KR101276957B1 - 원심 압축기의 임펠러 - Google Patents
원심 압축기의 임펠러 Download PDFInfo
- Publication number
- KR101276957B1 KR101276957B1 KR1020117031358A KR20117031358A KR101276957B1 KR 101276957 B1 KR101276957 B1 KR 101276957B1 KR 1020117031358 A KR1020117031358 A KR 1020117031358A KR 20117031358 A KR20117031358 A KR 20117031358A KR 101276957 B1 KR101276957 B1 KR 101276957B1
- Authority
- KR
- South Korea
- Prior art keywords
- blade
- pull
- inlet edge
- splitter
- impeller
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
본 발명은 스플리터 블레이드를 구비한 원심 압축기의 임펠러에 있어서, 풀 블레이드의 입구 단연의 선단부로부터의 누출 소용돌이에 대한 스플리터 블레이드의 입구 단연의 간섭을 회피하고, 고압력비, 고효율화를 달성하는 원심 압축기의 임펠러를 제공하는 것을 과제로 한다. 임펠러의 회전방향 후방측에 위치하는 후방측 풀 블레이드(5R)의 입구 단연(5a)으로부터 상기 후방측 풀 블레이드(5R)에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드(5F)에의 최소 간격을 형성하는 스로트(SR)의 중심 위치(P)와 상기 전방측 풀 블레이드(5F)의 입구 단연(5a)을 연결하여 형성되는 누출 소용돌이 라인(WL)보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 상기 스플리터 블레이드(7)의 입구 단연(7a)을 위치시켜 이루어지는 것을 특징으로 한다.
Description
본 발명은 차량용, 선박용 터보 차저 등에 이용되는 원심 압축기의 임펠러에 관한 것이며, 특히 서로 이웃하는 풀 블레이드(전체 날개) 사이에 마련되는 스플리터 블레이드(짧은 날개)의 날개 형상이며, 유체의 입구부의 날개 형상에 관한 것이다.
차량용, 선박용 터보 차저의 컴프레서부 등에 이용되는 원심 압축기는, 임펠러의 회전을 거쳐서 유체에 운동 에너지를 부여하는 동시에, 직경방향 외측으로 유체를 토출함으로써 원심력에 의한 압력 상승을 얻는 것이다. 이 원심 압축기는 넓은 운전 범위에 있어서 고압력비와 고효율화가 요구되기 때문에, 도 9에 도시하는 서로 이웃하는 풀 블레이드(전체 날개)(01)의 사이에 스플리터 블레이드(짧은 날개)(03)를 마련한 임펠러(임펠러)(05)가 자주 이용되는 동시에, 그 날개 형상에 대하여 여러 가지 방법이 고안되고 있다.
이 스플리터 블레이드(03)를 갖는 임펠러(05)는 도 9 및 도 10(도 9의 직경방향의 부분 단면도)에 도시하는 바와 같이, 풀 블레이드(01)와 스플리터 블레이드(03)가 허브(07)면상에 교대로 설치되지만, 일반적인 스플리터 블레이드(03)는 풀 블레이드(01)의 상류측을 단순히 절제한 형상으로 되어 있다.
이 일반적인 스플리터 블레이드(03)의 경우는, 도 11(도 10의 A-A선 단면도)과 같이, 풀 블레이드(01)의 입구 단연(LE1)보다 일정 거리 하류측에 스플리터 블레이드(03)의 입구 단연(LE2)이 위치하고, 출구 단연(TE)은 일치되도록 마련되며, 스플리터 블레이드(03)의 입구 단연의 날개각(θ)[입구 단연의 방향과 임펠러(05)의 축방향(G)이 이루는 각도로 나타냄]은 풀 블레이드(01) 사이의 유로를 흐르는 유체의 흐름 방향(F)과 동일하게 설정되어 있다.
그러나, 도 11과 같이, 스플리터 블레이드(03)의 입구 단연을 풀 블레이드(01) 사이의 둘레방향 중심 위치에서, 단순히 풀 블레이드(01)의 상류측을 절제한 형상으로 하여 스플리터 블레이드(03)를 설계하면, 스플리터 블레이드(03)의 양측에 형성되는 풀 블레이드(01)의 압력면측(Sa)의 스로트 면적(A1)과 부압면측(Sb)의 스로트 면적(A2)에, A1<A2의 차이가 생기므로, 각 유로의 유량에 불균일이 생겨, 유체를 균등 분배하는 것이 불가능하고, 날개 부하가 불균등하게 되어 유로 손실도 증가하여, 임펠러 효율의 향상을 방해할 수 있는 문제가 있었다. 또한, 스로트 면적은, 도 11과 같은 스플리터 블레이드의 입구 단연으로부터 풀 블레이드(01)의 압력면 또는 부압면까지의 최단 거리를 이루는 위치에 있어서의 단면적을 말한다.
그래서, 특허문헌 1(일본 특허 공개 제 1998-213094 호 공보)에 개시되어 있는 기술이 알려져 있으며, 이 특허문헌 1은 도 12와 같이, 스플리터 블레이드(09)의 입구 단연의 날개각을 θ+△θ로 크게 취하는[유체의 흐름 방향(F)에 대하여 △θ 크게 설정함] 것에 의해, 즉 풀 블레이드(01)의 부압면측(Sb)에 가깝게 함으로써, 스플리터 블레이드(09)의 양측 통로의 스로트 면적을 동일(A1=A2)하게 하는 방법이 고안되어 있다.
또한, 스플리터 블레이드의 입구 단부를 풀 블레이드의 부압면측으로 경사지게 한 것으로서 특허문헌 2(일본 특허 제 3876195 호 공보)에 대해서도 알려져 있다.
