KR101251615B1 - 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도 - Google Patents

식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도 Download PDF

Info

Publication number
KR101251615B1
KR101251615B1 KR1020100066561A KR20100066561A KR101251615B1 KR 101251615 B1 KR101251615 B1 KR 101251615B1 KR 1020100066561 A KR1020100066561 A KR 1020100066561A KR 20100066561 A KR20100066561 A KR 20100066561A KR 101251615 B1 KR101251615 B1 KR 101251615B1
Authority
KR
South Korea
Prior art keywords
calecrk1
gene
plant
pmmov
plants
Prior art date
Application number
KR1020100066561A
Other languages
English (en)
Other versions
KR20120005876A (ko
Inventor
백경희
우주용
김영진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020100066561A priority Critical patent/KR101251615B1/ko
Publication of KR20120005876A publication Critical patent/KR20120005876A/ko
Application granted granted Critical
Publication of KR101251615B1 publication Critical patent/KR101251615B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 식물의 방어반응에 관여하는 고추식물 유래 CalecRK1 유전자 및 그 용도에 관한 것으로, 더욱 구체적으로 서열번호 2의 아미노산 서열을 코딩하는 염기서열을 갖는 고추식물 유래의 CaLecRK1(Capsicum annuum lectin receptor kinase1) 유전자에 관한 것이다.
본 발명에 따르면 지금까지 연구가 거의 되어있지 않은 유전자인 CaLecRK1을 바이러스 유도 유전자 억제(Virus-induced gene silencing; VIGS)를 통해 CaLecRK1이 저항성 기능을 수행함을 발견하였다. 본 발명의 CaLecRK1의 발현을 VIGS를 이용하여 억제 시킬 경우, 바이러스 외피단백질 발현이 증가되고, 감염부위의 저항성민감성반응(hypersensitive resistance; HR)을 감소시키는 것을 확인함으로써, 병에 대한 저항성 품종의 개량 및 육종의 방법으로 CaLecRK1 유전자의 발현을 조절하여 감염 저항성 고추식물체를 제공할 수 있다. 따라서 상기 CaLecRK1 유전자를 이용하여 식물의 방어반응이 증가된 형질전환 식물을 생산할 수 있을 것으로 기대된다.

