KR101347724B1 - Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials - Google Patents
Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials Download PDFInfo
- Publication number
- KR101347724B1 KR101347724B1 KR1020120037267A KR20120037267A KR101347724B1 KR 101347724 B1 KR101347724 B1 KR 101347724B1 KR 1020120037267 A KR1020120037267 A KR 1020120037267A KR 20120037267 A KR20120037267 A KR 20120037267A KR 101347724 B1 KR101347724 B1 KR 101347724B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- rpm
- hours
- wall finishing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0806—Silver
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Plant Pathology (AREA)
- Catalysts (AREA)
Abstract
본 발명은 도료 및 벽바름재 등과 같은 벽 마감재에 사용하기 위한 다기능성 필러의 제조방법에 관한 것으로, 보다 상세하게는 제올라이트에 광촉매졸 및 나노은 콜로이드 수용액으로 건조 및 열처리하여 벽 마감재에 첨가함으로써 인체에 유해한 휘발성 유기 화합물(VOC, Volatile Organic Compounds), 포름알데히드, NOx, SOx 및 라돈가스 등을 흡착 분해하고, 도료 및 마감재에 세균 및 곰팡이가 서식하지 못하도록 하는 벽 마감재용 다기능성 필러의 제조방법에 관한 것이다.The present invention relates to a method for producing a multifunctional filler for use in wall finishing materials, such as paint and wall coverings, and more specifically, to the human body by drying and heat-treated with a photocatalyst sol and nano silver colloid aqueous solution in zeolite A method for producing a multifunctional filler for wall finishing which adsorbs and decomposes harmful volatile organic compounds (VOC), formaldehyde, NOx, SOx and radon gas and prevents bacteria and fungi from inhabiting paints and finishes. will be.
Description
본 발명은 도료 및 벽 바름재 등과 같은 벽 마감재에 사용하기 위한 다기능성 필러의 제조방법, 보다 상세하게는 제올라이트를 광촉매 졸 및 나노은 콜로이드 수용액으로 습식 표면처리한 후, 건조 및 열처리한 다음, 벽 마감재에 첨가함으로써 인체에 유해한 휘발성 유기 화합물(VOC, Volatile Organic Compounds), 포름알데히드, NOx, SOx 및 라돈 가스 등을 흡착 분해하고, 도료 및 마감재에 세균 및 곰팡이가 서식하지 못하도록 하는 벽 마감재용 다기능성 필러의 제조방법에 관한 것이다.
The present invention is a method for producing a multifunctional filler for use in wall finishing materials, such as paint and wall coating material, more specifically, after the wet surface treatment of zeolite with a photocatalyst sol and a solution of nanosilver colloid, dried and heat treated, and then wall finishing material Multifunctional filler for wall finishing which absorbs and decomposes volatile organic compounds (VOC), formaldehyde, NOx, SOx and radon gas, which are harmful to the human body, and prevents bacteria and molds from growing in paints and finishes. It relates to a manufacturing method of.
최근 휘발성 유기 화합물을 저감한 친환경 도료와 실내 공기의 질을 개선하기 위한 기능성 벽 마감재에 대한 수요가 증가하고 있다. 실내 공기의 질을 개선하는 벽 마감재로서는 원적외선 및 음이온 방출 도료, 광촉매 기능성 도료 및 유해가스 흡착기능성 도료 등으로 구분할 수 있다.Recently, there is an increasing demand for environmentally friendly paints with reduced volatile organic compounds and functional wall finishes to improve indoor air quality. Wall finishing materials for improving indoor air quality can be classified into far-infrared and anion-emitting paints, photocatalytic functional paints, and harmful gas adsorption functional paints.
상기에서 원적외선 및 음이온 방출 도료의 경우, 대부분 첨가되는 원적외선 및 음이온 방출 천연광물에서 폐암을 유발하는 라돈 가스가 발생되는 문제가 있다. In the case of far-infrared and anion-emitting paint, there is a problem in which radon gas causing lung cancer is generated from the added far-infrared and anion-releasing natural minerals.
광촉매 기능성 도료의 경우, 유해가스를 분해하는 기능성이 있지만, 실내 공기가 순환함에 따라 벽에 가까운 거리에 있는 유해 가스만 분해되기 때문에 분해 능력이 떨어지는 단점이 있다. In the case of the photocatalytic functional paint, there is a function of decomposing harmful gas, but as the indoor air circulates, only the harmful gas at a close distance to the wall is decomposed, so that the decomposition ability is deteriorated.
흡착 기능성 도료의 경우, 흡착제로서 활성탄, 숯 및 제올라이트 등의 다공성 필러를 사용하게 되는데, 활성탄 혹은 숯의 경우 도료의 색상이 흑색으로 발현되기 때문에 마감용으로 사용하기에는 부적절하다. 한편, 흡착제로서 제올라이트를 사용하는 경우에 다양한 색상을 만족시킬 수 있지만, 제올라이트에 유해가스가 지속적으로 흡착되는 경우에 제올라이트의 흡착량에 한계가 있기 때문에 장기간 사용에 문제점이 있다. 또한, 제올라이트와 광촉매 기능성을 나타내는 TiO2 분말을 첨가하여 제올라이트에 흡착된 유해가스가 광촉매반응으로 분해되기도 하지만, 고가의 TiO2 분말을 다량 사용하기 때문에 경제성이 없다.In the case of the adsorption functional paint, porous fillers such as activated carbon, charcoal, and zeolite are used as the adsorbent. In the case of activated carbon or charcoal, the color of the paint is black, which is not suitable for finishing. On the other hand, when using the zeolite as the adsorbent can satisfy a variety of colors, there is a problem in long-term use because the adsorption amount of the zeolite is limited when the harmful gas is continuously adsorbed to the zeolite. In addition, TiO 2 exhibiting zeolite and photocatalytic functionality Although the harmful gas adsorbed on the zeolite by the addition of the powder is decomposed by the photocatalytic reaction, it is not economical because a large amount of expensive TiO 2 powder is used.