그러나, 상기 특허문헌 1(도 12)과 같이, 스플리터 블레이드(09)의 입구 단연의 날개각(θ)을 θ+△θ로 크게 취하는 것에 의해, 스플리터 블레이드(09)의 경사가 커진 전연 부분이나 풀 블레이드(01)의 부압면측(Sb)으로부터의 박리 흐름의 발생이 염려되는 동시에, 스플리터 블레이드(09)의 압력면측 및 부압면측의 양측 통로에서 스로트 면적을 동일(A1=A2)하게 해도, 상기 양측 통로에서 유속이 상위하는 것에 의해 유량의 균일화를 도모할 수 없게 되는 문제가 있었다.
즉, 스플리터 블레이드(09)의 양측, 즉 풀 블레이드(01)의 압력면측과 부압면측에서 유속이 상이하므로, 풀 블레이드(01) 사이에 들어온 유체는 주로 부압면측에 빠른 흐름이 모이는 분포가 되기 때문에, 스플리터 블레이드(09)의 양측 통로의 유로 단면적을 기하학적으로 동일하게 해도, 부압면측이 압력면측에 비교하여 유속이 빠른 만큼, 유량이 증가하여 각 유로의 유량에 불균일이 생겨, 유체를 균등 분배하는 것이 불가능하고, 날개 부하가 불균등하게 되며 유로 손실도 증가하여, 임펠러 효율의 향상을 방해할 수 있는 문제가 있었다.
그래서, 또한 특허문헌 3(일본 특허 공개 제 2002-332992 호 공보)에 개시되어 있는 기술이 알려져 있다. 이 특허문헌 3에서는, 도 13에 도시하는 바와 같이, 스플리터 블레이드(011)의 입구 단연의 날개각(θ)을 그대로 하고, 전연을 억지로 풀 블레이드(01)의 부압면측으로 기울여서 A1>A2로 하고 있다. 이것에 의해서, 스플리터 블레이드(011)의 양측 통로에 있어서의 유량의 균일화를 도모하고 있다.
그러나, 상기 특허문헌 1 내지 3의 모두, 블레이드(날개) 사이의 흐름이 풀 블레이드를 따라서 흐른다는 가정을 기초로, 스플리터 블레이드에 의해 분할되는 유로의 유량 배분에 착안하여, 날개 형상의 개량이 이루어지고 있다.
그러나, 특히 날개단 간극을 갖는 오픈형 임펠러의 경우에는, 흐름장은 복잡한 양상을 나타내고 있어, 이들 복잡한 내부 유동에 적합하지 않은 종래의 날개 형상에서는 결과적으로 충분한 임펠러 성능이 얻어지지 않고 있었다.
그 복잡한 내부 유동을 수치 해석에 의해 평가한 바, 풀 블레이드의 입구 단연의 선단부[날개의 허브면으로부터의 높이방향(케이싱측)의 선단부]로부터 발생하는 누출 소용돌이(leakage vortax)가 스플리터 블레이드의 입구 단연의 선단부[날개의 허브면으로부터의 높이방향(케이싱측)의 선단부] 근방에 도달하고 있는 것이 분명해졌다[도 8의 날개단 누출 흐름(W)의 소용돌이 흐름을 참조].
이 누출 소용돌이는 풀 블레이드를 따라서 흐르지 않고, 또한 이 누출 소용돌이는 저에너지 유체가 집적하는 개소이기 때문에, 이것이 스플리터 블레이드의 입구 단연에 간섭하면 박리나 소용돌이 구조의 발생에 의한 손실 생성이 증대한다.
즉, 종래형 임펠러 구조에서는 이 풀 블레이드의 입구 단연의 선단으로부터의 누출 소용돌이와 스플리터 블레이드의 입구 단연의 간섭에 대한 대책이 되지 않기 때문에, 충분한 성능이 얻어지지 않고 있었다.
그래서, 본 발명은 이들 문제에 감안하여 이루어진 것으로서, 유체의 입구부로부터 출구부에 걸쳐서 서로 이웃하여 마련되는 풀 블레이드와, 상기 풀 블레이드 사이에 유로의 도중으로부터 출구부에 걸쳐서 마련되는 스플리터 블레이드를 구비한 원심 압축기의 임펠러에 있어서, 풀 블레이드의 입구 단연의 선단부로부터의 누출 소용돌이에 대한 스플리터 블레이드의 입구 단연의 간섭을 회피하고, 고압력비, 고효율화를 달성하는 원심 압축기의 임펠러를 제공하는 것을 과제로 한다.
상기의 과제를 해결하기 위해서, 본 발명은 허브면상에 유체의 입구부로부터 출구부에 걸쳐서 복수 마련되는 풀 블레이드와, 서로 이웃하여 마련되는 상기 풀 블레이드 사이에 형성되는 유로의 도중으로부터 출구부에 걸쳐서 마련되는 스플리터 블레이드를 구비한 원심 압축기의 임펠러에 있어서, 상기 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드의 입구 단연으로부터 상기 후방측 풀 블레이드에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드에의 최소 간격을 형성하는 스로트의 중심 위치와 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 상기 스플리터 블레이드의 입구 단연을 위치시켜서 이루어지는 것을 특징으로 한다.
이러한 발명에 의하면, 스플리터 블레이드의 입구 단부의 위치를, 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드의 입구 단연으로부터 상기 후방측 풀 블레이드에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드에의 최소 간격을 형성하는 소위 스로트를 형성하는 위치의 중심 위치와, 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 마련하는 것에 의해서, 풀 블레이드의 입구 단연의 선단부(케이싱측)로부터 발생하는 누출 소용돌이가 스플리터 블레이드의 입구 단연에 간섭하는 것이 회피된다.
즉, 풀 블레이드의 입구 날개단으로부터 발생하는 누출 소용돌이는, 수치 해석 결과에 의하면, 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드와의 사이에 형성되는 스로트의 중심 위치와, 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 라인을 따라서 누출 소용돌이가 흐르는 것이 확인된, 그리고 그 지견을 기초로, 스플리터 블레이드의 입구 단연의 위치를 설정하는 것이다.
