KR101248517B1 - 혈관특성 계측장치 및 혈관특성 계측방법 - Google Patents

혈관특성 계측장치 및 혈관특성 계측방법 Download PDF

Info

Publication number
KR101248517B1
KR101248517B1 KR1020117000687A KR20117000687A KR101248517B1 KR 101248517 B1 KR101248517 B1 KR 101248517B1 KR 1020117000687 A KR1020117000687 A KR 1020117000687A KR 20117000687 A KR20117000687 A KR 20117000687A KR 101248517 B1 KR101248517 B1 KR 101248517B1
Authority
KR
South Korea
Prior art keywords
light
blood
measurement
blood vessel
light receiving
Prior art date
Application number
KR1020117000687A
Other languages
English (en)
Other versions
KR20110017913A (ko
Inventor
요시유키 산카이
Original Assignee
고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 filed Critical 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠
Publication of KR20110017913A publication Critical patent/KR20110017913A/ko
Application granted granted Critical
Publication of KR101248517B1 publication Critical patent/KR101248517B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/417Evaluating particular organs or parts of the immune or lymphatic systems the bone marrow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography

Abstract

혈관특성 계측장치(100)는 피험자의 피계측영역의 피부 표면(10)에 대향하는 위치에 유지되는 혈류계측부(20)와 혈류계측부(20)에 내장된 광학식의 센서유닛(30)과 심전계(40)와 제어장치(50)를 갖는다. 제어장치(50)는 혈류계측수단(60)과 혈관변위도출수단(70)과 혈관상태도출수단(80)을 갖는다. 혈류계측수단(60)은 센서유닛(30)의 발광부(32)로부터 출사된 광을 수광부(34, 36)에서 수광했을 때의 광강도에 근거하여 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측한다. 혈관변위도출수단(70)은 혈관 및 혈관주변 조직의 변위에 근거하여 혈관(12)의 내벽의 변위를 도출한다. 혈관상태도출수단(80)은 심전계(40)의 심전신호의 파형과 수광부(34, 36)로부터 얻어진 검출신호의 파형의 위상차에 의해 각 계측위치에 있어서의 맥파전달속도를 구하고, 그 맥파전달속도로부터 혈관(12)의 내벽의 변위상태를 도출한다.