한편, 습한 환경에서 도료의 표면에는 곰팡이 및 세균이 번식하게 되며, 이와 같이 발생된 곰팡이의 경우 공기 중으로 이동하여 인체의 호흡기를 통해 유입되고, 세균은 피부접촉을 통해서 인체로 유입되어 각종 질병을 발생시키는 문제점이 있다.
On the other hand, mold and bacteria grow on the surface of the paint in a humid environment. In the case of the fungus generated in this way, it moves into the air and enters through the respiratory system of the human body, and bacteria enters the human body through skin contact to generate various diseases. There is a problem.
도료 및 벽 바름재 등과 같은 벽 마감재에 첨가하여 실내 및 실외에 존재하는 인체에 유해한 휘발성 유기 화합물, 포름알데히드, 라돈 가스, NOx 및 SOx 등의 유해가스를 장기간 지속적으로 저감시키고, 습한 조건에서 곰팡이 및 세균의 발생과 서식을 방지하여 실내 공기의 질을 개선할 수 있으며, 경제성이 있도록 벽 마감재를 제조할 수 있는 벽 마감재용 다기능성 필러의 개발이 필요하게 되었다.
It is added to wall finishing materials, such as paints and wall coverings, to reduce harmful gases such as volatile organic compounds, formaldehyde, radon gas, NOx and SOx, which are harmful to the human body, both indoors and outdoors. There is a need to develop a multifunctional filler for wall finishing that can improve the quality of indoor air by preventing the generation and habitat of bacteria and to produce wall finishing for economical efficiency.
본 발명자들은 이러한 문제점들을 해결하고자 연구를 거듭한 결과, 제올라이트를 TiO2 광촉매졸과 나노은 콜로이드 수용액으로 습식으로 표면처리한 후, 건조 및 열처리하여 제조된 다기능성 필러를 도료에 첨가하는 경우, 실내 및 실외에 존재하는 인체에 유해한 휘발성 유기 화합물, 포름알데히드, 라돈가스, NOx, SOx 등의 유해가스를 장기간 지속적으로 저감시키고, 습한 조건에서 곰팡이 및 세균의 발생과 서식을 방지하여 실내 공기의 질을 개선할 수 있으며, 경제성이 있는 마감재용 다기능성 필러를 제공할 수 있다는 사실을 알아내고 본 발명을 완성하기에 이르렀다.The inventors of the present invention have repeatedly studied to solve these problems, and when the surface of the zeolite is wet-treated with a TiO 2 photocatalyst sol and a nano silver colloid aqueous solution, and then dried and heat treated to add a multifunctional filler to the paint, Improve indoor air quality by continually reducing harmful gases such as volatile organic compounds, formaldehyde, radon gas, NOx and SOx, which are harmful to the human body in the outdoors, and preventing the formation and habitat of mold and bacteria under humid conditions. The present invention has been accomplished by finding out that it is possible to provide a multifunctional filler for finishing materials which is economical.
따라서, 본 발명의 목적은 유해가스의 흡착 및 분해, 항균성 및 경제성이 있는 마감재용 다기능성 필러를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a multifunctional filler for finishing materials that has adsorption and decomposition of harmful gases, antibacterial and economical.
본 발명에 따른 요지는, 하기 단계를 포함하는 벽 마감재 용 다기능성 필러의 제조방법을 제공하는 데 있다:SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for producing a multifunctional filler for wall finishing comprising the following steps:
제올라이트를 나노은 콜로이드 수용액과 1:1의 중량비로 혼합한 후, 상온 및 200 rpm에서 2시간 동안 교반한 다음, 110 ℃에서 4 시간 동안 건조하는 단계, 및 Zeolite is mixed with a nano silver colloidal solution in a weight ratio of 1: 1, stirred at room temperature and 200 rpm for 2 hours, and then dried at 110 ℃ for 4 hours, and
상기 단계에서 처리된 제올라이트를 광촉매제인 TiO2 졸과 1:1의 중량비로 혼합한 후, 상온 및 200 rpm에서 2 시간 동안 교반한 다음, 110 ℃에서 4 시간 동안 건조하고 다시 300 내지 600 ℃에서 2 시간 동안 가열하는 단계.The zeolite treated in the above step was mixed with the TiO 2 sol as a photocatalyst in a weight ratio of 1: 1, stirred at room temperature and 200 rpm for 2 hours, then dried at 110 ° C. for 4 hours, and again at 300 to 600 ° C. Heating for hours.