따라서, 스플리터 블레이드의 입구 단연의 위치를. 상기 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 마련하는 것에 의해서, 누출 소용돌이가 스플리터 블레이드의 입구 단연의 선단부에 간섭하여 발생하는 박리나, 또한 소용돌이 구조의 발생에 의해서 흐름의 손출 생성이 증대하여 효율 저하로 연결되는 문제가 해소되어, 임펠러의 효율 저하를 방지하여, 고압력비 및 고효율화를 달성할 수 있다.
또한, 본 발명에 있어서 바람직하게는, 상기 스플리터 블레이드의 입구 단연의 날개 높이방향의 선단부를 상기 전방측 풀 블레이드측으로 경사지고 있으면 좋다.
이러한 구성에 의하면, 풀 블레이드의 입구 단연의 선단부(케이싱측)로부터 발생하는 누출 소용돌이는, 주로 스플리터 블레이드의 입구 단연에 있어서 선단부에 간섭하기 때문에, 이 선단부를 더욱 전방측 풀 블레이드측으로 경사지게 함으로써, 누출 소용돌이의 간섭을 더욱 확실히 회피할 수 있게 된다.
즉, 스플리터 블레이드의 입구 단연을, 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측으로 크게 낮춰서 위치시키면 스플리터 블레이드의 길이가 짧아져, 스플리터 블레이드 본래의 고압력비 및 고효율화의 기능을 발휘할 수 없게 되기 때문에, 스플리터 블레이드의 길이는 확보하면서 상기 누출 소용돌이에 대한 회피를 효과적으로 얻을 수 있다.
또한, 상기 전방측 풀 블레이드측에의 경사 각도는, 상기 후방측 풀 블레이드를 따른 경사 각도에 대하여, 또한 5° 내지 8° 경사져 있는 것이 바람직하다.
수치 해석 결과에 근거하여, 5° 미만이면, 경사지게 하는 것에 의한 누출 소용돌이 흐름에 대한 회피 효과를 기대하지 못하고, 또한 8°를 초과하여 경사지게 하면 그 경사 부분이 스플리터 블레이드와 전방측 풀 블레이드의 사이를 흐르는 유체의 흐름에 대하여 유로 저항을 일으킬 문제가 있기 때문에, 5° 내지 8° 경사져 있는 것이 바람직하다.
또한, 본 발명에 있어서, 상기 스플리터 블레이드의 입구 단연을 상기 전방측 풀 블레이드와 상기 후방측 풀 블레이드의 둘레방향 중간 위치보다 상기 전방측 풀 블레이드측으로 기울여서 위치하면 좋다.
이와 같이 구성하는 것에 의해서, 누출 소용돌이 흐름에 대한 회피를 할 수 있을 뿐만 아니라, 또한 스플리터 블레이드에 의해서 분할되는 풀 블레이드 사이내의 각 통로의 유량 배분의 균일화를 도모할 수 있다.
즉, 스플리터 블레이드의 양측, 즉 풀 블레이드의 압력면측과 부압면측에서 유속이 상이하므로, 풀 블레이드의 사이에 들어온 유체는, 주로 부압면측에 빠른 흐름이 모이는 분포가 되기 때문에, 스플리터 블레이드의 양측 통로의 유로 단면적을 기하학적으로 동일하게 해도, 부압면측이 압력면측에 비하여 유속이 빠른 만큼, 유량이 증가하여 각 유로의 유량에 불균일이 생겨, 유체를 균등 분배하지 못하고, 날개 부하가 불균등하게 되어 유로 손실도 증가하여, 임펠러의 효율 향상을 방해할 수 있는 문제가 있지만, 이와 같은 문제에 대하여, 전방측 풀 블레이드측에 가까이 대고, 즉 부압면측에 가까이 대어 유로 단면적을 좁히는 것에 의해서, 스플리터 블레이드에 의해서 분할되는 풀 블레이드 사이내의 각 통로의 유량 배분의 균일화를 도모할 수 있다.
본 발명에 의하면, 유체의 입구부로부터 출구부에 걸쳐 서로 이웃하여 마련되는 풀 블레이드와, 상기 풀 블레이드 사이에 유로의 도중으로부터 출구부에 걸쳐서 마련되는 스플리터 블레이드를 구비한 원심 압축기의 임펠러에 있어서, 상기 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드의 입구 단연으로부터 상기 후방측 풀 블레이드에 인접하고 회전방향 전방측에 마련되는 전방측 풀 블레이드에의 최소 간격을 형성하는 스로트의 중심 위치와 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 상기 스플리터 블레이드의 입구 단연을 위치시키기 때문에, 풀 블레이드의 입구 단연의 선단부로부터의 누출 소용돌이에 대한 스플리터 블레이드의 입구 단연의 간섭을 회피하고, 고압력비, 고효율화를 달성하는 원심 압축기의 임펠러를 제공할 수 있다.