Description

혈관특성 계측장치 및 혈관특성 계측방법{BLOOD VESSEL CHARACTERISTICS MEASUREMENT DEVICE AND METHOD FOR MEASURING BLOOD VESSEL CHARACTERISTICS}
본 발명은 혈액이 흐르는 혈관내의 상태를 비접촉식으로 계측하도록 구성된 혈관특성 계측장치 및 혈관특성 계측방법에 관한 것이다.
예를 들어, 심장으로부터 토출된 혈액이 압력에 의해 혈관내에 송액될 때, 압력이 높은 영역이 전파된 부분에서는 혈관의 내경이 압력에 의해 확경된다. 혈관의 확경부분이 전파된 전파속도(맥파전달속도라고도 한다)를 계측함으로써 혈관(동맥)의 내부의 변화를 측정하는 맥파전달속도 측정장치의 개발이 진행되고 있다(예를 들어, 특허문헌 1 참조).
맥파전달속도 측정장치는 심전유도장치에 의해 검출된 심전유도 파형의 주기마다 발생하는 소정의 부위로부터 압맥파센서에 의해 검출된 맥파의 주기마다 발생하는 소정 부위까지의 시간차가 산출되면, 이 시간차에 근거하여 동맥내의 맥파의 전파속도가 산출된다. 이 전파속도는 심장에 연결된 대동맥내의 전파를 포함하는 거리에 근거하여 산출된다. 이러한 점에서, 맥파전달속도 측정장치에서는 전파거리가 길고 또한 대동맥의 직경이 크기 때문에, 동맥내의 맥파전달속도가 낮아져 전파시간 즉 시간차가 길어지면, 맥파전달속도의 정밀도가 높아진다.
또한, 피험자의 피측정영역에 광을 조사하여 혈관을 투과한 광을 수광했을 때의 신호의 파형으로부터 맥파를 측정하는 맥파센서가 있다(예를 들어, 특허문헌 2 참조).
[특허문헌 1] : 일본공개특허공보 평8-257002호
[특허문헌 2] : 일본공개특허공보 2004-467호
그러나, 상기 특허문헌 1에 기재된 장치에서는, 혈압측정기구와 같이 피측정부에 카프를 감아 카프에 압력을 가하여 맥파를 측정하는 것이므로, 직접 피험자에게 압력을 가하여 맥파센서를 피험자의 피측정부분에 밀착시킬 필요가 있다. 또한, 특허문헌 1에 기재된 장치에서는 계측중에는 피험자를 구속하게 되기 때문에, 동일한 피험자에 대하여 복수 개소의 계측을 행하는 경우에는 그 피설치자를 장시간 구속하지 않으면 안되어, 피험자의 부담이 증대한다는 문제점이 있다.
또한, 상기 특허문헌 2에 기재된 맥파센서는 손가락끝에 광을 조사하여 광의 검출신호로부터 혈류를 측정하는 방식이지만, 손가락끝을 강하게 압압한 경우, 손가락끝의 피부가 수광부에 접촉하여 손가락끝이 압박되기 때문에, 손가락끝의 혈관에 있어서의 혈류가 변화하여 계측정밀도가 저하된다는 문제가 있다.
그래서, 본발명은 이러한 사정을 감안하여, 상기 피험자의 부담을 경감함과 동시에 계측정밀도의 저하를 해결하는 것을 과제로 한다.
상기 과제를 해결하기 위하여, 본발명은 이하와 같은 수단을 갖는다.
(1) 본발명은 피험자의 피계측영역에 대향하는 위치에 형성되고, 상기 피계측영역에 광을 조사하는 발광부와 상기 피계측영역에 전파된 광을 비접촉식으로 수광하는 수광부를 갖는 센서유닛, 상기 발광부로부터 출사된 광을 상기 수광부에서 수광했을 때의 광강도에 근거하여 상기 피계측영역에 있어서의 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측하는 혈류계측수단, 상기 혈류계측수단에 의해 얻어진 상기 혈관 및 혈관주변 조직의 변위에 근거하여 혈관벽의 변위를 도출하는 혈관변위도출수단이라고 상기 피험자의 심전신호를 계측하는 심전계측수단, 및 상기 심전신호의 파형과 상기 수광부로부터 얻어진 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 혈관상태도출수단을 구비함에 의해 상기 과제를 해결하는 것이다.
(2) 본발명은 (1)에 기재된 혈관특성 계측장치로서, 상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 수광부로부터 얻어진 상기 검출신호의 파형과의 위상차에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출함에 의해 상기 과제를 해결하는 것이다.
(3) 본발명은 (1)에 기재된 혈관특성 계측장치로서, 상기 혈관의 내벽상태에 따른 혈구성분을 광학적으로 계측함에 의해 상기 과제를 해결하는 것이다.
(4) 본발명은 (1)에 기재된 혈관특성 계측장치로서, 상기 센서유닛은 피험자의 복수의 피계측점에 광을 조사하는 복수의 발광부와 상기 복수의 피계측점에 전파된 광을 비접촉식으로 수광하는 복수의 수광부를 가지고, 상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 복수의 수광부로부터 얻어진 상기 복수의 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출함에 의해 상기 과제를 해결하는 것이다.
(5) 본발명은 (4)에 기재된 혈관특성 계측장치로서, 상기 복수의 수광부는 피계측영역에 존재하는 혈관의 상류에서 광의 전파강도를 계측하는 제 1 수광부, 및 상기 제 1 수광부보다 상기 혈관의 하류에 배치되어 피계측영역에 존재하는 혈관의 하류에서 광의 전파강도를 계측하는 제 2 수광부를 구비함에 의해 상기 과제를 해결하는 것이다.
(6) 본발명은 (4)에 기재된 혈관특성 계측장치로서, 상기 복수의 수광부는 상기 발광부를 중심으로 하는 상이한 반경위치에 원주방향으로 소정 간격마다 배치됨에 의해 상기 과제를 해결하는 것이다.
(7) 본발명은 (1)에 기재된 혈관특성 계측장치로서, 상기 센서유닛은 이동가능한 혈류계측부에 설치되고, 임의의 피계측영역에 있어서의 광의 전파강도를 계측함에 의해 상기 과제를 해결하는 것이다.
(8) 본발명은 (7)에 기재된 혈관특성 계측장치로서, 상기 혈류계측부는 상기 센서유닛에 전류를 공급하는 배터리와 상기 센서유닛으로 검출된 검출신호를 무선신호로 송신하는 무선통신장치를 구비함에 의해 상기 과제를 해결하는 것이다.
(9) 본발명은 (1)에 기재된 혈관특성 계측장치로서, 상기 센서유닛은 상기 피험자의 두부에 설치되는 그물형상 베이스의 복수 개소에서 지지되고, 상기 피험자의 두부의 복수의 각 계측위치에 있어서의 광의 전파강도를 계측함에 의해 상기 과제를 해결하는 것이다.
(10) 본발명은 (9)에 기재된 혈관특성 계측장치로서, 상기 복수의 수광부는 두부의 표면에 대하여 외측으로부터 대향하도록 소정 간격마다 배치되고, 상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 복수의 수광부로부터 얻어진 상기 복수의 검출신호의 파형의 차이에 근거하여 상기 두부의 각 계측위치에 있어서의 혈관의 내벽상태를 도출함에 의해 상기 과제를 해결하는 것이다.
(11) 본발명은 (9)에 기재된 혈관특성 계측장치로서, 상기 혈류계측수단은 상기 복수의 수광부로부터 얻어진 각 계측데이터를 상기 두부에 대한 각 어드레스마다 매핑처리하고, 각 어드레스에 대응하는 계측위치마다 혈관의 변위를 데이터베이스에 저장하고, 상기 혈관상태도출수단은 각 계측위치마다의 혈관의 변위를 상기 데이터베이스로부터 읽어들이고, 각 어드레스에 대응하는 혈관의 변위를 추출하여 상기 두부의 각 계측위치에 있어서의 혈관상태를 도출하고, 상기 두부 전체의 혈관특성의 화상을 생성함에 의해 상기 과제를 해결하는 것이다.
(12) 본발명은 피험자의 임의의 피계측영역에 대향하도록 배치된 센서유닛의 발광부로부터 상기 피계측영역에 광을 조사하고, 상기 피계측영역에 전파된 광을 수광부에서 수광하는 단계와, 상기 발광부로부터 출사된 광을 상기 수광부에서 수광했을 때의 광강도의 검출신호에 근거하여 상기 피계측영역에 있어서의 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측하는 단계와, 상기 혈관 및 혈관주변 조직의 변위에 근거하여 혈관벽의 변위를 도출하는 단계와, 상기 피험자의 심전신호를 계측하는 단계와, 상기 심전신호의 파형과 상기 수광부로부터 얻어진 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 단계를 실행함에 의해 상기 과제를 해결하는 것이다.
본발명에 의하면, 피계측영역에 전파된 광을 비접촉식으로 수광하는 수광부의 파형과 심전신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하기 때문에 피험자에게 접촉시키지 않고 혈관상태를 계측할 수 있으며, 피험자를 구속하지 않기 때문에 피험자의 부담을 경감시킬 수 있다.
또한, 본발명에 의하면, 혈관을 압박하지 않고 혈관상태를 계측하기 때문에 계측정밀도가 높고, 예를 들어, 복수의 혈관이 배치되는 두부에 있어서도 혈관의 내벽상태에 따른 혈관특성의 데이터를 계측하는 것이 가능하다.
도 1은 본발명에 따른 혈관특성 계측장치의 실시예 1의 개략적인 구성을 나타낸 시스템계통도이다.
도 2는 혈류계측방법의 원리를 설명하기 위한 도면이다.
도 3은 레이저광의 파장과 혈액의 산소포화도를 변화시킨 경우의 광의 흡수상태의 관계를 나타낸 그래프이다.
도 4는 제어장치가 실행하는 계측제어처리에 대하여 설명하는 플로우차트이다.
도 5는 심전위신호 파형(A)과 수광부 검출신호 파형(B)을 비교하는 도면이다.
도 6은 혈류계측부의 변형예 1을 나타낸 종단면도이다.
도 7a는 혈류계측부의 변형예 2를 나타낸 종단면도이다.
도 7b는 혈류계측부의 변형예 2의 저면도이다.
도 8은 본발명에 따른 혈관특성 계측장치의 실시예 2를 사용한 뇌혈관특성 계측시스템의 시스템구성도이다.
도 9는 센서유닛의 설치구조를 확대하여 나타낸 도면이다.
도 10a는 두부를 후방에서 보았을 경우의 동맥을 모식적으로 나타낸 도면이다.
도 10b는 두부를 좌측에서 보았을 경우의 동맥을 모식적으로 나타낸 도면이다.
도 11은 피험자의 두부를 상방에서 본 평면도이다.
도 12는 심전계의 검출신호 파형, 피계측위치(S1, S2, S3)의 각 센서유닛의 검출신호 파형을 나타낸 파형도이다.
도 13은 뇌의 혈류로부터 혈관특성을 검출하는 경우의 원리를 설명하기 위한 도면이다.
도 14는 뇌혈관특성 계측시스템의 제어부가 실행하는 뇌의 혈류계측처리를 설명하기 위한 플로우차트이다.
도 15는 데이터관리장치의 계측데이터 화상표시제어장치가 실행하는 계측데이터 화상표시처리를 설명하기 위한 플로우차트이다.
[실시예 1]
도 1은 본발명에 따른 혈관특성 계측장치의 실시예 1의 개략적인 구성을 나타낸 시스템계통도이다. 도 1에 도시된 바와 같이, 혈관특성 계측장치(100)는 이동식 혈류계측부(20)와 광학식 센서유닛(30)과 심전계(심전계측수단, 40)와 제어장치(50)를 갖는다. 혈류계측부(20)는 피험자의 피계측영역의 피부 표면(10)에 대향하는 위치의 혈류를 계측한다. 센서유닛(30)은 혈류계측부(20)에 내장되어, 혈관내를 흐르는 혈류를 비접촉식으로 계측하는 광학식 센서를 갖는다. 심전계(심전계측수단, 40)는 심전위를 계측하여 심전위신호를 출력한다. 제어장치(50)는 센서유닛(30)의 검출신호와 심전계(40)의 심전위신호의 차에 의해 혈관의 내벽 변위 및 혈관주변 조직의 변위를 구하고, 이에 근거하여 혈관특성(혈관의 탄성 비율, 혈관내의 플라그량, 동맥경화의 비율)을 도출한다.
혈류계측부(20)는 손으로 잡고 이동시킬 수 있는 크기로 형성되어 있고, 예를 들어, 인체의 어느 개소의 혈류를 계측하는가에 따라 적절히 이동시킬 수 있고, 임의의 피계측영역에 있어서의 혈류를 계측하는 것이 가능하다. 또한, 혈류계측부(20)는 원추형부(22)의 저면이 피계측영역에 대향(비접촉식으로 근접한 상태)하는 계측면(24)이며, 원추형부(22)의 상부에는 파지부(26)가 돌출되어 있다. 따라서, 혈관특성의 계측을 행하는 계측자는 파지부(26)를 파지하여 저면측의 계측면(24)를 적절히 피계측영역의 피부 표면(10)에 대향시킴으로써, 피계측영역의 혈류에 의한 혈관 및 혈관주변 조직의 변위의 계측을 비접촉식으로 행할 수 있다.
센서유닛(30)은 발광부(32)와 1쌍의 수광부(34, 36)를 갖는다. 발광부(32)는 레이저광을 피검사자에게 조사하는 광원이다. 1쌍의 수광부(34, 36)는 각각 발광부(32)의 광출사점으로부터 혈류의 하류에 배치되고 있고, 수광한 광강도에 따른 신호를 출력한다.
또, 혈류계측부(20)는 충전식의 배터리(33)와 제어부(37)와 무선통신장치(39)를 갖는다. 제어부(37)은 배터리(33)로부터의 전류를 발광부(32)에 통전하여 발광시킴과 동시에, 피부 표면(10)에 전파된 광을 수광한 수광부(34, 36)로부터의 수광신호를 읽어들인다. 무선통신장치(39)는 제어장치(50)로 무선으로 통신하고, 수광부(34, 36)로부터의 수광신호를 제어장치(50)에 무선으로 송신한다.