Description

식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도 {CaLecRK1 gene from hot pepper concerned in defense response of plants and use thereof}
본 발명은 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도에 관한 것으로, 더욱 구체적으로 서열번호 2의 아미노산 서열을 코딩하는 염기서열을 갖는 고추식물 유래의 CaLecRK1(Capsicum annuum lectin receptor kinase1) 유전자에 관한 것이다.
식물은 국부의 생물적 및 비생물적 스트레스에서 살아남기 위해 다양한 방어기작을 발전시켜왔다. 식물의 방어 반응은 일반적으로 복수유전자(multiple gene)의 조화된 전사활성화(orchestrated transcriptional activation)와 2차 대사산물의 축적을 일반적으로 포함하고, 종종 과민반응(hypersensitive response; HR)의 활성화와 전신획득저항성(systemic acquired resistance)의 발달을 수반한다 [Ryals et al., 1996 The Plant Cell 8:1809-1819; Dangl and Jones, 2001 Nature 411:826-833]. 이들 유도된 반응이 주어진 식물-병원체 상호작용 동안 신속하고 대등하게 일어날 때, 식물은 질병에 대한 저항성을 가지게 된다. 감염되기 쉬운 식물은 방어기작의 개시가 병원체 감염에 대해 더 느리게 반응한다. 따라서 침입하는 미생물을 적시에 인식하는 것, 그리고 신속하고 효과적으로 방어반응들을 유도하는 것은 저항성의 식물과 감염되기 쉬운 식물사이에서 주요 차이점을 만드는 것으로 보인다 [Yang et al., 1997 Genes Dev. 1;11(13):1621-39].
대표적인 가지과 식물인 고추는 우리나라에서 오래전부터 향신료 또는 양념으로 사용되어온 대표적인 작물로서, 이에 대한 병으로는 바이러스병, 세균병, 진균병 등이 고루 다양하게 보고되어 있는데, 그중 치명적인 것으로 난균류에 의한 역병과 진균에 의한 탄저병 및 세균에 의한 세균성 점무늬병 등을 들 수 있다. 고추에 대한 이러한 식물 병들을 방제하기 위해 지금까지는 농약을 이용한 화학적 방제법이 주로 사용되었다. 그러나 그 독성으로 인하여 병원균뿐만 아니라 주변 생태계의 생물까지도 대량 살상하여 생태계를 파괴시키고 토양과 수질을 오염시키는 폐해가 있어 왔다.
고추부강(Capsicum annuum L. cv. Bukang)은 담배 모자이크 바이러스나 그 밖의 많은 바이러스에 의해 감염되고 그것에 반응하여 다양한 유전자들을 발현시킨다. 그 중에서도 PMMoV-P0(Pepper mild mottle virus strain P0)에 대해서는 초민감성 반응(hypersensitive response) 등과 같은 방어반응을 일으킨다.
이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구 노력한 결과, 고추부강과 바이러스의 상호작용에 의한 방어반응에서 상위에 존재하는 유전자를 찾아보고자 마이크로어레이를 이용하여 바이러스 처리시 발현이 증가하는 kinase들을 찾아내었으며, 그 중 상위에 존재할 가능성이 크면서 연구가 많이 되어있지 않은 CaLecRK1 유전자를 선별하여 본 발명은 완성하게 되었다.
따라서 본 발명의 주된 목적은 고추식물에서 식물 감염에 대한 저항성에 관여하는 CaLecRK1 유전자 및 그 단백질을 제공하는데 있다.
본 발명의 다른 목적은 상기 CaLecRK1 유전자 및 그 단백질을 이용한 식물 감염 저항성 증가용 조성물을 제공하는데 있다.
본 발명의 한 양태에 따르면, 본 발명은 서열번호 2의 아미노산 서열을 코딩하는 염기서열을 갖는 고추렉틴수용체인산화1(Capsicum annuum lectin receptor kinase1; CaLecRK1) 유전자를 제공한다.
본 발명에 있어서, 상기 염기서열은 서열번호 2의 아미노산 서열을 코딩하는 어떠한 염기서열일 수 있으나, 바람직하게는 서열번호 1의 염기서열인 것을 특징으로 한다.
본 발명의 다른 양태에 따르면, 본 발명은 서열번호 2의 아미노산 서열을 갖는 고추렉틴수용체인산화1(CaLecRK1) 단백질을 제공한다. 상기 CaLecRK1 단백질의 full-length cDNA는 701개 아미노산의 폴리펩타이드를 코딩한다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 고추렉틴수용체인산화1(CaLecRK1) 유전자를 도입한 재조합 벡터를 제공한다. 상기 CaLecRK1 유전자가 도입된 재조합 벡터는 도 3에 나타내었다.
삭제
또한 상기 발현 벡터는 본 발명의 CaLecRK1 유전자가 도입된 식물체를 효과적으로 선발하기 위한 선발인자로 하이그로마이신 내성 유전자(hygromycin resistant gene) 등의 항생제 내성 유전자, bar 유전자 등의 제초제 저항성 유전자 및 GUS, GFP(green fluorescent protein) 및 LUX(luciferase) 등의 표지유전자 등을 포함할 수 있으며, 식물세포에서 목적유전자의 RNA 염기서열을 생산하게하는 프로모터(promoter), 목적으로 하는 유전자의 정보를 가지고 있는 구조 DNA 염기서열 및 식물세포에서 RNA 염기서열의 3′비번역(nontranslated) DNA 염기서열 등으로 이루어진 구조를 적어도 하나 이상을 포함한다. 또한 상기 벡터는 리포터 분자(예컨대, 루시퍼라아제 및 β-글루쿠로니다아제)를 코딩하는 유전자를 추가로 포함할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 CaLecRK1 유전자가 도입된 상기 재조합 벡터로 형질전환된 식물체를 제공할 수 있다.
본 발명의 한 양태에 따르면, 본 발명은 상기 CaLecRK1 유전자 또는 그 발현 단백질을 유효성분으로 함유하는 고추마일드모틀바이러스(Pepper mild mottle virus, PMMoV)에 대한 식물의 감염 저항성 증가용 조성물을 제공한다.
본 발명의 조성물은 질병 저항성이 약화된 식물체에 투여할 경우, 유전적 요인 또는 환경적 요인으로 인해 식물체 자신의 유전자의 발현이 저하되어 병 저항성이 약화된 식물체의 빠른 회복을 유도할 수 있으며, 일정 투여량 이상에서는 투여량 효과(dose effect)에 의해 정상상태, 즉 야생형보다 더 높은 질병 저항성 효과를 유도할 수 있다.
본 발명의 조성물에 있어서, 상기 CaLecRK1 유전자는 재조합 벡터에 삽입되어 있는 것을 특징으로 한다. 상기 재조합 벡터의 제조를 위해, 일반적인 바이너리 벡터(binary vector), 코인테그레이션 벡터(cointegration vector) 또는 T-DNA 부위를 포함하지는 않지만 식물에서 발현될 수 있도록 디자인된 일반 벡터가 사용될 수 있다. 특히, 본 발명에 이용될 수 있는 바이너리 벡터는 아그로박테리움(A.tumefaciens)의 Ti 플라스미드와 함께 존재 시, 식물체를 형질전환시킬 수 있는 T-DNA의 BR과 BL을 함유하는 어떤 바이너리 벡터도 될 수 있으며, 예컨대 pGA 계열, pCG 계열, pCIT 계열, pGPTV 계열, pBECK2000 계열. BiBAC 계열 및 pGreen 계열 벡터 등을 사용할 수 있다. 본 발명에서는 CaLecRK1 유전자의 식물의 감염 저항성 효과를 시험하기 위해 VIGS(Virus-induced gene silencing)용 바이러스 벡터를 사용하였다.
상기 용어 ‘VIGS’는 RNA 바이러스의 복제에 의해 필연적으로 생겨나는 double strand RNA를 인식하여 그것을 저하시키는 식물방어 기작을 이용한 실험방법이다. VIGS는 바이러스 침입시 유전자 염기서열의 상동성에 의존하는데, 바이러스 벡터에 식물체유전자 일부를 도입시켜 식물체에 접종하면 전사 후 유전자 침묵현상과 같거나, 유사한 기작에 의해 도입유전자의 발현이 억제되어 도입유전자의 기능을 분석할 수 있는 방법이다.
본 발명에 사용될 수 있는 VIGS용 바이러스 벡터는 tobacco rattle virus (TRV), tobacco mosaic virus (TMV), potato virus X (PVX) 그리고 tomato golden mosaic virus (TGMV) 등 VIGS용 바이러스 벡터가 사용될 수 있으나, 바람직하게는 tobacco rattle virus(TRV) 바이러스 벡터가 다른 벡터들의 백화현상, 잎의 찌그러짐, 세포괴사 등의 표현형을 유도하는 문제점과 growing point에 감염되지 않기 때문에 식물발달과 관련된 유전자의 연구에는 부적합하다는 문제점을 극복할 수 있어서 바람직하다. TRV 벡터를 이용해 감염 시킬 경우 가벼운 증상만이 나타나며 growing point에 감염이 가능하기 때문에 식물발달과 관련된 유전자 연구에도 적합하다. 본 발명의 VIGS용 바이러스 벡터는 도 3에 개시된 pTRV2::CaLecRK1인 것을 특징으로 한다. 상기 pTRV2::CaLecRK1 벡터는 CP(coat protein) 및 T(transcriptional terminators)의 벡터 사이트 사이에 존재하는 MCS(multiple cloning site)에 CaLecRK1(2204 ~ 2360 bp)을 삽입하여 제조된다. 도 3에 나타낸 벡터에서, LB는 Left border, Rb는 Right border, 35S는 CaMV 35S promoters, T는 transcriptional terminators, RdRp는 RNA-dependent RNA polymerase, MP는 movement protein, 16K는 16k protein, CP는 coat protein, MCS는 multiple cloning site를 나타낸다.
삭제
삭제
본 발명에 있어서, 상기 식물 감염(infection)은 PMMoV-P0(Pepper mild mottle virus strain P0)에 의해 유발되는 것을 특징으로 한다.
보다 구체적으로, 본 발명에서는 역유전학적인 접근방법으로, TRV에 기초한 VIGS 방법을 이용하였으며, 이때 CaLecRK1 유전자의 억제(suppression)는 식물체에 PMMoV-P0을 처리하였을 때, 대조군 식물체와 비교하여 현저히 높은 PMMoV-P0 CP 유전자의 축적량을 나타내었다. 또한 CaLecRK1 유전자를 억제시킨 식물에 PMMoV-P0를 처리하였을 때, CaLecRK1 유전자를 억제시키지 않은 식물에 비해 초민감성 반응에 의한 병변(lesion)의 수가 현저하게 감소되었다. 이러한 결과는 CaLecRK1 유전자가 식물체에서 저항성 반응에 관여하고 있다는 것을 의미하는 것이며, 이를 이용하여 병충해가 많은 고추의 저항성을 증진시킬 수 있는 유전자로써 CaLecRK1 유전자가 매우 유용하게 사용될 수 있음을 증명하는 것이다.
본 발명에 따른 상기 조성물은 CaLecRK1 유전자, CaLecRK1 단백질 또는 재조합 벡터 외에 식물제제에 일반적으로 사용되는 안정화제 또는 부형제를 유효성분으로써 더 포함할 수 있다. 구체적으로, CaLecRK1 단백질을 제제로 만들어 식물체에 직접 투여하거나, CaLecRK1 유전자를 상기 공지의 식물 발현용 벡터에 클로닝하여 재조합 벡터를 만든 후, 아그로박테리움(A. tumefaciens)을 통하여 식물체에 형질전환시킴으로써, 식물체 내에서 CaLecRK1 단백질을 발현시켜 이로 인해 발현에 관여하는 유전자들의 발현을 증가시킴으로써, 궁극적으로 고추식물의 저항성을 증가시킬 수 있다.
또한 상기 조성물은 식물 감염(infection)에 대한 저항성을 부여하는 것을 특징으로 한다. 상기 식물 감염은 예컨대 PMMoV-P0 병원체 등으로부터 유발시킬 수 있다.
이상 설명한 바와 같이, 본 발명에 따르면 지금까지 연구가 거의 되어있지 않은 유전자인 CaLecRK1을 바이러스 유도 유전자 억제(Virus-induced gene silencing; VIGS)를 통해 CaLecRK1이 저항성 기능을 수행함을 발견하였다. 본 발명의 CaLecRK1의 발현을 VIGS를 이용하여 억제 시킬 경우, 바이러스 피복단백질 유전자 발현이 증가되고, 감염부위의 과민성 반응(hypersensitive reponse; HR)을 감소시키는 것을 확인함으로써, 병에 대한 저항성 품종의 개량 및 육종의 방법으로 CaLecRK1 유전자의 발현을 조절하여 감염 저항성 고추식물체를 제공할 수 있다. 따라서 상기 CaLecRK1 유전자를 이용하여 식물의 방어반응이 증가된 형질전환 식물을 생산할 수 있을 것으로 기대된다.
도 1은 5′RACE(Rapid Amplication of cDNA Ends) 수행 원리를 도식화하여 나타낸 것이다.
도 2는 본 발명에 사용된 VIGS(Virus-induced gene silencing) 원리를 도식화하여 나타낸 것이다.
도 3은 CaLecRK1 유전자가 삽입된 재조합 벡터 pTRV2::CaLecRK1을 나타낸 도면이다.
도 4는 상처 스트레스(wound stress) 처리에 따른 cacn14085 유전자의 발현 변화를 RT-PCR로 정량하여 나타낸 것이다.
도 5a는 cacn14085 유전자를 억제시킨 식물 및 억제시키지 않은 식물에 바이러스를 처리할 경우, 초민감성 반응에 의한 병변(lesion) 발생의 변화를 나타낸 것이며, 도 5b는 상기 식물들에서 유전자의 발현 변화를 RT-PCR로 정량하여 나타낸 것이다.
도 6은 5′RACE 수행 후, 얻어낸 유전자의 아가로즈 겔 밴드를 나타낸 것이다.
도 7은 CaLecRK1 유전자의 도메인 구조를 도식화하여 나타낸 것이다.
도 8은 애기장대(Arabidopsis thaliana)의 다른 LecRK들과 CaLecRK1의 아미노산 서열을 정렬하여 나타낸 것이다.
도 9는 CaLecRK1 유전자의 계통 발생적(phylogenetic) 분석 결과를 나타낸 것이다.
도 10은 바이러스 감염 후, 시그널링(signaling)에 관여하는 유전자들의 발현 변화를 RT-PCR로 정량하여 나타낸 것이다.
도 11은 CaLecRK1 유전자의 억제 후, 바이러스를 감염시킨 식물에서, SA(salicylic acid) 시그널링에 관여하는 유전자, MeJA(methyl jasmonate) 시그널링에 관여하는 유전자 및 에틸렌(ethylene) 시그널링에 관여하는 유전자들의 전사 수준을 반정량적 RT-PCR을 수행하여 나타낸 것이다.
도 12는 CaLecRK1 유전자를 억제시킨 식물과 억제시키지 않은 식물에 바이러스를 감염시킨 후, 식물을 관찰한 결과 및 CaLecRK1 유전자, PMMoV-P0 CP(coat protein)의 전사 수준을 반정량적 RT-PCR을 수행하여 나타낸 것이다.
도 13은 CaLecRK1 유전자를 억제시킨 식물과 억제시키지 않은 식물에서 PMMoV-P0 증폭을 RT-PCR을 이용하여 정량화한 것이며, 이후 상기 식물을 바이러스로 감염시킨 후 CaLecRK1 유전자 및 PMMoV-P0 CP(coat protein)의 발현 수준을 반정량적 RT-PCR을 수행하여 나타낸 것이다.
도 14는 CaLecRK1 유전자를 억제시킨 식물과 억제시키지 않은 식물에 바이러스를 감염시킨 후, 상기 식물을 트리판 블루로 염색하여 관찰한 결과 및 반정량적 RT-PCR을 이용하여 CaLecRK1 유전자, PMMoV-P0 CP(coat protein)의 발현 수준을 나타낸 것이다.
도 15는 CaLecRK1 유전자를 억제시킨 식물과 억제시키지 않은 식물에 바이러스를 감염시킨 후, 상기 식물을 DAB로 염색하여 관찰한 결과 및 반정량적 RT-PCR을 이용하여 CaLecRK1 유전자, PMMoV-P0 CP(coat protein)의 발현 수준을 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1. DNA 마이크로어레이
발현 분석은 Capsicum annuum 300 K 올리고뉴클레오티드 마이크로어레이(GreenGene Biotech)를 이용하여 수행하였다. 상기 마이크로어레이는 고추의 29,580 유니진(unigene)으로부터 디자인되었다. 상기 유니진 중 24,417 유전자의 방향(direction)은 알려져 있으며, 5,163 유전자의 방향은 알려지지 않았다. 각 유전자들은 6 개의 프로브(probe) 2 블록으로 중복 디자인되었으며, 상기 6 개의 프로브는 각각 센스(sense) 및 안티센스(anti-sense) 방향으로 디자인되었다. 총 350,000 프로브가 디자인 되었다. 프로브의 평균 크기는 75 내지 85 ℃ 온도에서의 조정으로 60-nt이다. 이러한 마이크로어레이는 GreenGene Biotech에서 제조되었다.
총 RNA는 PMMoV-P0 및 제어 버퍼(control buffer)를 12, 24, 36 및 48 시간 처리한 고춧잎(pepper leaves)으로부터 준비하였다. 이중가닥 cDNA의 합성을 위해 Superscript Double-Stranded cDNA Synthesis kit(Invitrogen, USA)를 사용하였으며, C3-labeled 타겟 DNA 단편의 합성을 위해 1 μg의 이중가닥 cDNA를 40 μl(1 O.D.)의 Cy3-9mer 프라이머(Sigma-Aldrich, USA)와 혼합하였다. 이후 마이크로어레이는 5 μm 해상도 및 Cy3 신호로 미리 설정해놓은 Genepix 4000B(Axon Instruments)로 스캔하였다. 측정된 신호는 Nimblescan(Nimblegen, USA)으로 디지털화하고 분석하였다.
실시예 2. 식물 재배 및 병원균 접종
본 발명의 실험에 사용된 고추부강(Capsicum annuum L. cv. Bukang)은 실시예 1에서 사용된 PMMoV-P0에 저항성을 갖는다.
먼저, 상기 고추부강 식물을 16 시간 낮, 8 시간 밤의 광주기(photoperiod)로 23 내지 26 ℃에서 배양하였다. 병원균 접종 및 핵산(nucleic acid) 추출을 위해 약 6주된 식물을 사용하였다. PMMoV-P0은 담배(N. tabacum cv. Samsun)에 감염시켜 증식시켰다. PMMoV-P0을 포함하는 고춧잎들의 수액(sap)은 바이러스 접종 버퍼(0.1 M Tris-HCl pH 8.0, 1 % sodium sulfate)에서 감염된 고춧잎들을 분쇄시킴으로써 얻어내었다. 이후 이를 식물에 접종하기 위해, 바이러스를 포함시킨 상기 수액을 적당량의 카보런덤(carborundum)과 섞어 고춧잎의 표면에 접종하였다. Mock-접종된 식물은 접종 버퍼 및 카보런덤만 처리하였다. 조직 응답을 관찰하기 위해, 두 개의 고춧잎들의 하부를 PMMoV-P0 수액으로 접종하고, 접종한지 10 일 후 상기 수액을 처리하지 않은 고춧잎의 상부를 수확하였다.
실시예 3. 총 RNA의 추출
고춧잎들을 파우더 형태로 만들기 위해, 액체 질소로 그라인드 하였다. 상기 고춧잎 파우더를 2 ml의 RNA 추출 버퍼(0.2 M Tris-HCl pH 8.0, 0.4 M LiCl2, 25 mM EDTA pH 8.0 및 1 % SDS)내에 옮겼다. 2 ml의 물로 포화된 페놀을 고춧잎 파우더와 버퍼가 담긴 튜브에 첨가하고, 상기 튜브를 격렬하게 교반시켰다. 이후 상기 튜브를 4 ℃에서 15 분 동안 14,000×g으로 원심분리하였다. 상층액을 에탄올로 침전시켰으며, 생성된 펠렛(pellet)을 70% 에탄올(DEPC-treated)로 세척한 후, 4 M LiCl2에 용해시켰다. 이후 재침전 한 후, 펠렛을 DEPC-처리된 증류수로 용해시켜 총 RNA를 얻어내었다.
실시예 4. RT - PCR 및 반정량적( semiquantitative ) RT - PCR 분석
먼저 cDNA를 5 μg의 총 RNA, 올리고(dT) 프라이머 또는 랜덤 프라이머 및 슈퍼스크립트 역전사 효소(superscript reverse transcriptase)(Promega, USA)를 이용하여 합성하였다. 반정량적 RT-PCR은 Liu et al.(2002)에 설명된 것과 같이 수행하였다.
유전자-특이적 프라이머는 하기 표 1(표 1-1 및 1-2)에 나타내었다. CaActin 유전자는 RT-PCR에서 RNA 정량을 위해 내부 표준으로써 사용하였다. 각각의 PCR 생성물은 1% 아가로스 겔 전기이동으로 분리하였으며, 자외선 하에서 에티디움 브로마이드(ethidium bromide)로 시각화하였다. RT-PCR로 증폭된 단편의 농도는 Quantity one(Ver.4.3, Bio-Rad, USA) 및 Multi Gauge(Ver.3.0, Fujifilm, Japan)를 이용하여 분석 및 정량하였다.
[표 1-1. RT-PCR 분석을 위한 유전자 특정 프라이머]
Figure 112012108354952-pat00021

[표 1-2. RT-PCR 분석을 위한 유전자 특정 프라이머]
Figure 112010044561184-pat00002

실시예 5. 5′ RACE 에 의한 CaLecRK1 cDNA 의 분리 및 유전자 분석
CaLecRK1 유전자의 단편은 cDNA 라이브러리를 통해 얻어내었다. CaLecRK1 전체 cDNA 클론을 분리하기 위해, PMMoV-P0가 감염된 식물로부터 고추 RNA를 분리하였다. cDNA는 cDNA 증폭 키트(Clontech, USA)를 이용하여 제조사의 지시에 따라 합성하였다. 도 1에 나타낸 것과 같이, 5′RACE(Rapid Amplication of cDNA Ends)를 수행하기 위해, CaLecRK1 kinase 도메인의 보존성이 높은 서열에 대응하는 두 개의 유전자 특정 프라이머(GSP1; 5'-GGCCTGTTGATGCTGAGAACCCAAAGTA-3' 및 GSP2; 5'-TGGTGTTGAACCATTTTTCCCCATT-3')를 어댑터 프라이머와의 접합(conjugation)에서 PCR 증폭을 위해 이용하였다. PCR 증폭은 94 ℃에서 30 초, 68 ℃에서 30 초 및 72 ℃에서 30 초, 30 사이클로 수행하였다. PCR 생성물은 TA 클로닝 벡터(Invitrogen)내에 삽입시키고, 삽입물(insert)을 시퀀싱하였다 [http://dna.macrogen.com/kor/ 참조]. 구조 도메인 예측은 SMART [http://smart.embl-heidelberg.de 참조] 및 Pfam [http:/.pfam.sanger.ac.uk 참조] 데이타베이스를 이용하여 수행하였다. TMHMM [http://www.cbs.dtu.dk/services/TMHMM 참조], SOSUI [http://bp.nuap.nagoya-u.ac.jp/~sosui/ 참조]는 막전위 도메인을 예측하기 위해 사용되었다. 다른 도메인의 예측은 InterProScan [http://www.ebi.ac.uk/Tools/InterProScan/ 참조]를 이용하여 수행하였다.
실시예 6. VIGS(Virus-induced gene silencing)
VIGS(Virus-induced gene silencing)는 바이러스에 대항하여 RNA가 매개하는 식물방어 기작의 일종으로 도 2와 같은 원리로 작용한다. VIGS는 전사-후 유전자 억제(Post-transcriptional gene silencing, PTGS)의 일종으로 전사-후(Post-transcriptional), RNA 턴-오버(RNA turnover), 뉴클레오티드 서열-특이적(nucleotide sequence-specific)의 특성을 가진다. VIGS 벡터(vector)로는 PVX(Potato virus X) amplicon 또는 TRV(Tobacco rattle virus)에 식물 유전자를 클로닝하여 사용하는데, 본 발명에서는 Liu et al., (2002) virus-induced gene silencing in tomato. Plant J. 31(6)에 보고된 pTRV1과 pTRV2 벡터를 사용하였다.
상기 실시예 5에서 얻은 CaLecRK1 cDNA의 3′UTR 영역인 2204 ~ 2360 bp 영역을 PCR로 증폭하고, TRV 게놈의 일부를 포함하는 pTRV2 벡터의 CP(coat protein)와 T(transcriptional terminators) 사이의 MSC(multiple cloning site)에 클로닝하였다 [Ratcliff et al., 2001]. 진공침윤(Agro-infiltration)을 위해, pTRV1, pTRV2 및 재조합 플라스미드 pTRV2::CaLecRK1을 준비한 후, 급속 냉-해동법(freeze-thaw method)[An et al., 1988]을 통해 Agrobacterium tumefaciens GV3101에 형질전환 시켰다. 상기 재조합 플라스미드 pTRV2::CaLecRK1는 pTRV2의 EcoRⅠ 제한효소 부위에 목적 유전자인 CaLecRK1을 연결시킴으로써 제조하였다 (도 3). 각각의 형질전환된 Agrobacterium tumefaciens은 50 μg/ml의 카나마이신 및 50 μg/ml의 리팜피신이 포함된 YEP에서 28 ℃로 밤새도록 배양하였다. 배양된 세포들은 원심분리(3000 rpm, 15 분, 4 ℃)를 통해 침전시키고, 이를 침투버퍼(20 mM citric acid, 2 % sucrose 및 200 μm acetosyringone pH 5.2)에 현탁시킨 뒤, O.D600 = 0.3의 값을 갖도록 상기 침투버퍼(infiltration buffer)로 농도를 조절하였다. 약 1:1.5의 비율로 pTRV1 및 pTRV2 또는 pTRV2::CalecRK1을 각각 혼합한 뒤, 바늘이 없는 1 ml 주사기를 이용하여 18 ℃, 습도 30%에서 발아시킨 고추 떡잎에 주입하였다.
실시예 7. 시퀀스 정렬 및 계통 발생적( phylogenetic ) 분석
애기장대(Arabidopsis)에서 CaLecRK1 및 그것의 동족체(homologue)의 도메인 서열 및 표준길이 단백질은 ClustalW 방법으로 정렬하였으며, 계통 발생적 분석은 Megalign Program(Intelligenetics, USA)으로 수행하였다.
실시예 8. DAB (3,3'- diaminobenzidine ) 염색
과산화 수소(hydrogen peroxide) 축적은 DAB 염색으로 시각화 하였다 [thordal Christensen H et al., 1997].
먼저, TRV2 및 CaLecRK1 VIGS 식물잎을 PMMoV-P0로 감염시켰다. 감염 3일 후, 감염된 잎들을 절개하고, 0.1% DAB 용액에 담구었다. 이후, 20 분 동안 진공 침투 후, 시료를 20 시간 동안 상온에서 배양하였다. 염색(stain)은 멈춘 후, 엽록소(chlorophyll)는 10 내지 40 분 동안 96%(v/v) 에탄올로 끓임으로써 제거하였다. 이후 DAB 및 H2O2의 반응 특성인 갈색 점을 분석하였다.
실시예 9. 트리판 블루 ( trypan blue ) 염색
식물 조직에서 죽은 식물 세포는 트립판 블루로 염색시킴으로써 시각화하였다.
먼저, TRV2 및 CaLecRK1-VIGS 식물잎을 PMMoV-P0로 감염시켰다. 감염 3일 후, 감염된 식물잎을 트리판 블루(10 g 페놀, 10 ml 글리세롤, 10 ml 젖산, 10 ml 증류수 및 0.02 g 트리판 블루)로 염색시켰다. 감염된 식물잎들을 염색용액(staining solution)으로 10 분 동안 끓이고, 클로랄하이드레이트(chloral hydrate)로 밤새도록 재염색시켰다.
결과 1. PMMoV-P 0 접종에 의해 조절된 단백질 키나아제(protein kinase)의 확인
PMMoV-P0 처리에 따라 증가된 단백질 키나아제를 확인하기 위해, Capsicum annuum 300 K 마이크로어레이(GreenGene Biotech, Korea)로 발현 분석을 수행하였다. 총 RNA는 PMMoV-P0 및 제어 버퍼(control buffer)를 12, 24, 36 및 48 시간 처리한 고춧잎(pepper leaves)으로부터 준비하였다. 이후 본 발명자들은 PMMoV-P0에 반응하는 34748 유전자들에 대한 정보를 획득하였다. 상기 유전자들 중, 단백질 키나아제를 암호화하는 434 유전자들을 분리하였으며, 분리된 유전자들 중 PMMoV-P0에 반응하여 발현이 3 배 이상 증가되는 38 단백질 키나아제들을 나타내었다 (표 2). 발현이 증가된 단백질 키나아제들 중, 렉틴 단백질 키나아제(clone ID: cacn14085)는 상기 유전자가 수용체와 같은 키나아제를 암호화하는 유전자에 속하는 유전자이며, 그 기능이 대부분 알려져 있지 않으므로 연구를 위해 선택되었다. 마이크로어레이 결과, cacn14085는 4.32 배 이상 발현이 증가되었다.
[표 2-1. 단백질 키나아제 발현 변화]
Figure 112010044561184-pat00003