도 1은 본 발명의 스플리터 블레이드가 마련된 원심 압축기의 임펠러의 중요부를 도시하는 사시도,
도 2는 제 1 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 3은 제 2 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 4는 제 3 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 5는 제 4 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 6은 도 2, 도 3, 도 4 및 도 5에 있어서의 X방향에서 본 날개의 입설 상태를 도시하는 설명도로서, (a)가 도 2의 X방향에서 본 것을 도시하고, (b)가 도 3의 X방향에서 본 것을 도시하며, (c)가 도 4의 X방향에서 본 것을 도시하고, (d)가 도 5의 X방향에서 본 것을 도시한 도면,
도 7은 풀 블레이드 사이를 흐르는 유체측 수치 해석 결과의 마하수 분포를 도시하는 설명도,
도 8은 스플리터 블레이드의 입구 단부의 선단부에 형성되는 풀 블레이드 선단부로부터의 날개단 누출 흐름을 도시하는 수치 해석 결과를 나타내는 도면,
도 9는 종래 기술의 설명도,
도 10은 종래 기술의 설명도,
도 11은 종래 기술의 설명도,
도 12는 종래 기술의 설명도,
도 13은 종래 기술의 설명도,
도 2는 제 1 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 3은 제 2 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 4는 제 3 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 5는 제 4 실시형태의 풀 블레이드와 스플리터 블레이드의 관계를 도시하는 단면 설명도,
도 6은 도 2, 도 3, 도 4 및 도 5에 있어서의 X방향에서 본 날개의 입설 상태를 도시하는 설명도로서, (a)가 도 2의 X방향에서 본 것을 도시하고, (b)가 도 3의 X방향에서 본 것을 도시하며, (c)가 도 4의 X방향에서 본 것을 도시하고, (d)가 도 5의 X방향에서 본 것을 도시한 도면,
도 7은 풀 블레이드 사이를 흐르는 유체측 수치 해석 결과의 마하수 분포를 도시하는 설명도,
도 8은 스플리터 블레이드의 입구 단부의 선단부에 형성되는 풀 블레이드 선단부로부터의 날개단 누출 흐름을 도시하는 수치 해석 결과를 나타내는 도면,
도 9는 종래 기술의 설명도,
도 10은 종래 기술의 설명도,
도 11은 종래 기술의 설명도,
도 12는 종래 기술의 설명도,
도 13은 종래 기술의 설명도,
(제 1 실시형태)
도 1은 본 발명의 스플리터 블레이드가 적용되는 원심 압축기의 임펠러(날개차)의 중요부를 도시하는 사시도이다. 임펠러(1)는, 도시하지 않는 로터 축에 끼워 장착된 허브(3)의 상면에 복수의 서로 이웃하는 풀 블레이드(전체 날개)(5)와, 그 풀 블레이드(5)의 사이에 마련되는 스플리터 블레이드(짧은 날개)(7)가, 둘레방향으로 등피치로 교대로 입설되어 있다. 그리고, 스플리터 블레이드(7)는 풀 블레이드(5)보다 유체의 흐름방향에 대하여 길이가 짧고, 풀 블레이드(5, 5) 사이에 형성되는 유로(9)의 도중으로부터 출구부에 걸쳐서 마련되어 있다.
도 2에는 스플리터 블레이드(7)와 풀 블레이드(5)의 관계를 블레이드의 길이방향을 따른 단면 형상을 도시한다(도 10의 A-A선 단면도에 상당). 여기서의 형상은 케이싱측 위치, 즉 날개 선단부 위치에 있어서의 형상을 나타낸다. 또한, 임펠러(1)는 화살표 방향으로 회전하는 것으로 한다.
스플리터 블레이드(7)의 리딩 에지인 입구 단연(7a)은, 풀 블레이드(5)의 리딩 에지인 입구 단연(5a)보다 흐름방향 하류측에 위치하고, 스플리터 블레이드(7)의 트레일링 에지의 출구 단연(7b)과, 풀 블레이드(5)의 트레일링 에지의 출구 단연(5b)의 위치는 일치하고 있다.
또한, 풀 블레이드(5)의 압력면측(Sa)과 풀 블레이드(5)의 부압면측(Sb) 사이에 형성되는 유로(9)를 스플리터 블레이드(7)에 의해서 둘레방향으로 이등 분할하도록 위치되고, 스플리터 블레이드(7)와 풀 블레이드(5)의 압력면측(Sa)의 벽면 사이에 유로(11)가 형성되며, 부압면측(Sb)의 벽면과의 사이에 유로(13)가 형성되어 있다.
또한, 스플리터 블레이드(7)의 형상은 풀 블레이드(5)를 따르도록 되어 있고, 입구 단연(7a)의 경사 각도(θ)는 풀 블레이드(5)와 동일하게 되어 있다.
이와 같이 구성된 임펠러(1)는, 풀 블레이드(5) 및 스플리터 블레이드(7)를 덮는 도시하지 않는 케이싱과의 사이에 날개단 간극을 갖는 오픈형 임펠러로 하여 구성된다. 따라서, 풀 블레이드(5)의 입구 단부의 선단 부분과 케이싱의 간극 부분을 통과하여 근처의 유체 통로의 풀 블레이드(5)의 압력면측의 유체가 풀 블레이드(5)의 부압면측으로 누출되는 날개단 누출 흐름(W)이 생긴다.
이 날개단 누출 흐름(W)은 스플리터 블레이드(7)의 입구 단연(7a)의 근방의 흐름에 영향을 주기 때문에, 이 날개단 누출 흐름(W)의 상태에 대하여 수치 해석을 실행했다. 그 수치 해석 결과의 흐름선도를 도 5에 도시한다.
풀 블레이드(5)의 리딩 에지(5a)부의 선단부의 케이싱과의 간극부(B)를 통하여 날개단 누출 흐름이 생긴다. 이 날개단 누출 흐름(W)은, 도 5와 같이, 강한 와류(날개단 누출 소용돌이)를 수반하고 있고, 풀 블레이드(5)를 따르는 흐름에 대하여 강한 블록 작용을 갖기 때문에, 스플리터 블레이드(7)의 입구 단연(7a)의 근방에서는, 흐름은 풀 블레이드(5)에 따른 흐름은 되지 않으며, 상기 소용돌이를 핵으로 하여 스플리터 블레이드(7)의 입구 단연으로 향하는 편류(M)를 일으킨다.
이 날개단 누출 흐름(W) 상태를 한층 더 조사하기 위해, 도 7에 도시하는 풀 블레이드(5)의 임펠러(1)의 회전방향 전방측에 위치하는 풀 블레이드를 전방측 풀 블레이드(5F)로 하고, 회전방향 후방측에 위치하는 풀 블레이드를 후방측 풀 블레이드(5R)로 하며, 그 전방측 풀 블레이드(5F)와 후방측 풀 블레이드(5R) 사이에서의 유체 흐름의 유속 분포를 마하수 분포로 하여 해석했다.