본 발명에 따라, 나노은 콜로이드 수용액은, 총 100 중량부를 기준으로, NaBH4 2.5∼10 중량부, AgNO3 5∼15 중량부 및 증류수 75∼92.5 중량부를 상온에서 100 rpm으로 교반하여 완전히 용해함으로써 얻어진다. According to the present invention, the nano-silver colloidal aqueous solution is obtained by completely dissolving 2.5 to 10 parts by weight of NaBH 4 , 5 to 15 parts by weight of AgNO 3 and 75 to 92.5 parts by weight of distilled water at 100 rpm at room temperature, based on a total of 100 parts by weight. Lose.
또한, 본 발명에 따라, 광촉매제로서 TiO2 졸은, 총 100 중량부를 기준으로, 티타늄 이소프로폭사이드 10∼30 중량부에 증류수 70∼90 중량부를 상온에서 200 rpm으로 교반하면서 적하한 후, 다시 2 시간 동안 교반함으로써 티타늄 이소프로폭사이드를 가수분해시켜 제조된다. In addition, according to the present invention, TiO 2 sol as a photocatalyst is added dropwise to 10 to 30 parts by weight of titanium isopropoxide based on a total of 100 parts by weight with stirring of 70 to 90 parts by weight of distilled water at room temperature at 200 rpm. Prepared by hydrolysis of titanium isopropoxide by stirring for another 2 hours.
또한, 본 발명에 따라, 증류수는 질산에 의해 pH 2∼4로 조절된다.
In addition, according to the present invention, distilled water is adjusted to pH 2-4 by nitric acid.
이와 같이 본 발명에 의한 벽 마감재용 다기능성 필러는 도료 및 벽 바름재에 일정량 첨가하게 되는 경우 실내 및 실외에 존재하는 인체에 유해한 휘발성 유기 화합물, 포름알데히드, 라돈가스, NOx, SOx 등의 유해가스를 장기간 지속적으로 저감시키고, 습한 조건에서 곰팡이 및 세균의 발생과 서식을 방지하여 실내 공기의 질을 개선하며, 경제성이 높은 특징을 갖고 있다. 따라서 도료 및 벽바름재 등과 같은 벽 마감재의 필러로 사용될 수 있다.
As described above, the multifunctional filler for wall finishing material according to the present invention is a harmful gas such as volatile organic compounds, formaldehyde, radon gas, NOx, SOx, etc., harmful to the human body existing indoors and outdoors when a certain amount is added to the paint and the wall coating material. It is continuously reduced for a long time, improves the quality of indoor air by preventing the occurrence and habitat of mold and bacteria under humid conditions, and has high economical characteristics. Therefore, it can be used as a filler for wall finishing materials such as paints and wall coverings.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 제조방법은 다음과 같이 2단계를 포함한다.The manufacturing method according to the present invention includes two steps as follows.
제 1단계는 제올라이트를 나노은 콜로이드 수용액으로 처리하는 단계이다.The first step is to treat the zeolite with an aqueous nanosilver colloid solution.
상기 나노은 콜로이드 수용액은, 총 100 중량부를 기준으로, NaBH4 2.5∼10 중량부, AgNO3 5∼15 중량부 및 증류수 75∼92.5 중량부를 상온에서 100 rpm으로 교반하면서 완전히 용해함으로써 제조된다.The nano-silver colloidal aqueous solution is prepared by completely dissolving NaBH 4 2.5-10 parts by weight, AgNO 3 5-15 parts by weight and distilled water 75-92.5 parts by stirring at room temperature at 100 rpm.
상기와 같이 제조된 나노은 콜로이드 수용액과 4A 타입의 제올라이트를 1:1의 중량비로 혼합한 후, 상온에서 200rpm으로 2시간 동안 교반한 다음, 110℃에서 4시간 동안 건조한다. The nano silver colloidal solution prepared as described above was mixed with a zeolite of 4A type in a weight ratio of 1: 1, stirred at 200 rpm at room temperature for 2 hours, and then dried at 110 ° C. for 4 hours.
제 2단계는 나노은 콜로이드 수용액으로 처리된 제올라이트를 광촉매제인 TiO2 졸로 처리하는 단계이다.The second step is to treat the zeolite treated with an aqueous solution of colloidal nanosilver with TiO 2 sol, a photocatalyst.
광촉매제인 TiO2 졸은, 총 100 중량부를 기준으로, 티타늄 이소프로폭사이드 Ti(OCH(CH3)2)4 10∼30 중량부를 질산에 의해 pH 2∼4로 조절한 증류수 70∼90 중량부에 상온에서 200rpm으로 교반하면서 적하한 후, 10 to 30 parts by weight of titanium isopropoxide Ti (OCH (CH 3 ) 2 ) 4 was adjusted to pH 2 to 4 by nitric acid based on 100 parts by weight of the total TiO 2 sol as a photocatalyst. After dropping with stirring at room temperature at 200 rpm,
적하가 끝난 후 2시간 동안 지속적으로 교반하여 하기 반응식(1)과 같이 티타늄 이소프로폭사이드를 가수분해시켜 TiO2 졸을 제조하였다. After the dropwise addition, stirring was continued for 2 hours to prepare TiO 2 sol by hydrolyzing titanium isopropoxide as shown in the following Reaction Formula (1).
