JP2006281156A - Functional photocatalyst and its production method - Google Patents

Functional photocatalyst and its production method Download PDF

Info

Publication number
JP2006281156A
JP2006281156A JP2005107419A JP2005107419A JP2006281156A JP 2006281156 A JP2006281156 A JP 2006281156A JP 2005107419 A JP2005107419 A JP 2005107419A JP 2005107419 A JP2005107419 A JP 2005107419A JP 2006281156 A JP2006281156 A JP 2006281156A
Authority
JP
Japan
Prior art keywords
functional photocatalyst
functional
titanium dioxide
photocatalyst
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005107419A
Other languages
Japanese (ja)
Inventor
Noboru Sakai
昇 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU TURBO KOGYO KK
Original Assignee
TOHOKU TURBO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU TURBO KOGYO KK filed Critical TOHOKU TURBO KOGYO KK
Priority to JP2005107419A priority Critical patent/JP2006281156A/en
Publication of JP2006281156A publication Critical patent/JP2006281156A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional photocatalyst which enables to decompose/clean an environmental contaminated substance regardless of daytime and night and to greatly increases a treatment efficiency. <P>SOLUTION: The functional photocatalyst has metallic Pd, originated from a palladium ion (Pd<SP>2+</SP>) aqueous solution, which is deposited on the surface of a photocatalytic (an anatase type) titanium dioxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二酸化チタンを主とした光触媒に他の触媒機能を付加した機能性光触媒に関するものである。   The present invention relates to a functional photocatalyst obtained by adding another catalytic function to a photocatalyst mainly composed of titanium dioxide.

二酸化チタンは、紫外線を照射されると、バンドギャップエネルギーを超えるエネルギーを受容して励起する。励起された二酸化チタンは、価電子帯にあった電子が励起されて伝導帯に遷移する。遷移された電子は、二酸化チタンのバルク内に存在するTi4+と結合してTi3+に還元し、空気中の豊富な酸素(O )と結合してスーパオキシド(O )を形成するか又は水中の水素イオンと結合して水素(H )を形成する。価電子帯に残留した正孔は、二酸化チタンの表面格子のスーパオキシド(O )と結合してO に変化させ、更にヒドロキシルラジカル又はスーパオキサイドアニオンなど、いわゆる活性酸素を発生する(例えば、特許文献1参照)。 When titanium dioxide is irradiated with ultraviolet rays, it receives energy exceeding the band gap energy and excites it. In the excited titanium dioxide, electrons in the valence band are excited and transition to the conduction band. The transitioned electrons combine with Ti 4+ present in the bulk of titanium dioxide to reduce to Ti 3+ and combine with abundant oxygen (O 2 ) in the air to form superoxide (O 2 ). Or combine with hydrogen ions in water to form hydrogen (H 2 ). Holes remaining in the valence band are combined with superoxide (O 2 ) on the surface lattice of titanium dioxide to be changed to O , and further generate so-called active oxygen such as hydroxyl radical or superoxide anion (for example, , See Patent Document 1).

これら一連の活性酸素は、排ガス・排水等の流体に含有される環境汚染物質を、有害物質を発生することなく、水、二酸化炭素に分解して、地球環境の浄化・保全に有効な技術として高く評価されている。この技術を利用した環境汚染物質の分解・浄化処理装置、並びに施設の研究、開発が急速に進められている。   These series of active oxygen is an effective technology for purifying and preserving the global environment by decomposing environmental pollutants contained in fluids such as exhaust gas and wastewater into water and carbon dioxide without generating harmful substances. It is highly appreciated. Research and development of equipment and facilities for decomposing and purifying environmental pollutants using this technology are progressing rapidly.

ところで、紫外線とは、太陽光の波長400nm以下の光波部分を呼称する。従って、二酸化チタンの紫外線照射による環境汚染物質の分解・浄化は、昼間、しかも日照時に限られ、太陽光、即ち、紫外線照射の得られない時間帯(夜間や曇天時など)は環境汚染物質の分解・浄化は不可能か、人工紫外線に頼らざるを得なくなる。   By the way, ultraviolet rays refer to a light wave portion of sunlight having a wavelength of 400 nm or less. Therefore, decomposition and purification of environmental pollutants by ultraviolet irradiation of titanium dioxide is limited to daytime and during sunshine, and sunlight, that is, during periods when ultraviolet irradiation cannot be obtained (such as at night or in cloudy weather) Decomposition and purification are impossible or forced to rely on artificial ultraviolet rays.

ところが、太陽光、即ち、紫外線照射の得られぬ時問帯は、一年に通算すれば、夜間と昼間とで相半ばし、さらに降雨、降雪、曇天を加算すると年間の過半を超過する。これに対して、最近の環境汚染は昼夜や天候を問わず、増加の一途を辿り、汚染物質の分解・浄化の需要は、幾ら処理しても追い付かぬ状況を呈している。   However, the time zone where sunlight, that is, UV irradiation cannot be obtained, is a half year and is halfway between daytime and daytime, and when rain, snowfall, and cloudy weather are added, the majority of the year is exceeded. On the other hand, recent environmental pollution continues to increase regardless of the day and night and the weather, and the demand for the decomposition and purification of pollutants has not been able to keep up with the treatment.

こうした状況下において、光触媒性の二酸化チタンの表面に一般触媒性の金属を析出させ、昼間、夜間の別なく触媒性を発揮する、いわゆる、機能性光触媒を創出することは、環境汚染物質の分解・浄化の処理効果を著しく増加する。しかも、太陽光は自然物であり、その活用は処理経費を著しく低減して経済的意義は深いと考えられる。
特開平11−47611号公報
Under these circumstances, the creation of a so-called functional photocatalyst that deposits a general catalytic metal on the surface of photocatalytic titanium dioxide and exhibits catalytic properties regardless of whether it is daytime or nighttime is the decomposition of environmental pollutants.・ Remarkably increase the treatment effect of purification. In addition, sunlight is a natural product, and its use significantly reduces processing costs and is considered to have great economic significance.
JP 11-47611 A

光触媒として優れた二酸化チタン(TiO )においては、これと異なる触媒の特性を付与して機能性光触媒としてその使用効率をさらに高めるためには、まず解決すべき幾つかの課題がある。まず、光触媒として優れる二酸化チタンは微細に過ぎ、サラサラとして粘着せず、風に飛散し、流れに汚濁して、二次汚染源となり兼ねず、使用に先立ち、飛散、汚濁を阻止して、さらに取扱の便を図って固定化する必要がある。 In titanium dioxide (TiO 2 ), which is excellent as a photocatalyst, there are several problems to be solved first in order to impart a different catalyst characteristic and further increase its use efficiency as a functional photocatalyst. First, titanium dioxide, which is excellent as a photocatalyst, is too fine, does not stick as smooth, scatters in the wind, pollutes the flow, and may become a secondary source of contamination, and prevents further scattering and contamination before use. It is necessary to fix and fix the stool.

一方、紫外線照射による電子及び正孔の自由存続は短く、せいぜい数拾ピコ〜数百ナノ秒とされる。従って、紫外線照射による電子の移行の場は、そのまま活性酸素の形成の場となり、環境汚染物質と直接混交されて分解・浄化を果たす場となることが望ましい。そのためには、緻密微細粉の二酸化チタン内部深くに汚染された流体が到達して機能性光触媒から供される活性酸素に直接作用する空間を整備する必要がある。   On the other hand, the free persistence of electrons and holes due to ultraviolet irradiation is short, and is at most several pico to several hundred nanoseconds. Therefore, it is desirable that the field of electron transfer by ultraviolet irradiation be a field for the formation of active oxygen as it is, and a field where it is directly mixed with environmental pollutants to be decomposed and purified. For this purpose, it is necessary to prepare a space where the contaminated fluid reaches deep inside the fine fine titanium dioxide and directly acts on the active oxygen provided from the functional photocatalyst.

一方、ゼオライトは緻密、堅固な外殻と、殻内は縦横に発達する微結晶に支保された晶洞とで構成されている。従って、これを二酸化チタンに配合して固定することにより、二酸化チタンを多孔質となし、流通する汚染流体を誘引して紫外線照射、又は、触媒により発生する活性酸素と混交、直接させて作用する場を得て有用と考えられる。   On the other hand, zeolite is composed of a dense and firm outer shell and a crystal cavities supported by microcrystals that grow vertically and horizontally. Therefore, by blending this in titanium dioxide and fixing it, the titanium dioxide becomes porous, attracts the contaminated fluid to circulate and acts by mixing directly with the active oxygen generated by the ultraviolet ray or the catalyst. It is thought that it is useful to get a place.

大気汚染が社会問題として取り上げられて久しい。しかし、都市部における大気汚染は一向に減りそうになく、依然深刻である。本来、窒素酸化物の浄化の根本的解決を図るには、自動車など、その発生源の対策が不可欠と思われる。しかし、その道は遠く、未だ決定的な技術開発にいたっていない。   It has been a long time since air pollution was taken up as a social problem. However, air pollution in urban areas is unlikely to decrease at all and remains serious. Originally, in order to fundamentally solve the purification of nitrogen oxides, it is considered indispensable to take measures against its source such as automobiles. However, the path is far away and it has not yet reached decisive technological development.

本発明は、夜間、昼間の区別なく環境汚染物質の分解・浄化を可能にして処理効率を著しく増加することのできる機能性光触媒を得ることを目的とする。また、この機能性光触媒を利用して作る環境汚染物質の分解・浄化装置を得ることを目的とする。更に、この機能性光触媒の製造方法を得ることを目的とする。   An object of the present invention is to obtain a functional photocatalyst that can decompose and purify environmental pollutants without distinction between nighttime and daytime and can significantly increase the processing efficiency. Another object of the present invention is to obtain an apparatus for decomposing and purifying environmental pollutants using this functional photocatalyst. Furthermore, it aims at obtaining the manufacturing method of this functional photocatalyst.

請求項1に記載された発明に係る機能性光触媒は、光触媒性(アナターゼ型)二酸化チタン粒子の表面に、パラジウムイオン(Pd2+)水溶液由来の金属パラジウムが析出されていることを特徴とするものである。 The functional photocatalyst according to the invention described in claim 1 is characterized in that metal palladium derived from an aqueous palladium ion (Pd 2+ ) solution is deposited on the surface of photocatalytic (anatase type) titanium dioxide particles. It is.

請求項2に記載された発明に係る固定化機能性光触媒は、請求項1に記載の機能性光触媒を吸着したゼオライトが、セメント及び水を混練した固定化バインダー、又は、フェライト系磁性体鉄、コバルト、チタンを始めとする金属酸化物、ガラス又は樹脂を焼成したセラミックからなる固定化バインダーに固定されていることを特徴とするものである。   The immobilized functional photocatalyst according to the invention described in claim 2 is an immobilized binder in which the zeolite adsorbing the functional photocatalyst according to claim 1 is kneaded with cement and water, or ferrite-based magnetic iron, It is characterized by being fixed to an immobilizing binder made of a metal oxide such as cobalt and titanium, glass or ceramic fired resin.

請求項3に記載された発明に係る機能性光触媒処理装置は、紫外線灯と、
この紫外線灯を中央としてその周囲を囲む紫外線透過材からなる内周壁と、この内周壁と同心円状の紫外線透過材からなる外周壁と、これら内周壁と外周壁との両端部を閉塞する一対の蓋部とで囲まれた処理室と、
一方の蓋部に形成された汚染流体を処理室に導く取入口と、
他方の蓋部に形成された処理流体を処理室から取り出す取出口と、
前記処理室内に収納される請求項1に記載の機能性光触媒、又は、請求項2に記載の固定化機能性光触媒の機能性光触媒材とを備え、
外部から太陽光及び/又は内部から紫外線灯の紫外線を機能性光触媒材に照射しつつ汚染流体を取入口から取出口へと流通させることを特徴とするものである。
The functional photocatalyst processing device according to the invention described in claim 3 includes an ultraviolet lamp,
An inner peripheral wall made of an ultraviolet transmitting material surrounding the ultraviolet lamp at the center, an outer peripheral wall made of an ultraviolet transmitting material concentric with the inner peripheral wall, and a pair of plugs closing both ends of the inner peripheral wall and the outer peripheral wall A processing chamber surrounded by a lid,
An intake for guiding the contaminated fluid formed on one lid to the processing chamber;
An outlet for removing the processing fluid formed on the other lid from the processing chamber;
The functional photocatalyst according to claim 1 housed in the processing chamber, or the functional photocatalyst material of the immobilized functional photocatalyst according to claim 2,
The contaminated fluid is circulated from the inlet to the outlet while irradiating the functional photocatalyst material with sunlight from the outside and / or ultraviolet rays from an ultraviolet lamp from the inside.

請求項4に記載された発明に係る機能性光触媒の製造法は、パラジウムイオン(Pd2+)を含む水溶液中に光触媒性(アナターゼ型)二酸化チタン粒子を浸漬する工程と、この二酸化チタン粒子に紫外線を照射して二酸化チタン表面に金属パラジウムを析出させる工程とを備えたことを特徴とする方法である。 The method for producing a functional photocatalyst according to the invention described in claim 4 includes a step of immersing photocatalytic (anatase type) titanium dioxide particles in an aqueous solution containing palladium ions (Pd 2+ ), and ultraviolet rays in the titanium dioxide particles. And a step of depositing metallic palladium on the surface of titanium dioxide.

請求項5に記載された発明に係る機能性光触媒の製造法は、請求項5で得られた得られた機能性光触媒をゼオライトに吸着し、吸着させたゼオライトをセメント及び水を混練した固定化バインダー、又は、フェライト系磁性体鉄、コバルト、チタンを始めとする金属酸化物、ガラス又は樹脂を焼成したセラミックからなる固定化バインダーに固定する工程を更に備えたことを特徴とする方法である。   The method for producing a functional photocatalyst according to the invention described in claim 5 is to immobilize the obtained functional photocatalyst obtained in claim 5 on zeolite and knead the adsorbed zeolite with cement and water. The method further comprises a step of fixing a binder, or a metal oxide such as ferritic magnetic iron, cobalt, and titanium, glass or resin to an immobilized binder made of fired ceramic.

本発明は、夜間、昼間の区別なく環境汚染物質の分解・浄化を可能にして処理効率を著しく増加することができる。また、この機能性光触媒を利用して作る環境汚染物質の分解・浄化装置を得ることができる。更に、この機能性光触媒の製造方法を得ることができるという効果がある。   The present invention makes it possible to decompose and purify environmental pollutants without distinguishing between nighttime and daytime, thereby significantly increasing the treatment efficiency. In addition, a device for decomposing and purifying environmental pollutants made using this functional photocatalyst can be obtained. Furthermore, there is an effect that a method for producing this functional photocatalyst can be obtained.

本発明においては、光触媒性(アナターゼ型)二酸化チタン粒子の表面に、パラジウムイオン(Pd2+)水溶液由来の金属パラジウムを析出させてなるものである。これにより、夜間、昼間の区別なく環境汚染物質の分解・浄化を可能にして処理効率を著しく増加することができる。 In the present invention, metallic palladium derived from an aqueous palladium ion (Pd 2+ ) solution is deposited on the surface of photocatalytic (anatase type) titanium dioxide particles. As a result, it is possible to decompose and purify environmental pollutants without distinguishing between night and daytime, thereby significantly increasing the processing efficiency.

即ち、パラジウム微細粉は素手で触れると火傷するほど活性に優れ、体積の800倍余の水素を吸蔵して還元性を高めて吐出する。例えば、触媒として自動車の排気に包有する一酸化炭素、窒素酸化物、及び炭化水素を、無害な窒素、二酸化炭素、水に変化して排出する。一方、パラジウムイオン(Pd2+)水溶液に二酸化チタン(TiO )を漬浸して、撹拌しながら紫外線を照射する操作を行うことにより、電子を発生して二酸化チタンの表面にはパラジウム金属が析出される。 That is, the fine palladium powder is more active as it burns when touched with bare hands, occludes more than 800 times the volume of hydrogen, and discharges it with improved reducibility. For example, carbon monoxide, nitrogen oxides, and hydrocarbons contained in automobile exhaust as a catalyst are converted into harmless nitrogen, carbon dioxide, and water before being discharged. On the other hand, by immersing titanium dioxide (TiO 2 ) in an aqueous palladium ion (Pd 2+ ) solution and irradiating with ultraviolet rays while stirring, electrons are generated and palladium metal is deposited on the surface of titanium dioxide. The

本発明の表面にパラジウム金属小片が析出された二酸化チタンは、紫外線照射により光触媒として作用する。また、紫外線照射の得られない場合にはパラジウムが触媒として作用して環境汚染物質の分解・浄化に機能する。これによって太陽光、すなわち、紫外線の照射の有無に係わらず環境汚染物質の分解・浄化を可能とする。結果として、機能性光触媒の処理効率、処理時間を倍増して、その経済効果に計り知れぬ効果が期待できる。   Titanium dioxide having palladium metal pieces deposited on the surface of the present invention acts as a photocatalyst when irradiated with ultraviolet rays. When ultraviolet irradiation cannot be obtained, palladium acts as a catalyst and functions to decompose and purify environmental pollutants. This makes it possible to decompose and purify environmental pollutants regardless of the presence or absence of irradiation with sunlight, that is, ultraviolet rays. As a result, the processing efficiency and processing time of the functional photocatalyst can be doubled, and an unexpected effect can be expected from its economic effect.

本発明でのパラジウムの析出の程度は、紫外線照射の得られない場合にパラジウムが環境汚染物質の分解・浄化するに充分な活性酸素を補完する程度で足りる。尚、二酸化チタンの全表面を被覆して析出させると、紫外線が照射された場合に二酸化チタンの光触媒作用を阻害するために好ましくはない。好ましい析出としては、経験的ではあるが、二酸化チタン粒子の表面をまばらに被覆する程度、目視的に全表面積の15〜30%程度の析出で充分である。   The degree of deposition of palladium in the present invention is sufficient if palladium is supplemented with sufficient active oxygen to decompose and purify environmental pollutants when UV irradiation cannot be obtained. In addition, it is not preferable to coat and deposit the entire surface of titanium dioxide because it inhibits the photocatalytic action of titanium dioxide when irradiated with ultraviolet rays. As a preferable precipitation, although it is empirical, it is sufficient to deposit the surface of the titanium dioxide particles sparsely, that is, about 15 to 30% of the total surface area visually.

本発明の機能性光触媒は、殊更に微細サイズに揃える必要はなく、一般化学処理でえられる不揃いなサイズでも足りる。しかしながら、パラジウムイオン水溶液に浸漬した微細なサイズの粉粒をそのままに使用するのでは、水分を包有して粘着して機能性光触媒として充分に機能しないため、使用に先立って乾燥する必要があった。一方、二酸化チタンの紫外線照射により発生する活性酸素は、水より有機物質の分解を容易にする。そのため、有機物質は、二酸化チタンの固定化用バインダーとして不適とされてきた。しかし、フッ素系樹脂は有機物質であるが、二酸化チタンのバインダーとして特異的な耐性が確認されており、格別な柔軟性を必要とする用途において、例えば、劣化に際して取り替える条件で機能性光触媒シートのバインダーとして使用することも可能である。従って、本発明の好ましい態様としては、粒子状触媒を吸着したゼオライトと、バインダーとしてのフッ素系樹脂とを混練してシート状に成形してこれを抗酸化シートとしてなるものを開示する。   The functional photocatalyst of the present invention does not need to be particularly finely sized, and may be an irregular size obtained by general chemical treatment. However, if the fine particles soaked in an aqueous palladium ion solution are used as they are, they do not function sufficiently as functional photocatalysts because they contain moisture and adhere, so it is necessary to dry them before use. It was. On the other hand, active oxygen generated by ultraviolet irradiation of titanium dioxide facilitates decomposition of organic substances than water. Therefore, organic substances have been made unsuitable as binders for immobilizing titanium dioxide. However, although the fluororesin is an organic substance, specific resistance as a binder of titanium dioxide has been confirmed, and in applications that require exceptional flexibility, for example, the functional photocatalytic sheet can be used under the condition that it is replaced upon deterioration. It can also be used as a binder. Accordingly, as a preferred embodiment of the present invention, there is disclosed a material in which a zeolite adsorbed with a particulate catalyst and a fluorine resin as a binder are kneaded and formed into a sheet shape to form an antioxidant sheet.

また、二酸化チタンの固定用バインダーとしては、例えば、セメント、水で混練して固定しても、また、ガラス、樹脂、並びに金属酸化物を焼成したセラミックを以て固定を図っても、更に、ゼオライ卜を配合して二酸化チタンとの接触面積を拡大したとしても、紫外線の照射により発生した活性酸素並びに外部から取り入れた汚染物質が混交して作用する場を得て、充分に機能すると考えられる。従って、本発明の好ましい別の態様としては、粒子状触媒を吸着したゼオライトを、セメント及び水を混練した固定化バインダー、又は、フェライト系磁性体鉄、コバルト、チタンを始めとする金属酸化物、ガラス又は樹脂を焼成したセラミックからなる固定化バインダーに固定してなるものを開示する。   In addition, as a binder for fixing titanium dioxide, for example, it may be fixed by kneading with cement or water, or may be fixed with a ceramic obtained by firing glass, resin, and metal oxide. Even if the contact area with titanium dioxide is increased by blending, the active oxygen generated by the irradiation of ultraviolet rays and the contaminants taken in from the outside are mixed and acted, so that it is considered to function sufficiently. Therefore, as another preferred embodiment of the present invention, the zeolite adsorbed with the particulate catalyst is a fixed binder in which cement and water are kneaded, or metal oxides such as ferritic magnetic iron, cobalt, and titanium, Disclosed is a glass or resin fixed to a fixed binder made of fired ceramic.

本発明では、機能性光触媒を用いた処理装置として、紫外線灯と;この紫外線灯を中央としてその周囲を囲む紫外線透過材からなる内周壁と、この内周壁と同心円状の紫外線透過材からなる外周壁と、これら内周壁と外周壁との両端部を閉塞する一対の蓋部とで囲まれた処理室と;一方の蓋部に形成された汚染流体を処理室に導く取入口と;他方の蓋部に形成された処理流体を処理室から取り出す取出口と;前記処理室内に収納される請求項1に記載の機能性光触媒、又は、請求項2に記載の固定化機能性光触媒の機能性光触媒材と;を備え、外部から太陽光及び/又は内部から紫外線灯の紫外線を機能性光触媒材に照射しつつ汚染流体を取入口から取出口へと流通させるものである。   In the present invention, as a treatment apparatus using a functional photocatalyst, an ultraviolet lamp; an inner peripheral wall made of an ultraviolet transmitting material surrounding the ultraviolet lamp as a center, and an outer periphery made of an ultraviolet transmitting material concentric with the inner peripheral wall A processing chamber surrounded by a wall and a pair of lid portions closing both ends of the inner peripheral wall and the outer peripheral wall; an intake port for introducing the contaminated fluid formed in one lid portion to the processing chamber; An outlet for removing the processing fluid formed in the lid from the processing chamber; and the functional photocatalyst according to claim 1 or the functionality of the immobilized functional photocatalyst according to claim 2 accommodated in the processing chamber. A photocatalyst material; and circulates the contaminated fluid from the inlet to the outlet while irradiating the functional photocatalyst with sunlight from the outside and / or ultraviolet rays from an ultraviolet lamp from the inside.

紫外線光を照射された機能性光触媒からヒドロキシルラジカル、及びスーパオキサイドアニオンなど、いわゆる活性酸素を発生し、含有する汚染有機物質に直接に作用し、酸化、または、分解・浄化する。これらの反応は水(4HO )を還元する反応(4H→2H)と酸化する反応(4OH→O+2HO)から始まり、光を吸収することで二酸化チタンが電子と正孔とを発生させ、発生された電子が酸素と結合するとスーパオキシダント(O )を発生し、プロトン(H )と結びつくと水素原子を発生する。しかし、酸素とプロトンの親和力からスーパオキシダントの生成が起こりやすく、当然にプロトンが生成され、酸素が存在しない場合に水素が生成する。 So-called active oxygen such as hydroxyl radical and superoxide anion is generated from the functional photocatalyst irradiated with ultraviolet light, and directly acts on the contaminating organic substances to be oxidized, decomposed or purified. These reactions start with a reaction that reduces water (4H 2 O) (4H + → 2H 2 ) and a reaction that oxidizes (4OH → O 2 + 2H 2 O). By absorbing light, titanium dioxide becomes electrons and holes. When the generated electrons are combined with oxygen, super oxidants (O 2 ) are generated, and when they are combined with protons (H + ), hydrogen atoms are generated. However, super oxidants are easily generated from the affinity between oxygen and protons. Naturally, protons are generated, and hydrogen is generated in the absence of oxygen.

一方、機能性光触媒において、電子が酸素(O )と結合するとスーパオキシド(O )を発生し、プロトン(H )と結合して水素原子(H)となる。しかし、酸素とプロトンとの電子親和力から考えるとスーパオキシドの方が発生し易く、酸素の存在しない場合に水素が発生する。 On the other hand, in the functional photocatalyst, when electrons are combined with oxygen (O 2 ), superoxide (O 2 ) is generated and combined with protons (H + ) to form hydrogen atoms (H). However, considering the electron affinity between oxygen and proton, superoxide is more likely to be generated, and hydrogen is generated in the absence of oxygen.

一方、有機物は水より酸化されやすく、濃度が高くなると、正孔が有機物の酸化に使用される確率が高まり、キャリア同士の再結合の割合が減少する。このように正孔が充分に消費される条件下で還元サイトにおける酸素分子への電子の移行が光触媒反応全体の律速になると考えられる。つまり、電子を酸素分子へ移行し易くすることで、光触媒反応の効率を高めて酸化反応を進めるのに必要な反応性の高いヒドロキシルラジカル、スーパオキサイドアニオンなど、いわゆる活性酸素が作り出され、環境汚染物質の分解・浄化が速まると考えられる。   On the other hand, the organic matter is more easily oxidized than water, and when the concentration is increased, the probability that holes are used for the oxidation of the organic matter increases, and the recombination rate between carriers decreases. Thus, it is considered that the transfer of electrons to oxygen molecules at the reduction site becomes the rate-determining factor of the entire photocatalytic reaction under the condition that holes are sufficiently consumed. In other words, by facilitating the transfer of electrons to oxygen molecules, so-called active oxygen, such as highly reactive hydroxyl radicals and superoxide anions, required to increase the efficiency of photocatalytic reactions and proceed with oxidation reactions, is created, causing environmental pollution. It is thought that the decomposition and purification of substances will be accelerated.

結果として、機能性光触媒の大きな特徴は励起電子の持つ還元力より正孔の持つ酸化力が強力であり、機能性光触媒の表面に存在する吸着水は正孔によって酸化され、酸化力の高いヒドロキシラジカルとなり、これが有機物と反応する。さらに酸素が存在する場合、有機物の中間体のラジカルと酸素分子が連鎖反応を起こして有機物を分解して最終的に水と二酸化炭素になる。   As a result, the major feature of functional photocatalysts is that the oxidizing power of holes is stronger than the reducing power of excited electrons, and the adsorbed water present on the surface of the functional photocatalyst is oxidized by the holes, resulting in a highly oxidizing hydroxy group. It becomes a radical, which reacts with organic matter. Further, when oxygen is present, radicals of the organic intermediate and oxygen molecules cause a chain reaction to decompose the organic matter and finally become water and carbon dioxide.

大気に含有する二酸化窒素は太陽の光を受けて一酸化窒素と原子状酸素に分離して酸素分子と結合してオゾンを形成する。しかも、形成されたオゾンは直ちに一酸化窒素と作用し、二酸化窒素と酸素分子を生成するので窒素酸化物のみの存在下でオゾンや、二酸化窒素の総量が増加することなく、また、水または吸着物を流通させることにより酸化窒素は硝酸、または亜硝酸となり、溶解、吸着されて大気から除去処理することが可能である。   Nitrogen dioxide contained in the atmosphere receives sunlight and separates into nitrogen monoxide and atomic oxygen and combines with oxygen molecules to form ozone. Moreover, the formed ozone immediately reacts with nitric oxide to form nitrogen dioxide and oxygen molecules, so that in the presence of only nitrogen oxides, ozone or the total amount of nitrogen dioxide does not increase, and water or adsorption Nitrogen oxide is converted into nitric acid or nitrous acid by circulating the product, and is dissolved and adsorbed to be removed from the atmosphere.

ところで、これら一連の作用は大気中における光触媒、並びに触媒の存在下における反応であり、スーパオキサイドアニオンが大きく係わると考えられる。このように正孔が充分に消費される条件下で還元サイトにおける酸素分子への電子の移行過程が光触媒反応全体の反応を決め、電子の酸素分子への移行をし易くすることで光触媒反応の効率を高めることができる。これに関して機能性光触媒、二酸化チタン、並びに触媒、パラジウムを併用することで解決可能であると考える。なお、大気中における硫黄酸化物に関しても、窒素酸化物の場合と同様の原理で処理することは可能であり、これを大気中から除去することも可能である。   By the way, it is considered that these series of actions are a photocatalyst in the atmosphere and a reaction in the presence of the catalyst, and superoxide anions are largely involved. In this way, the process of electron transfer to oxygen molecules at the reduction site under the conditions where holes are sufficiently consumed determines the overall reaction of the photocatalytic reaction and facilitates the transfer of electrons to oxygen molecules. Efficiency can be increased. In this regard, it can be solved by using a functional photocatalyst, titanium dioxide, a catalyst, and palladium in combination. Note that sulfur oxides in the atmosphere can be treated on the same principle as in the case of nitrogen oxides, and can be removed from the atmosphere.

従来より、浴室、便所における汚れの主なものとして床面タイルや、便器にこびりつく石鹸、垢などの脂肪と用水に含まれるカルシウム、マグネシウムイオンとが結合してできる金属石鹸、または、尿素の雑菌に分解されてできる有機物が挙げられる。これらの分解、除去を図ったものとして光触媒タイルがある。光触媒タイルの多くは表面に二酸化チタンを焼き付け、その紫外線照射によって発生する活性酸素によって金属石鹸、並びに尿素分解物などの分解・除去を図っている。しかし、浴室、便所内の施設、配管は必ずしも、定方向から入射する太陽光を意識したものでなく、それぞれの目的、用途で設置、整備するため便器、卜ラップ内まで紫外線が到達する訳でなく、さらに、直置の事物などは太陽光、すなわち紫外線を完全に遮り、この部分に焼き付けられた二酸化チタンは機能せず、金属石鹸、尿素分解有機物等の汚れ分解・浄化の差異となると考えられる。   Traditionally, floor tiles, soap sticking to toilets, fats such as dirt, calcium and magnesium ions in water, and soaps of urea, as the main stains in bathrooms and toilets, or urea bacteria Organic substances that can be decomposed into A photocatalyst tile is one of these disassembled and removed. Many of the photocatalytic tiles are baked with titanium dioxide on the surface, and metal oxides and urea decomposition products are decomposed and removed by active oxygen generated by the ultraviolet irradiation. However, bathrooms, toilet facilities, and pipes are not necessarily conscious of sunlight incident from a certain direction, and ultraviolet rays reach the toilet bowls and tub wraps for installation and maintenance for each purpose and application. In addition, things that are placed directly block sunlight, that is, ultraviolet rays completely, and titanium dioxide baked on this part does not function, and it is considered that there is a difference in soil decomposition and purification such as metal soap and urea decomposition organic matter It is done.

これに対して、本発明の機能性光触媒を塗布、焼き付けたタイルでは、紫外線照射の有無に係わらずヒドロキシルラジカル、およびスーパオキサイドアニオンなど、一連の活性酸素を発生して有機汚染物を分解・浄化するので、全面の汚染物質を一様に分解・浄化して清浄を保持することができる。   In contrast, tiles coated and baked with the functional photocatalyst of the present invention generate a series of active oxygens such as hydroxyl radicals and superoxide anions with or without UV irradiation to decompose and purify organic contaminants. Therefore, it is possible to maintain cleanliness by uniformly decomposing and purifying the pollutants on the entire surface.

実施例1.機能性光触媒の製造
パラジウムイオン(Pd2+)を含む水溶液中に二酸化チタン粒子を浸漬し、この二酸化チタン微粒子に紫外線を照射して二酸化チタン表面に金属パラジウムを析出させて機能性光触媒を得た。尚、安定して進行させるには、ホスフォン酸塩を還元剤とし、パラジウムイオン(Pd2+)の錯化剤としてエチレンジアミンを、更にチオジグリコール酸を安定剤として添加することが有効である。この場合、析出速度に大きく影響する因子は、(Pd2+)の濃度と浴温であり、析出速度は(Pd2+)の濃度に比例して増大し、浴温の高さに伴い大きくなる。また、リンの共沈が見られる場合、還元剤であるホスフォン酸塩濃度の0.2乗に比例して増大し、pHが高いほどその値は低くなる。ちなみに、本発明においてはpH6〜8、浴温50℃において実施した。
Example 1. Production of Functional Photocatalyst Titanium dioxide particles were immersed in an aqueous solution containing palladium ions (Pd 2+ ), and the titanium dioxide fine particles were irradiated with ultraviolet rays to deposit metallic palladium on the titanium dioxide surface to obtain a functional photocatalyst. In order to proceed stably, it is effective to add phosphonate as a reducing agent, ethylenediamine as a complexing agent of palladium ion (Pd 2+ ), and thiodiglycolic acid as a stabilizer. In this case, the factors that greatly affect the deposition rate are the concentration of (Pd 2+ ) and the bath temperature, and the deposition rate increases in proportion to the concentration of (Pd 2+ ), and increases with increasing bath temperature. Moreover, when the coprecipitation of phosphorus is seen, it increases in proportion to the 0.2th power of the phosphonate concentration as a reducing agent, and the value decreases as the pH increases. Incidentally, in this invention, it implemented at pH 6-8 and bath temperature 50 degreeC.

実施例2.分解・浄化装置
図1は環境汚染物質を分解・浄化する機能性光触媒処理装置の一実施形態を示す説明図である。図において、機能性光触媒処理装置1は大、小2個のパイレックス製(商品名)ガラス円筒の中心線と両端とを同一に揃え、両端部に頂部蓋6と低部蓋4とで密閉して、大・小円筒の間の空間である光触媒処理室2と、小円筒空間である紫外線灯室3とを形成している。
Example 2 Decomposition / Purification Device FIG. 1 is an explanatory view showing an embodiment of a functional photocatalyst treatment device for decomposing / purifying environmental pollutants. In the figure, the functional photocatalyst treatment apparatus 1 has two large and small Pyrex (trade name) glass cylinders with the same center line and both ends, and is sealed with a top lid 6 and a bottom lid 4 at both ends. Thus, a photocatalyst processing chamber 2 that is a space between the large and small cylinders and an ultraviolet lamp chamber 3 that is a small cylindrical space are formed.

光触媒処理室2には、球状に加工された固定化バインダーに機能性光触媒を吸着した天然ゼオライト粉末を固定した機能性光触媒ボール10が収納されている。紫外線灯室3には、人工紫外線灯12が設置されている。汚染物質を含有する流体物の処理に際しては、底部蓋4の汚染流体取入口5から汚染物質を含有する液体又は気体の流体を導入して頂部蓋6の処理流体取出口7へと流通させ、外部から紫外線、内部から人工紫外線の照射で機能性光触媒から発生した活性酸素、並びに流通される汚染流体を合わせてゼオライト内部空間に誘引して、汚染有機物質を分解・浄化する。   The photocatalyst treatment chamber 2 houses a functional photocatalyst ball 10 in which a natural zeolite powder having a functional photocatalyst adsorbed thereon is fixed to a fixed binder processed into a spherical shape. An artificial ultraviolet lamp 12 is installed in the ultraviolet lamp chamber 3. When processing the fluid containing the contaminant, a liquid or gas fluid containing the contaminant is introduced from the contaminated fluid intake 5 of the bottom lid 4 and circulated to the treatment fluid outlet 7 of the top lid 6. Active oxygen generated from the functional photocatalyst by irradiation of ultraviolet rays from the outside and artificial ultraviolet rays from the inside, and the contaminated fluid to be circulated together are attracted to the zeolite internal space to decompose and purify contaminated organic substances.

機能性光触媒ボール10は、ステンレス製の金網篭(図示せず)等に収納されて処理室2内に保持されている。ちなみに、ステンレス金網篭は、処理室2の内・外周に合わせて調整し、機能性光触媒ボール10を盛り込んで処理室2に収納する。尚、汚染流体の様態によって機能性光触媒ボール10の代わりに機能性光触媒シートを使用することも可能である。   The functional photocatalyst ball 10 is accommodated in a stainless steel wire mesh cage (not shown) or the like and held in the processing chamber 2. Incidentally, the stainless steel wire mesh cage is adjusted according to the inner and outer circumferences of the processing chamber 2, and the functional photocatalyst ball 10 is incorporated and stored in the processing chamber 2. A functional photocatalyst sheet can be used in place of the functional photocatalyst ball 10 depending on the state of the contaminated fluid.

汚染物質に汚染された流体は、低部蓋4の取入口5から処理室2へ取り込まれ、機能性光触媒ボール10と接触し、後続する汚染流体により水位を上げて頂部蓋6の取出口7から排出される。   The fluid contaminated with the pollutant is taken into the processing chamber 2 from the intake 5 of the lower lid 4, comes into contact with the functional photocatalyst ball 10, the water level is raised by the subsequent contaminated fluid, and the outlet 7 of the top lid 6. Discharged from.

大気を一定の容器に採取してそれに含有される一酸化窒素、二酸化窒素、多酸化窒素のブランク値を明らかにし、次いで図1に示す環境汚染物質の分解・浄化装置を繰り返し循環、経由させた後、分解・浄化された空気に含有される一酸化窒素、二酸化窒素、多酸化窒素の値を測定した。ちなみに、測定箇所の大気に含有される窒化酸化物、並びに分解・浄化の結果は下記の通りであった。   The air was collected in a fixed container, the blank values of nitrogen monoxide, nitrogen dioxide, and nitric oxide contained in it were clarified, and then the environmental pollutant decomposition and purification device shown in FIG. 1 was repeatedly circulated and passed through. Thereafter, the values of nitric oxide, nitrogen dioxide and nitric oxide contained in the decomposed and purified air were measured. Incidentally, the nitrided oxide contained in the air at the measurement location, and the results of decomposition and purification were as follows.

自動車が頻繁に往復する街路側で外気を採取し、下記のブランク値をえた。一酸化窒素、二酸化窒素、多酸化窒素のブランク値は、各4.6〜4.9、0.3〜0.5、4.9〜5.6ppmであった。これに対して、この外気を機能性光触媒ボールを分解・浄化剤とした環境汚染物質分解・浄化処理装置を使用して24時間連続循環して、残留する汚染物質、一酸化窒素、多酸化窒素を測定した。その結果、各々の値は、1.5〜1.7、0.1〜0.3、1.6〜1.9ppmであった。この値はブランク値の約3分の1程度に相当し、考えようによって効率が悪いように考えられる。しかし、連続して減少する汚染物質をこの程度にまで分解・浄化したことは有用で、充分に実用に耐えると考えられる。   Outside air was sampled on the street side where automobiles reciprocate frequently, and the following blank values were obtained. The blank values of nitric oxide, nitrogen dioxide, and nitric oxide were 4.6 to 4.9, 0.3 to 0.5, and 4.9 to 5.6 ppm, respectively. On the other hand, this outside air is continuously circulated for 24 hours by using an environmental pollutant decomposition / purification treatment device using a functional photocatalyst ball as a decomposition / purification agent, and residual pollutants, nitric oxide, nitric oxide Was measured. As a result, each value was 1.5-1.7, 0.1-0.3, 1.6-1.9 ppm. This value corresponds to about one third of the blank value, and it seems that the efficiency is poor depending on the idea. However, it is useful to decompose and purify the pollutants that continuously decrease to this extent, and it is considered to be sufficiently practical.

実施例3.
実施例1で得られた機能性光触媒を天然ゼオライト粉末で吸着した後、これをフッ素系樹脂としてポリテトラフルオロエチレンの水性ディスパージョン中に、固形分比で40重量%となるように混合し、ペースト状の混練物を得た。この混練物を120℃で乾燥して機能性光触媒を40重量%を含む含有した触媒シートを得た。(実際のものとの差異をご確認下さい)
Example 3
After adsorbing the functional photocatalyst obtained in Example 1 with natural zeolite powder, this was mixed in an aqueous dispersion of polytetrafluoroethylene as a fluororesin so as to have a solid content ratio of 40% by weight, A paste-like kneaded product was obtained. The kneaded product was dried at 120 ° C. to obtain a catalyst sheet containing 40% by weight of a functional photocatalyst. (Please check the difference from the actual one)

得られた触媒シートを用いて汚染物質の分解・浄化効果を測定した。図2は機能性光触媒含有(40%)のセラミックソールを200cm 使用して作った汚染物質分解・浄化装置内を流量500cm/minに対して1ppmの割合で一酸化窒素(NO)を混合し、一週間連続的に連通して得た結果である。 The resulting catalyst sheet was used to measure the effect of pollutant decomposition and purification. Fig. 2 shows the mixing of nitrogen monoxide (NO) at a rate of 1 ppm for a flow rate of 500 cm 3 / min in a pollutant decomposition / purification device made using 200 cm 2 of ceramic sole containing functional photocatalyst (40%). The results obtained through continuous communication for one week.

図に示す通り、一週間の間に当然に紫外線の照射する昼間と、紫外線照射のない夜間とが交互に繰り返されていたが、酸化窒素の分解・浄化曲線は階段曲線とはならず、平滑的な曲線となった。これは機能性光触媒が昼夜の別なく、連続的に汚染物質の分解・浄化を果たしたことを示していると考えられる。ちなみに、酸化窒素供給濃度から酸化窒素分解・浄化濃度を差し引いた値は一酸化窒素の処理量に相当する。   As shown in the figure, during the week, naturally, the daytime with UV irradiation and the night without UV irradiation were repeated alternately, but the decomposition and purification curves of nitric oxide were not stepped curves and were smooth. Curve. This is considered to indicate that the functional photocatalyst continuously decomposed and purified the pollutants regardless of day or night. Incidentally, the value obtained by subtracting the nitrogen oxide decomposition / purification concentration from the nitrogen oxide supply concentration corresponds to the treatment amount of nitric oxide.

環境汚染物質を分解・浄化する機能性光触媒処理装置の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the functional photocatalyst processing apparatus which decomposes | disassembles and purifies an environmental pollutant. 本発明の触媒シートの一酸化窒素の分解結果を示す説明図である。It is explanatory drawing which shows the decomposition | disassembly result of the nitric oxide of the catalyst sheet | seat of this invention.

符号の説明Explanation of symbols

1…機能性触媒処理装置
2…処理室
3…光源室
4…底部蓋
5…取人口
6…頂部蓋
7…排出口
10…光触媒ボール(機能性光触媒)
DESCRIPTION OF SYMBOLS 1 ... Functional catalyst processing apparatus 2 ... Processing chamber 3 ... Light source chamber 4 ... Bottom cover 5 ... Population 6 ... Top cover 7 ... Outlet 10 ... Photocatalyst ball (functional photocatalyst)

Claims (5)

光触媒性(アナターゼ型)二酸化チタン粒子の表面に、パラジウムイオン(Pd2+)水溶液由来の金属パラジウムが析出されていることを特徴とする機能性光触媒。 A functional photocatalyst characterized in that metal palladium derived from an aqueous palladium ion (Pd 2+ ) solution is deposited on the surface of photocatalytic (anatase type) titanium dioxide particles. 請求項1に記載の機能性光触媒を吸着したゼオライトが、セメント及び水を混練した固定化バインダー、又は、フェライト系磁性体鉄、コバルト、チタンを始めとする金属酸化物、ガラス又は樹脂を焼成したセラミックからなる固定化バインダーに固定されていることを特徴とする固定化機能性光触媒。   The zeolite adsorbed with the functional photocatalyst according to claim 1 baked an immobilized binder in which cement and water are kneaded, or a metal oxide such as ferritic magnetic iron, cobalt, and titanium, glass or resin. An immobilized functional photocatalyst characterized by being fixed to an immobilized binder made of ceramic. 紫外線灯と、
この紫外線灯を中央としてその周囲を囲む紫外線透過材からなる内周壁と、この内周壁と同心円状の紫外線透過材からなる外周壁と、これら内周壁と外周壁との両端部を閉塞する一対の蓋部とで囲まれた処理室と、
一方の蓋部に形成された汚染流体を処理室に導く取入口と、
他方の蓋部に形成された処理流体を処理室から取り出す取出口と、
前記処理室内に収納される請求項1に記載の機能性光触媒、又は、請求項2に記載の固定化機能性光触媒の機能性光触媒材とを備え、
外部から太陽光及び/又は内部から紫外線灯の紫外線を機能性光触媒材に照射しつつ汚染流体を取入口から取出口へと流通させることを特徴とする機能性光触媒処理装置。
With UV light,
An inner peripheral wall made of an ultraviolet transmitting material surrounding the ultraviolet lamp at the center, an outer peripheral wall made of an ultraviolet transmitting material concentric with the inner peripheral wall, and a pair of plugs closing both ends of the inner peripheral wall and the outer peripheral wall A processing chamber surrounded by a lid,
An intake for guiding the contaminated fluid formed on one lid to the processing chamber;
An outlet for removing the processing fluid formed on the other lid from the processing chamber;
The functional photocatalyst according to claim 1 housed in the processing chamber, or the functional photocatalyst material of the immobilized functional photocatalyst according to claim 2,
A functional photocatalyst treatment apparatus that circulates a contaminated fluid from an inlet to an outlet while irradiating the functional photocatalyst material with sunlight from the outside and / or ultraviolet rays from an ultraviolet lamp from the inside.
パラジウムイオン(Pd2+)を含む水溶液中に光触媒性(アナターゼ型)二酸化チタン粒子を浸漬する工程と、この二酸化チタン粒子に紫外線を照射して二酸化チタン表面に金属パラジウムを析出させる工程とを備えたことを特徴とする機能性光触媒の製造法。 A step of immersing photocatalytic (anatase type) titanium dioxide particles in an aqueous solution containing palladium ions (Pd 2+ ) and a step of irradiating the titanium dioxide particles with ultraviolet rays to deposit metallic palladium on the titanium dioxide surface were provided. The manufacturing method of the functional photocatalyst characterized by the above-mentioned. 得られた機能性光触媒をゼオライトに吸着し、吸着させたゼオライトをセメント及び水を混練した固定化バインダー、又は、フェライト系磁性体鉄、コバルト、チタンを始めとする金属酸化物、ガラス又は樹脂を焼成したセラミックからなる固定化バインダーに固定する工程を更に備えたことを特徴とする請求項4に記載の機能性光触媒の製造法。
The obtained functional photocatalyst is adsorbed on zeolite, and the adsorbed zeolite is kneaded with cement and water, or a fixed binder, or ferritic magnetic iron, cobalt, titanium and other metal oxides, glass or resin. The method for producing a functional photocatalyst according to claim 4, further comprising a step of fixing to a fixed binder made of a fired ceramic.
JP2005107419A 2005-04-04 2005-04-04 Functional photocatalyst and its production method Pending JP2006281156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107419A JP2006281156A (en) 2005-04-04 2005-04-04 Functional photocatalyst and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107419A JP2006281156A (en) 2005-04-04 2005-04-04 Functional photocatalyst and its production method

Publications (1)

Publication Number Publication Date
JP2006281156A true JP2006281156A (en) 2006-10-19

Family

ID=37403609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107419A Pending JP2006281156A (en) 2005-04-04 2005-04-04 Functional photocatalyst and its production method

Country Status (1)

Country Link
JP (1) JP2006281156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284706B1 (en) 2010-12-21 2013-07-10 (주)유아이피 Environment-friendly material for pollutant decomposition and sterilization, and method for producing the same
KR101347724B1 (en) 2012-04-10 2014-01-06 (주)디오 Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials
JP6357712B1 (en) * 2017-06-05 2018-07-18 株式会社ネイチャー Water purification device using photocatalytic reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284706B1 (en) 2010-12-21 2013-07-10 (주)유아이피 Environment-friendly material for pollutant decomposition and sterilization, and method for producing the same
KR101347724B1 (en) 2012-04-10 2014-01-06 (주)디오 Method For Preparing Multi-Functional Filler Useful For Wall Finishing Materials
JP6357712B1 (en) * 2017-06-05 2018-07-18 株式会社ネイチャー Water purification device using photocatalytic reaction
WO2018225339A1 (en) * 2017-06-05 2018-12-13 株式会社ネイチャー Water purification device utilizing photocatalytic reaction
JP2018202322A (en) * 2017-06-05 2018-12-27 株式会社ネイチャー Water purification device utilizing photocatalytic reaction

Similar Documents

Publication Publication Date Title
Shavisi et al. Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst
Chen et al. Heterogeneous photocatalysis in environmental remediation
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
CN104039450B (en) Light-catalysed metal oxide nano-material, pass through H2the purposes that the manufacture method that-plasma carries out processing, the debirs in water purify
CN104628200B (en) A kind of method utilizing photoelectric combination technical finesse organic wastewater
Mansouri et al. Study of Methyl tert-butyl Ether (MTBE) Photocatalytic Degradation with UV/TiO 2-ZnO-CuO Nanoparticles.
NZ514797A (en) A photocatalyst
WO2007053585A2 (en) Method and apparatus for producing reactive oxidizing species
CN104445498A (en) Device and method for treating mercury-containing wastewater through photocatalytic adsorption
CN102463109A (en) Novel activated carbon fiber with nano-scale photocatalyst
JP2006281156A (en) Functional photocatalyst and its production method
KR100383035B1 (en) Aquarium purifier using photocatalytic decomposer
CN212309083U (en) Air purifier composed of photocatalyst filter screen
KR20090090194A (en) Photocatalyst, synthetic method and its application for wastewater treatment
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
TW201711965A (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP3118558B2 (en) Water treatment catalyst and water treatment method
CN101209412A (en) Titanium dioxide sol for preparing broad-spectrum photocatalytic material and preparation method thereof
Chopade et al. Chemical bath assisted construction of CuO/BiVO4 pn heterojunction photocatalyst for visible light driven rapid removal of MB and Cr (VI)
Gatto Photocatalytic activity assessment of micro-sized TiO2 used as powders and as starting material for porcelain gres tiles production
Sun et al. The low-cost and high-efficient photoreduction of Cr (VI) by oxalic acid synergized with the iron-loaded rice straw
Hashimoto et al. Decomposition of pesticides in water through the use of a slurry-type TiO2 water treatment apparatus
Rekhate et al. Photocatalytic ozonation of municipal wastewater for degradation of phenol using Fe doped TiO2 nanoparticles: optimization using RSM.
US20220288561A1 (en) Porous titania photocatalyst on quartz fibers and methods of using the same for chemical-free uv-aop in water treatment
Ding Removal of methyl mercaptan from foul gas by in-situ production of ferrate (VI) for odour control