나아가, 원추형부(22)의 하류 경사위치에는 발광부(32)에 대하여 하류측(수광부(34, 36)측)인 것을 알리기 위한 표시등(22a)이 형성되어 있다. 표시등(22a)은 예를 들어, 발광다이오드 등으로 이루어지고, 일정한 주기로 점멸함으로써 수광방향(이동방향)을 나타내는 이동방향 지시등이다. 또, 표시등(22a)은 무선이기 때문에 발생할 수 있는 분실을 방지하기 위한 경고등 및 배터리(33)의 충전이 필요하게 된 시점에서 점멸에서 점등으로 전환됨으로써 충전을 지시하는 충전지시 등의 기능도 겸한다.
혈류계측부(20)는 제어장치(50)와 미약한 전파에 의한 근접통신이 가능한 무선유닛이므로, 피측정영역에 대한 이동을 자유롭게 실시할 수 있다. 또한, 혈류계측부(20)의 충전식의 배터리(전지, 33)는 혈류계측을 행하지 않는 미사용시에 적절히 충전된다.
발광부(32) 및 1쌍의 수광부(34, 36)는 각각의 발광면, 수광면이 센서유닛(30)의 하면에 형성된 계측면(24)과 동일 평면에 형성되어 있다. 그 때문에, 발광부(32)로부터의 레이저광(A)이 임의의 피계측영역의 피부 표면(10)에 조사되면, 레이저광(A)은 피부 표면(10)으로 반사함과 동시에, 피부 표면(10)의 하측에 배치된 혈관(12)를 흐르는 혈류를 투과하여 계측면(24)으로 전파된다.
1쌍의 수광부(34, 36)에서는 각각 피부 표면(10)으로부터 방사된 광(반사광 및 투과광을 포함하는 광)을 수광하고, 수광한 광량(광강도)에 따른 전기신호를 출력한다. 그리고, 혈류계측부(20)의 제어부(37)는 수광부(34, 36)에 의해 검출된 검출신호를 무선통신장치(39)에 의해 무선신호로 변환하여 제어장치(50)로 송신한다. 또한, 수광부(34, 36)로부터의 검출신호는 발광부(32)로부터의 발광신호에 의해 소정의 주기 혹은 연속된 신호로서 출력된다.
또한, 무선통신장치(39)는 혈류계측부(20)의 검출신호를 송신하기 쉬도록 파지부(26)의 상단에 형성되어 있고, 반구상의 보호커버에 의해 보호되어 있다.
심전계(40)는 피험자의 피부에 부착된 전극(42)에 의해 심장(110)의 움직임에 따라 따라 발생하는 심전위를 계측한다. 또한, 전극(42)의 부착위치는 심장의 근처에서 심전위를 검출하기 쉬운 위치이면 된다. 일반적인 심전도의 계측을 행하는 경우에는, 팔다리에 부착되는 팔다리유도용의 4개소와 피험자의 흉부에 부착되는 흉부유도용의 6개소에 전극을 설치하게 된다. 그러나, 본발명에 있어서는 심전도로부터 심장의 움직임을 관찰하는 것이 아니라. 심전위의 파형을 트리거로 하여 혈관특성을 계측하기 때문에, 심전위의 피계측위치는 1개소이어도 된다.
제어장치(50)는 퍼스널컴퓨터 등으로 이루어지고, 기억장치(52)에 저장된 각 제어프로그램을 읽어들여 각 제어처리를 행하는 혈류계측수단(60)과 혈관변위도출수단(70)과 혈관상태도출수단(80)을 갖는다. 혈류계측수단(60)은 센서유닛(30)의 발광부(32)에서 출사된 광을 수광부(34, 36)에서 수광했을 때의 광강도에 근거하여, 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측한다. 혈관변위도출수단(70)은 혈관 및 혈관주변 조직의 변위에 근거하여 혈관(12)의 내벽의 변위를 도출한다. 혈관상태도출수단(80)은 심전계(40)의 심전신호의 파형과 수광부(34, 36)로부터 얻어진 검출신호의 파형과의 위상차에 의해 각 계측위치에 있어서의 맥파전달속도를 구하고, 그 맥파전달속도로부터 혈관(12)의 내벽의 변위상태를 도출한다.
나아가, 제어장치(50)는 기억장치(52)와 무선통신장치(54)와 충전장치(56)를 갖는다. 기억장치(52)는 상기 각 제어프로그램 및 혈류계측부(20)로부터 송신된 계측데이터 및 연산결과 등을 저장하는 데이터베이스를 형성한다. 무선통신장치(54)는 혈류계측부(20)의 무선통신장치(39)와 무선으로 데이터통신을 행한다. 충전장치(56)는 비계측시가 되면, 혈류계측부(20)가 장착됨과 동시에 혈류계측부(20)의 배터리(33)를 충전한다.
제어장치(50)는 무선통신장치(54)에서 혈류계측부(20)로부터 송신된 계측데이터를 수신하면, 그 계측데이터를 자동적으로 기억장치(52)의 데이터베이스에 저장한다. 이 데이터베이스에는 혈류에 의한 혈관 및 혈관주변 조직의 변위의 계측결과에 대응하는 혈관의 내벽 변위데이터(혈관의 내경의 수축) 및 심전계(40)의 심전위신호 파형과 수광부(34, 36)의 검출신호 파형과의 위상차(T)에 대응하는 혈관특성의 데이터가 미리 저장되어 있다. 상기 혈관특성에는 혈관의 탄성의 비율, 혈관내의 플라그량(내막의 부풀어오름), 동맥경화의 비율 등이 포함된다.
제어장치(50)는 모니터(90)에 접속되어 있고, 혈류계측부(20)의 센서유닛(30)에 의해 계측된 혈류의 계측데이터로부터 화상데이터를 생성하고, 화상데이터에 의한 혈류계측화상(92) 및 혈관특성결과 화상(94)을 모니터(90)에 표시한다.
이로써, 계측자는 모니터(90)에 표시된 계측화상(92) 및 혈관특성결과 화상(94)을 보면서 혈류계측부(20)를 손에 쥔 채로 계측면(24)을 피험자의 피부 표면(10)에 근접대향(비접촉)시켜 혈류가 정상적인지 아닌지를 확인하는 것이 가능하게 된다.
이와 같이, 혈관특성 계측장치(100)는 혈류계측부(20)를 임의의 피측정영역으로 이동시키는 것이 가능하므로, 피험자의 어느 부위의 혈관특성이라도 계측할 수 있다. 나아가, 혈류계측부(20)가 비접촉이므로 피험자를 구속하지 않고 계측작업을 용이하게 실시할 수 있음과 동시에, 피험자에게 접촉시키는 방식과 같이 착탈작업이 불필요하게 되어, 단시간에 효율적으로 혈관특성을 계측할 수 있다.
이하에서, 혈류계측방법의 원리에 대하여 설명한다.
도 2는 혈류계측방법의 원리를 설명하기 위한 도면이다. 도 2에 도시된 바와 같이, 외부로부터 혈액에 대하여 레이저광(A)을 조사하면, 혈액층(130)에 입사한 레이저광(A)은 통상의 적혈구(140)에 의한 반사산란 광성분 및 부착혈전에 의한 반사산란 광성분의 두가지 성분의 광으로서 혈액중을 투과하여 진행한다.
광이 혈액층을 투과하는 과정에서 받는 영향은 혈액의 상태에 따라 시시각각 변하기 때문에, 투과광량(반사광량이라고 하여도 된다)을 연속적으로 계측하고, 그 광량변화를 관측함으로써 다양한 혈액의 상태의 변화를 관찰하는 것이 가능해진다.
상기혈류계측부(20)을 이용하여 피험자의 혈관특성을 계측하는 경우, 혈류계측부(20)의 계측면(24)을 계측대상이 되는 피부 표면(10)에 근접대향시키면, 센서유닛(30)의 발광부(32)와 수광부(34, 36)의 사이에 대향하는 피부 표면(10)의 혈관이나 주변의 조직이 변형됨으로써, 광의 투과량, 광의 반사량의 상태가 변화하여 수광부(34, 36)의 검출신호가 변화한다.
따라서, 혈류계측부(20)에 있어서는, 발광부(32)로부터 광이 피부 표면(10)을 향하여 출사됨으로써 수광부(34, 36)에서 수광되는 광중에는 피부를 투과하여 혈관까지 도달하여 혈액을 통과하여 수광부(34, 36)로 수광되는 성분도 있고, 피부 표면(10)에서 반사되어 수광부(34, 36)에 수광되는 성분도 있다. 즉, 피부 표면(10)에서 반사되어 수광되는 광의 수광성분은 혈관을 투과하는 광량보다 크기 때문에, 혈관의 박동에 수반하여 변위한 혈관주변 조직의 변위를 피부 표면(10)으로부터의 반사광으로 계측하는 것이 가능하게 된다.
여기서, 헤마토크릿(Hct:단위체적당 적혈구의 체적비, 즉, 단위체적당의 적혈구의 체적농도를 나타낸다. Ht로도 표기한다.) 등의 변화도 마찬가지로 헤모글로빈의 밀도 변화에 관계하는 요인이며, 광량변화에 영향을 미친다. 본실시예에 있어서의 기본적인 원리는 이와 같이 레이저광(A)을 사용하여 혈류에 의한 광로·투과광량의 변화로 혈류상태를 계측하고, 나아가 뇌내의 혈류상태로부터 뇌활동상태를 계측하는 점이다.
여기서 본발명의 특징을 원리적인 구성으로 설명한다. 혈액의 광학적 특성은 혈구성분(특히 적혈구의 세포 내부의 헤모글로빈)에 의해 결정된다. 또한, 적혈구는 헤모글로빈이 산소와 결합하기 쉬운 성질을 가지고 있으므로, 뇌세포에 산소를 운반하는 역할도 하고 있다. 그리고, 혈액의 산소포화도는 혈액중의 헤모글로빈의 몇%가 산소와 결합하고 있는지를 나타낸 수치이다. 또한, 산소포화도는 동맥혈액중의 산소분압(PaO2)과 상관관계가 있고, 호흡기능(가스교환)의 중요한 지표이다.
산소분압이 높으면 산소포화도도 높아진다고 알려져 있고, 산소포화도가 변동하면, 혈액을 투과한 광의 투과광량도 변동한다. 그렇기 때문에 혈류를 계측할 때에는 산소포화도의 영향을 제외함으로써 보다 정확한 계측이 가능하게 된다.
또한, 산소분압(PaO2)에 영향을 주는 인자로서는 폐포환기량이 있고, 나아가 대기압이나 흡입산소농도(FiO2)등의 환경, 환기/혈류비나 가스확산능, 단락율 등의 폐포에서의 가스교환이 있다.
제어장치(50)는 상기 센서유닛(30)의 수광부(34, 36)에 수광된 광량(광강도)에 따른 신호를 처리하는 연산수단을 갖는다. 이 연산수단에서는 후술하는 바와 같이 센서유닛(30)의 수광부(34, 36)로부터 출력된 계측값에 근거하여 혈류에 의한 혈관 및 혈관주변 조직의 변위상태를 검출하기 위한 연산처리를 행한다.
발광부(32)의 레이저광(A)은 소정 시간간격(예를 들어, 10Hz~1MHz)으로 간헐 적으로 조사되는 펄스광 또는 연속광으로서 조사한다. 이와 같이, 펄스광을 사용하는 경우에는 펄스광이 점멸하는 주파수인 점멸주파수를 혈액 유속에 따라 결정하고, 연속적으로 또는 그 점멸주파수의 2배 이상의 계측샘플링주파수로 계측한다. 또한, 연속광을 사용하는 경우에는 계측샘플링주파수를 혈액 유속에 따라 결정하여 계측한다.
혈액중의 헤모글로빈(Hb)은 호흡함에 의해 폐에서 산소와 화학반응을 일으켜 HbO2가 되어 혈액중에 산소를 포함하게 되지만, 호흡상태 등에 따라 혈액에 산소를 포함하는 정도(산소포화도)가 미묘하게 상이하다. 즉, 본발명에서는, 혈액에 광을 조사하면, 산소포화도에 의해 광의 흡수율이 변화한다는 현상을 발견하고, 이러한 현상은 상기 레이저광(A)에 의한 혈류의 계측에 있어서 외란요소가 되기 때문에, 산소포화도에 의한 영향을 제거하기로 했다.
도 3은 레이저광의 파장과 혈액의 산소포화도를 변화시킨 경우의 광의 흡수상태의 관계를 나타낸 그래프이다. 체내에서는 적혈구에 포함되는 헤모글로빈은 산소와 결합한 산화 헤모글로빈(HbO2:그래프 Ⅱ, 파선으로 나타냄)과 산화되지 않은 헤모글로빈(Hb:그래프 I, 실선으로 나타냄)으로 나눌 수 있다. 2개의 그래프에 나타낸 상태에서는 광에 대한 광흡수율이 크고 상이하다. 예를 들어, 산소를 충분히 포함한 혈액은 선혈로서 선명하다. 한편, 정맥혈은 산소를 방출하고 있기 때문에 거무스름하다. 이들의 광흡수율 상태는 도 3의 그래프 I, Ⅱ에 나타낸 바와 같이 넓은 광파장영역에서 변화하고 있다.
도 3의 그래프 I, Ⅱ로부터 특정의 파장을 선택함으로써, 생체내의 산소대사 등에 의해 적혈구중의 헤모글로빈의 산소포화도가 크게 변동하여도, 광흡수율이 영향을 받지 않고 혈액에 광을 조사하여 혈류를 계측할 수 있다는 것을 알 수 있다.
적혈구중의 헤모글로빈의 산소포화도에 상관없이 어느 파장영역에서는 광흡수율이 작아지고 있다. 이로써, 광이 파장(λ)에 의해 혈액층을 통과하기 쉬운지 아닌지가 정해지게 된다. 따라서, 소정의 파장영역(예를 들어, λ=800㎚부근에서 1300㎚부근)의 광을 이용하면, 산소포화도의 영향을 작게 억제하여 혈류를 계측하는 것이 가능해진다.
따라서, 본발명에서 이용하는 레이저광(A)의 파장영역은 거의 600㎚부근에서 1500㎚를 이용하고, 이로써 헤모글로빈(Hb)의 광흡수율이 실용상 충분히 낮고, 또한 그 영역에 등흡수점(X)을 포함하기 때문에, 2파장 이상의 계측점을 활용하여 계산상 등흡수점으로 간주할 수 있다. 즉, 산소포화도의 영향을 받지 않는 사양으로 하는 것이 가능해진다. 또한, 그 이외의 파장영역에서는, 즉, λ=600㎚미만에서는 광흡수율이 높아져 S/N가 저하하고, λ=1500㎚를 넘은 파장에서는 수광부(34, 36)의 수광감도가 충분하지 않고 혈액중의 다른 성분 등의 외란이 영향을 끼쳐 정밀한 계측을 할 수 없게 된다.