Ti(OCH(CH3)2)4 + 4H2O -> Ti(OH)4 + 4CH(CH3)2OHTi (OCH (CH 3 ) 2 ) 4 + 4H 2 O-> Ti (OH) 4 + 4CH (CH 3 ) 2 OH
반응식(1)Scheme (1)
나노은 콜로이드 수용액으로 처리된 제올라이트를 광촉매제인 TiO2 졸과 1:1 중량비로 혼합하여 상온에서 2시간 동안 200rpm으로 교반하였고, 110℃에서 4 시간 동안 건조시킨 후 300℃ 내지 600℃에서 2시간 동안 열처리하여 벽 마감재용 다기능성 필러를 제조하였다.Zeolites treated with nano-silver colloidal aqueous solution were used as photocatalyst TiO 2 The sol was mixed in a 1: 1 weight ratio and stirred at 200 rpm for 2 hours at room temperature, dried at 110 ° C. for 4 hours, and then heat-treated at 300 ° C. to 600 ° C. for 2 hours to prepare a multifunctional filler for wall finishing.
본 발명에 따른 상기 제 1단계에서 나노은 콜로이드 수용액의 조성물 총 100 중량부를 기준으로 증류수는 75∼92.5 중량부를 사용하는 하는 것이 바람직하다. In the first step according to the present invention, it is preferable to use 75 to 92.5 parts by weight of distilled water based on 100 parts by weight of the total composition of the nano-silver colloidal aqueous solution.
NaBH4는 나노은 콜로이드 수용액을 안정화시키는 작용을 하며, 그 사용량은, 나노은 콜로이드 수용액의 조성물 총 100 중량부를 기준으로, 2.5∼10 중량부, 바람직하게는 3∼5 중량부이다. NaBH4의 사용량이 2.5 중량부 미만이면 나노은 콜로이드 용액이 불안정하고, 10 중량부 이상이 되더라도 안정성이 더 이상 증가하지 않는다. NaBH 4 acts to stabilize the nano-silver colloidal aqueous solution, the amount used is 2.5 to 10 parts by weight, preferably 3 to 5 parts by weight based on 100 parts by weight of the total composition of the nano-silver colloidal aqueous solution. If the amount of NaBH 4 is less than 2.5 parts by weight, the nanosilver colloidal solution is unstable, and even if it is 10 parts by weight or more, the stability no longer increases.
AgNO3의 사용량은, 나노은 콜로이드 수용액의 조성물 총 100 중량부를 기준으로, 5∼15 중량부, 바람직하게는 6∼10 중량부이다. AgNO3의 사용량이 5 중량부 이하이면 제올라이트에 처리한 후 곰팡이 및 세균에 대한 항균성이 완전하지 못하고, 15 중량부 이상을 사용하여도 항균성이 더 이상 향상되지 않는다. The amount of AgNO 3 used is 5 to 15 parts by weight, preferably 6 to 10 parts by weight based on 100 parts by weight of the total composition of the nanosilver colloid aqueous solution. If the amount of AgNO 3 is 5 parts by weight or less, the antimicrobial activity against mold and bacteria after treatment with zeolite is not complete, and even if 15 parts by weight or more is used, the antibacterial property is no longer improved.
본 발명의 제 2단계에서 사용되는 증류수는, 광촉매제인 TiO2 졸의 조성물 총 100 중량부를 기준으로, 70∼90 중량부이며, pH는 2∼4가 바람직하다. pH가 2 미만인 경우에는 TiO2 졸의 가수분해가 급격하게 진행하여 겔화가 발생할 수 있다. pH가 4를 초과하는 경우에는 TiO2 졸의 가수분해가 너무 늦어지기 때문에 TiO2 졸의 제조가 힘들다.The distilled water used in the second step of the present invention is 70 to 90 parts by weight based on 100 parts by weight of the total composition of the TiO 2 sol as a photocatalyst, and the pH is preferably 2 to 4. If the pH is less than 2 , hydrolysis of the TiO 2 sol may proceed rapidly and gelation may occur. If the pH exceeds 4, the hydrolysis of the TiO 2 sol becomes too late, making it difficult to prepare the TiO 2 sol.
또한 본 발명의 제 2단계에서 사용되는 광촉매제인 티타늄 이소프로폭사이드의 사용량은, 광촉매제인 TiO2 졸의 조성물 총 100 중량부를 기준으로, 10∼30 중량부, 바람직하게는 12∼20 중량부이다. 티타늄 이소프로폭사이드의 사용량이 10 중량부 미만이면 광촉매 효과가 충분히 발휘되기 힘들고, 30 중량부를 초과하면 광촉매 효과가 더 이상 증가하지 않는다.In addition, the amount of titanium isopropoxide, the photocatalyst used in the second step of the present invention, is 10 to 30 parts by weight, preferably 12 to 20 parts by weight, based on 100 parts by weight of the total composition of the photocatalyst TiO 2 sol. . If the amount of the titanium isopropoxide is less than 10 parts by weight, the photocatalytic effect is hardly exhibited sufficiently, and if it exceeds 30 parts by weight, the photocatalytic effect does not increase any more.
이하에서는, 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 실시예가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the Examples do not limit the present invention.