[표 2-2. 단백질 키나아제 발현 변화]
Figure 112010044561184-pat00004

결과 2. PMMoV-P 0 접종에 따른 반응에서 cacn14085 의 발현 패턴
PMMoV-P0 접종에 따른 반응에서 cacn14085의 전사가 유도되는지 관찰하기 위해, 고춧잎을 PMMoV-P0로 감염시키고, 총 RNA는 PMMoV-P0 및 제어 버퍼(control buffer)를 12, 24, 36 및 48 시간 처리한 고춧잎(pepper leaves)으로부터 추출하였다. Mock 접종은 대조군으로써 사용하였다. 접종한지 6 시간 후, cacn14085 전사는 mock 처리 및 바이러스 감염 처리군 모두에서 축적되었다. 또한 상처 스트레스(wounding stress) 하에서 cacn14085 유전자의 발현을 확인하기 위해, RT-PCR을 수행하였다. RT-PCR 측정 결과는 도 4에 나타내었다. cacn14085 유전자는 상처 스트레스에 반응한지 2, 6, 12 시간 후에 발현됨을 확인하였다 (도 4의 (A)). 이는, mock 처리 및 바이러스 감염 처리군 모두에서 초기 cacn14085 전사의 축적이 상처 스트레스에 대한 반응에 의한 것임을 나타낸다. 또한 PMMoV-P0 접종한지 24, 48 시간 후, mock 처리군에 비해 바이러스 감염 고춧잎에서 cacn14085 유전자가 강력하게 유도되었다 (도 4의 (B)). 이러한 결과는 PMMoV-P0 감염에 대한 초민감성 반응(HR) 동안 cacn14085 유전자가 특이적으로 발현되었음을 의미한다. CaPR1 유전자의 발현은 PMMoV-P0 접종에 대한 양성 대조군으로써 관찰하였다. CaPR1 유전자의 강한 발현은 접종한지 24, 48 시간 후에 관찰되었다 (도 4의 (B)).
결과 3. PMMoV - P 0 로 유도된 세포 죽음에서 cacn14085 -억제( silencing ) 효과
본 발명자들은 EST 클론들로부터 cacn14085 유전자의 일부 서열을 얻어내었다. cacn14085 유전자 서열의 길이는 1754 bp이고, 상기 서열은 3'UTR, 키나아제 도메인 및 일부 렉틴 도메인을 포함한다. PMMoV-P0에 대한 방어 반응에서 상기 유전자의 기능을 확인하기 위해, cacn14085 유전자를 억제시킨 식물을 준비하였다. TRV(Tabacco rattle virus)-기반의 VIGS(virus-induced gene silencing)는 cacn14085 유전자의 발현을 억제시키기 위해 이용하였다 [Liu et al., 2002]. cacn14085 유전자의 3'UTR 157 bp 단편은 VIGS를 위해 사용되었으며, 상기 단편은 특정 프라이머를 통해 합성하였다. 상기 유전자에 대한 특정 프라이머는 하기와 같다.
cacn14085 유전자
Forward; 5'-TAGCAGCATACATATTACCAACA-3'
Reverse; 5'-TGCAGCCCAAAAGAAAA-3'
상기 cacn14085 유전자에 대한 VIGS를 수행한지 한 달 후, 고춧잎들을 PMMoV-P0로 접종하고, 접종 4 일 후, 상기 고춧잎들을 관찰하였다. 관찰 결과는 도 5에 나타내었다. 도 5의 (A)에 보이는 바와 같이, TRV2 벡터 군과 비교하여 cacn14085를 억제시킨 군에서는 초민감성 병변(HR-lesion)의 수가 현저히 감소되었다. 초민감성 병변은 PMMoV-P0에 대항하여 L-gene에 의해 매개되는 방어 반응으로 나타난다. 특히 TRV2 대조군에서는 39개의 초민감성 병변이 나타났으며, PR1 유전자의 발현 또한 강하게 유도되었다. 또한 cacn14085를 억제시킨 식물들에서는 각각의 유전자 발현 패턴 및 병변의 수가 다르게 관찰되었다. 식물 1은 41개의 초민감성 병변이 나타났으며, 식물 2는 39개, 식물 3은 3 ~ 4개, 식물 4는 1 ~ 2개의 초민감성 병변이 관찰되었다. cacn14085 유전자의 전사 수준은 식물 1에서는 전혀 억제되지 않았으며, 식물 2에서는 54%, 식물 3에서는 66%, 식물 4에서는 73% 억제되었다. cacn14085 유전자의 억제 수준이 증가할수록, 초민감성 병변의 수는 더 감소됨을 확인할 수 있다. 또한 CaPR1의 발현 수준(도 5의 (B))도 cacn14085 억제 수준이 증가할수록 감소되었다.
결과 4. 5'-RACE를 이용한 CaLecRK1 의 full-length cDNA의 분리
cacn14085의 full-length cDNA를 얻기 위해, 일부 렉틴 도메인의 보존된 서열에 상응하는 두 개의 프라이머(GSP1; 5′- GGCCTGTTGATGCTGAGAACCCAAAGTA-3′ 및 GSP2; 5′-TGGTGTTGAACCATTTTTCCCCATT-3′)를 합성한 후, 5'RACE(rapid amplification of cDNA ends)를 도 1에 나타낸 바와 같이 수행하였다. 5'RACE 결과, 도 6에 나타낸 바와 같이, 본 발명자들은 950 bp의 아가로즈 겔(agerose gel) 밴드를 얻어내었으며, 이후 상기 밴드를 시퀀싱하여, 679 bp의 cacn14085 유전자를 더 발견하였다. cacn14085의 full-length cDNA를 얻어내었으며, 상기 유전자를 CaLecRK1(Capsicum annuum Lectin receptor kinase1)로 명명하였다. CaLecRK1 cDNA의 뉴클레오티드 서열은 2433 bp이고(서열번호 1), 701 아미노산(서열번호 2)의 폴리펩타이드를 암호화하는 ORF(open reading frame)를 포함한다.
결과 5. CaLecRK1 ( Capsicum annuum Lectin receptor kinase1 )의 서열 분석
Blast tool을 이용한 CaLecRK1의 단백질 서열 분석으로, CaLecRK1이 N-말단 세포외 렉틴 도메인(아미노산 서열 72 ~ 301), 막전위 도메인(아이노산 서열 318 ~ 338) 및 C-말단 세포질 단백질 키나아제 도메인(아미노산 서열 376 ~ 578)과 같은 3 개의 주요 도메인을 포함하고 있는 것을 확인하였다 (도 7). 상기 C-말단 단백질 키나아제 도메인은 ATP-결합 부위 및 Ser/Thr 단백질 활성 부위를 포함한다. 애기장대(Arabidopsis thaliana)의 다른 LecRK들과 CaLecRK1의 아미노산 정렬을 도 8에 나타내었다. CaLecRK1 계통 발생적 분석 결과, CaLecRK1은 아라비돕시스 렉틴 수용체 키나아제(Arabidopsis Lectin receptor kinase)인 At5g06740(GeneBank Accession no.NM_120757)과 아미노산 수준에서 60% 동일한 결과를 보였다 (도 9).
결과 6. 방어 신호 성분의 발현에 대한 CaLecRK1 의 영향
PMMoV-P0에 대한 반응에서 시그널링(signaling)에 관여하는 유전자의 발현 패턴을 확인하기 위해, 본 발명자들은 RT-PCR을 수행하였다.
키티네이즈(chitinase)를 암호화하는 Cachi1은 병인(pathogenesis)에 관여하는 단백질의 구성요소이며, CaGlu1은 글루탐산 합성 유전자이며, CaOSM1CaOSML은 삼투압농도감지(osmosensory) MAPK를 암호화하는 유전자이며, CaLOX1CaLOX2는 리폭시게나아제(lipoxygenase) 유전자이며, CaPDF2 .2는 펩타이드 디포밀라제(deformylase) 유전자이며, CaPR2, CaPR4CaPR5는 병인에 관여하는 단백질들을 암호화하는 구성요소이며, CaRIN4은 RPM1 INTERACTING PROTEIN 4 유전자이며, CaNDR1은 세포막에 존재하는 GPI(glycosylphatidylinositol) 고정 유전자이며, CaNPR1은 PR1의 비-발현자이며, CaPAD4는 PHYTOALEXIN DEFICIENT 4 유전자이며, CaCPR5는 CONSTITUTIVE EXPRESSION OF PR GENE 5, CaCOI1는 CORONATINEINSENSITIVE1 유전자이며, CaJAZ1는 JASMONATE-ZIM-DOMAINPROTEIN1 유전자이며, CaCTR1는 CONSTITUTIVETRIPLERESPONSE1 유전자이며, CaEIN3는 ETHYLENE-INSENSITIVE 3 유전자이며, CaERF는 ERF(ethylene response factor) 유전자이며, CaHSTF는 HSTF(heat shock transcription factor) 유전자이며, elF3elF4E는 신장 인자(elongation factor) 유전자이다.
유전자 발현 측정 결과, Cachi1, CaGlu1, CaLOX1, CaPDF2.2, CaPR2, CaPR4, CaPR5, CaNPR1, CaPAD4, CaCOI1, CaJAZ1, CaCTR1, CaEIN3, CaERF, CaHSTF 유전자들은 PMMoV-P0에 대한 반응으로 발현이 증가되었다. 상처 처리(wound treatment)에 대한 유전자 발현 분석은 대조군으로써 수행되었다 (도 10).
이후, 분자 수준에서 CaLecRK1 유전자의 효과를 관찰하기 위해, CaLecRK1를 억제시킨 식물 및 TRV2 벡터 식물(대조군)을 PMMoV-P0로 접종하고, 접종한지 24, 48, 72 및 96 시간 후 반정량적 RT-PCR을 수행하여 관찰하였다. 도 11의 (A)에 나타낸 바와 같이, 상기 시간에서 관찰한 각각의 고춧잎들에서 CaLecRK1 유전자가 억제됨을 확인할 수 있다. 바이러스 감염 후 24, 48, 72 및 96 시간 경과 후에는 TRV2 대조군에 비해 CaLecRK1를 억제시킨 고춧잎에서 CaLecRK1 유전자가 각각 30%, 70%, 92% 및 78% 억제되었다.
또한 PMMoV-P0 접종 후, CaLecRK1를 억제시킨 고춧잎에서 초민감성 반응의 감소가 관찰됨에 따라(결과 3), 본 발명자들은 상기 PMMoV-P0로 접종 후 CaLecRK1 억제시킨 고춧잎들에서 시그널링에 관여하는 유전자들의 발현 수준을 반정량적 RT-PCR을 이용하여 측정하였다. 먼저, SA(salicylic acid) 시그널링에 관여하는 유전자들(CaPAD4, CaNPR1, CaPR1, CaPR2, CaPR4, CaPR5, CaPR10)을 측정하였다. 측정 결과 도 11의 (B) 내지 (K)에 나타낸 바와 같이, 상기 SA 시그널링에 관여하는 유전자들은 CaPAD4 유전자를 제외하고 CaLecRK1-억제시킨 고춧잎에서 발현이 억제되었다. 그리고 MeJA(Methyl jasmonate) 시그널링에 관여하는 유전자들(CaJAZ1, CaCOI1) 또한 CaLecRK1를 억제시킨 고춧잎에서 억제되었다. 그러나, 에틸렌(ethylene) 시그널링에 관여하는 유전자인 CaEIN3CaLecRK1를 억제시킨 고춧잎에서 발현이 억제되지 않았다. 상기의 결과로 CaLecRK1 유전자가 PMMoV-P0에 대한 반응에서 시그널링에 관여하는 대다수의 유전자들의 발현을 조절함을 알 수 있다.
결과 7. CaLecRK1 억제에 따른 PMMoV - P 0 감염에 대한 CP ( coat protein ) 전사 수준의 증가
PMMoV-P0에 대한 저항성에서 CaLecRK1 유전자의 영향을 관찰하기 위해, PMMoV-P0 CP(coat protein) 유전자 프라이머쌍을 이용하여 반정량적 RT-PCR을 수행하였다. PMMoV-P0 CP 유전자의 축적은 바이러스 증식의 지표로써 이용된다.
먼저, PMMoV-P0CaLecRK1 억제시킨 식물 및 TRV2 벡터 식물(대조군)에 접종한 후, 바이러스 감염 72 시간 후 상기 식물들을 관찰하였다. 관찰 결과, CaLecRK1 발현의 억제 및 HR 병변의 감소는 CaLecRK1을 억제시킨 식물에서 관찰되었다. 이후, PMMoV-P0의 증식을 CP 유전자를 이용하여 반정량적 RT-PCR로써 확인하였다. 도 12에 나타낸 바와 같이, CaLecRK1 유전자의 발현이 55% 억제 되었을 때, PMMoV-P0 CP 유전자 전사의 축적은 TRV2 대조군에 비해 CaLecRK1 억제시킨 식물에서 5 배 증가되었다. 따라서 CaLecRK1의 억제는 PMMoV-P0 CP 유전자의 전사를 증가시키는 결과를 야기시킴을 확인하였다.
또한 PMMoV-P0의 전파 체계(systemic spreading)에 대한 CaLecRK1 억제 효과를 확인하기 위해, 본 발명자들은 CaLecRK1을 억제 및 비억제시킨 식물의 하부를 PMMoV-P0으로 감염시키고, 감염 10 일 후, 바이러스를 감염시키지 않은 각 식물의 상부에서 PMMoV-P0 CP 유전자의 축적을 RT-PCR을 이용하여 비교하였다. RT-PCR은 PMMoV-P0 CP 유전자의 프라이머로 수행하였다. RT-PCR 결과, PMMoV-P0 CP는 TRV2 식물에 비해 CaLecRK1을 억제시킨 식물에서 더 축적됨을 관찰할 수 있었다 (도 13의 (A)). 이후, CaLecRK1의 억제 및 PMMoV-P0 CP 축적을 확인하기 위해, 반정량적 RT-PCR을 수행하였다. PMMoV-P0 CP 유전자의 전사는 CaLecRK1을 억제시킨 식물에서 4 배 이상 축적되었다.(도 13의 (B)).
또한 PMMoV-P0 접종에 따른 CaLecRK1에 의해 매개되는 방어 반응을 트리판 블루(trypan blue) 염색 및 DAB 염색으로 관찰하였다.
먼저 CaLecRK1을 억제시킨 식물 및 TRV2 식물(대조군)을 PMMoV-P0로 감염시켰다. 감염 3 일 후, 상기 식물들을 트리판 블루 및 DAB로 염색하였다. 상기 염색으로 죽은 조직 또는 죽은 세포를 확인할 수 있다. 염색 후 식물들을 관찰한 결과, 도 14의 (A)에 나타낸 것과 같이 세포 죽음(cell death)은 TRV2 식물(대조군)에 비해 CaLecRK1을 억제시킨 식물에서 더 낮게 나타남을 확인할 수 있다. 이후, 상기 식물들로부터 CaLecRK1 억제 및 PMMoV-P0 CP 유전자의 축적을 반정량적 RT-PCR을 수행하여 확인하였다. RT-PCR 결과, CaLecRK1 유전자가 78% 억제 되었을 때, 세포 죽음이 감소되었으며, 그 결과로 PMMoV-P0 CP 유전자 전사의 축적이 2.7 배 증가되었다.(도 14의 (B)).
그리고, 산화 폭발(oxidative burst)하는 동안 ROS(reactive oxygen species)가 방출될 때 형성되는 분자인 H2O2는 DAB로 염색함으로써 시각화하였다. 그 결과, H2O2 생성은 TRV2 식물에 비해 CaLecRK1 억제시킨 식물에서 더 낮게 나타남을 확인할 수 있다(도 15의 (A)). 이후 상기 식물들로부터 CaLecRK1 억제 및 PMMoV-P0 CP 유전자의 축적을 반정량적 RT-PCR로 확인하였다. 측정 결과, CaLecRK1 유전자는 80% 억제 되었을 때, PMMoV-P0 CP 유전자의 전사는 5 배 증가되었다 (도 15의 (B)).
상기의 결과들을 통해, CaLecRK1은 PCD(programmed cell death) 및 H2O2 생성의 조절을 통한 PMMoV-P0에 대한 식물의 저항성을 위해 요구되는 것으로 사료된다.
<110> Korea University Industrial & Academic Collaboration Foundation <120> CaLecRK1 gene from hot pepper concerned in defense response of plants and use thereof <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 2433 <212> DNA <213> Artificial Sequence <220> <223> Capsicum annuum lectin receptor kinase 1 <400> 1 acatgggcat gattgtgttt gtcacttcca attttttatt ttacacaatc ccaacgtgct 60 ttaaaaacct tctttttatc aaccctccat gtatcttcct ctcataatcc tcacttctct 120 atacttcatt tcactacatg aaaacaaaaa aatgaaattc ttgacaccca aaatcatcag 180 tatcttcata tttttctctt gtatacaatc catatcacaa gccaagatca aaaaatttga 240 caaacaatat ggtgatcctt ttgatcatac atatactccc atatttgaaa tcaaacatcc 300 tgcacaaatc agcaacctag ctcttcaaat caccccagac accgcgtctt ctgcttatca 360 aatgttcaat aactcaggtc gaatcctgtt gaaacgacca ttcagattgt gggatagtag 420 tcatgatgac ggagttgagg atctttcaag gttggcgtct ttcaacactt cttttttagt 480 aaacatttac aggccaaaaa atgacacacc agctgaagga ttggcattct tgatttgtcc 540 tgatttagac ctgccaaaaa acagtcaggg ccagtactta ggcctgacaa atagtactac 600 tgatggcgac gcttccaaca ggattatcgc ggttgagcta gacacgttca agcaagattt 660 tgacatcgat gacaaccaca ttggaattga tttacacagt atagattcta ttaaatcgga 720 gtcactgact ccgcatggaa ttcaactagc accaataggt gcaagatttt acaacatttg 780 gatacaatat gacggaatca agaaagtact tgatgtgtac attgttgaac aaatggggaa 840 aaatggttca acaccaccta gaccaaatga tccaatatta acacacaatc ttgatttaag 900 aaaatttgta aatcaagaat catactttgg gttctcagca tcaacaggcc atttcaatca 960 gttgaattgt gtgttgagat ggaatttaac agttgaatat tttcaagaaa agaatcatgg 1020 tttgataatt ggattaggtg ttggtgtacc tatagtagtt gtgttaatga ttttgtttgg 1080 gtattttggt tacttttatt ataagaaaaa aaggggtgat aggtcacaat ctaatatatt 1140 gggtgcatta aagagtttac ctggtatgcc tagagatttt gagtttaaag aattgaaaaa 1200 agctactaat aattttgatg aaaaaaataa acttggtgaa ggtggatatg gagttgttta 1260 caaaggcaat ttggttgatg aaaaattgga aattgcagtg aagtggtttt ctagagaaag 1320 tatcaaaggt gaagatgatt tcttggctga gttgacaatt atcaatcgtt taaggcataa 1380 acatcttgtc aaattacttg gatggagcca taagcatgga aagctactac ttgtttatga 1440 gtacatgcca aatggtagcc tagacaaaca tctcttctca gcgccagata aagaaccact 1500 cagctggtgc gtccgctaca acattgtatc aggcgtcgcg tcagccctgc actatctgca 1560 caatgagtac gaacagaagg tggtccatcg cgatctcaag gcgaacaaca tcatgctcga 1620 ctcaaacttc aatgcacgcc ttggggattt tggcctagca cgagcaattg acaatgagaa 1680 gacctcgtat gctgatgagg ccgagggggt gcttggcacg atggggtaca tcgcgccaga 1740 gtgcttccac actggaaaag ctactcaaca ttctgatgtc tatgcatttg gagcagtgtt 1800 gttggaagta gtatgtggcc aaagacctgg aaccaaagtt aatggctttc aactccttgt 1860 tgattgggtt tggttcttgc atcgcgatgg aagaatcctc gaagctgttg acaggaggct 1920 cggggatgat tacgtagctg aagaagcaaa gaggttgcta ctacttactc tagcttgctc 1980 acatccaatc gcgagtgaac gaccgaccac acaaactata gttcaaatta tatcaggatc 2040 agtgccagca ccagaagttc caccattcaa gccatcattt gtgtggcctt ctatggttcc 2100 agttgatata gaatcgagca tcgtcgatac aatatccatc acaacacctc agttcagttc 2160 agagaacaac agtattgagt atctaagcaa gtagagatag ctatagcagc atacatatta 2220 ccaacaggaa aaaaaaatta attaacttga ctttgatttc ccttttttaa tgtttttttc 2280 actctgtaat tatgttatat ggtgaggttg tcaaaagaat ttttctcttc cttcttgttt 2340 tgtttttctt ttgggctgca agtttgtaat tctgtaatga caagaacata aacaatgtat 2400 atttcttaga ccttaaaaaa aaaaaaaaaa aaa 2433 <210> 2 <211> 701 <212> PRT <213> Artificial Sequence <220> <223> Capsicum annuum lectin receptor kinase 1 <400> 2 Met Tyr Leu Pro Leu Ile Ile Leu Thr Ser Leu Tyr Phe Ile Ser Leu 1 5 10 15 His Glu Asn Lys Lys Met Lys Phe Leu Thr Pro Lys Ile Ile Ser Ile 20 25 30 Phe Ile Phe Phe Ser Cys Ile Gln Ser Ile Ser Gln Ala Lys Ile Lys 35 40 45 Lys Phe Asp Lys Gln Tyr Gly Asp Pro Phe Asp His Thr Tyr Thr Pro 50 55 60 Ile Phe Glu Ile Lys His Pro Ala Gln Ile Ser Asn Leu Ala Leu Gln 65 70 75 80 Ile Thr Pro Asp Thr Ala Ser Ser Ala Tyr Gln Met Phe Asn Asn Ser 85 90 95 Gly Arg Ile Leu Leu Lys Arg Pro Phe Arg Leu Trp Asp Ser Ser His 100 105 110 Asp Asp Gly Val Glu Asp Leu Ser Arg Leu Ala Ser Phe Asn Thr Ser 115 120 125 Phe Leu Val Asn Ile Tyr Arg Pro Lys Asn Asp Thr Pro Ala Glu Gly 130 135 140 Leu Ala Phe Leu Ile Cys Pro Asp Leu Asp Leu Pro Lys Asn Ser Gln 145 150 155 160 Gly Gln Tyr Leu Gly Leu Thr Asn Ser Thr Thr Asp Gly Asp Ala Ser 165 170 175 Asn Arg Ile Ile Ala Val Glu Leu Asp Thr Phe Lys Gln Asp Phe Asp 180 185 190 Ile Asp Asp Asn His Ile Gly Ile Asp Leu His Ser Ile Asp Ser Ile 195 200 205 Lys Ser Glu Ser Leu Thr Pro His Gly Ile Gln Leu Ala Pro Ile Gly 210 215 220 Ala Arg Phe Tyr Asn Ile Trp Ile Gln Tyr Asp Gly Ile Lys Lys Val 225 230 235 240 Leu Asp Val Tyr Ile Val Glu Gln Met Gly Lys Asn Gly Ser Thr Pro 245 250 255 Pro Arg Pro Asn Asp Pro Ile Leu Thr His Asn Leu Asp Leu Arg Lys 260 265 270 Phe Val Asn Gln Glu Ser Tyr Phe Gly Phe Ser Ala Ser Thr Gly His 275 280 285 Phe Asn Gln Leu Asn Cys Val Leu Arg Trp Asn Leu Thr Val Glu Tyr 290 295 300 Phe Gln Glu Lys Asn His Gly Leu Ile Ile Gly Leu Gly Val Gly Val 305 310 315 320 Pro Ile Val Val Val Leu Met Ile Leu Phe Gly Tyr Phe Gly Tyr Phe 325 330 335 Tyr Tyr Lys Lys Lys Arg Gly Asp Arg Ser Gln Ser Asn Ile Leu Gly 340 345 350 Ala Leu Lys Ser Leu Pro Gly Met Pro Arg Asp Phe Glu Phe Lys Glu 355 360 365 Leu Lys Lys Ala Thr Asn Asn Phe Asp Glu Lys Asn Lys Leu Gly Glu 370 375 380 Gly Gly Tyr Gly Val Val Tyr Lys Gly Asn Leu Val Asp Glu Lys Leu 385 390 395 400 Glu Ile Ala Val Lys Trp Phe Ser Arg Glu Ser Ile Lys Gly Glu Asp 405 410 415 Asp Phe Leu Ala Glu Leu Thr Ile Ile Asn Arg Leu Arg His Lys His 420 425 430 Leu Val Lys Leu Leu Gly Trp Ser His Lys His Gly Lys Leu Leu Leu 435 440 445 Val Tyr Glu Tyr Met Pro Asn Gly Ser Leu Asp Lys His Leu Phe Ser 450 455 460 Ala Pro Asp Lys Glu Pro Leu Ser Trp Cys Val Arg Tyr Asn Ile Val 465 470 475 480 Ser Gly Val Ala Ser Ala Leu His Tyr Leu His Asn Glu Tyr Glu Gln 485 490 495 Lys Val Val His Arg Asp Leu Lys Ala Asn Asn Ile Met Leu Asp Ser 500 505 510 Asn Phe Asn Ala Arg Leu Gly Asp Phe Gly Leu Ala Arg Ala Ile Asp 515 520 525 Asn Glu Lys Thr Ser Tyr Ala Asp Glu Ala Glu Gly Val Leu Gly Thr 530 535 540 Met Gly Tyr Ile Ala Pro Glu Cys Phe His Thr Gly Lys Ala Thr Gln 545 550 555 560 His Ser Asp Val Tyr Ala Phe Gly Ala Val Leu Leu Glu Val Val Cys 565 570 575 Gly Gln Arg Pro Gly Thr Lys Val Asn Gly Phe Gln Leu Leu Val Asp 580 585 590 Trp Val Trp Phe Leu His Arg Asp Gly Arg Ile Leu Glu Ala Val Asp 595 600 605 Arg Arg Leu Gly Asp Asp Tyr Val Ala Glu Glu Ala Lys Arg Leu Leu 610 615 620 Leu Leu Thr Leu Ala Cys Ser His Pro Ile Ala Ser Glu Arg Pro Thr 625 630 635 640 Thr Gln Thr Ile Val Gln Ile Ile Ser Gly Ser Val Pro Ala Pro Glu 645 650 655 Val Pro Pro Phe Lys Pro Ser Phe Val Trp Pro Ser Met Val Pro Val 660 665 670 Asp Ile Glu Ser Ser Ile Val Asp Thr Ile Ser Ile Thr Thr Pro Gln 675 680 685 Phe Ser Ser Glu Asn Asn Ser Ile Glu Tyr Leu Ser Lys 690 695 700

Claims (10)

  1. 서열번호 2의 아미노산 서열을 코딩하는 염기서열을 갖는 고추렉틴수용체인산화1(CaLecRK1) 유전자.
  2. 제 1항에 있어서, 상기 유전자는 서열번호 1의 염기서열을 갖는 것을 특징으로 하는 고추렉틴수용체인산화1(CaLecRK1) 유전자.
  3. 서열번호 2의 아미노산 서열을 갖는 고추렉틴수용체인산화1(CaLecRK1) 단백질.
  4. 제 1항 또는 제 2항의 CaLecRK1 유전자를 도입한 재조합 벡터.
  5. 제 4항의 재조합 벡터로 형질전환된 식물체.
  6. 제 1항 또는 제 2항의 CaLecRK1 유전자 또는 그 발현 단백질을 유효성분으로 함유하는 고추마일드모틀바이러스(Pepper mild mottle virus, PMMoV)에 대한 식물의 감염 저항성 증가용 조성물.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
KR1020100066561A 2010-07-09 2010-07-09 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도 KR101251615B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100066561A KR101251615B1 (ko) 2010-07-09 2010-07-09 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100066561A KR101251615B1 (ko) 2010-07-09 2010-07-09 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도

Publications (2)

Publication Number Publication Date
KR20120005876A KR20120005876A (ko) 2012-01-17
KR101251615B1 true KR101251615B1 (ko) 2013-04-08

Family

ID=45611827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100066561A KR101251615B1 (ko) 2010-07-09 2010-07-09 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도

Country Status (1)

Country Link
KR (1) KR101251615B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653258B (zh) * 2017-11-16 2021-01-29 河南大学 棉花GhLecRK1基因在植物抗黄萎病中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834252B1 (ko) 2007-04-16 2008-05-30 고려대학교 산학협력단 고추 저항성 관련 유전자 씨에이엠엔알1 및 이를 이용한형질전환 식물체

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834252B1 (ko) 2007-04-16 2008-05-30 고려대학교 산학협력단 고추 저항성 관련 유전자 씨에이엠엔알1 및 이를 이용한형질전환 식물체

Also Published As

Publication number Publication date
KR20120005876A (ko) 2012-01-17

Similar Documents

Publication Publication Date Title
Warner et al. Isolation of an asparagus intracellular PR gene (AoPR1) wound‐responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco
Fekih et al. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response
Checker et al. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress
CA2459079C (en) Plant-derived resistance gene
Yadeta et al. The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance
EP1941045A1 (en) A transgenic plant having enhanced drought tolerance
Oh et al. CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens
HUT76529A (en) Plant virus resistance gene and methods for use thereof
EP3318638A1 (en) Nucleotide sequence for improving resistance against plant pathogens
JP2011519562A (ja) 干ばつ抵抗性のための転写因子の転写制御ならびに転写後制御
BRPI0619939A2 (pt) gene quimérico, vetor, uso do promotor de um gene de cisteìna sintase citossólica de planta, e, método para fabricar uma planta transgênica ou célula de planta
Wen et al. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria
US7982098B2 (en) Environmental stress resistance transcription factor and method for enhancing environmental stress resistance of plants using the same
US20150128304A1 (en) Plant Body Showing Improved Resistance Against Environmental Stress and Method for Producing Same
US20030226170A1 (en) Generation of plants with improved pathogen resistance
KR101251615B1 (ko) 식물의 방어반응에 관여하는 고추식물 유래 CaLecRK1 유전자 및 그 용도
Lemcke et al. A putative rolB gene homologue of the Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rolB
Moon et al. Ectopic expression of CaWRKY1, a pepper transcription factor, enhances drought tolerance in transgenic potato plants
US10221427B2 (en) Gene capable of enhancing salicylic acid-induced cell death in a plant cell and contributing to resistance to the fungal virulence factor deoxynivalenol, resistance to fusarium fungi and fusarium head blight disease, and a recombinant construct including the gene
JP5444560B2 (ja) 根の伸長が促進されている植物、及びその作製方法
EP2208788A1 (en) MANIPULATION OF THE FUNCTION OF AtDBP1 IN ORDER TO GENERATE POTYVIRUS RESISTANCE
KR101028113B1 (ko) 생장 증진, 내염성 및 노화 조절에 관여하는 고추의 CaHB1 유전자 및 그의 용도
JP5142247B2 (ja) 植物ウイルス抵抗性植物の製造方法及びその利用
CN111712513A (zh) 双生病毒抗性植物
KR100915579B1 (ko) 식물의 방어반응 및 성장과정에 관여하는 고추식물 유래CaBtf3 유전자 및 그 용도

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 7