이 때문에, 본실시예에서는, 발광부(32)에 파장가변 반도체레이저로 이루어지는 발광소자를 사용하여, 발광부(32)로부터 발광되는 레이저광(A)의 파장을 그래프 I, Ⅱ에서 등흡수점(X)이 되는 λ1=805㎚(제 1 광)과, 그래프 I에서 광흡수율이 가장 낮은 파장 λ2=680㎚(제 2 광)의 2종류로 설정한다.
여기서, 레이저광(A)이 광전파경로를 통하여 전파된 광을 수광하는 경우의 투과광량에 근거한 적혈구농도(R, Rp, Rpw)의 검출방법에 대하여 설명한다.
종래의 계측방법으로 행해진 1점 1파장 방식을 사용한 경우의 적혈구농도(R)의 연산식(1)은 다음의 식과 같이 나타낼 수 있다.
Figure 112011002136020-pct00001
(1)식의 방법에서는, 적혈구농도가 발광부(32)로부터 출사된 레이저광(A)의 입사 투과광량(Iin), 발광부(32)와 수광부(34, 36)의 거리(광로길이, L) 및 전술한 헤마토크릿(Ht)의 함수가 된다. 그 때문에, (1)식의 방법으로 적혈구농도를 구할 때에는, 3개의 인자에 의해 적혈구농도가 변동하기 때문에, 적혈구농도를 정확하게 계측하는 것이 어렵다.
본실시예에 따른 2점 1파장 방식을 사용한 경우의 적혈구농도(Rp)의 연산식(2)은 다음의 식과 같이 나타낼 수 있다.
Figure 112011002136020-pct00002
(2)식의 방법에서는, 도 1에 도시한 바와 같이, 레이저광(A)으로부터 거리가 상이한 2점(센서유닛(30)의 수광부(34, 36))에서 수광하기 때문에, 적혈구농도는 2개의 수광부(34, 36)간 거리(ΔL) 및 전술한 헤마토크릿(Ht)의 함수가 된다. 그 때문에, (2)식의 방법으로 적혈구농도를 구할 때에는 2개의 인자중 수광부(34, 36)간 거리(ΔL)를 미리 알고 있으므로, 적혈구농도가 헤마토크릿(Ht)을 계수로 한 값으로서 계측된다. 따라서, 아러한 연산방법에서는 적혈구농도를 헤마토크릿(Ht)에 따른 계측값으로서 정확하게 계측하는 것이 가능하게 된다.
나아가, 본실시예의 변형예에 의한 2점 2파장 방식을 사용한 경우의 적혈구농도(Rpw)의 연산식(3)은 다음의 식과 같이 나타낼 수 있다.
Figure 112011002136020-pct00003
(3)식의 방법에서는, 발광부(32)로부터 출사되는 레이저광(A)의 파장을 상이한 λ1, λ2(본실시예에서는, λ1=805㎚, λ2=680㎚로 설정함)로 함으로써, 적혈구농도를 헤마토크릿(Ht)만의 함수로서 계측한다. 따라서, 이 연산방법에 의하면, 적혈구농도를 헤마토크릿(Ht)에 따른 계측값으로서 정확하게 계측하는 것이 가능하게 된다. 본실시예에서는, 전술한 연산식(2)을 이용하여 2점 1파장 방식의 계측방법에 의해 혈관(12)를 흐르는 적혈구농도(Rp)를 계측한다.
즉, 적혈구농도는 2개의 수광부(34, 36)간 거리(ΔL)와 전술한 헤마토크릿(Ht)의 함수가 된다. 그 때문에, 적혈구농도(Rp)를 구할 때에는, 2개의 인자중 수광부(34, 36)간 거리(ΔL)를 미리 알고 있으므로, 적혈구농도가 헤마토크릿(Ht)을 계수로 한 값으로서 계측된다. 따라서, 이 연산방법에 의하면, 적혈구농도를 헤마토크릿(Ht) 에 따른 계측값으로서 정확하게 계측하는 것이 가능하게 되어 혈류상태를 정확하게 계측할 수 있다. 이와 같이, 외란광 등의 영향을 받지 않고 혈류상태를 계측할 수 있기 때문에, 센서유닛을 피계측영역의 표면에 밀착시킬 필요가 없다.
여기서, 도 4의 플로우차트를 참조하여 제어장치(50)가 실행하는 계측제어처리 에 대하여 설명한다. 도 4의 S11에서는, 센서유닛(30)의 수광부(34, 36)에서 검출된 계측데이터(검출신호)를 무선통신장치(54)에서 수신하면 그 계측데이터를 읽어들인다.
다음의 S12에서는, 읽어들인 계측데이터를 기억장치(52)의 데이터베이스에 저장한다.
계속해서, S13으로 진행되어, 전술한 연산식(2)을 이용하여 2점 1파장 방식의 계측방법에 의해 혈관(12)을 흐르는 적혈구농도(Rp)를 연산한다. 그리고, S14에서는, 적혈구농도(Rp)에 근거하여 얻어진 피측정영역에 있어서의 혈류변화를 기억장치(52)의 데이터베이스에 저장함과 동시에, 모니터(90)에 금번의 혈류에 의한 혈관 및 혈관주변 조직의 변위상태에 대응하는 혈류계측화상(92)을 표시한다.
다음의 S15에서는, 혈류에 의한 혈관 및 혈관주변 조직의 변위상태에 대응하는 혈관의 내벽 변위데이터(혈관의 내경의 수축)를 데이터베이스로부터 도출한다.
계속해서, S16로 진행되어, 심전계(40)에 의해 검출된 심전위의 신호를 읽어들인다. 그리고, S17에서는, 심전계(40)의 심전위신호 파형과 수광부(34, 36)의 검출신호 파형(또는 혈류변화에 대응하는 내벽의 변위데이터의 파형)을 비교한다.
도 5는 심전위신호 파형(A)과 수광부 검출신호 파형(B)을 비교하는 도면이다. S17에 있어서는, 도 5에 도시된 바와 같이, 심전위신호 파형(A)의 Q파, R파, S파중에서 R파의 피크값에 대응하는 포인트와 수광부 검출신호 파형(B)의 최고값을 나타낸 포인트와의 위상차(T)를 구한다.
S18에서는, 심장으로부터 피측정영역까지의 거리를 심전계(40)의 심전위신호 파형과 수광부(34, 36)의 검출신호 파형과의 위상차(T)로 나눔으로써 맥파전달속도를 구한다. 나아가, 맥파전달속도에 대응하는 피측정영역의 혈관특성(혈관의 탄성의 비율, 혈관내의 플라그량, 동맥경화의 비율)을 데이터베이스로부터 도출하여 그 피측정영역에 있어서의 혈관의 동맥경화도를 도출한다. 계속해서, S19에서는, 혈관특성의 도출결과인 동맥경화도를 기억장치(52)의 데이터베이스에 저장함과 동시에, 금번에 얻어진 동맥경화도에 대응한 혈관특성결과 화상(94)을 모니터(90)에 표시한다.
다음의 S20에서는, 센서유닛(30)이 이동하였는지를 체크한다. S20에 있어서, 수광부(34, 36)의 검출신호 파형이 변동한 경우에는, 센서유닛(30)이 피측정영역의 대향위치로부터 이동한 것이라고 판단하고, 상기 S11의 처리로 돌아와 S11~S20의 제어처리를 반복한다. 상기 S20에 있어서, 예를 들어, 계측면(24)이 피부(10)로부터 소정 거리 이상 이간하여 수광부(34, 36)가 발광부(32)로부터의 광을 수광할 수 없게 되고 검출신호의 레벨이 제로로 저하한 경우에, 센서유닛(30)이 이동했다고 판단한다. 또한, 예를 들어, 계측면(24)이 피부(10)로부터 일정 거리를 유지한 채로 정지하여 수광부(34, 36)로부터의 검출신호의 레벨이 일정한 경우에는, 센서유닛(30)이 이동하지 않았다고 판단한다.
또한, S20에 있어서, 수광부(34, 36)의 검출신호 파형이 변동하지 않은 경우에는, 센서유닛(30)이 피측정영역의 대향위치로부터 이동하지 않았다고 판단하고, S21로 진행되어, 센서유닛(30)의 정지상태가 소정 시간동안(예를 들어, 30초간) 계속되었는를 체크한다. S21에 있어서, 센서유닛(30)의 정지상태가 소정 시간 미만의 경우에는 상기 S20의 처리를 반복한다. 그러나, S21에 있어서 센서유닛(30)의 정지상태가 소정 시간 이상 계속된 경우에는 같은 피측정영역에서의 계측처리가 되므로, S22로 진행되어, 계측처리를 일단 정지하여 혈류계측부(20)에 탑재된 배터리(33)의 소모를 회피한다. 또한, S22의 정지상태일 때, 혈류계측부(20)를 충전장치(56)에 연결하여 배터리(33)에의 충전이 행하여진다. 그리고, 혈류계측부(20)와 충전장치(56)의 연결이 해제되면, 다시 S11의 처리로 돌아와 계측처리를 재개한다.
도 6은 혈류계측부(20)의 변형예 1을 나타낸 종단면도이다. 또한, 도 6에 있어서, 상기 실시예 1과 동일한 부분에는 동일한 참조부호를 부여하고 자세한 설명을 생략한다.
도 6에 도시된 바와 같이, 변형예 1의 혈류계측부(20A)의 센서유닛(30A)은 전술한 발광부(32) 및 1쌍의 수광부(34, 36)와 광로분리부재(38)를 갖는다.
광로분리부재(38)는, 예를 들어, 홀로그램을 이용한 홀로그래픽 광학소자(HOE:Holographic Optical Element)로 이루어지고, 상면에 발광부(32) 및 1쌍의 수광부(34, 36)가 탑재되고, 하면이 계측면(24)을 형성하고 있다. 그 때문에, 발광부(32)로부터의 레이저광(A)이 광로분리부재(38)를 통과하여 임의의 피계측영역의 피부 표면(10)에 조사되면, 레이저광(A)중 일부의 광성분은 피부 표면(10)에서 반사하고, 나머지의 광성분은 피부 표면(10)의 하측에 배치된 혈관(12)를 흐르는 혈류를 투과하여 계측면(24)에 전파된다. 그리고, 1쌍의 수광부(34, 36)에서는 각각 광로분리부재(38)에 전파된 광을 수광하고, 수광한 광량(반사광 및 투과광의 광강도)에 따른 검출신호를 출력한다.
도 7a는 혈류계측부(20)의 변형예 2를 나타낸 종단면도이다. 도 7b는 혈류계측부(20)의 변형예 2의 저면도이다. 또한, 도 7a, 도 7b에 있어서, 상기 실시예 1과 동일한 부분에는 동일한 참조부호를 부여하고 자세한 설명을 생략한다.
도 7a, 도 7b에 도시된 바와 같이, 변형예 2의 혈류계측부(20B)의 센서유닛(30B)은 계측면(24)의 중심(하방에서 본 경우)에 발광부(32)가 설치되어 있다. 그리고, 발광부(32)의 주위에는 복수의 수광부(341~34n)가 나선형으로 배치되어 있다. 즉, 복수의 수광부(341~34n)는 각각 발광부(32)로부터 상이한 반경위치의 원주방향으로 소정 간격으로 형성되어 있다.
발광부(32)로부터 피부 표면(10)에 조사된 광은 피부 표면(10)에서 반사한 광과 피부 표면(10)을 투과하여 전파된 광으로 나누어지고, 복수의 수광부(341~34n)에서 수광된다.
복수의 수광부(341~34n)는 발광부(32)로부터의 거리(반경위치)에 따른 광량을 수광함과 동시에, 혈관 및 혈관주변 조직의 변위상태에 따른 검출신호를 출력한다. 변형예 2에서는, 복수의 수광부(341~34n)가 발광부(32)의 주위를 둘러싸도록 배치되어 있으므로, 발광부(32)를 중심으로 하는 어느 방향(발광부(32)의 축선과 직교하는 평면내의 각 방향)의 광전파강도라도 검출할 수 있다. 그 때문에, 혈류계측부(20B)는 피험자의 피부에 대하여 계측면(24)를 근접대향시킨 상태에서 이동방향이 규제되지 않고, 복수의 수광부(341~34n)가 배치되어 있는 어느 방향으로도 이동시키는 것이 가능하게 된다.
[실시예 2]
도 8은 본발명에 따른 혈관특성 계측장치의 실시예 2를 사용한 뇌혈관특성 계측시스템을 나타낸 시스템구성도이다. 도 8에 도시된 바와 같이, 뇌혈관특성 계측시스템(200)은 혈관특성 계측장치(210)과 데이터관리장치(250)을 갖는다. 데이터관리장치(250)는 혈관특성 계측장치(210)에 의해 계측된 데이터를 관리한다. 또한, 도 8에서는 혈관특성 계측장치(210)의 한 쪽의 두부만을 도시하고 있지만, 도면의 뒤 쪽이 되는 반대측도 동일한 구성으로 되어 있다.
혈관특성 계측장치(210)는 혈류계측부(220)와 제어부(230)와 무선통신장치(240)를 갖는다. 혈류계측부(220)는 두부에 설치되도록 두부의 외형에 따른 반구상으로 형성된 그물형상 베이스(222)와 다수의 센서유닛(224)으로 이루어진다. 각 센서유닛(224)은 그물형상 베이스(222)에 의해 소정 간격마다 지지되어 있고, 두부의 각 계측점에서 계측된 투과광량의 검출신호를 제어부(230)에 출력한다.
제어부(230)는 각 센서유닛(224)에 의해 검출된 검출신호에 근거하여 뇌의 혈관특성을 도출하고, 뇌의 활동상태(적혈구의 분포)를 계측한다. 또한, 제어부(230)는 적어도 2개 이상의 수광부로부터 얻어진 신호에 포함되는 산소포화도에 의한 성분을 캔슬하도록 연산처리를 행하는 제어프로그램이 저장되어 있다.
무선통신장치(240)은 제어부(230)으로부터 출력된 계측결과(혈류데이터)를 외부기기에 무선으로 송신한다.
혈관특성 계측장치(210)는 그물형상 베이스(222)에 배치된 광학식 센서유닛(224, 224A~224N)를 갖기 때문에, 두부 전체의 혈류를 동시에 계측할 수 있다.
각 센서유닛(224)은 그물형상 베이스(222)의 교차부분에 관통한 상태로 유지되어 있다. 또, 그물형상 베이스(222)는 설치된 두부 표면형상에 따라 사각형의 연결 구조가 마름모형로 변형하여 신축하기 때문에, 두부 표면형상에 대응하는 구형상으로 변형할 수 있다.
그물형상 베이스(222)는 각 교차부분에 연결되는 그물형상의 아암부(4개~8개)가 탄성을 갖는 수지재에 의해 형성되어 있으므로, 재질자체의 탄성에 의해 설치된 두부 표면에 복수의 센서유닛(224)의 계측면을 근접시키는 것이 가능하게 된다. 또한, 피험자의 두부 표면형상에 관계없이, 복수의 센서유닛(224)의 선단부를 계측대상인 두부 표면에 근접(비접촉)시키는 것이 가능하게 된다.