<실시예><Examples>
실시예Example 1 One
교반기가 구비된 500mL 비이커에 증류수 47.5g에 NaBH4 2.5g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. 별도로 증류수 45g에 AgNO3 5g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. NaBH4를 용해시킨 수용액에 AgNO3를 용해시킨 수용액을 상온에서 100rpm으로 교반하면서 적하하여 나노은 콜로이드 수용액 100g을 제조하였고, 여기에 4A 타입 합성 제올라이트(지심테크, JST-MS40) 100g을 넣고 상온에서 200rpm으로 교반한 뒤 110℃에서 건조시켰다. In a 500 mL beaker equipped with a stirrer, 2.5 g of NaBH 4 was added to 47.5 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. Separately, 5 g of AgNO 3 was added to 45 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. An aqueous solution of AgNO 3 dissolved in NaBH 4 was added dropwise while stirring at 100 rpm at room temperature to prepare 100 g of a nano silver colloidal solution. 100 g of 4A-type synthetic zeolite (Jimtech, JST-MS40) was added thereto, and 200 rpm at room temperature. After stirring with water and dried at 110 ° C.
한편, 교반기가 구비된 500mL 비이커에 질산을 사용하여 pH 2로 조절된 증류수 90g에 티타늄 이소프로폭사이드 10g을 상온에서 200rpm으로 교반하면서 적하하였다. 적하가 끝난 후 2시간 동안 지속적으로 교반한 후 상기에서 제조된 나노은 콜로이드 수용액 처리 제올라이트 100g을 넣고 2시간 동안 200rpm으로 교반하였고, 110℃에서 4시간 동안 건조시킨 후 300℃에서 2시간 동안 열처리하여 벽 마감재용 다기능성 필러를 제조하였다. On the other hand, 10 g of titanium isopropoxide was added dropwise while stirring at 200 rpm at room temperature to 90 g of distilled water adjusted to pH 2 using nitric acid in a 500 mL beaker equipped with a stirrer. After the dropwise addition, the mixture was continuously stirred for 2 hours, and then 100 g of the nano-silver colloidal solution-treated zeolite was added thereto, stirred at 200 rpm for 2 hours, dried at 110 ° C. for 4 hours, and then heat-treated at 300 ° C. for 2 hours. A multifunctional filler for the finish was prepared.
실시예Example 2 2
교반기가 구비된 500mL 비이커에 증류수 42.5g에 NaBH4 7.5g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. 별도로 증류수 40g에 AgNO3 10g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. NaBH4를 용해시킨 수용액에 AgNO3를 용해시킨 수용액을 상온에서 100rpm으로 교반하면서 적하하여 나노은 콜로이드 수용액 100g을 제조하였고, 여기에 4A 타입 합성제올라이트(지심테크, JST-MS40) 100g을 넣고 상온에서 200rpm으로 교반한 뒤 110℃에서 건조시켰다. In a 500 mL beaker equipped with a stirrer, 7.5 g of NaBH 4 was added to 42.5 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. Separately, 10 g of AgNO 3 was added to 40 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. An aqueous solution of AgNO 3 dissolved in NaBH 4 was added dropwise while stirring at 100 rpm at room temperature to prepare 100 g of nanosilver colloidal aqueous solution, and 100 g of 4A type synthetic zeolite (Jsim-Tech, JST-MS40) was added thereto and 200 rpm at room temperature. After stirring with water and dried at 110 ° C.
한편, 교반기가 구비된 500mL 비이커에 질산을 사용하여 pH 4로 조절된 증류수 80g에 티타늄 이소프로폭사이드 20g을 상온에서 200rpm으로 교반하면서 적하하였다. 적하가 끝난 후 2시간 동안 지속적으로 교반한 후 상기에서 제조된 나노은 콜로이드 수용액 처리 제올라이트 100g을 넣고 2시간 동안 200rpm으로 교반하였고, 110℃에서 4시간 동안 건조시킨 후 600℃에서 2시간 동안 열처리하여 벽 마감재용 다기능성 필러를 제조하였다.Meanwhile, 20 g of titanium isopropoxide was added dropwise to 80 g of distilled water adjusted to pH 4 using nitric acid in a 500 mL beaker equipped with a stirrer while stirring at room temperature at 200 rpm. After the dropwise addition, the mixture was continuously stirred for 2 hours, and then 100 g of the nano-silver colloidal solution-treated zeolite was added thereto, stirred at 200 rpm for 2 hours, dried at 110 ° C. for 4 hours, and then heat-treated at 600 ° C. for 2 hours. A multifunctional filler for the finish was prepared.
실시예Example 3 3
교반기가 구비된 500mL 비이커에 증류수 40g에 NaBH4 10g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. 별도로 증류수 37g에 AgNO3 13g을 상온에서 100rpm으로 교반하면서 첨가하여 완전히 용해시켰다. NaBH4를 용해시킨 수용액에 AgNO3를 용해시킨 수용액을 상온에서 100rpm으로 교반하면서 적하하여 나노은 콜로이드 수용액 100g을 제조하였고, 여기에 4A 타입 합성제올라이트(지심테크, JST-MS40) 100g을 넣고 상온에서 200rpm으로 교반한 뒤 110℃에서 건조시켰다. In a 500 mL beaker equipped with a stirrer, 10 g of NaBH 4 was added to 40 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. Separately, 13 g of AgNO 3 was added to 37 g of distilled water with stirring at 100 rpm at room temperature to completely dissolve it. An aqueous solution of AgNO 3 dissolved in NaBH 4 was added dropwise while stirring at 100 rpm at room temperature to prepare 100 g of nanosilver colloidal aqueous solution, and 100 g of 4A type synthetic zeolite (Jsim-Tech, JST-MS40) was added thereto and 200 rpm at room temperature. After stirring with water and dried at 110 ° C.