도 7에 도시하는 바와 같이, 마하수 분포에 있어서, 마하수의 경계선에 있어서의 m1, m2, m3, m4 점에 나타내는 바와 같이, 다음 영역에 인입된 골짜기 형상으로 되어 유속의 혼란이 존재하는 것이 나타나고, m1, m2, m3, m4 점을 연속하는 점선으로 나타내는 라인을 따라서 상기 날개단 누출 흐름(W)이 흐르는 것을 확인할 수 있었다. 즉, 날개단 누출 흐름에 의해서 생기는 소용돌이 흐름이 진행되는 방향을 누출 소용돌이 라인(WL)으로 해서 정의한다.
또한, 이 점선으로 나타내는 누출 소용돌이 라인(WL)의 위치 관계를 정의하기 위해서 해석한 결과, 도 7에 도시하는 바와 같이, 후방측 풀 블레이드(5R)의 입구 단연(5a)으로부터 상기 후방측 풀 블레이드(5R)에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드(5F)의 부압면측(Sb)에의 최소 거리를 형성하는 소위 스로트(SR)의 중심 위치(P)와, 전방측 풀 블레이드(5F)의 입구 단연(5a)을 연결하여 형성되는 라인으로서 정의할 수 있다.
따라서, 이 누출 소용돌이 라인(WL)의 근방에 있어서는, 이 누출 소용돌이는 저에너지 유체가 집적하는 개소이기 때문에, 이것이 스플리터 블레이드(7)의 입구 단연(7a)에 간섭하면 박리나 소용돌이 구조의 발생에 의한 손실 생성이 증대할 우려가 있으므로, 스플리터 블레이드(7)의 입구 단연(7a)을 이 누출 소용돌이 라인(WL)을 피하도록 하여 설치할 필요가 있다.
즉, 도 7에 도시하는 바와 같이, 누출 소용돌이 라인(WL)을 중심으로 예를 들면 α=4° 내지 5°의 범위를 누출 소용돌이 범위의 영역으로서 설정하고, 그 영역을 피하도록 스플리터 블레이드(7)의 입구 단연(7a)의 위치를 전방측 풀 블레이드(5F)와 후방측 풀 블레이드(5R)의 사이를 흐르는 유체의 흐름방향 하류측으로 어긋나게 하여 위치함으로써, 누출 소용돌이에 대한 스플리터 블레이드(7)의 입구 단연(7a)의 간섭을 회피하고, 고압력비, 고효율화를 달성하는 원심 압축기의 임펠러로 할 수 있다.
또한, 누출 소용돌이 범위를 설정하기 위한 α범위에 대해서는, 수치 해석 결과로부터 소용돌이도라고 하는 물리량을 이용하여 소용돌이의 존재 범위를 특정한 결과로부터 구한 폭이며, 누출 소용돌이의 영향이 미치지 않은 최소 범위로 하여 설정한다.
또한, 제 1 실시형태에 있어서의 도 2의 X화살표에서 본 것은, 도 6의 (a)에 도시하는 바와 같이 허브(3)면상에, 스플리터 블레이드(7)의 입구 단연(7a)이 수직방향으로 입설하여 형성되어 있다.
이상과 같이, 본 제 1 실시형태에 의하면, 스플리터 블레이드(7)의 입구 단연(7a)의 위치를 상기 누출 소용돌이 라인(WL)보다 유체의 흐름방향 하류측에 마련하는 것에 의해서, 누출 소용돌이가 스플리터 블레이드(7)의 입구 단연(7a)에 간섭하여 발생하는 박리나 또한 소용돌이 구조의 발생에 의해서 흐름의 손출 생성이 증대하여 효율 저하로 연결되는 문제를 회피할 수 있어, 임펠러(1)의 효율 저하를 방지하고, 고압력비 및 고효율화를 달성할 수 있다.
(제 2 실시형태)
다음에, 도 3을 참조하여 제 2 실시형태에 대해 설명한다. 제 2 실시형태는, 스플리터 블레이드(7)의 입구 단연(7a)이 제 1 실시형태에서 설명한 누출 소용돌이 범위(α)내에 위치하지 않도록 설치한 후에, 또한 스플리터 블레이드(7)의 입구 단연(7a)의 높이방향의 선단부가, 즉 스플리터 블레이드(7)의 입구 단연(7a)의 케이싱측의 부분을 상기 전방측 풀 블레이드(5F)측으로 경사지게 하여 형성되어 있다.
이 경사 각도는, 상기 제 1 실시형태에 있어서는, 스플리터 블레이드(7)의 형상은 풀 블레이드의 형상을 따르게 되어 있고, 입구 단연(7a)의 경사 각도(θ)는 후방측 풀 블레이드(5R)와 동일한 경사(θ)(도 2 참조)로 설정되어 있지만, 본 제 2 실시형태에 있어서는, 그 θ에 대하여 △θ 더 부가한 각도로 경사지고 있으며, 바람직하게는 △θ= 5° 내지 8° 더 경사져 있으면 좋다.
수치 해석 결과에 근거하여, 5° 미만이면, 경사시키는 것에 의한 누출 소용돌이 흐름에 대한 회피 효과를 기대하지 못하고, 또한 8°를 초과하여 경사지게 하면 그 경사 부분이 유로(13)를 흐르는 유체의 흐름에 대하여 유로 저항을 일으킬 문제가 있기 때문에, 5° 내지 8° 경사져 있는 것이 바람직하다.
이와 같이 스플리터 블레이드(7)의 입구 단연(7a)의 선단부를 경사시키는 것에 의해서, 전방측 풀 블레이드(5F)의 입구 단연(5a)의 선단부(케이싱측)로부터 발생하는 누출 소용돌이는, 주로 스플리터 블레이드(7)의 입구 단연(7a)에 있어서의 선단부에 간섭하기 때문에, 이 선단부를 더욱 전방측 풀 블레이드(5F)측으로 경사지게 함으로써, 누출 소용돌이의 간섭을 더욱 확실히 회피할 수 있게 된다.