본실시예에서는, 센서유닛(224)의 직경이 10㎜~50㎜정도이므로, 반구형상의 그물형상 베이스(222)에는 150~300개 정도의 센서유닛(224)이 소정의 배치패턴(소정의 간격)으로 설치되어 있다. 다수의 센서유닛(224)은 미리 계측대상의 계측위치에 따른 어드레스데이터에 의해 개별적으로 관리되어 있고, 각 센서유닛(224)으로부터 얻어진 계측데이터는 각각의 어드레스데이터와 함께 송신되어 보존된다.
또한, 다수의 센서유닛(224, 224A~224N)의 배치패턴은 일정한 간격마다 매트릭스형상으로 배열되는 것이 바람직하지만, 피계측체인 두부 형상이 일정하지 않고, 피험자에 따라 두부의 크기 및 곡면형상이 제각각이므로, 불규칙한 간격으로 배치되도록 하여도 된다.
또한, 혈관특성 계측장치(210)은 출력수단으로서 무선통신장치(240)를 갖기 때문에, 본실시예에 있어서, 무선통신장치(240)으로부터 송신된 혈류데이터를 관리하는 데이터관리장치(250)와 조합하여 사용된다. 또한, 혈관특성 계측장치(210)는 다른 외부기기(예를 들어, 퍼스널컴퓨터 등의 전자기기 혹은 액츄에이터 등의 제어대상이 되는 기기)에 데이터를 송신할 수도 있다.
데이터관리장치(250)는 무선통신장치(260)과 기억장치(270)와 계측데이터 화상표시제어장치(280)와 모니터(290)를 갖는다. 무선통신장치(260)는 무선통신장치(240)로부터 송신된 계측데이터를 수신한다. 기억장치(270)는 무선통신장치(260)으로부터 얻어진 발광점의 어드레스, 수광한 수광부의 어드레스, 수광한 광량에 따른 계측신호(수광신호)를 포함하는 계측데이터를 저장한다. 계측데이터 화상표시제어장치(280)는 기억장치(270)를 통하여 공급된 맥파전달속도에 대응하는 혈관특성 계측데이터(혈관의 탄성의 비율, 혈관내의 플라그량, 동맥경화의 비율)에 근거하여 화상데이터를 작성한다. 모니터(290)는 계측데이터 화상표시제어장치(280)에 의해 생성된 계측결과의 화상데이터를 표시한다.
또한, 데이터관리장치(250)는 혈관특성 계측장치(210)와 무선통신이 가능하므로, 혈관특성 계측장치(210)로부터 떨어진 장소에 설치하는 것도 가능하고, 예를 들어, 피험자로부터 보이지 않는 장소에 설치하는 것도 가능하다.
도 9는 센서유닛(224)의 설치구조를 확대하여 나타낸 도면이다. 또한, 도 9에 있어서는, 다수 배치된 센서유닛(224)중 센서유닛(224A, 224B, 224C)이 설치된 상태를 나타내고 있다. 도 9에 도시된 바와 같이, 각 센서유닛(224A, 224B, 224C)은 가요성을 갖는 그물형상 베이스(222)에 접착제 등에 의해 고정된다. 따라서, 각 센서유닛(224A, 224B, 224C)은 그물형상 베이스(222)의 설치구멍(26)에 고정됨으로써 선단부분이 피험자의 두부 표면(300)에 접촉하도록 유지된다. 각 센서유닛(224A, 224B, 224C)은 각각 동일한 구성이며, 동일한 개소에는 동일한 참조부호를 부여한다.
센서유닛(224)은 발광부(320)와 수광부(330)와 광로분리부재(340)를 갖는다. 발광부(320)는 레이저다이오드로 이루어지고, 두부 표면(300)에 레이저광(출사광) A를 조사한다. 수광부(330)는 수광한 투과광량에 따른 전기신호를 출력하는 수광소자로 이루어진다. 광로분리부재(340)는 발광부(320)으로부터 피계측영역을 향하여 조사된 레이저광(A)에 대한 굴절률과, 피계측영역을 통과하여 입사되고 수광부(330)로 진행되는 입사광(B, C)의 굴절률이 상이하도록 구성된 홀로그램을 이용한 홀로그래픽 광학소자(HOE:Holographic Optical Element)로 이루어진다.
또한, 광로분리부재(340)의 외주에는 뇌파를 계측하기 위한 뇌파계측용 전극(350)이 끼워져 결합되어 있고, 뇌파계측용 전극(350)은 원통형상으로 형성되어 광로분리부재(340)의 선단면으로부터 측면에 형성되어 있다. 뇌파계측용 전극(350)의 상단은 플렉시블 배선판(360)의 배선패턴에 전기적으로 접속되어 있다.
발광부(320) 및 수광부(330)는 상면측이 플렉시블 배선판(360)의 하면측에 실장되어 있다. 플렉시블 배선판(360)에는 제어부(230)에 접속되는 배선패턴이 형성되어 있고, 배선패턴에는 각 센서유닛(224)에 대응하는 위치에 발광부(320) 및 수광부(330)의 접속단자가 납땜 등에 의해 전기적으로 접속되어 있다. 또한, 플렉시블 배선판(360)은 센서유닛(224)의 선단이 피계측영역에 접촉했을 때의 두부의 형상에 따라 휘어질 수 있으므로 설치 또는 탈착조작시에 단선이 일어나지 않도록 구성되어 있다.
뇌파계측용 전극(350)은 선단이 내측으로 접혀 구부러진 접촉자(352)가 광로분리부재(340)의 단면보다 돌출하여 있다. 그 때문에, 광로분리부재(340)의 단면이 피계측영역에 맞닿았을 때, 접촉자(352)도 그 피계측영역에 접촉하여 뇌파계측이 가능하게 된다. 또한, 뇌파계측용 전극(350)은 광로분리부재(340)의 외주 및 선단 가장자리에 증착이나 도금 등의 박막형성법에 의하여도전성막을 피복하는 방법에 의해 형성할 수도 있다. 나아가, 뇌파계측용 전극(350)의 재질로서는, 예를 들어, ITO(Indium Tin Oxide)로 불리는 산화인듐주석에 의한 투명한 도전성막을 광로분리부재(340)의 외주 및 선단 가장자리에 형성할 수도 있다. 이러한 투명한 도전성막으로 뇌파계측용 전극(350)을 형성한 경우에는, 뇌파계측용 전극(350)이 투광성을 갖게 되기 때문에, 광로분리부재(340)의 외주 및 선단면 전체를 뇌파계측용 전극(350)으로 덮는 것이 가능하다.
또한, 통상적으로는, 뇌의 단층사진을 촬영하는 등을 하여 혈류상태를 계측하면서 뇌파를 계측할 수는 없지만, 센서유닛(224)에 뇌파계측용 전극(350)을 형성함으로써, 혈류와 뇌파를 동시에 계측하는 것이 가능하게 되고, 뇌내의 혈류와 뇌파의 상관관계를 상세하게 분석하는 것이 가능하다. 또한, 뇌의 맥파전달속도를 계측할 때에는, 각 센서유닛(224)는 피험자의 두부에 비접촉식으로 행하는 것도 가능하다. 또한, 각 센서유닛(224)를 비접촉식으로 하는 경우에는 뇌파계측용 전극(350)에 의한 뇌파의 계측은 행하지 않는다.
뇌의 혈관특성을 계측할 때에, 제어부(230)는 다수 배열된 센서유닛(224)중에서 임의의 센서유닛(224)을 선택하고, 그 센서유닛(224)의 발광부(320)로부터 레이저광(A)을 발광시킨다. 이 때, 발광부(320)로부터 출사되는 레이저광은 산소포화도의 영향을 받지 않는 파장λ(λ≒805 ㎚)으로 출력된다.
또한, 각 센서유닛(224)은 선단(광로분리부재(340)의 단면)이 두부의 피계측영역에 맞닿은 상태로 유지되어 있다. 발광부(320)로부터 출사되는 레이저광(A)은 광로분리부재(340)를 투과하여 두부의 두피에 대하여 수직방향으로부터 뇌내부를 향하여 입사된다. 뇌내부에 있어서는, 레이저광(A)이 뇌중심부를 향하여 진행함과 동시에, 레이저광(A)이 입사위치를 기점으로 하여 뇌표면을 따르도록 주변을 향하여 전파된다. 레이저광(A)의 뇌내의 광전파경로(370)는 측면에서 보면 원호상으로 형성되고, 두부의 혈관(380)을 통과하여 두피 표면(300)으로 돌아온다.
이와 같이 광전파경로(370)을 통과한 광은 혈관(380)을 흐르는 혈액에 포함된 적혈구의 양 또는 밀도에 따른 투과광량이 변화하면서 수광측의 센서유닛(224B, 224C)에 도달한다. 또한, 레이저광(A)은 뇌내부에서 전파되는 과정에서 투과광량이 서서히 저하하기 때문에, 레이저광(A)이 입사위치를 기점으로부터 멀어지게 할수록, 그 거리에 비례하여 수광부(330)의 수광레벨이 저하한다. 따라서, 레이저광(A)의 입사위치로부터의 이간거리에 의해서도 수광되는 투과광량이 변화한다.
여기서, 상기 혈관특성 계측장치(210)의 혈류계측부(220)를 피험자의 두부에 설치하여 피험자의 두부의 혈관특성을 계측할 때에는 이하와 같은 데이터처리가 행하여진다. 예를 들어, 피험자의 동맥경화도는 각 발광점의 주사속도와 비교할 때 느린 속도로밖에 변하지 않는다고 생각되므로, 발광부(320)에 의한 발광점을 순서대로 주사하면서 수광데이터(계측데이터)를 기억장치(270)의 데이터베이스에 저장한다. 각 계측점에 대한 검출값(수광한 광강도)은 발광점이 이동할 때마다 크게 변하지 않고, 어느 발광점의 광에서 계측하여도 각 계측점에서의 심전파형과 맥파의 위상차의 값(T)은 거의 같게 된다.
또한, 혈관특성 계측장치(210)는 다수의 센서유닛(224)이 두부 전체에 균등하게 배치되어 있고, 어느 발광부(320)가 발광했을 때에는 일단 모든 수광부(330)로부터의 검출신호를 읽어들이는 것은 가능하다. 그러나, 실제의 두부 혈관특성의 계측에는 그 계측위치의 발광부(320)에 인접한 수광부(330) 및 그 수광부의 근처의 수광부(330) 정도의 범위의 계측데이터(계측에 유효한 강도의 광을 받아 얻어지는 검출신호)를 사용하면 효과적인 계측이 가능하게 된다. 따라서, 각 발광부(320)가 순차적으로 발광할 때마다, 소정의 범위(발광점으로부터 인접한 2개 이상 또는 전부)의 수광부(330)로부터의 수광신호(검출신호)에 근거한 계측데이터(위상차 또는 각종 혈관특성)를 무선통신장치(240, 260)를 통하여 각 계측위치와 관련지어 기억장치(270)의 데이터베이스에 저장한다. 이로써, 기억장치(270)의 데이터베이스에는 모든 발광부(320)의 주사를 일순한 시점에서 두부 전체의 계측데이터가 수집된다.
또한, 데이터관리장치(250)에서는 최초(어드레스 1)의 발광부(320)로부터 최후(어드레스 N)의 발광부(320)까지의 각 발광부가 순차적으로 발광하여 가는 동안에, 발광점으로부터 소정 범위에서 인접하는 각 수광부(330)에서 순차적으로 얻어지는 각 계측위치에서의 혈관특성값(예를 들어 동맥경화도)을 각 계측위치마다 더한 합계값을 기억장치(270)의 데이터베이스에 저장한다. 그리고, 계측데이터 화상표시제어장치(280)는 기억장치(270)의 데이터베이스에 저장된 두부 전체의 계측데이터 에 근거하여 두부의 동맥경화도의 분포를 나타내는 혈관특성 계측화상을 생성하여 모니터(290)에 표시한다.
또한, 데이터관리장치(250)는 각 계측위치마다의 계측데이터의 평균값을 구하고, 각 계측위치마다의 평균값을 기억장치(270)의 데이터베이스에 저장한다. 그리고, 계측데이터 화상표시제어장치(280)는 계측데이터의 평균값에 의한 두부의 동맥경화도의 분포를 나타낸 혈관특성 계측화상을 생성하여 모니터(290)에 표시하여도 된다.
도 9에 있어서, 좌단에 위치하는 센서유닛(224A)을 발광측 기점으로 하면, 센서유닛(224A) 자신과, 오른쪽 옆의 센서유닛(224B)과, 더 오른쪽 옆의 센서유닛(224C)은 수광측 기점(계측포인트)이 된다.
광로분리부재(340)는, 예를 들어, 투명한 아크릴수지의 밀도분포를 변화시킴으로써 레이저광(A)을 직진시키고, 입사광(B, C)을 수광부(330)에 유도하도록 형성되어 있다. 또, 광로분리부재(340)는 출사측 투과영역(342)과 입사측 투과영역(344)과 굴절영역(346)을 갖는다. 출사측 투과영역(342)은 발광부(320)로부터 출사된 레이저광(A)을 기단측(도 9에서는 상면측)으로부터 선단측(도 9에서는 하면측)으로 투과시킨다. 입사측 투과영역(344)은 뇌내에 전파된 광을 선단측(도 9에서는 하면측)으로부터 기단측(도 9에서는 상면측)으로 투과시킨다. 굴절영역(346)은 출사측 투과영역(342)과 입사측 투과영역(344)의 사이에 형성된다. 굴절영역(346)은 레이저광(A)을 투과시키지만, 혈류를 통과한 광(입사광(B, C))을 반사시키는 성질을 갖는다. 또한, 굴절영역(346)은, 예를 들어, 아크릴수지의 밀도를 변화시키거나, 그 영역에 금속박막을 형성하거나, 금속 미립자를 분산시킴으로써 형성된다. 이로써, 광로분리부재(340)의 선단으로부터 입사된 광은 모두 수광부(330)에 집광된다.
여기서, 피계측영역이 되는 뇌의 동맥에 대하여 설명한다. 도 10a는 두부를 후방에서 보았을 경우의 동맥을 모식적으로 나타낸 도면이다. 도 10b는 두부를 좌측에서 보았을 경우의 동맥을 모식적으로 나타낸 도면이다. 도 10a 및 도 10b에 도시된 바와 같이, 뇌에 혈액을 공급하는 동맥은 중대뇌동맥(410)과 전대뇌동맥(420)을 갖는다. 또한, 중대뇌동맥(410), 전대뇌동맥(420)의 상류에 연결되는 동맥은 본실시예에서는 계측하지 않으므로, 여기서는 중대뇌동맥(410), 전대뇌동맥(420) 이외에 대한 설명은 생략한다.