한편, 교반기가 구비된 500mL 비이커에 질산을 사용하여 pH 3로 조절된 증류수 70g에 티타늄 이소프로폭사이드 30g을 상온에서 200rpm으로 교반하면서 적하하였다. 적하가 끝난 후 2시간 동안 지속적으로 교반한 후 상기에서 제조된 나노은 콜로이드 수용액 처리 제올라이트 100g을 넣고 2시간 동안 200rpm으로 교반하였고, 110℃에서 4시간 동안 건조시킨 후 500℃에서 2시간 동안 열처리하여 벽 마감재용 다기능성 필러를 제조하였다.Meanwhile, 30 g of titanium isopropoxide was added dropwise with stirring at 200 rpm at room temperature to 70 g of distilled water adjusted to pH 3 using a nitric acid in a 500 mL beaker equipped with a stirrer. After the dropwise addition, the mixture was continuously stirred for 2 hours, and then 100 g of the nano-silver colloidal solution-treated zeolite was added thereto, stirred at 200 rpm for 2 hours, dried at 110 ° C. for 4 hours, and heat-treated at 500 ° C. for 2 hours. A multifunctional filler for the finish was prepared.
비교예Comparative Example 1 One
비교예로서 순수한 4A 타입 합성제올라이트(지심테크, JST-MS40)를 사용하였다.As a comparative example, pure 4A-type synthetic zeolite (Jsim-Tech, JST-MS40) was used.
<실험예><Experimental Example>
상기 실시예 1 내지 3에서 제조된 본 발명의 다기능성 필러에 대해서 메틸렌 블루 분해성, 탈취시험 및 항균성 시험을 진행하였다.The multifunctional fillers of the present invention prepared in Examples 1 to 3 were subjected to methylene blue degradability, deodorization test and antimicrobial test.
실험예Experimental Example 1 (메틸렌 1 (methylene 블루blue 분해에 의한 By decomposition 광촉매Photocatalyst 특성 평가) Property evaluation)
메틸렌블루 분해성 평가는 본 발명에 의해 제조된 벽 마감재용 다기능성 필러의 광촉매 특성을 평가하기 위해 진행하였다. 실시예 1∼3에서 얻어진 본 발명의 필러 및 비교예 1의 분말을 각각 메틸렌블루(MB) 0.001M 용액에 20분간 침지시킨 후, 직사광선을 피해 건조시킨 후, 광촉매 특성을 측정하였다. 광촉매 특성은 효능측정기(일본, Sinku-Riko사제, PCC-1)를 사용하였으며, 파장 340nm의 자외선을 방출시켜 광검출장치로 20분 경과후 제올라이트 표면의 MB의 분해량을 ΔABS로 측정하였다. 초기 투광도에서 자외선의 조사에 의해 MB가 분해되어 투광도가 증가하게 되며 광촉매 특성이 우수할수록 (-)쪽으로 절대값이 증가하게 된다. 실험결과는 표 1과 같다.Methylene blue degradability evaluation was carried out to evaluate the photocatalytic properties of the multifunctional filler for the wall finish produced by the present invention. After immersing the filler of the present invention obtained in Examples 1 to 3 and the powder of Comparative Example 1 in a methylene blue (MB) 0.001 M solution for 20 minutes, and then drying away from direct sunlight, photocatalytic properties were measured. Photocatalytic properties were measured by a potency measuring instrument (manufactured by Sinku-Riko, Japan, PCC-1), and after 20 minutes with a photodetector by emitting ultraviolet light having a wavelength of 340 nm, the amount of MB degradation on the zeolite surface was measured by ΔABS. In the initial light transmittance, the MB is decomposed by the irradiation of ultraviolet rays, and the light transmittance increases, and the better the photocatalyst characteristic, the greater the absolute value toward (-). The experimental results are shown in Table 1.
(△ABS)Methylene blue degradable
(△ ABS)
표 1에서 실시예 1∼3은 비교예 1과 비교하여 현저하게 메틸렌블루 분해성이 향상되어 광촉매 효과가 있음을 나타내고 있다. 한편 실시예 1∼3을 비교하면 제올라이트에 처리된 광촉매제인 TiO2 졸의 농도가 증가하면서 메틸렌 블루 분해성도 증가하고 있다.In Table 1, Examples 1-3 have markedly improved the methylene blue decomposition property compared with the comparative example 1, and show that there exists a photocatalytic effect. On the other hand, in comparison with Examples 1 to 3, the concentration of TiO 2 sol, which is a photocatalyst treated with zeolite increases, and the methylene blue degradability also increases.