스플리터 블레이드(7)의 입구 단연(7a)을, 전방측 풀 블레이드(5F)와 후방측 풀 블레이드(5R)의 사이를 흐르는 유체의 흐름방향 하류측에 크게 낮춰서 위치시키면 스플리터 블레이드(7)의 길이가 짧아지고, 스플리터 블레이드(7) 본래의 고압력비 및 고효율화의 기능을 발휘할 수 없게 되기 때문에, 스플리터 블레이드(7)의 길이를 확보하면서 상기 누출 소용돌이에 대한 회피를 효과적으로 얻을 수 있어, 임펠러(1)를 소형화해도 적절한 누출 소용돌이 흐름에 대한 회피 효과를 달성할 수 있다.
또한, 이 제 2 실시형태에 있어서의 도 3의 X화살표에서 본 것은, 도 6의 (b)에 도시하는 바와 같이, 허브(3)면상에, 스플리터 블레이드(7)의 입구 단연(7a)이 전방측 풀 블레이드(5F)측에 경사지게 입설하여 형성되고 있다.
(제 3 실시형태)
다음에, 도 4를 참조해 제 3 실시형태에 대해 설명한다.
제 3 실시형태는, 스플리터 블레이드(7)의 입구 단연(7a)이 제 1 실시형태에서 설명한 누출 소용돌이 범위(α)내에 위치하지 않도록 위치시킨 후에, 또한 스플리터 블레이드(7)의 입구 단연(7a)을 전방측 풀 블레이드(5F)와 후방측 풀 블레이드(5R)의 둘레방향 중간 위치보다 상기 전방측 풀 블레이드(5F)측으로 치우쳐 위치하는 것이다.
즉, 도 4의 X화살표에서 본, 도 6의 (c)에 도시하는 바와 같이 허브(3)면상에, 스플리터 블레이드(7)가 수직으로 입설되고, 그 스플리터 블레이드(7)의 입구 단연(7a)은 수직으로 입설되어, 그 위치가 둘레방향 중간 위치보다 전방측 풀 블레이드(5F)측으로 △L 치우쳐 위치되는 것이다.
이와 같이 구성함으로써, 누출 소용돌이 흐름에 대한 회피를 할 수 있을 뿐만 아니라, 또한 스플리터 블레이드(7)에 의해서 분할되는 유로(11, 13)의 유량 배분의 균일화를 도모할 수 있다.
즉, 스플리터 블레이드(7)의 양측, 즉 전방측 풀 블레이드(5F)의 부압면측(Sb)과, 후방측 풀 블레이드(5R)의 압력면측(Sa)에서는 유속이 상이한 유체는, 주로 부압면측(Sb)으로 빠른 흐름이 모이는 분포로 된다. 이 때문에, 스플리터 블레이드(7)의 양측 통로의 유로 단면적을 기하학적으로 동일하게 해도, 부압면측(Sb)이 압력면측(Sa)에 비하여 유속이 빠른 만큼, 유량이 증가하여 각 유로의 유량에 불균일이 생겨, 유체를 균등 분배하지 못하고, 날개 부하가 불균등하게 되어 유로 손실도 증가하여, 임펠러 효율의 향상을 방해할 수 있는 문제가 있지만, 이와 같은 문제에 대하여, 전방측 풀 블레이드(5F)측에 가까이 대어, 즉 부압면측(Sb)에 가까이 대어 유로 단면적을 좁히는 것에 의해서, 스플리터 블레이드(7)에 의해서 분할되는 풀 블레이드 사이내의 각 유로(11, 13)의 유량 배분의 균일화를 도모할 수 있다.
이상과 같이, 본 제 3 실시형태에 의하면, 전방측 풀 블레이드(5F)의 날개단으로부터의 누출 흐름에 의한 소용돌이의 영향을 받지 않고, 또한 스플리터 블레이드(7)에 의해서 분할되는 풀 블레이드 사이내의 각 유로(11, 13)의 유량 배분의 균일화를 도모할 수 있다.
(제 4 실시형태)
다음에, 도 5를 참조해 제 4 실시형태에 대해 설명한다.
제 4 실시형태는, 제 3 실시형태의 스플리터 블레이드(7)의 입구 단연(7a)에 대해서, 또한 제 2 실시형태와 같이 입구 단연(7a)의 높이방향의 선단부가, 즉 입구 단연(7a)의 케이싱측의 부분이 전방측 풀 블레이드(5F)측으로 경사져 형성되어 있다.
이와 같이 경사짐으로써, 상기 제 2 실시형태 및 제 3 실시형태를 겸비한 작용 효과를 발휘할 수 있다. 즉, 스플리터 블레이드(7)의 입구 단연(7a)을, 전방측 풀 블레이드(5F)와 후방측 풀 블레이드(5R)의 사이를 흐르는 유체의 흐름방향 하류측으로 크게 낮춰서 위치시키는 일이 없이, 스플리터 블레이드(7)의 본래의 고압력비 및 고효율화의 기능을 발휘할 수 있는 길이를 확보하고, 또한 스플리터 블레이드(7)에 의해서 분할되는 풀 블레이드 사이내의 각 유로(11, 13)의 유량 배분의 균일화가 도모되며, 또한 누출 소용돌이에 대한 회피를 효과적으로 얻을 수 있다.
또한, 상기에서는 풀 블레이드 사이 유로에 하나의 싱글 스플리터 블레이드를 갖는 경우에 대해 설명했지만, 싱글 스플리터 블레이드 사이 유로에 설치된, 싱글 스플리터 블레이드보다 더 짧은 더블 스플리터 블레이드에 대해 본 발명을 적용해도 물론 좋다.
본 발명에 의하면, 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드의 입구 단연으로부터 상기 후방측 풀 블레이드에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드에의 최소 간격을 형성하는 스로트의 중심 위치와 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 상기 스플리터 블레이드의 입구 단연을 위치시키기 때문에, 풀 블레이드의 입구 단연의 선단부로부터의 누출 소용돌이에 대한 스플리터 블레이드의 입구 단연의 간섭을 회피하고, 고압력비, 고효율화를 달성할 수 있으므로, 스플리터 블레이드를 구비한 원심 압축기의 임펠러에의 이용에 적절하다.
Claims (4)
- 허브면상에 유체의 입구부로부터 출구부에 걸쳐 복수 마련되는 풀 블레이드와, 서로 이웃하여 마련되는 상기 풀 블레이드의 사이에 형성되는 유로의 도중으로부터 출구부에 걸쳐서 마련되는 스플리터 블레이드를 구비한 원심 압축기의 임펠러에 있어서,
상기 압축기의 회전방향 후방측에 위치하는 후방측 풀 블레이드의 입구 단연으로부터 상기 후방측 풀 블레이드에 인접하여 회전방향 전방측에 마련되는 전방측 풀 블레이드에의 최소 간격을 형성하는 스로트의 중심 위치와 상기 전방측 풀 블레이드의 입구 단연을 연결하여 형성되는 누출 소용돌이 라인보다 풀 블레이드 사이를 흐르는 유체의 흐름방향 하류측에 상기 스플리터 블레이드의 입구 단연을 위치시켜 이루어지는 것을 특징으로 하는
원심 압축기의 임펠러. - 제 1 항에 있어서,
상기 스플리터 블레이드의 입구 단연의 날개 높이방향의 선단부가 상기 전방측 풀 블레이드측으로 경사져 있는 것을 특징으로 하는
원심 압축기의 임펠러. - 제 2 항에 있어서,
상기 전방측 풀 블레이드측에의 경사 각도는, 상기 후방측 풀 블레이드를 따른 경사 각도에 대하여, 5° 내지 8° 더 경사져 있는 것을 특징으로 하는
원심 압축기의 임펠러. - 제 1 항 또는 제 2 항에 있어서,
상기 스플리터 블레이드의 입구 단연을 상기 전방측 풀 블레이드와 상기 후방측 풀 블레이드의 둘레방향 중간 위치보다 상기 전방측 풀 블레이드측으로 치우쳐 위치시키는 것을 특징으로 하는
원심 압축기의 임펠러.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009274645A JP5308319B2 (ja) | 2009-12-02 | 2009-12-02 | 遠心圧縮機の羽根車 |
JPJP-P-2009-274645 | 2009-12-02 | ||
PCT/JP2010/063583 WO2011067965A1 (ja) | 2009-12-02 | 2010-08-10 | 遠心圧縮機の羽根車 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120014598A KR20120014598A (ko) | 2012-02-17 |
KR101276957B1 true KR101276957B1 (ko) | 2013-06-19 |
Family
ID=44114825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117031358A KR101276957B1 (ko) | 2009-12-02 | 2010-08-10 | 원심 압축기의 임펠러 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9140271B2 (ko) |
EP (1) | EP2428684B1 (ko) |
JP (1) | JP5308319B2 (ko) |
KR (1) | KR101276957B1 (ko) |
CN (1) | CN102472292B (ko) |
WO (1) | WO2011067965A1 (ko) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101270899B1 (ko) * | 2010-08-09 | 2013-06-07 | 엘지전자 주식회사 | 임펠러 및 이를 포함하는 원심 압축기 |
JP5680396B2 (ja) | 2010-12-13 | 2015-03-04 | 三菱重工業株式会社 | 遠心圧縮機の羽根車 |
ES2763334T3 (es) | 2012-10-09 | 2020-05-28 | Carrier Corp | Control de paletas de guía de entrada de compresor centrífugo |
WO2014158285A2 (en) * | 2013-02-26 | 2014-10-02 | United Technologies Corporation | Variable span splitter blade |
JP6133748B2 (ja) * | 2013-10-09 | 2017-05-24 | 三菱重工業株式会社 | インペラ及びこれを備える回転機械 |
JP5705945B1 (ja) * | 2013-10-28 | 2015-04-22 | ミネベア株式会社 | 遠心式ファン |
CN103939148B (zh) * | 2014-04-28 | 2015-09-30 | 哈尔滨工程大学 | 一种带有多分流叶片的径流式透平 |
CN104088811B (zh) * | 2014-06-26 | 2016-05-25 | 上海电机系统节能工程技术研究中心有限公司 | 一种抗涡流高压电动机双旋向离心风扇设计方法 |
CN104314865A (zh) * | 2014-10-29 | 2015-01-28 | 珠海格力电器股份有限公司 | 后向离心叶轮及离心风机 |
US9777741B2 (en) * | 2014-11-20 | 2017-10-03 | Baker Hughes Incorporated | Nozzle-shaped slots in impeller vanes |
US20160281732A1 (en) * | 2015-03-27 | 2016-09-29 | Dresser-Rand Company | Impeller with offset splitter blades |
CN105268069B (zh) * | 2015-11-27 | 2017-11-14 | 吉林省沃鸿医疗器械制造有限公司 | 风机舱 |
CN106996391A (zh) | 2016-01-25 | 2017-08-01 | 松下知识产权经营株式会社 | 叶轮、离心压缩机以及制冷循环装置 |
US10641282B2 (en) * | 2016-12-28 | 2020-05-05 | Nidec Corporation | Fan device and vacuum cleaner including the same |
US10669854B2 (en) * | 2017-08-18 | 2020-06-02 | Pratt & Whitney Canada Corp. | Impeller |
JP6740271B2 (ja) | 2018-03-05 | 2020-08-12 | 三菱重工業株式会社 | 羽根車及びこの羽根車を備えた遠心圧縮機 |
GB2611561A (en) * | 2021-10-08 | 2023-04-12 | Cummins Ltd | Compressor impeller |
CN114486267B (zh) * | 2021-12-30 | 2023-07-04 | 西北工业大学 | 叶尖具有旋涡发生器的压气机/涡轮叶栅实验架 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002021574A (ja) | 2000-06-30 | 2002-01-23 | Toyota Motor Corp | コンプレッサインペラ |
JP2004052754A (ja) | 2002-05-10 | 2004-02-19 | Borgwarner Inc | チタン圧縮機翼車のためのハイブリッド製造法 |
JP2008196381A (ja) | 2007-02-13 | 2008-08-28 | Mitsubishi Heavy Ind Ltd | 遠心圧縮機のインペラ及び遠心圧縮機 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2753808A (en) * | 1950-02-15 | 1956-07-10 | Kluge Dorothea | Centrifugal impeller |
JPS52121809U (ko) * | 1976-03-12 | 1977-09-16 | ||
US4093401A (en) * | 1976-04-12 | 1978-06-06 | Sundstrand Corporation | Compressor impeller and method of manufacture |
US4502837A (en) * | 1982-09-30 | 1985-03-05 | General Electric Company | Multi stage centrifugal impeller |
WO1990002265A1 (en) * | 1988-08-16 | 1990-03-08 | Dresser-Rand Company | Partial height blades in a compressor impeller |
US5120196A (en) * | 1991-03-11 | 1992-06-09 | General Motors Corporation | Impeller for a torque converter |
JPH10213094A (ja) | 1997-01-31 | 1998-08-11 | Ishikawajima Harima Heavy Ind Co Ltd | 遠心圧縮機のインペラ |
GB2337795A (en) * | 1998-05-27 | 1999-12-01 | Ebara Corp | An impeller with splitter blades |
JP4670175B2 (ja) * | 2001-05-11 | 2011-04-13 | 株式会社豊田中央研究所 | 遠心圧縮機のインペラ |
JP3876195B2 (ja) * | 2002-07-05 | 2007-01-31 | 本田技研工業株式会社 | 遠心圧縮機のインペラ |
US8608433B2 (en) * | 2003-02-19 | 2013-12-17 | Honeywell International, Inc. | Turbine having variable throat |
EP1750013B1 (en) * | 2004-05-28 | 2014-05-07 | Hitachi Metals Precision, Ltd. | Impeller for supercharger and method of manufacturing the same |
US7841506B2 (en) * | 2004-08-11 | 2010-11-30 | Honeywell International Inc. | Method of manufacture of dual titanium alloy impeller |
CN102655925B (zh) * | 2009-10-27 | 2015-01-28 | 通用电气公司 | 用于离心压缩机的液滴捕捉器 |
-
2009
- 2009-12-02 JP JP2009274645A patent/JP5308319B2/ja active Active
-
2010
- 2010-08-10 US US13/381,064 patent/US9140271B2/en active Active
- 2010-08-10 KR KR1020117031358A patent/KR101276957B1/ko active IP Right Grant
- 2010-08-10 EP EP10834418.5A patent/EP2428684B1/en active Active
- 2010-08-10 WO PCT/JP2010/063583 patent/WO2011067965A1/ja active Application Filing
- 2010-08-10 CN CN201080029404.3A patent/CN102472292B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002021574A (ja) | 2000-06-30 | 2002-01-23 | Toyota Motor Corp | コンプレッサインペラ |
JP2004052754A (ja) | 2002-05-10 | 2004-02-19 | Borgwarner Inc | チタン圧縮機翼車のためのハイブリッド製造法 |
JP2008196381A (ja) | 2007-02-13 | 2008-08-28 | Mitsubishi Heavy Ind Ltd | 遠心圧縮機のインペラ及び遠心圧縮機 |
Also Published As
Publication number | Publication date |
---|---|
WO2011067965A1 (ja) | 2011-06-09 |
JP2011117346A (ja) | 2011-06-16 |
EP2428684B1 (en) | 2019-05-08 |
CN102472292B (zh) | 2015-04-08 |
US20120328444A1 (en) | 2012-12-27 |
EP2428684A4 (en) | 2017-06-07 |
KR20120014598A (ko) | 2012-02-17 |
US9140271B2 (en) | 2015-09-22 |
JP5308319B2 (ja) | 2013-10-09 |
CN102472292A (zh) | 2012-05-23 |
EP2428684A1 (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101276957B1 (ko) | 원심 압축기의 임펠러 | |
KR101347469B1 (ko) | 원심 압축기의 임펠러 | |
JP5665535B2 (ja) | 遠心圧縮機 | |
JP5680396B2 (ja) | 遠心圧縮機の羽根車 | |
JP5574951B2 (ja) | 遠心圧縮機の羽根車 | |
KR101790421B1 (ko) | 터보머신들의 인접한 블레이드 요소들의 흐름장들의 결합을 가하는 구조들 및 방법들, 그리고 그들을 포함하는 터보머신들 | |
US9255481B2 (en) | Turbine impeller comprising blade with squealer tip | |
US20100226767A1 (en) | Diffuser arrangement | |
US20060222490A1 (en) | Axial turbine | |
JP2005201270A (ja) | 扇形後縁涙滴配列 | |
US9903209B2 (en) | Rotor blade and guide vane airfoil for a gas turbine engine | |
JP2009085185A (ja) | 軸流タービンおよび軸流タービン段落構造 | |
JP2019152166A (ja) | 羽根車及びこの羽根車を備えた遠心圧縮機 | |
JP2009133267A (ja) | 圧縮機のインペラ | |
CN107449527B (zh) | 一种提高滞止式总温探针测量精度的方法 | |
KR101411545B1 (ko) | 풍력 발전기 | |
Nishioka et al. | Rotating stall inception from spike and rotating instability in a variable-pitch axial-flow fan | |
JP3771794B2 (ja) | 遠心ポンプ | |
WO2023203813A1 (ja) | 遠心圧縮機 | |
Yamaguchi et al. | Mechanism of strong effects of stall suppression by an air separator investigated by internal flow measurements in an axial flow fan | |
EP3425163A1 (en) | Air guiding system in an aircraft turbo engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160517 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170522 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180530 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200218 Year of fee payment: 12 |