혈관특성 계측장치(210)는 혈류계측부(220)를 피험자의 두부에 장착하면, 그물형상 베이스(222)의 탄성에 의해 복수의 센서유닛(224)이 두부의 각 계측점에 위치결정되고, 또한 각 계측면을 두부 표면(300)에 대향시킨 상태로 유지된다. 혈류계측부(220)이 두부에 설치된 상태에서, 복수의 센서유닛(224)은 뇌의 표면에 광을 조사하여 뇌내에 전파된 광의 수광량의 변화로부터 뇌의 동맥에 있어서의 맥파전달속도를 계측하여 중대뇌동맥(410), 전대뇌동맥(420)의 혈관특성(혈관의 탄성의 비율, 혈관내의 플라그량, 동맥경화의 비율)을 계측할 수 있다.
여기서, 뇌의 동맥의 맥파전달속도의 계측원리에 대하여 설명한다. 도 11은 피험자의 두부를 상방에서 본 평면도이다. 도 11 및 도 10a에 도시된 바와 같이, 예를 들어, 광을 조사했을 때의 뇌에 전파된 광을 수광하는 피계측위치를 S1, S2, S3로 한다. 피계측위치 S1, S2, S3에 배치된 각 센서유닛(224)에 의해 중대뇌동맥(410), 전대뇌동맥(420)을 흐르는 혈류에 의한 맥파전달속도를 검출한다. 측정방법으로서는, 심전계(40)로부터 얻어지는 심전위의 파형과 피계측위치의 각 센서유닛(224)로부터 출력된 신호의 파형을 비교하고, 위상차로부터 맥파전달속도를 구하여, 그 맥파전달속도에 대응하는 혈관특성을 도출하는 방법을 사용한다.
도 12는 심전계(40)의 검출신호 파형, 피계측위치 S1, S2, S3의 각 센서유닛(224)의 검출신호 파형을 나타내는 파형도이다. 도 12에 도시된 바와 같이, 심전계(40)에 의해 검출된 심전위신호 파형(A)과 수광부 검출신호 파형(B)~(D)를 비교 하면, 심전위신호 파형(A)의 Q파, R파, S파 중 R파의 피크값과 수광부 검출신호(B)~(D)의 최저값과의 위상차(T1~T3)를 구한다.
위상차(T1~T3)는 T1<T3<T2의 관계에 있고, 맥파전달속도에 따라 변화한다. 예를 들어, 위상차의 값의 정상값(임계값)을 T0로 한 경우, T1<T3<T0, T0<T2인 경우에는, 우뇌의 중대뇌동맥(410)의 맥파전달속도가 정상값보다 늦어지고 있다. 이로써, 우뇌의 중대뇌동맥(410)에 있어서 혈관특성이 저하하여 동맥경화가 발생하고 있다고 판정하는 것이 가능하게 된다.
도 13은 뇌의 혈류로부터 혈관특성을 검출하는 경우의 원리를 설명하기 위한 도면이다. 도 13에 도시된 바와 같이, 뇌(400)는 골수액(450), 두개골(460), 두피(470)에 의해 덮여있다. 혈류계측부(220)의 각 센서유닛(224)은 광로분리부재(340)의 선단면을 두피(470)에 근접대향(비접촉)시켜 혈류를 계측한다. 센서유닛(224A)의 발광부(320)로부터 출사된 레이저광(A)은 일부의 광이 두피(470)에서 반사하지만, 나머지의 광은 두피(470), 두개골(460), 골수액(450)을 투과하여 뇌(400)의 내부로 진행한다. 그리고, 두부에 조사된 광중에서 뇌로 진행한 광은 도 13중 파선으로 나타낸 바와 같은 원호상 패턴(480)으로 방사방향(깊이방향 및 반경방향)으로 전파된다.
뇌내를 투과하는 광의 전파는 레이저광이 조사된 기점(490)으로부터 반경방향으로 이간할수록 광전파경로가 길어져 광투과율이 저하한다. 이 때문에, 발광측의 센서유닛(224A)에 소정거리 이간하여 인접된 센서유닛(224B)의 수광레벨(투과광량)은 강하게 검출된다. 그리고, 센서유닛(224B)의 옆에서 소정거리 이간하여 형성된 센서유닛(224C)의 수광레벨(투과광량)이 센서유닛(224B)의 수광레벨보다 약하게 검출된다. 또한, 발광측의 센서유닛(224A)의 수광부에서도 뇌(400)로부터의 광을 수광한다. 이들의 복수의 센서유닛(224)에서 수광된 광강도에 따른 검출신호를 계측데이터로서 기억장치(270)에 기억된다. 그리고, 제어부(230)는 각 센서유닛(224)의 각 계측데이터의 파형과 심전계(40)로부터의 심전위신호의 파형을 비교하여 각 계측위치의 혈관특성을 도출한다. 또한, 계측데이터 화상표시제어장치(280)에 있어서, 이러한 검출결과를 매핑처리함으로써 맥파전달속도에 따른 동맥경화의 분포를 나타낸 도형데이터가 얻어진다.
따라서, 각 센서유닛(224)의 검출신호 파형에 의해 중대뇌동맥(410), 전대뇌동맥(420)을 흐르는 혈류의 변화를 계측하고, 그 혈류변화의 계측데이터로부터 뇌(400)에 있어서의 맥파전달속도를 검출하는 것이 가능하게 된다.
여기서, 도 14의 플로우차트를 참조하여 혈관특성 계측장치(210)의 제어부(230)가 실행하는 뇌의 혈류계측처리에 대하여 설명한다. 도 14에 도시된 바와 같이, 먼저, 제어부(230)는 S31에서 다수 배치된 센서유닛으로부터 임의의 센서유닛(224A)(어드레스 번호 n=1인 센서유닛)를 선택하고, 그 센서유닛(224A)의 발광부(320)로부터 레이저광을 피계측영역에 조사시킨다. 다음, S32에서는, 어드레스 번호 n=1에 인접하는 n=n+1인 센서유닛(24B)의 수광부(130)로부터 출력된 검출신호(수광한 투과광량에 대응하는 전기신호)를 무선통신장치(240)로부터 데이터관리장치(250)에 송신한다. 데이터관리장치(250)에서는 무선통신장치(260)으로부터 얻어진 n=n+1인 데이터를 기억장치(270)의 데이터베이스에 저장한다.
다음의 S33에서는, 어드레스 번호 n=n+1에 인접하는 n=n+2인 센서유닛(224C)의 수광부(330)로부터 출력된 검출신호(수광한 투과광량에 대응하는 전기신호)를 무선통신장치(240)으로부터 데이터관리장치(250)에 송신한다. 데이터관리장치(250)에서는 무선통신장치(260)으로부터 얻어진 n=n+2인 데이터를 기억장치(270)의 데이터베이스에 저장한다.
이와 같이, 레이저광(A)을 발광한 센서유닛(224A)를 기점으로 하여 주위에 배치된 모든 센서유닛(224)의 검출신호를 데이터관리장치(250)에 송신한다.
그리고, S34에서는 발광점이 되는 센서유닛의 어드레스를 n+1으로 변경한다. 다음의 S35에서는, 모든 센서유닛(224)이 발광했는지 여부를 체크한다. S35에 있어서, 모든 센서유닛(224)이 발광완료하지 않은 때에는, 상기 n+1의 센서유닛(224B)의 발광부(320)으로부터 레이저광(A)을 조사시켜 S31~S35의 처리를 반복한다.
또한, S35에 있어서, 모든 센서유닛(224)이 발광완료한 때에는 S36로 진행되고, 그 피험자에 대한 뇌의 혈관특성 계측처리가 완료하였다는 것을 데이터관리장치(250)에 송신한다.
여기서, 데이터관리장치(250)의 계측데이터 화상표시제어장치(280)가 실행하는 계측데이터 화상표시처리에 대하여 도 15의 플로우차트를 참조하여 설명한다. 계측데이터 화상표시제어장치(280)는 도 15의 S41에서 기억장치(270)의 데이터베이스에 저장된 계측데이터(혈류에 따른 투과광량에 의한 데이터)를 읽어들인다. 계속해서, S42로 진행되어, 계측데이터와 전술한 연산식(2) 또는 (3)을 이용하여 적혈구농도(Rp 또는 Rpw)를 연산한다.
다음의 S43에서는, 각 계측위치마다의 적혈구농도의 변화로부터 혈류에 의한 혈관 및 혈관주변 조직의 변위상태의 변화를 구하고, 이러한 혈관 및 혈관주변 조직의 변위상태에 근거하여 각 계측위치마다의 혈관특성을 도출한다. 즉, 혈류변화에 대응하는 혈관의 내벽 변위데이터(혈관의 내경의 수축)를 데이터베이스로부터 도출한다.
계속해서, S44로 진행되어, 심전계(40)에 의해 검출된 심전위의 신호를 읽어들인다. 그리고, S45에서는, 심전계(40)의 심전위신호 파형과 각 센서유닛(224)로부터 출력된 검출신호 파형(또는 혈류변화에 대응하는 내벽 변위데이터의 파형)을 비교한다. S46에 있어서는, 도 12에 도시된 바와 같이, 심전위신호 파형(A)의 Q파, R파, S파 중 R파의 피크값과 수광부 검출신호 (B)~(D)의 최저값의 위상차(T1~T3)를 구한다.
S46에서는, 심장으로부터 피측정영역까지의 거리를 심전계(40)의 심전위신호 파형과 각 센서유닛(224)로부터의 검출신호 파형의 위상차(T)로 나눔으로써 맥파전달속도를 구한다. 나아가, 이러한 맥파전달속도에 대응하는 피측정영역의 혈관특성(혈관의 탄성의 비율, 혈관내의 플라그량, 동맥경화의 비율)을 기억장치(270)의 데이터베이스로부터 도출하여 그 피측정영역에 있어서의 혈관의 동맥경화도를 도출한다. 계속해서, S47에서는, 혈관특성의 도출결과인 동맥경화도를 기억장치(270)의 데이터베이스에 저장함과 동시에, 얻어진 동맥경화도에 대응한 혈관특성결과 화상을 모니터(290)에 표시한다.
다음의 S48에서는, 각 계측위치에 있어서의 혈관특성의 데이터를 두부에 대한 매핑처리를 행한다. 이로써, 뇌의 동맥(중대뇌동맥(410), 전대뇌동맥(420) 등)에 있어서의 동맥경화의 유무를 화상데이터로서 모니터(290)에 표시하는 것이 가능하게 된다. 그리고, 이러한 매핑처리에 의해 얻어진 두부의 동맥경화 데이터를 기억장치(270)의 데이터베이스에 저장한다.
상기 매핑처리에서는 먼저 각 센서유닛(224)(발광부(320), 수광부(330))의 어드레스와 두부에 있어서의 실제의 계측위치를 대응시킨다. 다음, 발광부(320)와 수광부(330)의 어드레스로부터 피계측영역의 위치(좌표 및 깊이)를 구한다. 나아가, 피계측영역의 위치와 계측된 동맥경화의 계측데이터(혈류에 의한 혈관 및 혈관주변 조직의 변위상태에 대응하는 혈관의 내벽 변위데이터)를 관련짓는다. 각 센서유닛(224)이 실제로 두부의 어디에 배치되어 있는지를 정의함에 있어서, 각 센서유닛(224)이 그물형상 베이스(222)의 어느 위치에 설치되어 있는지에 근거하여 대강의 위치를 미리 설정하여 둘 수가 있다. 또한, 더욱 상세한 위치를 구하기 위해서는, 센서유닛(224)의 어드레스와 두부의 실제의 위치를 관련지을 때에, 혈류계측부(220)를 설치한 두부를 여러가지 각도(전방, 후방, 좌우방향, 상방향 등)로부터 촬영하여 화상에 각 센서유닛(224)의 어드레스를 대응시키면 된다. 나아가, 화상에 계측결과를 겹쳐서 화상표시함으로써, 피험자의 두부의 혈류상태나 동맥경화의 정도를, 예를 들어, 컬러표시에 의해 구분하여 표시하는 것이 가능하게 된다. 그 때문에, 피험자의 두부의 혈류상태가 현저하게 저하된 부위를 용이하게 발견하는 것이 가능하게 된다.
계속해서, S49로 진행되어, 각 센서유닛(224)에 의한 모든 계측위치에 대한 혈관특성의 검출이 완료했는지의 여부를 체크한다. S49에 있어서, 모든 계측포인트 에 대한 혈관특성의 계측이 완료하지 않은 때에는, S41로 돌아와 S41 이후의 처리를 반복한다.
또한, S49에 있어서, 모든 계측위치에 대한 혈관특성의 검출이 완료한 때에는, S50로 진행되어, 두부 전체의 혈관특성의 분포를 나타낸 뇌혈관특성상태를 나타낸 화상(예를 들어, 피험자의 뇌의 동맥경화의 유무를 구분하여 나타냄)을 생성하여, 뇌혈관특성 분포도를 모니터(290)에 표시한다.
이와 같이, 혈관특성 계측장치(210)에 의해 계측된 맥파전달속도에 따른 혈관특성 데이터로부터 얻어진 두부 전체의 뇌혈관특성상태를 나타낸 화상이 모니터(290)에 표시되기 때문에, 피험자의 혈관특성상태를 정확하게 파악하는 것이 가능하게 된다.
본국제출원은 2008년 7월 11일에 출원한 일본특허출원 제2008-181471호에 근거하여 우선권을 주장하는 것이며, 일본특허출원 제2008-181471호의 모든 내용을 본국제출원에 원용한다.
10 피부 표면
20, 20A, 20B, 220 혈류계측부
24 계측면
26 파지부
30, 30A, 30B 센서유닛
32 발광부
33 배터리
34, (341~34n), 36 수광부
37 제어부
38 광로분리부재
39 무선통신장치
40 심전계(심전계측수단)
42 전극
50 제어장치
52 기억장치
54 무선통신장치
60 혈류계측수단
70 혈관변위도출수단
80 혈관상태도출수단
90 모니터
92 계측화상
94 혈관특성결과 화상
100, 210 혈관특성 계측장치
200 뇌혈관특성 계측시스템
222 그물형상 베이스
224(224A~224N) 센서유닛
230 제어부
240, 260 무선통신장치
250 데이터관리장치
270 기억장치
280 계측데이터 화상표시제어장치
290 모니터
300 두부 표면
320 발광부
330 수광부
340 광로분리부재
342 출사측 투과영역
350 뇌파계측용 전극
360 플렉시블 배선판
370 광전파경로
380 혈관
400 뇌
410 중대뇌동맥
420 전대뇌동맥
490 기점