실험예Experimental Example 2 (탈취 시험) 2 (deodorization test)
상기 실시예 1∼3 및 비교예 1에 대해서 탈취시험은 가스검지관법에 의해 경과시간에 따른 암모니아 시험가스의 농도 및 황화수소 시험가스의 농도 변화를 측정하는 KICM-FIR-1004의 방법으로 측정하였으며, 암모니아 시험가스 및 황화수소 시험가스의 탈취율 결과를 하기 표 2 및 3에 각각 나타내었다.Deodorization test for Examples 1 to 3 and Comparative Example 1 was measured by the method of KICM-FIR-1004 to measure the concentration change of the ammonia test gas and the hydrogen sulfide test gas with the elapsed time by the gas detection tube method, Deodorization rate results of the ammonia test gas and the hydrogen sulfide test gas are shown in Tables 2 and 3, respectively.
표 2 및 3에서, 실시예 1∼3에서는 경과시간 120분 후에 90% 이상의 탈취율을 나타내었고, 비교예 1에서는 70% 이하를 나타내어 본 발명에 의해 제조된 벽 마감재용 다기능성 필러의 탈취 효과가 높게 나타났다. 한편 실시예 1∼3을 비교하면 제올라이트에 처리된 광촉매제인 TiO2 졸의 농도가 증가할수록 탈취효과도 증가하고 있다.In Tables 2 and 3, in Examples 1 to 3, the deodorization rate was 90% or more after 120 minutes, and in Comparative Example 1, the deodorizing effect of the multifunctional filler for wall finishing material prepared by the present invention was 70% or less. High. On the other hand, in comparison with Examples 1 to 3, the deodorizing effect increases as the concentration of TiO 2 sol, which is a photocatalyst treated with zeolite increases.
실험예Experimental Example 3 (항균성 시험) 3 (antibacterial test)
상기 실시예 1∼3 및 비교예 1의 필러에 대한 항균성 시험은 한국건설생활시험연구원의 KICM-FIR-1001 및 KICM-FAB-261 방법에 의해서 항곰팡이 시험 및 대장균과 노농균 시험을 진행하였으며, 항곰팡이 시험(KICM-FIR-1001) 및 대장균과 노농균 시험(KICM-FAB-261) 결과를 하기 표 4 및 5에 각각 나타내었다.The antimicrobial test for the fillers of Examples 1 to 3 and Comparative Example 1 was carried out by the antimicrobial test and E. coli and P. aeruginosa test by the KICM-FIR-1001 and KICM-FAB-261 method of the Korea Institute of Construction and Living Testing, The results of the antifungal test (KICM-FIR-1001) and the E. coli and P. aeruginosa test (KICM-FAB-261) are shown in Tables 4 and 5, respectively.
표 4 및 5의 항균시험 결과, 실시예 1∼3의 경우는 곰팡이의 생장억제율이 100%로 우수하게 나타났고, 대장균과 노농균에 대해서 경과시간 24시간후에 95% 이상의 감소율을 나타내었다. 반면에 항균성이 없는 비교예 1은 항곰팡이 시험에서 생장억제율이 10%에 불과하고, 대장균과 노농균에 대해서는 항균성이 전혀 없는 것으로 나타났다. 한편 실시예 1∼3을 비교하면 제올라이트에 처리된 나노은 콜로이드의 농도가 증가할수록 항균성도 증가하고 있다.As a result of the antimicrobial test of Tables 4 and 5, the growth inhibition rate of the mold was excellent as 100%, and showed a reduction rate of more than 95% after 24 hours for E. coli and P. aeruginosa. On the other hand, Comparative Example 1 without the antibacterial test showed a growth inhibition rate of only 10% in the antifungal test, and showed no antimicrobial activity against Escherichia coli and no. On the other hand, in comparison with Examples 1 to 3, the antimicrobial activity increased as the concentration of the colloidal nanosilver colloid increased.
이상의 설명은 본 특허의 기술사상을 예시적으로 설명한 것에 불과하며, 본 특허가 속하는 기술분야의 당업자라면 본 특허의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형을 할 수 있을 것이다.The above description is merely illustrative of the technical spirit of the present patent, and those skilled in the art to which the present patent belongs may make various modifications and changes without departing from the essential characteristics of the present patent.
또한, 본 특허에 개시된 실시예는 본 특허의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 특허의 기술사상의 범위가 한정되는 것은 아니다.In addition, the embodiments disclosed in the present patent are not intended to limit the technical spirit of the present patent but to describe the technical spirit of the present patent.
그러므로 본 특허의 보호범위는 하기 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 특허의 권리범위에 포함되는 것으로 해석되어야 할 것이다. Therefore, the protection scope of the present patent should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present patent.
Claims (4)
상기 단계에서 처리된 제올라이트를 광촉매제인 TiO2 졸과 1:1의 중량비로 혼합한 후, 상온 및 200 rpm에서 2 시간 동안 교반한 다음, 110 ℃에서 4 시간 동안 건조하고 다시 300 내지 600 ℃에서 2 시간 동안 가열하는 단계를 포함하는, 벽 마감재 용 다기능성 필러의 제조방법.
Zeolite is mixed with a nano silver colloidal solution in a weight ratio of 1: 1, stirred at room temperature and 200 rpm for 2 hours, and then dried at 110 ℃ for 4 hours, and
The zeolite treated in the above step was mixed with the TiO 2 sol as a photocatalyst in a weight ratio of 1: 1, stirred at room temperature and 200 rpm for 2 hours, then dried at 110 ° C. for 4 hours, and again at 300 to 600 ° C. A method of making a multifunctional filler for wall finishing, comprising heating for a time.
The method of claim 1, wherein the nano-silver colloidal aqueous solution is completely dissolved by stirring at 2.5 rpm of NaBH 4 2.5 to 10 parts by weight, AgNO 3 5 to 15 parts by weight and distilled water at 75 rpm to 100 rpm based on a total of 100 parts by weight. A method for producing a multifunctional filler for wall finishing material, which is obtained.
The TiO 2 sol as a photocatalyst is added dropwise to 10 to 30 parts by weight of titanium isopropoxide based on a total of 100 parts by weight with stirring of 200 to 90 parts by weight of distilled water at 200 rpm at room temperature. A method for producing a multifunctional filler for wall finishing, characterized in that it is prepared by hydrolyzing titanium isopropoxide by stirring for a time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120037267A KR101347724B1 (en) | 2012-04-10 | 2012-04-10 | Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120037267A KR101347724B1 (en) | 2012-04-10 | 2012-04-10 | Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130114875A KR20130114875A (en) | 2013-10-21 |
KR101347724B1 true KR101347724B1 (en) | 2014-01-06 |
Family
ID=49634681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120037267A KR101347724B1 (en) | 2012-04-10 | 2012-04-10 | Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101347724B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104650735B (en) * | 2015-01-10 | 2018-04-20 | 广东顺德嘉乐士涂料有限公司 | A kind of nano-photo catalytic is compound except haze is dispelled aldehyde emulsion paint and preparation method thereof |
CN109897485A (en) * | 2019-01-31 | 2019-06-18 | 苏州百联节能科技股份有限公司 | A kind of self-cleaning environmental protection coating material of novel heat-insulation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281156A (en) | 2005-04-04 | 2006-10-19 | Tohoku Turbo Kogyo:Kk | Functional photocatalyst and its production method |
KR20060116421A (en) * | 2005-05-10 | 2006-11-15 | 한국화학연구원 | Process for preparing nano-sized silver colloid in organic solvents |
KR100949719B1 (en) | 2009-08-10 | 2010-03-25 | 오세창 | Antibacterial zeolite resin composition |
-
2012
- 2012-04-10 KR KR1020120037267A patent/KR101347724B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281156A (en) | 2005-04-04 | 2006-10-19 | Tohoku Turbo Kogyo:Kk | Functional photocatalyst and its production method |
KR20060116421A (en) * | 2005-05-10 | 2006-11-15 | 한국화학연구원 | Process for preparing nano-sized silver colloid in organic solvents |
KR100949719B1 (en) | 2009-08-10 | 2010-03-25 | 오세창 | Antibacterial zeolite resin composition |
Non-Patent Citations (1)
Title |
---|
임남기 외 3명. 건축용 재료로서 기능성 제올라이트 모르터의 실내공기 오염물질 흡착성능 분석. 대한건축학회, 2007, 제23권 제6호, 57~64쪽. * |
Also Published As
Publication number | Publication date |
---|---|
KR20130114875A (en) | 2013-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105174859B (en) | Based on kieselguhr micropowder except formaldehyde in indoor air, abnormal flavour interior wall coating and preparation method thereof | |
KR102219256B1 (en) | Visible light-responsive photocatalytic composition and lighting device using the same | |
CN104830161A (en) | Diatomite coating capable of decomposing formaldehyde | |
CN108395775A (en) | A kind of phenylpropyl alcohol negative ion paint containing formaldehyde catching agent | |
KR100605004B1 (en) | Water-soluble paint composition containing illite powder | |
CN105176216A (en) | Diatom ooze coating and preparation method thereof | |
KR101721027B1 (en) | Visible Light-responsive Photocatalyst and Lighting Device Using the Same | |
JP6457077B2 (en) | Visible light activated photocatalytic tile | |
KR100858517B1 (en) | The functional characteristic paint which uses the natural mineral and the manufacturing method | |
CN102702807B (en) | Photo-catalytic composite coating and preparation method thereof | |
KR102162532B1 (en) | Photocatalysis composite and method for preparing the same | |
JP2009013376A (en) | Water paint for interior finish | |
KR101905225B1 (en) | Photo catalyst functional films and method of manufacturing the same | |
CN110628246A (en) | Composite photocatalyst wall coating | |
KR20070089261A (en) | The structural materials of the natural mineral and various functional material | |
KR101347724B1 (en) | Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials | |
KR100852094B1 (en) | Natural paint having antifungal function and method of manufacturing the same | |
JP2012096133A (en) | Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film | |
KR101584789B1 (en) | Bio ceramic composition and method for controlling odor and hazardous substance by using same | |
KR100941738B1 (en) | Photoactive composition comprising scoria and preparation method thereof | |
CN105754483A (en) | Ecological green tea coating and production method thereof | |
CN106689201B (en) | Nano silver antibacterial agent and preparation method thereof | |
KR20090114497A (en) | Bamboo activated carbon paint | |
KR101070854B1 (en) | The exterior and interior materials and manufacture method thereof of clay using the titanium dioxide photocatalyst coated apatite on the surface | |
KR20060000376A (en) | A spray type coating solusion with antitoxic and antibiosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170126 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171222 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181227 Year of fee payment: 6 |