기 수소원자가 결합하게 되어 미결합 사이트가 제 거되는 것이다.
이와 같은 도 2d에 따른 공정도 전술한 도 2b에 따른 공정과 동일한 챔버 내에서 수행할 수 있기 때문에, 결국, 도 2b, 도 2c 및 도 2d에 따른 공정은 연속공정으로 수행이 가능하다.
한편, 도 2d와 같이 상기 P형 반도체층(320)의 미결합 사이트에 수소원자가 결합하도록 하기 위해서는 저밀도의 수소 플라즈마를 발생시켜야 하는 것이 요구된다. 여기서 저밀도의 수소 플라즈마라 함은 도 2b에서 수행되는 통상적인 수소 플라즈마의 밀도보다 작은 밀도 범위를 갖는 수소 플라즈마를 의미한다. 구체적으로, 상기 저밀도의 수소 플라즈마는, 도 2b에서의 통상적인 전력보다 낮은 전력(Low Power) 및 도 2b에서의 통상적인 압력보다 높은 압력(High Pressure)하에서, 도 2b에서의 통상적인 수소가스공급량 보다 많은 양의 수소가스(High H2 gas)를 공급함으로써 발생시킬 수 있다.
이와 같은 조건으로 저밀도의 수소 플라즈마를 발생시키게 되면, 저밀도의 수소 플라즈마가 상기 P형 반도체층(320) 내부로 침투하여 상기 P형 반도체층(320) 내의 미결합 사이트에 상기 수소원자가 결합하게 된다.
다음, 도 2e에서 알 수 있듯이, 상기 P형 반도체층(320) 상에 I형 반도체층(340)을 형성하고, 상기 I형 반도체층(340) 상에 N형 반도체층(360)을 형성한다.
이와 같은 공정에 의해 P형 반도체층(320), I형 반도체층(340) 및 N형 반도체층(360)이 순서대로 적층된 PIN구조의 반도체층(300)이 형성된다.
전술한 도 2c공정에서 상기 P형 반도체층(320)의 표면 균일도가 향상되었기 때문에, 상기 P형 반도체층(320) 상에 차례로 형성되는 I형 반도체층(340) 및 N형 반도체층(360)의 표면 균일도 또한 향상된다.
상기 I형 반도체층(340) 및 N형 반도체층(360)은 플라즈마 화학기상증착 공정을 통해 형성하기 때문에, 결국, 전술한 도 2b, 도 2c, 도 2d, 및 도 2e공정을 연속공정으로 수행할 수 있다.
이와 같이 반도체층(300)을 PIN구조로 형성하게 되면, I형 반도체층(340)이 P형 반도체층(320)과 N형 반도체층(360)에 의해 공핍(depletion)이 되어 내부에 전기장이 발생하게 되고, 태양광에 의해 생성되는 정공 및 전자가 상기 전기장에 의해 드리프트(drift)되어 각각 P형 반도체층(320) 및 N형 반도체층(360)에서 수집되게 된다.
다음, 도 2f에서 알 수 있듯이, 상기 N형 반도체층(360) 상에 투명도전층(400)을 형성한다.
상기 투명도전층(400)은 ZnO, ZnO:B, ZnO:Al, ZnO:H, Ag와 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다.
상기 투명도전층(400)은 생략하는 것도 가능하지만, 태양전지의 효율증진을 위해서는 상기 투명도전층(400)을 형성하는 것이 바람직하다. 즉, 상기 투명도전층(400)을 형성하게 되면 상기 반도체층(300)을 투과한 태양광이 투명도전층(400)을 통과하면서 산란을 통해 다양한 각으로 진행하게 되어, 후술하는 후면전극 층(500)에서 반사되어 상기 반도체층(300)으로 재입사되는 광의 비율이 증가될 수 있기 때문이다.
다음, 도 2g에서 알 수 있듯이, 상기 투명도전층(400) 상에 후면전극층(500)을 형성하여, 기판형 태양전지의 제조를 완성한다.
상기 후면전극층(600)은 Ag, Al, Ag+Al, Ag+Mg, Ag+Mn, Ag+Sb, Ag+Zn, Ag+Mo, Ag+Ni, Ag+Cu, Ag+Al+Zn 등과 같은 금속을 스크린인쇄법(screen printing), 잉크젯인쇄법(inkjet printing), 그라비아인쇄법(gravure printing) 또는 미세접촉인쇄법(microcontact printing)을 이용하여 형성할 수 있다.
상기 스크린 인쇄법은 스크린과 스퀴즈(squeeze)를 이용하여 대상물질을 작업물에 전이시켜 소정의 패턴을 형성하는 방법이고, 상기 잉크젯 인쇄법은 잉크젯을 이용하여 대상물질을 작업물에 분사하여 소정의 패턴을 형성하는 방법이고, 상기 그라비아 인쇄법은 오목판의 홈에 대상물질을 도포하고 그 대상물질을 다시 작업물에 전이시켜 소정의 패턴을 형성하는 방법이고, 상기 미세접촉 인쇄법은 소정의 금형을 이용하여 작업물에 대상물질 패턴을 형성하는 방법이다.
도 3은 본 발명에 따른 플라즈마 화학기상증착 공정조건을 보여주는 그래프로서, 도 3은 본 발명의 일 실시예에 따른 공정조건으로 본 발명이 이에 한정되는 것은 아니다.
도 3은 전술한 도 2b공정(통상적인 플라즈마 처리), 도 2c공정(고밀도 수소플라즈마 처리) 및 도 2d공정(저밀도 수소플라즈마 처리) 진행시 수소가스량, RF전력 및 압력을 나타낸 것으로서, 도 3에서 알 수 있듯이, 도 2b공정을 수행할 경우 에는 1000W의 RF전력 및 1.5Torr의 압력하에서 5000 sccm의 수소를 공급하고, 도 2c공정을 수행할 경우에는 1500W의 RF전력 및 1.2Torr의 압력하에서 3000 sccm의 수소를 공급하고, 도 2d공정을 수행할 경우에는 600W의 RF전력 및 2 Torr의 압력하에서 6500sccm의 수소를 공급함을 알 수 있다.
도 4는 본 발명에 따른 저밀도 수소플라즈마 처리에 의해 미결합 사이트가 제거되는 모습을 도시한 개념도이고, 도 5는 본 발명에 따른 저밀도 수소플라즈마 처리에 의해 전지효율이 향상되는 모습을 도시한 개념도이다.
도 4에서 알 수 있듯이, 도 2d공정을 통해 저밀도 수소플라즈마 처리를 수행할 경우 실리콘 원자들 사이의 미결합 사이트에 수소원자가 침투하여 상기 미결합 사이트가 제거됨을 알 수 있다. 미결합 사이트는 주변의 Si 원자들이 결합된 상태와는 다른 격자결함상태로서 에너지적으로 불안정한 상태이다. 따라서, I층에서 전자가 발생하여 이동하다가 위와 같이 불안정한 상태의 격자결함을 만나게 되면 전자가 전극으로 이동하지 못하고 격자결함에서 소멸되어 전지 효율을 낮추는 요인이 된다. 따라서, 본 발명의 경우, 저밀도 수소 플라즈마 처리를 하게 되면, 상기 미결합 사이트에 수소가 결합됨으로써 격자결함을 없애고 에너지적으로 안정된 상태를 갖게 되어 전지의 효율을 향상시킬 수 있게 된다.
도 5에서 알 수 있듯이, 도 2d공정을 통해 전면전극층 근처의 P형 반도체층에 저밀도 수소플라즈마 처리를 수행한 경우는 그 영역에서 밴드갭 에너지 장벽이 형성되어 전자가 P형 반도체층으로 쉽게 이동하지 못하는 반면에, 저밀도 수소플라즈마 처리를 수행하지 않은 경우는 밴드갭 에너지 장벽이 형성되지 못하여 전자가 P형 반도체층으로 쉽게 이동하여 전지효율이 저하됨을 알 수 있다.
도 1은 종래의 박막형 태양전지의 개략적인 단면도이다.
도 2a 내지 도 2g는 본 발명의 일 실시예에 따른 박막형 태양 전지의 개략적 공정 단면도이다.
도 3은 본 발명에 따른 플라즈마 화학기상증착 공정조건을 보여주는 그래프이다.
도 4는 본 발명에 따른 저밀도 수소플라즈마 처리에 의해 미결합 사이트가 제거되는 모습을 도시한 개념도이다.
도 5는 본 발명에 따른 저밀도 수소플라즈마 처리에 의해 전지효율이 향상되는 모습을 도시한 개념도이다.
<도면의 주요부의 부호에 대한 설명>
100: 기판 200: 전면전극층
300: 반도체층 320: P형 반도체층
340: I형 반도체층 360: N형 반도체층
400: 투명도전층 500: 후면전극층

Claims (14)

  1. 기판 상에 전면전극층을 형성하는 제1공정;
    상기 전면전극층 상에 P형 반도체층을 형성하는 제2공정;
    상기 P형 반도체층의 표면 균일도를 증가시키기 위해서 상기 P형 반도체층의 상면을 평탄화하는 제3공정;
    상기 P형 반도체층 상에 I형 반도체층을 형성하는 제4공정;
    상기 I형 반도체층 상에 N형 반도체층을 형성하는 제5공정; 및
    상기 N형 반도체층 상에 후면전극층을 형성하는 제6공정을 포함하여 이루어지고,
    상기 제3공정은 수소분위기에서 플라즈마 처리하여 발생된 수소 플라즈마를 상기 P형 반도체층의 표면에 충돌시켜 상기 P형 반도체층의 상면을 평탄화시키는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 제2공정은 플라즈마 화학기상증착공정을 이용하여 수행하고,
    상기 제3공정은 상기 제2공정보다 고밀도의 수소플라즈마를 발생시키는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  4. 제3항에 있어서,
    상기 제3공정은 상기 제2공정보다 높은 전력 및 낮은 압력하에서, 상기 제2공정보다 적은 양의 수소가스를 공급하여 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  5. 제1항에 있어서,
    상기 제3공정 및 제4공정 사이에, 상기 P형 반도체층에 수소를 주입하여 상기 P형 반도체층 내에 존재하는 미결합 사이트를 제거하는 공정을 추가로 포함하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  6. 제5항에 있어서,
    상기 P형 반도체층에 수소를 주입하는 공정은 수소분위기에서 플라즈마 처리하는 공정으로 이루어진 것을 특징으로 하는 박막형 태양전지의 제조방법.
  7. 제6항에 있어서,
    상기 제2공정은 플라즈마 화학기상증착공정을 이용하여 수행하고,
    상기 P형 반도체층에 수소를 주입하는 공정은, 상기 제2공정보다 저밀도의 수소플라즈마를 발생시키는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  8. 제7항에 있어서,
    상기 P형 반도체층에 수소를 주입하는 공정은, 상기 제2공정보다 낮은 전력 및 높은 압력하에서, 상기 제2공정보다 많은 양의 수소가스를 공급하여 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  9. 제1항에 있어서,
    상기 제1공정은 상기 전면전극층의 표면을 요철구조로 형성하기 위한 텍스쳐 가공공정을 포함하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  10. 기판 상에 전면전극층을 형성하는 (a) 공정;
    상기 전면전극층 상에 플라즈마 화학기상증착공정을 이용하여 P형 반도체층을 형성하는 (b)공정;
    상기 P형 반도체층의 표면 균일도를 증가시키기 위해서, 상기 (b)공정보다 고밀도의 수소플라즈마를 이용하여 상기 P형 반도체층의 상면을 평탄화하는 (c)공정;
    상기 P형 반도체층 내에 존재하는 미결합 사이트를 제거하기 위해서, 상기 (b)공정보다 저밀도의 수소플라즈마를 이용하여 상기 P형 반도체층에 수소를 주입하는 (d) 공정;
    상기 P형 반도체층 상에 I형 반도체층을 형성하고, 상기 I형 반도체층 상에 N형 반도체층을 형성하는 (e)공정;
    상기 N형 반도체층 상에 투명도전층을 형성하는 (f)공정; 및
    상기 투명도전층 상에 후면전극층을 형성하는 (g)공정을 포함하여 이루어지고,
    상기 (C)공정은 상기 고밀도 수소 플라즈마를 상기 P형 반도체층의 표면에 충돌시켜 상기 P형 반도체층의 상면을 평탄화시키는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  11. 제10항에 있어서,
    상기 (c)공정은, 상기 (b)공정보다 높은 전력 및 낮은 압력하에서, 상기 (b)공정보다 적은 양의 수소가스를 공급하여 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  12. 제10항에 있어서,
    상기 (d)공정은, 상기 (b)공정보다 낮은 전력 및 높은 압력하에서, 상기 (b)공정보다 많은 양의 수소가스를 공급하여 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  13. 제10항에 있어서,
    상기 (b)공정 내지 상기 (e)공정은 동일한 챔버내에서 연속공정으로 수행하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
  14. 제10항에 있어서,
    상기 (a)공정은 상기 전면전극층의 표면을 요철구조로 형성하기 위한 텍스쳐 가공공정을 포함하는 것을 특징으로 하는 박막형 태양전지의 제조방법.
KR1020070134265A 2007-12-20 2007-12-20 박막형 태양전지의 제조방법 KR101368905B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070134265A KR101368905B1 (ko) 2007-12-20 2007-12-20 박막형 태양전지의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070134265A KR101368905B1 (ko) 2007-12-20 2007-12-20 박막형 태양전지의 제조방법

Publications (2)

Publication Number Publication Date
KR20090066634A KR20090066634A (ko) 2009-06-24
KR101368905B1 true KR101368905B1 (ko) 2014-02-28

Family

ID=40994602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070134265A KR101368905B1 (ko) 2007-12-20 2007-12-20 박막형 태양전지의 제조방법

Country Status (1)

Country Link
KR (1) KR101368905B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085571A (ko) * 2011-01-24 2012-08-01 엘지이노텍 주식회사 태양 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135818A (ja) * 1997-10-30 1999-05-21 Sharp Corp 太陽電池
JPH11261092A (ja) * 1998-03-12 1999-09-24 Sanyo Electric Co Ltd 凹凸電極の製造方法及び光起電力素子の製造方法並びに光起電力素子
KR20010039865A (ko) * 1999-09-08 2001-05-15 모리시타 요이찌 반도체박막, 그것을 사용한 반도체장치, 그들의 제조방법및 반도체박막의 제조장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135818A (ja) * 1997-10-30 1999-05-21 Sharp Corp 太陽電池
JPH11261092A (ja) * 1998-03-12 1999-09-24 Sanyo Electric Co Ltd 凹凸電極の製造方法及び光起電力素子の製造方法並びに光起電力素子
KR20010039865A (ko) * 1999-09-08 2001-05-15 모리시타 요이찌 반도체박막, 그것을 사용한 반도체장치, 그들의 제조방법및 반도체박막의 제조장치

Also Published As

Publication number Publication date
KR20090066634A (ko) 2009-06-24

Similar Documents

Publication Publication Date Title
KR101991767B1 (ko) 넓은 밴드갭 반도체 재료를 갖는 이미터 영역을 구비한 태양 전지
US9269839B2 (en) Solar cell and method of manufacturing the same
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
KR20180129668A (ko) 헤테로 접합 태양광 전지의 제조방법 및 헤테로 접합 태양광 전지
JP2011501445A (ja) 薄膜太陽電池用途のための微結晶シリコン堆積
KR101254565B1 (ko) 태양 전지용 기판의 텍스처링 방법 및 태양 전지의 제조 방법
US20120273036A1 (en) Photoelectric conversion device and manufacturing method thereof
KR101768907B1 (ko) 태양 전지 제조 방법
JPWO2014050304A1 (ja) 光電変換素子とその製造方法
US20220344106A1 (en) Perovskite/silicon tandem photovoltaic device
KR101476120B1 (ko) 박막형 태양전지 및 그 제조방법
KR102060710B1 (ko) 태양 전지 및 이의 제조 방법
KR20110092023A (ko) 태양전지 및 이의 제조방법
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
KR101368905B1 (ko) 박막형 태양전지의 제조방법
JP5645734B2 (ja) 太陽電池素子
US20120319157A1 (en) Photoelectric conversion device
JP4443274B2 (ja) 光電変換装置
KR20130061346A (ko) 태양전지 및 그 제조방법
WO2021246865A1 (en) Methodology for efficient hole transport layer using transition metal oxides
KR20130100432A (ko) 태양전지의 제조 방법 및 제조 시스템
TWI483405B (zh) 光伏打電池及製造光伏打電池之方法
Morales-Vilches et al. Progress in silicon heterojunction solar cell fabrication with rear laser-fired contacts
KR20120062432A (ko) 태양전지 및 그 제조방법
KR101244791B1 (ko) 실리콘 웨이퍼의 텍스쳐링 방법, 태양전지의 제조방법 및태양전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 5