Claims (12)

  1. 피험자의 피계측영역에 대향하는 위치에 형성되고, 상기 피계측영역에 광을 조사하는 발광부와 상기 피계측영역에 전파된 광을 비접촉식으로 수광하는 수광부를 갖는 센서유닛,
    상기 발광부로부터 출사된 광을 상기 수광부에서 수광했을 때의 광강도에 근거하여, 상기 피계측영역에 있어서의 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측하는 혈류계측수단,
    상기 혈류계측수단에 의해 얻어진 상기 혈관 및 혈관주변 조직의 변위에 근거하여 혈관벽의 변위를 도출하는 혈관변위도출수단,
    상기 피험자의 심전신호를 계측하는 심전계측수단, 및
    상기 심전신호의 파형과 상기 수광부로부터 얻어진 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 혈관상태도출수단
    을 가지며,
    상기 센서유닛은 이동가능한 혈류계측부에 설치되고, 임의의 피계측영역에 있어서의 광의 전파강도를 계측하는 것을 특징으로 하는 혈관특성 계측장치.
  2. 제 1 항에 있어서,
    상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 수광부로부터 얻어진 상기 검출신호의 파형의 위상차에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 것을 특징으로 하는 혈관특성 계측장치.
  3. 제 1 항에 있어서,
    상기 혈류계측수단은 상기 혈관의 내벽상태에 따른 혈구성분을 광학적으로 계측하는 것을 특징으로 하는 혈관특성 계측장치.
  4. 제 1 항에 있어서,
    상기 센서유닛은 피험자의 복수의 피계측점에 광을 조사하는 복수의 발광부와 상기 복수의 피계측점에 전파된 광을 비접촉식으로 수광하는 복수의 수광부를 갖고,
    상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 복수의 수광부로부터 얻어진 복수의 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 것을 특징으로 하는 혈관특성 계측장치.
  5. 제 4 항에 있어서,
    상기 복수의 수광부는,
    피계측영역에 존재하는 혈관의 상류에서 광의 전파강도를 계측하는 제 1 수광부, 및
    상기 제 1 수광부보다 상기 혈관의 하류에 배치되고, 피계측영역에 존재하는 혈관의 하류에서 광의 전파강도를 계측하는 제 2 수광부를 갖는 것을 특징으로 하는 혈관특성 계측장치.
  6. 제 4 항에 있어서,
    상기 복수의 수광부는 상기 발광부를 중심으로 하는 상이한 반경위치의 원주(周)방향으로 소정 간격마다 배치된 것을 특징으로 하는 혈관특성 계측장치.
  7. 삭제
  8. 제 1 항에 있어서,
    상기 혈류계측부는,
    상기 센서유닛에 전류를 공급하는 배터리, 및
    상기 센서유닛에서 검출된 검출신호를 무선신호로 송신하는 무선통신장치를 갖는 것을 특징으로 하는 혈관특성 계측장치.
  9. 제 4 항에 있어서,
    상기 센서유닛은 상기 피험자의 두부(頭部)에 장착되는 그물형상 베이스의 복수 개소에서 지지되고, 상기 피험자의 두부의 복수의 각 계측위치에 있어서의 광의 전파강도를 계측하는 것을 특징으로 하는 혈관특성 계측장치.
  10. 제 9 항에 있어서,
    상기 혈관상태도출수단은 상기 심전신호의 파형과 상기 복수의 수광부로부터 얻어진 복수의 검출신호의 파형의 차이에 근거하여 상기 두부의 각 계측위치에 있어서의 혈관상태를 도출하는 것을 특징으로 하는 혈관특성 계측장치.
  11. 제 9 항에 있어서,
    상기 혈류계측수단은 상기 복수의 수광부로부터 얻어진 각 계측데이터를 상기 두부에 대한 각 어드레스마다 매핑처리하고, 각 어드레스에 대응하는 계측위치마다 혈관의 변위를 데이터베이스에 저장하며,
    상기 혈관상태도출수단은 각 계측위치마다의 혈관의 변위를 상기 데이터베이스로부터 읽어들이고, 각 어드레스에 대응하는 혈관의 변위를 추출하여 상기 두부의 각 계측위치에 있어서의 혈관상태를 도출하고, 상기 두부 전체의 혈관특성의 화상을 생성하는 것을 특징으로 하는 혈관특성 계측장치.
  12. 피험자의 임의의 피계측영역에 대향하도록 배치된 센서유닛의 발광부로부터 상기 피계측영역에 광을 조사하고, 상기 피계측영역에 전파된 광을 수광부에서 수광하는 단계와,
    상기 발광부로부터 출사된 광을 상기 수광부에서 수광했을 때의 광강도의 검출신호에 근거하여 상기 피계측영역에 있어서의 혈류에 의한 혈관 및 혈관주변 조직의 변위를 계측하는 단계와,
    상기 혈관 및 혈관주변 조직의 변위에 근거하여 혈관벽의 변위를 도출하는 단계와,
    상기 피험자의 심전신호를 계측하는 단계와,
    상기 심전신호의 파형과 상기 수광부로부터 얻어진 검출신호의 파형의 차이에 근거하여 각 계측위치에 있어서의 혈관의 내벽상태를 도출하는 단계
    를 포함하며,
    상기 센서유닛은 이동가능한 혈류계측부에 설치되고, 임의의 피계측영역에 있어서의 광의 전파강도를 계측하는 것을 특징으로 하는 혈관특성 계측방법.
KR1020117000687A 2008-07-11 2009-07-03 혈관특성 계측장치 및 혈관특성 계측방법 KR101248517B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2008-181471 2008-07-11
JP2008181471 2008-07-11
PCT/JP2009/062217 WO2010004940A1 (ja) 2008-07-11 2009-07-03 血管特性計測装置及び血管特性計測方法

Publications (2)

Publication Number Publication Date
KR20110017913A KR20110017913A (ko) 2011-02-22
KR101248517B1 true KR101248517B1 (ko) 2013-04-03

Family

ID=41507054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117000687A KR101248517B1 (ko) 2008-07-11 2009-07-03 혈관특성 계측장치 및 혈관특성 계측방법

Country Status (7)

Country Link
US (1) US9113797B2 (ko)
EP (1) EP2314210B1 (ko)
JP (1) JP5283700B2 (ko)
KR (1) KR101248517B1 (ko)
CN (1) CN102088899B (ko)
HK (1) HK1157608A1 (ko)
WO (1) WO2010004940A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662367A (zh) * 2016-02-25 2016-06-15 北京航空航天大学 一种头戴式多点脉搏波检测方法及装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295584B2 (ja) * 2008-02-14 2013-09-18 国立大学法人 筑波大学 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP5283700B2 (ja) * 2008-07-11 2013-09-04 国立大学法人 筑波大学 血管特性計測装置及び血管特性計測方法
GB2478291A (en) * 2010-03-02 2011-09-07 Univ Lancaster Endothelium assessment probe
US20120203121A1 (en) * 2011-02-09 2012-08-09 Opher Kinrot Devices and methods for monitoring cerebral hemodynamic characteristics
DK2675349T3 (en) * 2011-02-17 2018-01-08 Qualcomm Inc PROCEDURE AND SYSTEM FOR DETERMINING A CARDIOVASCULAR QUANTITY OF A MAMMAL
JP2013106641A (ja) * 2011-11-17 2013-06-06 Univ Of Tsukuba 血流脈波検査装置
US10292662B2 (en) 2013-11-27 2019-05-21 Koninklijke Philips N.V. Device and method for obtaining pulse transit time and/or pulse wave velocity information of a subject
CN104825177B (zh) * 2014-02-11 2018-02-13 西门子(中国)有限公司 修正脑血容积的方法及装置、血管照影设备
US10405784B2 (en) 2014-05-14 2019-09-10 Stryker Corporation Tissue monitoring apparatus and method
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US10820859B2 (en) * 2014-10-30 2020-11-03 Stryker Corporation Systems and methods for detecting pulse wave velocity
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
KR102390369B1 (ko) * 2015-01-21 2022-04-25 삼성전자주식회사 생체 정보 검출 장치
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US9848780B1 (en) * 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
WO2016166290A1 (en) * 2015-04-15 2016-10-20 Koninklijke Philips N.V. Optical laser speckle sensor for measuring a blood perfusion parameter
JP6095863B1 (ja) * 2015-04-21 2017-03-15 オリンパス株式会社 医療装置
JP6517356B2 (ja) 2015-04-30 2019-05-22 グーグル エルエルシー タイプに依存しないrf信号表現
CN107430443B (zh) 2015-04-30 2020-07-10 谷歌有限责任公司 基于宽场雷达的手势识别
KR102002112B1 (ko) 2015-04-30 2019-07-19 구글 엘엘씨 제스처 추적 및 인식을 위한 rf―기반 마이크로―모션 추적
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10376195B1 (en) 2015-06-04 2019-08-13 Google Llc Automated nursing assessment
US11638550B2 (en) 2015-07-07 2023-05-02 Stryker Corporation Systems and methods for stroke detection
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
JP2017148139A (ja) * 2016-02-22 2017-08-31 株式会社東芝 生体情報測定装置
US10085652B2 (en) * 2016-03-18 2018-10-02 Qualcomm Incorporated Optical measuring device for cardiovascular diagnostics
US10492302B2 (en) 2016-05-03 2019-11-26 Google Llc Connecting an electronic component to an interactive textile
CN107550498B (zh) * 2016-06-30 2024-02-09 北京超思电子技术有限责任公司 一种血氧测量装置及其测量方法
JP6891414B2 (ja) * 2016-07-14 2021-06-18 セイコーエプソン株式会社 測定装置
JP6742196B2 (ja) 2016-08-24 2020-08-19 Cyberdyne株式会社 生体活動検出装置および生体活動検出システム
JP6825341B2 (ja) * 2016-12-13 2021-02-03 セイコーエプソン株式会社 測定装置、血圧測定装置および測定方法
US11915609B2 (en) * 2017-05-02 2024-02-27 Tohoku University Hollow organ model unit and method for manufacturing hollow organ model unit
JP6661728B2 (ja) * 2018-10-11 2020-03-11 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報取得装置及び腕時計端末
US11800986B2 (en) 2020-12-28 2023-10-31 Industrial Technology Research Institute Non-pressure continuous blood pressure measuring device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866377A (ja) * 1994-06-21 1996-03-12 Nippon Koden Corp 多機能血圧計
JP2008048987A (ja) * 2006-08-25 2008-03-06 Mcm Japan Kk 脈波測定装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910214B2 (ja) * 1975-10-24 1984-03-07 ミノルタ株式会社 タイジヨウセイタイゲンシヨウソクテイソウチニオケル プロ−プ
JPS6239703A (ja) 1985-08-16 1987-02-20 Nippon Kokan Kk <Nkk> 形板の切断装置
JPS6239703U (ko) * 1985-08-29 1987-03-10
JPS6481471A (en) 1987-09-24 1989-03-27 Hitachi Ltd Picture information reader
JP2700006B2 (ja) 1987-10-19 1998-01-19 カシオ計算機株式会社 液晶表示素子
US5033472A (en) * 1989-02-23 1991-07-23 Nihon Kohden Corp. Method of and apparatus for analyzing propagation of arterial pulse waves through the circulatory system
US5853370A (en) * 1996-09-13 1998-12-29 Non-Invasive Technology, Inc. Optical system and method for non-invasive imaging of biological tissue
CN1045529C (zh) * 1993-12-20 1999-10-13 林计平 心脏潜力综合检测仪
US5603329A (en) * 1994-06-21 1997-02-18 Nihon Kohden Corporation Multi-functional blood pressure monitor
US5513642A (en) * 1994-10-12 1996-05-07 Rensselaer Polytechnic Institute Reflectance sensor system
JP3602880B2 (ja) * 1995-02-17 2004-12-15 コーリンメディカルテクノロジー株式会社 末梢循環状態監視装置
JPH08257002A (ja) 1995-03-27 1996-10-08 Nippon Colin Co Ltd 脈波伝播速度測定装置
US5995856A (en) * 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6280390B1 (en) * 1999-12-29 2001-08-28 Ramot University Authority For Applied Research And Industrial Development Ltd. System and method for non-invasively monitoring hemodynamic parameters
US6475153B1 (en) 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
JP2004000467A (ja) 2002-03-15 2004-01-08 U-Medica Inc 脈波センサ
CN1582845A (zh) * 2003-08-22 2005-02-23 香港中文大学 采用温度补偿的基于光电容积描记信号的血压测量方法
US7789830B2 (en) * 2003-11-14 2010-09-07 Hitachi Medical Corporation Thrombus detecting apparatus, thrombus treating apparatus and methods therefor
WO2005089640A2 (en) * 2004-03-19 2005-09-29 Masimo Corporation Low power and personal pulse oximetry systems
GB0607270D0 (en) * 2006-04-11 2006-05-17 Univ Nottingham The pulsing blood supply
WO2007132865A1 (ja) * 2006-05-16 2007-11-22 Retinal Information Diagnosis Research Institute Inc. 血管老化の検出システム
JP5283700B2 (ja) * 2008-07-11 2013-09-04 国立大学法人 筑波大学 血管特性計測装置及び血管特性計測方法
US8532751B2 (en) 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866377A (ja) * 1994-06-21 1996-03-12 Nippon Koden Corp 多機能血圧計
JP2008048987A (ja) * 2006-08-25 2008-03-06 Mcm Japan Kk 脈波測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662367A (zh) * 2016-02-25 2016-06-15 北京航空航天大学 一种头戴式多点脉搏波检测方法及装置

Also Published As

Publication number Publication date
EP2314210A4 (en) 2012-10-31
US20110118564A1 (en) 2011-05-19
EP2314210A1 (en) 2011-04-27
JP5283700B2 (ja) 2013-09-04
US9113797B2 (en) 2015-08-25
EP2314210B1 (en) 2014-09-10
CN102088899A (zh) 2011-06-08
WO2010004940A1 (ja) 2010-01-14
KR20110017913A (ko) 2011-02-22
CN102088899B (zh) 2013-03-06
HK1157608A1 (en) 2012-07-06
JPWO2010004940A1 (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101248517B1 (ko) 혈관특성 계측장치 및 혈관특성 계측방법
US20200138348A1 (en) Tissue Oximetry Probe with Tissue Marking Feature
CN108471950B (zh) 用于进行经腹胎儿血氧饱和度监测的系统、装置及方法
KR101954548B1 (ko) 진단 측정 기구
US7570979B2 (en) Methods and apparatus for patient monitoring
JP5295584B2 (ja) 血流計測装置及び血流計測装置を用いた脳活動計測装置
JP4031438B2 (ja) 生体機能診断装置
JP4542121B2 (ja) 多チャンネル無侵襲組織オキシメータ
JP5234186B2 (ja) 光生体測定装置
US20130324866A1 (en) Indications of cross-section of small branched blood vessels
CN101605495B (zh) 医用测量设备
AU2011212903A1 (en) Combined physiological sensor systems and methods
JP2016168177A (ja) 生体情報検出装置および背もたれ付シート
JP2006158974A (ja) 一体型生理学的信号評価装置
JP2013106641A (ja) 血流脈波検査装置
EP2866654A1 (en) Real-time tumor perfusion imaging during radiation therapy delivery
US20020111545A1 (en) Method and apparatus
KR101628218B1 (ko) 혈류계측장치 및 혈류계측장치를 이용한 뇌활동 계측장치
CN111493887B (zh) 一种手持式管状生物探头及在探测器官活性中的检测方法
Ahmad et al. Development of Portable Biofeedback Devices for Sport Applications
JP2005074188A (ja) 生体情報測定方法及び生体情報測定装置
CN112263229A (zh) 穿戴式生理信号监测指套
Hickey et al. Development and evaluation of a photometric fibre-optic sensor for monitoring abdominal organ photoplethysmographs and blood oxygen saturation
JP2000005152A (ja) 糖尿病診断器
CA2671221A1 (en) Blood flow measuring apparatus and brain activity measuring apparatus using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee