KR101215316B1 - 노광장치 및 노광방법 - Google Patents

노광장치 및 노광방법 Download PDF

Info

Publication number
KR101215316B1
KR101215316B1 KR1020050061525A KR20050061525A KR101215316B1 KR 101215316 B1 KR101215316 B1 KR 101215316B1 KR 1020050061525 A KR1020050061525 A KR 1020050061525A KR 20050061525 A KR20050061525 A KR 20050061525A KR 101215316 B1 KR101215316 B1 KR 101215316B1
Authority
KR
South Korea
Prior art keywords
displacement
hole
data
measurement
workpiece
Prior art date
Application number
KR1020050061525A
Other languages
English (en)
Other versions
KR20060049965A (ko
Inventor
토모야 키타가와
카오루 오오노
Original Assignee
후지필름 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지필름 가부시키가이샤 filed Critical 후지필름 가부시키가이샤
Publication of KR20060049965A publication Critical patent/KR20060049965A/ko
Application granted granted Critical
Publication of KR101215316B1 publication Critical patent/KR101215316B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7092Signal processing

Abstract

감광재료에 구멍이 형성되어 있는 경우에 있어서도, 감광재료에 대해서 정확하게 핀트를 맞춰서 노광할 수 있는 노광장치 및 노광방법을 제공하는 것을 과제로 한다.
감광재료의 피노광면의 위치높이를 계측하는 거리계측수단과, 감광재료의 피노광면의 구멍위치를 판단하는 구멍위치 특정수단과, 감광재료상에 있어서의 구멍위치를 특정하는 구멍좌표 측정수단과, 변위데이터 작성수단과, 노광수단의 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 포커싱수단을 구비한 노광장치에 있어서, 상기 거리계측수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은, 상기 구멍위치 특정수단과, 상기 포커싱수단과, 상기 구멍위치 특정수단에 의한 판단결과에 기초하여 구멍이라고 판단된 위치를 제외하고, 상기 변위데이터 작성수단에 있어서, 상기 포커싱수단에 의한 포커스 제어를 위한 변위데이터를 작성한다.

Description

노광장치 및 노광방법{EXPOSURE APPARATUS AND EXPOSURE METHOD}
도1은 일실시형태에 따른 노광장치의 전체적인 구성을 나타내는 개략적인 사시도이다.
도2는 일실시형태에 따른 노광장치의 전체적인 구성을 나타내는 개략적인 측면도이다.
도3은 일실시형태에 따른 노광장치가 구비하는 노광유닛의 구성을 나타내는 사시도이다.
도4는 감광재료에 형성되는 노광완료영역을 나타내는 평면도 및 각 노광헤드에 의한 화상영역의 배열을 나타내는 개략도이다.
도5는 일실시형태에 따른 노광장치가 구비하는 노광헤드의 개략적인 구성을 나타내는 사시도이다.
도6은 도5에 나타내는 노광헤드의 구성을 나타내는 광축을 따른 주사방향의 단면도이다.
도7은 노광헤드, 변위 측정유닛, 및 얼라이먼트 검출유닛의 상대적인 위치 관계를 나타내는 개략적인 평면도이다.
도8은 도5에 나타내는 노광헤드가 구비하는 디지털 마이크로미러 디바이스(DMD)의 구성을 나타내는 부분 확대도이다.
도9는 도8에 나타내는 DMD의 동작을 나타내는 설명도이다.
도10은 도1에 나타내는 노광장치가 구비하는 노광헤드에 설치된 포커싱기구의 외관을 나타내는 사시도이다.
도11은 도10에 나타내는 포커싱기구의 동작을 나타내는 설명도이다.
도12는 도1의 노광장치가 구비하는 컨트롤러의 구성을 나타내는 블럭도이다.
도13은 도1의 노광장치로 노광되는 감광재료에 형성된 기준구멍의 예를 나타내는 평면도이다.
도14는 구멍이 있는 것이라고 판정할 때의 변위 측정유닛에 있어서의 변위데이터예를 나타내는 그래프이다.
도15는 변위측정시의 감광재료와 레이저 변위계의 관계를 나타내는 측면도이다.
도16은 기판가공 공정에 의해 구멍위치를 판단하는 방법을 나타내는 블럭도이다.
(부호의 설명)
59:오토 포커스유닛 100:노광장치
110:케이싱 150:감광재료
152:노광 스테이지 154:다리부
162:노광유닛 166,166A~166H:노광헤드
168,168A~168H:화상영역 180:검출유닛
182:얼라이먼트 검출유닛 184:변위 측정유닛
190:컨트롤러 191A~191H:노광헤드 구동유닛
192A~192H:포커싱 제어유닛 193A~193H:화상 처리유닛
194:얼라이먼트 측정유닛 195:메인 제어유닛
196:얼라이먼트 조정유닛 197:제어 컴퓨터
210:페어 쐐기유리 210A:광입사면
210B:광출사면 212:페어 쐐기유리
212A:광입사면 212B:광출사면
300:RIP 302:기판가공 공정
본 발명은, 노광장치 및 노광방법에 관한 것으로, 특히 워크가 기준구멍이나 랜드구멍 등을 가질 때에도 소위 핀트 어긋남이 발생하지 않고, 핀트가 정확하게 맞는 화상을 노광할 수 있는 노광장치 및 노광방법에 관한 것이다.
최근, 화상기록장치의 일례로서, 디지털 마이크로미러 디바이스(DMD) 등의 공간 광변조소자(SLM)를 이용하여, 화상 데이터에 따라 변조된 광빔으로 화상노광을 행하는 노광장치가 여러가지 제안되고 있다(예를 들면, 비특허문헌1 및 2를 참조). 이 DMD는, 예를 들면 SRAM의 각 메모리셀 상에 다수의 미소한 마이크로미러가 설치되어 구성되고, 각 메모리셀에 축적된 전하에 의한 정전기력에 의해 마이크로미러의 반사면의 각도를 변화시킨다. 실제로 묘화를 행할 때에는, 각 SRAM에 화상 데이터를 기록한 상태에서 각 마이크로미러를 리셋해서 소정 각도로 해서, 광의 반사방향을 원하는 방향으로 한다.
상기 노광장치의 응용분야의 하나로서, 예를 들면 액정 디스플레이나 플라즈마 디스플레이 등의 플랫 패널 디스플레이의 기판의 제조, 및 프린트기판의 제조가 있다.
패널이나 프린트기판의 제조용의 노광장치로서는, 노광범위를 넓히는 목적으로, 상기 DMD를 갖는 노광헤드를, 상기 기판의 이송방향과 교차하는 방향을 따라 복수 배열한 멀티헤드 노광장치가 있다.
상기 멀티헤드 노광장치에는, 기판의 변위를 복수의 계측점에서 측정하는 검출수단과, 상기 검출수단에 의해 측정된 변위데이터에 기초하여, 노광헤드와 같은 투영 광학계의 상(像)면과 상기 기판의 위치관계를 조정하는 조정수단을 구비한 것이 있다(특허문헌1). 이들 수단을 이용하여 핀트를 유지함으로써, 기판의 표면의 요철이나 두께편차에 대응한 노광을 위한 보정을 행하고 있다.
(비특허문헌1) Larry J. Hornbeck, Digital Light Processing and MEMS: reflecting the digital display needs of the networked society, THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, Proceedings of SPIE Volume: 2783, 8/1996, P.2-13
(비특허문헌2) W.E.Nelson and Robit L Bhuva, Digital micromirror device imaging bar for hard copy, THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, Proceedings of SPIE Volume: 2413, 4/1995, P.58-65
(특허문헌1) 일본 특허 제3305448호 공보
기판에는, 통상, 상기 멀티헤드 노광장치에 있어서 위치맞춤의 기준이 되는 기준구멍이 형성되어 있다. 또한 랜드구멍이라고 불리는, 워크에 각종 부품을 장착하기 위한 구멍 및 홈 등이 형성되어 있는 경우도 있다. 본 명세서중에서는, 이러한 구멍 및 오목 단차를 포함해서 「구멍」이라고 한다.
그러나, 상기 멀티헤드 노광장치를 이용해서 이들 상기 기준구멍 등이 형성되어 있는 기판을 노광할 경우, 상기 검출수단이 구비하는 레이저 변위계로 기판의 Z방향(기판의 두께방향)의 변위를 측정할 때에, 상기 레이저 변위계로부터 조사된 레이저광이 상기 기준구멍 등을 통과하는 일이 있다.
또한 상기 검출수단의 기판상에 있어서의 측정범위는 독립된 점이므로, 측정점의 주변은 측정점의 측정결과에 기초해서 포커스 조정된다. 특히, X방향(기판의 이동방향과 교차하는 방향)은, 상기 검출수단간의 간격이 그대로 측정점간의 간격으로 되어 있으므로, 측정점 마다의 간격이 넓게 되어 있다.
따라서, 상기 검출수단에 의해 측정된 변위측정결과는 기준구멍 등의 변위도 포함하고 있을 가능성이 있기 때문에, 이러한 변위측정결과를 그대로 사용해서 변위데이터를 작성하고, 포커스 조정을 행하면, 상기 검출수단의 측정점이 구멍이나 오목부인 경우, 그 주변부분도 측정점에 맞춘 노광을 해 버릴 우려가 있다. 또한 상기 종래기술에서는, 요철의 정도에 따라서는, 가공된 구멍이나 오목부와 기판의 변형을 구별하는 것이 곤란하며, 적절한 대응이 불가능하다는 문제도 있었다.
본 발명은, 상기 문제를 해결하기 위해서 이루어진 것이며, 기판 등의 워크에 기준구멍 등의 구멍이나 오목부가 형성되어 있는 경우에 있어서도, 워크에 대해서 정확하게 핀트를 맞춰서 노광할 수 있는 노광장치 및 노광방법의 제공을 목적으로 한다.
상기 문제를 해결하기 위해서, 청구항1에 기재된 발명은, 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔을 출사하는 노광수단에 의해 노광하는 노광장치로서, 상기 감광재료의 피노광면의 구멍위치를 판단하는 구멍위치 특정수단과, 상기 노광수단의 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 포커싱수단과, 상기 구멍위치 특정수단에 의한 판단결과에 기초하여 구멍이라고 판단된 위치를 제외하고, 상기 포커싱수단에 의한 포커스 제어를 위한 변위데이터를 작성하는 변위데이터 작성수단을 갖는 것을 특징으로 하는 노광장치에 관한 것이다.
구멍으로서는, 상술한 바와 같이, 워크의 얼라이먼트에 사용되는 기준구멍(얼라이먼트 마크)이나, 워크에 각종 부품을 장착하기 위한 랜드구멍 등이 있다. 이들 모두를, 대상이 되는 구멍이라고 한다. 또한 구멍 이외에, 볼록부(얼라이먼트 마크이어도 좋다)를 대상으로 할 수도 있다. 즉 변위데이터 작성수단이, 요철부를 제외한 영역에 대해서 변위데이터를 작성하도록 해도 좋다.
상기 워크로서는, 감광층을 포함한, 단층 또는 다층의 프린트기판이나, 플랫패널 디스플레이용 기판, 리짓 플렉 기판(플렉시블 기판), 시트상 또는 긴형상의 프린트 배선판(PWB), 표시장치용 기판, 액정셀 형성구조, 필터 등을 들 수 있다(이하, 감광재료라고 한다). 또한 감광층의 종류로서는, 포토레지스트, 광에 의해 경화되는 재료, 광에 의해 현상 가능하게 되는 재료 등을 들 수 있다.
청구항2에 기재된 발명은, 상기 구멍위치 특정수단은, 상기 감광재료의 피노광면의 위치높이를 계측하는 거리계측수단에 의한 상기 감광재료의 피노광면의 위치높이 계측 데이터에 기초하여 상기 감광재료의 피노광면의 구멍위치를 판단하는 것이며, 상기 변위데이터 작성수단은, 상기 감광재료의 피노광면의 구멍위치라고 판단된 위치에 있어서의 계측 데이터를 사용하지 않고 변위데이터를 작성하는 것인 청구항1에 기재된 노광장치에 관한 것이다.
청구항3에 기재된 발명은, 상기 변위데이터 작성수단은, 소정 측정위치(A)에 있어서의 상기 거리계측수단에 의한 계측 데이터를, 그 근방의 측정위치에 있어서의 상기 거리계측수단에 의한 계측 데이터와 비교해서, 이들의 값의 차가 소정값을 초과하는 경우에, 상기 측정위치(A)에 있어서의 상기 거리계측수단에 의한 계측 데이터를 보정 또는 무시하는 것인 청구항2에 기재된 노광장치에 관한 것이다.
청구항4에 기재된 발명은, 상기 구멍위치 특정수단은, 상기 감광재료에의 구멍형성수단에 의한 구멍형성시의 데이터를 취득하는 구멍형성 위치정보 취득수단이며, 상기 변위데이터 작성수단은, 상기 감광재료에의 구멍형성수단에 의한 구멍형성시의 데이터에 기초하여 상기 감광재료상에 있어서의 구멍위치를 특정하고, 상기 위치에 있어서의 계측 데이터를 보정 또는 무시하는 것인 청구항1에 기재된 노광장치에 관한 것이다.
청구항5에 기재된 발명은, 상기 거리계측수단과 포커싱수단에 추가해서, 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍좌표 측정수단을 갖고, 상기 거리계측수단에 의해 취득한 소정 측정위치(B)에 있어서의 계측 데이터(C)가 소정값이상의 값인 경우에는, 상기 변위데이터 작성수단은, 상기 계측 데이터(C)를 취득한 측정위치(B)와 상기 구멍좌표 측정수단에 의해 구한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(C)를 취득한 측정위치(B)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것이라고 판정하고, 상기 측정위치(B)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(C)를 보정 또는 무시하는 것인 청구항2에 기재된 노광장치에 관한 것이다.
상기 노광장치에 있어서는, 상기 구멍좌표 측정수단에 의해 상기 감광재료에 형성된 구멍의 위치좌표가 구해지는 동시에, 상기 변위데이터 작성수단에 있어서, 상기 거리계측수단의 변위측정결과와 상기 구멍좌표 측정수단에 의해 구해진 구멍위치좌표에 기초하여, 구멍의 유무가 판정되고, 구멍이 존재할 때는 그 위치좌표가 특정되고, 구멍 및 그 주위의 변위측정값이 제외되고, 측정된 변위량과는 다른 변위량으로 변위데이터가 작성된다. 그리고 이 변위데이터에 기초하여 포커싱수단이 제어된다.
따라서, 구멍이 형성되어 있는 감광재료이어도, 구멍을 검출한 것에 의한 오차가 변위데이터에 들어오는 일은 없으므로, 노광헤드로부터의 광빔의 핀트를 감광재료의 피노광면에 정확하게 맞출 수 있다.
구멍좌표 측정수단으로서는, 감광재료를 촬영해서 기준구멍의 위치를 구하는 얼라이먼트 카메라 등을 들 수 있다.
청구항6에 기재된 발명은, 상기 거리계측수단과 포커싱수단에 추가해서, 유저에 의한 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍위치좌표 입력수단을 갖고, 상기 거리계측수단에 의해 취득한 소정 측정위치(D)에 있어서의 계측 데이터(E)가 소정값이상의 값인 경우에는, 상기 변위데이터 작성수단은, 상기 계측 데이터(E)를 취득한 측정위치(D)와 유저가 미리 입력한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(E)를 취득한 측정위치(D)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(D)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(E)를 보정 또는 무시하는 것인 청구항2에 기재된 노광장치에 관한 것이다.
상기 노광장치에 있어서는, 감광재료에 기준구멍 등의 구멍이 형성되어 있는 경우에는, 상기 변위데이터 작성수단에 있어서, 상기 거리계측수단의 변위측정결과와 유저가 미리 입력한 상기 구멍의 위치좌표에 기초해서, 구멍 및 그 주위의 변위측정값이 제외되고, 측정된 변위량과는 다른 변위량으로 변위데이터가 작성된다. 그리고 이 변위데이터에 기초하여 포커싱수단이 제어된다.
따라서, 구멍이 형성되어 있는 감광재료이어도, 노광헤드로부터의 광빔의 핀트를 감광재료의 피노광면에 정확하게 맞출 수 있다.
또한 상기 노광장치에 있어서는 감광재료에 형성된 구멍의 위치에 대해서는 유저가 입력한 것을 사용하고 있기 때문에, 구멍좌표 측정수단을 생략할 수 있어, 구성을 간략화할 수 있다.
청구항7에 기재된 발명은, 상기 거리계측수단과 포커싱수단에 추가해서, 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍좌표 측정수단과 유저에 의한 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍위치좌표 입력수단을 갖고, 상기 거리계측수단에 의해 취득한 소정 측정위치(F)에 있어서의 계측 데이터(G)가 소정값이상의 값인 경우에는, 상기 변위데이터 작성수단은, 상기 계측 데이터(G)를 취득한 측정위치(F)와 상기 구멍좌표 측정수단에 의해 구한 구멍좌표위치(H)와 유저가 미리 입력한 구멍좌표위치(I)를 비교해서, 이들 3자가 일치하는 경우에는, 상기 계측 데이터(G)를 취득한 측정위치(F)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(F)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(G)를 보정 또는 무시하는 것인 청구항2에 기재된 노광장치에 관한 것이다.
상기 노광장치에 있어서는, 상기 구멍좌표 측정수단에 의해 상기 감광재료에 형성된 구멍의 위치좌표가 구해지는 동시에, 상기 거리계측수단에 있어서, 상기 거리계측수단의 변위측정결과와, 상기 구멍좌표 측정수단에 의해 구해진 구멍위치좌표와, 유저가 입력한 구멍좌표위치에 기초해서, 구멍의 유무가 판정되고, 구멍이 존재할 때는 그 위치좌표가 특정된다.
따라서, 구멍의 유무의 판정 및 위치좌표의 특정이 더욱 고정밀도로 행해진다.
청구항8에 기재된 발명은, 상기 변위데이터 작성수단은, 상기 구멍으로 판정된 좌표위치를 중심으로 하는 소정의 범위에 대해서, 상기 측정위치에 있어서 계측 된 계측 데이터와는 다른 데이터를, 상기 구멍으로 판정된 좌표위치의 주변의 계측 데이터로서 설정하는 것인 청구항1~7 중 어느 한 항에 기재된 노광장치에 관한 것이다.
상기 노광장치에 있어서는, 구멍으로 판정된 좌표위치를 중심으로 하는 소정의 범위의 변위량은, 구멍으로 판정된 좌표위치의 주변의 변위량으로 된다.
청구항9에 기재된 발명은, 상기 변위데이터 작성수단은, 상기 거리계측수단에 의해 취득한 계측 데이터를 이동평균 처리해서 새로운 계측 데이터로 하는 것인 청구항1~8 중 어느 한 항에 기재된 노광장치에 관한 것이다.
변위데이터가 고주파성분의 노이즈를 포함하고 있으면, 포커싱수단으로 포커싱을 행하기 위한 기초 데이터로서 바람직하지 못하다.
그래서, 상기 노광장치에 있어서는, 상기 변위데이터로부터 고주파성분을 제외하고, 포커싱수단에 있어서의 포커싱 제어에 바람직하도록 가공하고 있다.
청구항10에 기재된 발명은, 상기 포커싱수단은, 상기 노광수단을 구성하는 1개이상의 노광헤드의 각 출사측에 설치되는 동시에, 광투과성 재료에 의해 쐐기형상으로 형성되고, 상기 노광헤드로부터 출사되는 광빔의 광축을 따라 서로 반전된 방향으로 인접 배치된 복수의 광학부재와, 상기 복수의 광학부재에 있어서의 1개의 광학부재를 다른 광학부재와 서로 대향하는 면을 따라 이동할 수 있게 지지하는 광학부재 지지수단과, 상기 1개의 광학부재를 상기 서로 대향하는 면을 따라 상기 다른 광학부재에 대해서 이동시키는 광학부재 주사수단을 구비해서 이루어지는 것인 청구항1~9 중 어느 한 항에 기재된 노광장치에 관한 것이다.
상기 노광장치에서는, 상기 포커싱수단이 구비하는 복수의 쐐기형상 광학부재는 서로 반전된 방향으로 광빔의 광축을 따라 인접 배치되어 있다. 따라서, 상기 광학부재 주사수단에 의해 1개의 쐐기형상 광학부재가 다른 쐐기형상 광학부재와 서로 대향하는 면을 따라 다른 쐐기형상 광학부재에 대해서 상대적으로 이동함으로써, 광빔이 1개의 쐐기형상 광학부재에 입사하는 입사면과, 입사후에 복수의 쐐기형상 광학부재를 투과해서 다른 1개의 쐐기형상 광학부재로부터 출사하는 광출사면의 광빔의 광축방향에 있어서의 상대거리가 변화되고, 바꿔 말하면, 광빔이 복수의 쐐기형상 광학부재를 투과하는 투과거리가 변화된다. 이것에 의해 광빔의 초점거리가 변경된다.
상기 포커싱수단은, 구성이 간소하게 됨과 아울러, 콤팩트하게 구성할 수 있고, 각각의 노광헤드의 출사측에 구성하는 것도 용이한 점에서 바람직하다.
또, 본 발명의 노광장치에 있어서는, 포커싱수단으로서는, 본 청구항에 기재된 형태의 것외에, 감광재료 자체를 초점심도방향으로 이동시켜서 노광헤드와의 거리를 변경하는 형태의 것도 사용할 수 있다.
청구항11에 기재된 발명은, 상기 노광헤드는, 입력된 화상정보에 따라 각 화상의 변조상태를 변화시켜서 화소를 온/오프함으로써 묘화하는 것인 청구항10에 기재된 노광장치에 관한 것이다.
상기 노광헤드에 있어서는, 화소의 변조상태를 변화시켜서 화소의 온/오프를 행하고 있기 때문에, 화소를 온/오프할 때마다 광원 자체를 점등하거나 소등할 필요가 없고, 묘화중에는 광원을 점등한 상태로 유지할 수 있다. 따라서, 광원을 고 사이클로 온/오프시키는 기구가 불필요하므로, 노광헤드의 구성을 간략화할 수 있고, 고장도 적다. 또한 광원을 직접 온/오프하는 경우에 비해서 고속으로 화소의 온/오프를 행할 수 있기 때문에, 보다 양질의 화상이 얻어진다. 또한, 대면적의 감광재료 전체에 묘화하는 것도 용이하다.
청구항12에 기재된 발명은, 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔의 출사에 의해 노광하는 노광방법으로서, 상기 감광재료의 피노광면의 구멍위치를 판단하고, 상기 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하고, 상기 구멍위치의 판단결과에 기초하여 구멍이라고 판단된 위치를 제외하고, 상기 포커스 제어를 위한 변위데이터를 작성하는 것을 특징으로 하는 노광방법에 관한 것이다.
청구항13에 기재된 발명은, 상기 감광재료의 피노광면의 위치높이를 계측하고, 상기 감광재료의 피노광면의 위치높이 계측 데이터에 기초하여 상기 감광재료의 피노광면의 구멍위치를 판단하고, 상기 감광재료의 피노광면의 구멍위치라고 판단된 위치에 있어서의 계측 데이터를 사용하지 않고 변위데이터를 작성하는 청구항12에 기재된 노광방법에 관한 것이다.
청구항14에 기재된 발명은, 소정 측정위치(A)에 있어서의 계측 데이터를, 그 근방의 측정위치에 있어서의 계측 데이터와 비교해서, 이들 값의 차가 소정값을 초과하는 경우에, 상기 측정위치(A)에 있어서의 계측 데이터를 보정 또는 무시하는 청구항13에 기재된 노광방법에 관한 것이다.
청구항15에 기재된 발명은, 구멍위치의 특정은, 상기 감광재료에의 구멍형성 시의 데이터를 취득함으로써 행하고, 상기 감광재료에의 구멍형성시의 데이터에 기초하여 상기 감광재료상에 있어서의 구멍위치를 특정하고, 상기 위치에 있어서의 계측 데이터를 보정 또는 무시하는 청구항12에 기재된 노광방법에 관한 것이다.
청구항16에 기재된 발명은, 취득한 소정 측정위치(B)에 있어서의 계측 데이터(C)가 소정값이상의 값인 경우에는, 상기 계측 데이터(C)를 취득한 측정위치(B)와 구멍좌표의 측정에 의해 구한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(C)를 취득한 측정위치(B)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(B)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(C)를 보정 또는 무시하는 청구항13에 기재된 노광방법에 관한 것이다.
청구항5에서 서술한 바와 같이, 상기 노광방법에 있어서도, 상기 감광재료에 형성된 구멍을 검출했을 때는, 상기 구멍 및 그 주변이 제외된 변위데이터가 작성되고, 이 변위데이터에 기초하여 포커싱이 행해지므로, 상기 감광재료에 구멍이 형성되어 있는 경우에 있어서도, 노광헤드로부터의 레이저광의 핀트가 상기 감광재료의 피노광면에 정확하게 맞는 상태로 노광할 수 있다.
청구항17에 기재된 발명은, 소정 측정위치(D)에 있어서의 계측 데이터(E)가 소정값이상의 값인 경우에는, 상기 계측 데이터(E)를 취득한 측정위치(D)와 유저가 미리 입력한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(E)를 취득한 측정위치(D)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(D)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(E)를 보정 또는 무시하는 청구항13에 기재된 노광방법에 관한 것이다.
청구항6에서 서술한 바와 같이, 상기 노광방법에 있어서도 상기 감광재료에 형성된 구멍의 좌표를 구하는 구멍좌표 측정공정을 설치하는 대신에, 상기 감광재료의 구멍의 유무 및 그 위치를 특정하는데에 유저가 미리 입력한 구멍위치좌표를 사용하고 있다.
따라서, 상기 노광방법에 있어서는, 구성이 간략화된 노광장치를 사용할 수 있다.
청구항18에 기재된 발명은, 소정 측정위치(F)에 있어서의 계측 데이터(G)가 소정값이상의 값인 경우에는, 상기 계측 데이터(G)를 취득한 측정위치(F)와 구멍좌표위치(H)와 유저가 미리 입력한 구멍좌표위치(I)를 비교해서, 이들 3자가 일치하는 경우에는, 상기 계측 데이터(G)를 취득한 측정위치(F)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(F)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(G)를 보정 또는 무시하는 것인 청구항13에 기재된 노광방법에 관한 것이다.
청구항7에서 서술한 바와 같이, 상기 노광방법에 있어서도, 변위측정결과와, 구멍위치좌표와, 유저가 입력한 구멍좌표위치에 기초해서, 구멍의 유무가 판정되고, 구멍이 존재할 때는 그 위치좌표가 특정된다.
따라서, 구멍의 유무의 판정 및 위치좌표의 특정이 더욱 고정밀도로 행해진다.
청구항19에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복 수의 노광헤드에 의해 상기 워크를 노광하는 노광장치로서, 상기 워크의 피노광면의 변위를 측정하는 워크변위 측정수단과, 상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정수단과, 상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성수단과, 상기 변위데이터 작성수단으로 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱수단을 구비하고, 상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은, 상기 변위량의 검출위치와 상기 구멍좌표 측정수단에서 구한 구멍좌표위치를 비교해서 양자가 일치할 때는, 상기 단차는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광장치에 관한 것이다.
청구항20에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광장치로서, 상기 워크의 피노광면의 변위를 측정하는 워크변위 측정수단과, 상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성수단과, 상기 변위데이터 작성수단으로 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱수단을 구비하고, 상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은 상기 변위량의 검출위치와 유저가 미리 입력한 구멍좌표위치 를 비교해서, 양자가 일치할 때는, 상기 단차는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광장치에 관한 것이다.
청구항21에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광장치로서, 상기 워크의 피노광면의 변위를 측정하는 워크변위 측정수단과, 상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정수단과, 상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성수단과, 상기 변위데이터 작성수단으로 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱수단을 구비하고, 상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은, 상기 워크변위 측정수단에 의한 상기 변위량의 검출위치와, 상기 구멍좌표 측정수단으로 구한 구멍좌표위치와, 유저가 미리 입력한 구멍좌표위치를 비교해서, 3자가 일치했을 때에 상기 단차는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광장치에 관한 것이다.
청구항22에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광방법으로서, 상기 워크의 피노광 면의 변위를 측정하는 워크변위 측정공정과, 상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성공정과, 상기 변위데이터 작성공정에서 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱공정과, 상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정공정을 갖고, 상기 워크변위 측정공정에 있어서 소정의 크기이상의 변위량을 검출했을 때는, 상기 변위데이터 작성공정에 있어서, 상기 변위량의 검출위치와, 상기 구멍좌표 측정공정에서 구해진 구멍좌표위치를 비교해서, 양자가 일치할 때는, 상기 단차는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광방법에 관한 것이다.
청구항23에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광방법으로서, 상기 워크의 피노광면의 변위를 측정하는 워크변위 측정공정과, 상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성공정과, 상기 변위데이터 작성공정에서 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱공정을 구비하고, 상기 워크변위 측정공정에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성공정에 있어서, 상기 변위량의 검출위치와 유저가 미리 입력한 구멍좌표위치를 비교해서, 양자가 일치할 때는, 상기 단차는 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광방법에 관한 것이다.
청구항24에 기재된 발명은, 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광방법으로서, 상기 워크의 피노광면의 변위를 측정하는 워크변위 측정공정과, 상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정공정과, 상기 워크변위 측정공정에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성공정과, 상기 변위데이터 작성공정에서 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱공정을 갖고, 상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에 있어서는, 상기 변위데이터 작성공정에 있어서, 상기 워크변위 측정수단에 의한 상기 변위량의 검출위치와, 상기 구멍좌표 측정수단에서 구한 구멍좌표위치와, 유저가 미리 입력한 구멍좌표위치를 비교해서, 3자가 일치해서 비로서 상기 단차는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광방법에 관한 것이다.
청구항25에 기재된 발명은, 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔을 출사하는 노광수단에 의해 노광하는 노광장치로서, 상기 감광재료의 피노광면의 요철부위치를 판단하는 요철부위치 특정수단과, 상기 노광 수단의 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 포커싱수단과, 상기 요철부위치 특정수단에 의한 판단결과에 기초하여 요철부라고 판단된 위치를 제외하고, 상기 포커싱수단에 의한 포커스 제어를 위한 변위데이터를 작성하는 변위데이터 작성수단을 갖는 것을 특징으로 하는 노광장치에 관한 것이다.
청구항26에 기재된 발명은, 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔의 출사에 의해 노광하는 노광방법으로서, 상기 감광재료의 피노광면의 요철부위치를 판단하고, 상기 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하고, 상기 요철부위치의 판단결과에 기초하여 요철부라고 판단된 위치를 제외하고, 상기 포커스 제어를 위한 변위데이터를 작성하는 것을 특징으로 하는 노광방법에 관한 것이다.
1. 노광장치의 구성
본 실시형태에 따른 노광장치(100)는 소위 플랫 베드 타입이며, 도1 및 도2에 나타내듯이, 4개의 다리부(154)에 지지된 두꺼운 판상의 설치대(156)와, 설치대(156)의 상면에, 도1에 있어서 화살표로 나타내는 스테이지 이동방향을 따라 설치된 2개의 가이드(158)와, 가이드(158)에 의해 왕복이동할 수 있게 지지된 노광 스테이지(152)를 구비하고 있다. 노광 스테이지(152)는, 감광재료(150) 등의 워크가 탑재되는 대이며, 그 길이방향이 스테이지 이동방향을 향하도록 배치되고, 구동장치(도시생략)에 의해, 가이드(158)를 따라 이동함과 아울러, 높이도 조절할 수 있다.
또, 감광재료(150)는 상술한 바와 같은, 기판 등의 표면에 감광층을 도포한 것이다.
설치대(156)의 중앙부에는, 노광 스테이지(152)의 이동경로에 걸쳐지도록 ㄷ자형상의 게이트(160) 및 게이트(161)가 설치되어 있다. 게이트(160) 및 게이트(161)의 각 단부는 설치대(156)의 양측면에 고정되어 있다. 게이트(160)에는 검출유닛(180)이 설치되어 있다. 검출유닛(180)은, 게이트(160)를 사이에 두고 한쪽 측에 설치된 얼라이먼트 검출유닛(182)과, 다른쪽 측에 설치된 변위측정유닛(184)으로 이루어진다. 얼라이먼트 검출유닛(182)과 변위측정유닛(184)은, 각각 본 발명에 있어서의 구멍좌표 측정수단 및 거리계측수단에 해당된다. 얼라이먼트 검출유닛(182)으로서는, 예를 들면 CCD카메라가 사용된다.
한편, 게이트(161)에는 후술하는 노광헤드(166)를 예를 들면 8개 구비하는 노광유닛(162)이 설치되어 있다.
노광유닛(162) 및 검출유닛(180)은 컨트롤러(190)에 접속되어 있다. 컨트롤러(190)는, 본 발명에 있어서의 변위데이터 작성수단에 해당되고, 변위측정유닛(184)으로 측정한 감광재료의 피노광면의 변위 및 얼라이먼트 검출유닛(182)으로 촬영해서 구한 기준구멍의 위치좌표에 기초하여 변위데이터를 작성하고, 작성한 변위데이터에 기초하여 각 노광헤드(166)에 설치된 오토 포커스유닛(59)을 제어해서 포커싱을 행하는 기능을 갖는다. 따라서, 컨트롤러(190)는, 본 발명에 있어서의 변위데이터 작성수단 및 포커싱수단에 해당된다.
또, 노광 스테이지(152), 가이드(158), 게이트(160), 게이트(161), 노광유닛(162), 및 검출유닛(180)은, 모두 케이싱(110)내에 수용되어, 감광재료(150)가 외 광의 영향을 받지 않고 노광되도록 구성되어 있다.
노광유닛(162)은, 도3 및 도4의 (B)에 나타내듯이, m행 n열(예를 들면 2행 4열)의 대략 행렬상으로 배열된 복수의 노광헤드(166)를 구비하고 있다.
노광헤드(166)로 노광되는 영역인 화상영역(168)은, 도3에 나타내듯이, 단변이 주사방향을 따른 직사각형상이며, 주사방향에 대해서, 소정의 경사각(θ)으로 경사져 있다. 그리고, 노광 스테이지(152)의 이동에 따라, 감광재료(150)에는 노광헤드(166)마다 띠형상의 노광완료영역(170)이 형성된다. 또, 도1 및 도3에 나타내듯이, 주사방향은 스테이지 이동방향과는 방향이 반대이다.
또한 도4에 있어서 (A) 및 (B)에 나타내듯이 띠형상의 노광완료영역(170)의 각각이, 인접하는 노광완료영역(170)과 부분적으로 겹치도록, 라인상으로 배열된 각 행의 노광헤드(166)는, 배열방향으로 소정 간격(화상영역의 장변의 자연수배, 본 실시형태에서는 1배) 어긋나게 배치되어 있다. 이 때문에, 예를 들면, 1행째의 가장 좌측에 위치하는 화상영역(168A)과 화상영역(168A)의 우측에 인접하는 화상영역(168C) 사이의 노광되지 않은 부분은, 2행째의 가장 좌측에 위치하는 화상영역(168B)에 의해 커버된다. 마찬가지로, 화상영역(168B)과, 화상영역(168B)의 우측에 인접하는 화상영역(168D) 사이의 노광되지 않은 부분은, 화상영역(168C)에 의해 커버된다. 또, 화상영역(168A)은 노광헤드(166A)에 의해 노광되고, 화상영역(168B)은 노광헤드(166B)에 의해 노광된다. 마찬가지로 화상영역(168C)~화상영역(168H)은 각각 노광헤드(166C)~노광헤드(166H)에 의해 노광된다.
노광헤드(166A)~(166H)의 각각은, 도5, 및 도6의 (A), (B)에 나타내듯이, 입사된 광빔을 화상 데이터에 따라 각 화소마다 변조하는 공간 광변조소자로서, 디지털 마이크로미러 디바이스(DMD)(50)를 구비하고 있다. 이 DMD(50)는, 데이터 처리부와 미러 구동 제어부를 구비한 컨트롤러(190)에 접속되어 있다. 상기 컨트롤러(190)의 데이터 처리부에서는, 입력된 화상 데이터에 기초하여 각 노광헤드(166)마다 DMD(50)의 제어해야 할 영역내의 각 마이크로미러를 구동 제어하는 제어신호를 생성한다.
또한 미러 구동 제어부에서는, 화상 데이터 처리부에서 생성한 제어신호에 기초하여 각 노광헤드(166)마다 DMD(50)의 각 마이크로미러의 반사면의 각도를 제어한다. 또, 반사면의 각도의 제어에 대해서는 후술한다.
DMD(50)의 광입사측에는, 광섬유의 출사단부(발광점)가 화상영역(P)의 장변방향과 대응하는 방향을 따라 1열로 배열된 레이저 출사부를 구비한 섬유 어레이 광원(66), 섬유 어레이 광원(66)으로부터 출사된 레이저광을 보정해서 DMD상에 집광시키는 렌즈계(67), 렌즈계(67)를 투과한 레이저광을 DMD(50)를 향해서 반사하는 반사경(69)이 이 순서로 배치되어 있다.
렌즈계(67)는, 섬유 어레이 광원(66)으로부터 출사된 레이저광을 평행광화하는 1쌍의 조합 렌즈(71), 평행광화된 레이저광의 광량분포가 균일하게 되도록 보정하는 1쌍의 조합 렌즈(73), 및 광량분포가 보정된 레이저광을 DMD상에 집광하는 집광렌즈(75)로 구성되어 있다. 조합 렌즈(73)는 레이저 출사단의 배열방향에 대해서는, 렌즈의 광축에 가까운 부분은 광속을 넓히고, 광축으로부터 떨어진 부분은 광속을 좁히고, 또한 상기 배열방향과 직교하는 방향에 대해서는 광을 그대로 통과시 키는 기능을 구비하여, 광량분포가 균일하게 되도록 레이저광을 보정한다.
또한 DMD(50)의 광반사측에는, DMD(50)에 의해 반사된 레이저광을 감광재료(150)의 주사면(피노광면)(56)상에 결상하는 렌즈계(54) 및 렌즈계(58)가 배치되어 있다. 렌즈계(54 및 58)는, DMD(50)와 피노광면(56)이 공역의 관계로 되도록 배치되어 있다.
본 실시형태에서는 섬유 어레이 광원(66)으로부터 출사된 레이저광은, 균일화되어, DMD(50)에 입사된 후, 각 화소가 이들의 렌즈계(54) 및 렌즈계(58)에 의해 약 5배로 확대되어, 집광되도록 설정되어 있다.
렌즈계(58)의 출사측에는, 또한 섬유 어레이 광원(66)으로부터 출사된 레이저광의 초점을 피노광면(56)에 맞추는 오토 포커스유닛(59)이 형성되어 있다. 오토 포커스유닛(59)은, 본 발명에 있어서의 포커싱수단에 해당된다.
상방으로부터 본 노광헤드(166)와 얼라이먼트 검출유닛(182)과 변위측정유닛(184)의 상대적인 위치관계를 도7에 나타낸다. 도7에 나타내듯이, 얼라이먼트 검출유닛(182)은, 감광재료(150)의 폭방향을 따라 얼라이먼트 카메라(No.1)~얼라이먼트 카메라(No.4)의 4대의 CCD카메라로 이루어져 있다. 얼라이먼트 카메라(No.1)는 화상영역(168A) 및 화상영역(168B)을 촬영하고, 얼라이먼트 카메라(No.2)는 화상영역(168C) 및 화상영역(168D)을 촬영한다. 그리고 얼라이먼트 카메라(No.3)는, 화상영역(168E) 및 화상영역(168F)을 촬영하고, 얼라이먼트 카메라(No.4)는 화상영역(168G) 및 화상영역(168H)을 촬영한다.
노광시 이송방향 즉 Y축방향을 따라 얼라이먼트 검출유닛(182)의 하류측에는 변위측정유닛(184)이 설치되어 있다. 변위측정유닛(184)은, 레이저 변위계(No.1)~레이저 변위계(No.8)로 구성되어 있다. 레이저 변위계(No.1)~레이저 변위계(No.8)는 각각 화상영역(168A)~화상영역(168H)의 변위를 측정하도록 설치되어 있다.
이하, DMD(50)에 대해서 설명한다.
DMD(50)는, 도8에 나타내듯이 SRAM셀(메모리셀)(60)상에 미소 미러(마이크로미러)(62)가 지주에 의해 지지되어 배치된 것이며, 화소를 구성하는 다수의 (예를 들면 피치 13.68㎛, 1024개×768개)의 미소 미러를 격자상으로 배열해서 구성된 미러 디바이스이다. 각 화소에는, 최상부에 지주에 지지된 마이크로미러(62)가 설치되어 있고, 마이크로미러(62)의 표면에는 알루미늄 등의 반사율이 높은 재료가 증착되어 있다. 또, 마이크로미러(62)의 반사율은 90%이상이다. 또한 마이크로미러(62)의 바로 아래에는, 힌지 및 요크를 포함하는 지주를 통해 통상의 반도체 메모리의 제조라인으로 제조되는 실리콘 게이트의 CMOS의 SRAM셀(60)이 배치되어 있으며, 전체는 모노리식(일체형)으로 구성되어 있다.
DMD(50)의 SRAM셀(60)에, 마이크로미러(60)의 경사상태(변조상태)를 나타내는 디지털 신호가 기록되고, 또한 SRAM셀(60)로부터 마이크로미러(62)에 디지털 신호가 출력되면, 지주에 지지된 마이크로미러(62)가, 대각선을 중심으로 해서 DMD(50)가 배치된 기판측에 대해서 ±α°(예를 들면 ±10°)의 범위로 기울어진다. 도9에 있어서 (A)는, 마이크로미러(62)가 온상태인 +α°로 기운 상태를 나타내고, (B)는, 마이크로미러(62)가 오프상태인 -α°로 기운 상태를 나타낸다. 따라서, 화상신호에 따라, DMD(50)의 각 화소에 있어서의 마이크로미러(62)의 경사를, 도9에 나타낸 바와 같이 제어함으로써, DMD(50)에 입사된 광은 각각의 마이크로미러(62)의 경사방향으로 반사된다.
또, 도8에는, DMD(50)의 일부를 확대해서, 마이크로미러(62)가 +α°또는-α°로 제어되어 있는 상태의 일례를 나타낸다. 각각의 마이크로미러(62)의 온오프제어는, DMD(50)에 접속된 컨트롤러(190)에 의해 행해진다. 또, 오프상태의 마이크로미러(62)에 의해 광빔이 반사되는 방향으로는, 광흡수체(도시생략)가 배치되어 있다.
다음에 오토 포커스유닛(59)에 대해서 설명한다.
오토 포커스유닛(59)은, 도10에 나타내듯이 투명 유리재료에 의해 쐐기형상 (사다리꼴 기둥형상)으로 형성된 한쌍의 유리부재인 페어 쐐기유리(210,212)를 구비하고 있다. 본 실시형태에서는 페어 쐐기유리(210,212)는 굴절율(n)이 n=1.53으로 설정되고, 또한 서로 반전된 방향으로 레이저광의 광축을 따라 인접 배치되어 있다. 페어 쐐기유리(210,212)는 본 발명에 있어서의 쐐기형상 광학부재에 해당된다.
상기 1쌍의 페어 쐐기유리(210,212) 중, 페어 쐐기유리(210)는 레이저광의 입사측(DMD(50)측)에 설치되어 있다. 그리고, 페어 쐐기유리(210)에 있어서 양측면에 대해서 직각으로 형성된 측의 면이, 레이저광이 입사하는 측의 면, 즉 광입사면(210A)으로 되고, 또한 광입사면(210A)이 레이저광의 입사방향에 대해서 직각으로 되도록 설치되어 있다. 따라서 광입사면(210A)에 서로 대향하는 측의 면이 레이저광이 출사하는 광출사면(210B)으로 된다. 광출사면(210B)은, 페어 쐐기유리(210)의 측면에 대해서 경사져 있다.
한편, 페어 쐐기유리(212)는, 페어 쐐기유리(210)에 인접하고, 또한 레이저광의 출사측(피노광면(56)측)에 설치되어 있다. 그리고, 페어 쐐기유리(212)에 있어서 양 측면에 대해서 경사진 측의 면이 광입사면(212A)이 되고, 양 측면에 대해서 직각인 면이 광출사면(212B)이 되도록 설치되어 있다. 또, 페어 쐐기유리(212)는, 광출사면(212B)이 레이저광의 광축에 대해서 대략 직교하고, 광입사면(212A)이 경사지는 방향으로 배치되어 있다.
그리고 이 한쌍의 페어 쐐기유리(210,212)는, 도11에 있어서 (A) 및 (B)에 나타내듯이 페어 쐐기유리(210)의 광출사면(210B)과 페어 쐐기유리(212)의 광입사면(212A)이 약간의 간극을 두고 서로 대향하는 비접촉의 상태에서, 페어 쐐기유리(210)의 광입사면(210A)과 페어 쐐기유리(212)의 광출사면(212B)이 평행하게 됨과 아울러 상기한 바와 같이 레이저광의 광축에 대해서 대략 직교하고 있다. 또 본 실시형태에서는 페어 쐐기유리(210)의 광출사면(210B)과 페어 쐐기유리(212)의 광입사면(212A)의 간격이 0.1mm로 설정되어 있다.
도10에 나타내듯이 오토 포커스유닛(59)은, 한쌍의 페어 쐐기유리(210,212)의 각각을 개별적으로 유지하는 베이스 홀더(214) 및 슬라이드 홀더(216)를 구비하고 있다. 베이스 홀더(214) 및 슬라이드 홀더(216)는, 본 발명에 있어서의 광학부재 지지수단에 해당된다. 페어 쐐기유리(212)는 베이스 홀더(214)에, 페어 쐐기유리(210)는 슬라이드 홀더(216)에 유지되어 있다.
베이스 홀더(214)는, 페어 쐐기유리(212)와 대략 닮은꼴의 쐐기형상으로 형 성되고, 상면(경사면)(214A) 및 하면(214B)에 직사각형상의 개구부(218,220)가 형성되어 있다. 그리고, 페어 쐐기유리(212)를 수용하기 위한 공동부(수용부)(222)가 내부에 형성되어 있다.
공동부(222)는, 베이스 홀더(214)의 상면(214A)측의 개구부(218)의 크기로 대략 수직 하방으로 소정의 깊이 치수만큼 파여진 오목형상이며, 내부에 페어 쐐기유리(212)가 수용된다. 공동부(222)는, 내부에 페어 쐐기유리(212)를 수용했을 때에, 공동부(222)의 저면 및 내주면이 페어 쐐기유리(212)의 하면(광출사면(212B)) 및 외주면에 거의 간극없이 접촉되도록 형성되어 있다.
베이스 홀더(214)의 하면(214B)의 중앙부에는 개구부(220)가 형성되어 있다. 개구부(220)는, 상면(214A)의 개구부(218) 및 공동부(222)의 개구형상보다 약간 작게 형성되어 있다. 또한 하면(214B)의 좌측 단부에는, 오토 포커스유닛(59) 전체를 노광유닛(162)의 프레임(도시생략)에 나사고정하기 위한 고정부(224)가 돌출형성되어 있다.
한편, 슬라이드 홀더(216)는, 페어 쐐기유리(210)와 대략 닮은꼴의 쐐기형상으로 형성되고, 상면(216A) 및 하면(216B)에 직사각형상의 개구부(226,228)가 각각 형성되고, 내부에 페어 쐐기유리(210)를 수용하기 위한 공동부(수용부)(230)가 형성된 대략 프레임상의 부재이다. 또, 하면(216B)은 경사면이다.
공동부(230)는, 개구부(226)와 동일한 크기를 갖고, 개구부(228)를 향해서 관통된 관통구멍형상이며, 페어 쐐기유리(210)를 수용했을 때에, 내주면이 페어 쐐기유리(212)의 외주면에 대략 간극없이 접촉하는 크기로 형성되어 있다.
슬라이드 홀더(216)에 있어서는, 개구부(226)에 직사각형 프레임판상의 페어 쐐기유리 누름판(234)이 끼워 넣어짐으로써, 페어 쐐기유리(210)는, 공동부(230)로부터 탈락하지 않도록 장착된다. 페어 쐐기유리 누름판(234)의 대략 중앙에 형성된 직사각형상의 개구부(236)는, 그 크기가 베이스 홀더(214)의 하면(214B)측의 개구부(220)와 대략 같은 크기이며, 슬라이드 홀더(216)를 페어 쐐기유리(210)의 장착위치로 이동시켰을 때에, 개구부(220)에 대략 겹치는 위치에 설치되어 있다.
슬라이드 홀더(216)는, 도10에 나타내듯이 하면(216B)에 있어서 베이스 홀더(214)의 상면(214A)을 서로 향하게 되고, 동시에 하면(216B)의 경사방향이 베이스 홀더(214)의 상면(214A)의 경사방향과는 반대로 되도록 베이스 홀더(214)상에 배치되어 있다. 그리고, 슬라이드 홀더(216)는, 베이스 홀더(214)의 상면(214A)과 슬라이드 홀더(216)의 하면(216B) 사이에 설치된 한 쌍의 가이드 레일(232)에 의해 베이스 홀더(214)에 구성되고, 유닛화되어 있다.
슬라이드 홀더(216)는, 한 쌍의 가이드 레일(232)에 의해, 베이스 홀더(214)에 대해서 소정의 간격을 두고 대략 평행하게 배치되고, 베이스 홀더(214)에 대해서, 하면(216B) 및 상면(214A)의 경사방향을 따라 대략 좌우방향(도10의 화살표 S방향)으로 상대적으로 이동 가능하게 조합되어 있다.
베이스 홀더(214) 및 슬라이드 홀더(216)에 페어 쐐기유리(210,212) 및 페어 쐐기유리 누름판(234)을 구성하기 위해서는, 슬라이드 홀더(216)를 페어 쐐기유리(210 및 212)의 구성위치로 이동시키고, 슬라이드 홀더(216)의 공동부(230)를 베이스 홀더(214)의 공동부(222)에 위치맞춤해서, 공동부(222) 및 공동부(230)에, 하방 으로부터 상방을 향해 페어 쐐기유리(212), 페어 쐐기유리(210), 페어 쐐기유리 누름판(234)의 순으로 구성하면 된다.
도10에 나타내듯이 베이스 홀더(214)의 우측면(214C)에 있어서의 대략 중앙위치에는, 액추에이터 부착판(238)이 나사고정되어 있다. 베이스 홀더(214)의 우측면(214C)은, 상면(214A)과 대략 직각으로 되어 있고, 이 우측면(214C)에 부착되어 있는 액추에이터 부착판(238)은, 베이스 홀더(214)의 상면(214A)과 대략 직각의 방향으로 부착부(하부)로부터 상방으로 연장되고, 그 상부측의 외측면에 포커싱 모터(240)가 부착되어 있다. 포커싱 모터(240)는, 본 발명에 있어서의 광학부재 주사수단에 해당된다.
포커싱 모터(240)는 구동축(242)의 연장방향 및 이동방향(화살표 D방향)이 슬라이드 홀더(216)의 이동방향(화살표 S방향)에 맞춰져서 액추에이터 부착판(238)에 부착되어 있고, 구동축(242)의 선단부(242A)가 슬라이드 홀더(216)의 우측면(216C)에 연결되어 있다. 또한 포커싱 모터(240)는 컨트롤러(190)의 포커싱 기구제어부에 접속되고, 이 포커싱 기구제어부에 의해 제어되어서 작동하도록 되어 있다.
슬라이드 홀더(216)의 상면(216A)의 우측앞 모서리부에는, 노치부(244)가 형성되어 있다. 이 노치부(244)의 바닥면과 베이스 홀더(214)의 상면(214A)의 우측앞 모서리부에는, 한쌍의 지주(246,248)가 세워서 설치되어 있고, 한 쌍의 지주(246,248)에는, 포커싱 모터(240)의 구동축(242)의 구동력보다 스프링력이 작게 설정된 인장 코일 스프링(250)이 가설(架設)되어 있다. 이 인장 코일 스프링(250)의 스프링력에 의해, 가이드 레일(232) 및 포커싱 모터(240)를 통해 연결되어 있는 슬 라이드 홀더(216)와 베이스 홀더(214) 사이에는 예압이 가해지고 있다.
컨트롤러(190)의 후술하는 헤드 제어부로부터의 신호에 의해 포커싱 모터(240)가 작동하고, 구동축(242)을 화살표 D방향으로 구동시키면, 슬라이드 홀더(216) 및 페어 쐐기유리(210)는 한 쌍의 가이드 레일(232)에 가이드되어서 화살표 S방향으로 이동한다. 또한 슬라이드 홀더(216) 및 페어 쐐기유리(210)는, 포커싱 모터(240)의 구동축(242)이나 가이드 레일(232)에 약간의 여유분(덜거덕거림)이 있는 경우에도, 인장 코일 스프링(250)에 의해 가해지고 있는 예압에 의해, 정지상태에서는 덜거덕거림없이 유지되고, 또 이동에서는 원활하게 동작하게 된다.
베이스 홀더(214)의 하면(214B)에 있어서의 우측앞 모서리부에는, 사각형상의 센서 부착판(252)이 나사고정되어 있다. 센서 부착판(252)은, 베이스 홀더(214)의 하면(214B)에의 부착부(좌측부)로부터 오른쪽으로 연장되어서 돌출되어 있는 우측부가, 베이스 홀더(214)의 상면(214A)과 대략 평행하게 되도록 부착부에 대해서 굴곡되어 있고, 그 우측부의 상면에, 페어 쐐기유리(210)를 유지한 슬라이드 홀더(216)의 기준위치(홈 포지션)를 검출하기 위한 기준위치 센서유닛(254)이 부착되어 있다.
기준위치 센서유닛(254)은, 직육면체형상으로 된 유닛본체의 상부에 광센서(258)가 탑재되고, 유닛본체의 내부에 광센서(258)로부터 출력되는 전기신호(검출신호)를 증폭하는 회로기판(도시생략)이 설치되어 있다. 광센서(258)는 슬릿부(256)의 내벽면에 투수광소자(도시생략)가 형성되고, 이 슬릿부(256)가 슬라이드 홀더(216)의 이동방향(화살표 S방향)과 대략 평행하게 되는 방향으로 배치되어 있 다. 또한 기준위치 센서유닛(254)은, 컨트롤러(190)의 헤드 제어부에 접속되어 있다.
슬라이드 홀더(216)의 우측면(216C)에 있어서의 전단부에는, 기준위치 센서 유닛(254)에 대응하는 기준위치 검출판(260)이 나사고정되어 있다. 기준위치 검출판(260)은, L자형이며, 슬라이드 홀더(216)의 우측면(216C)에의 부착부(좌측부)로부터 대략 직각으로 굴곡되어서 오른쪽으로 소정 길이 치수만큼 연장된 우측부가 검출부(광센서 차광부)이다. 기준위치 검출판(260)은, 슬라이드 홀더(216)의 이동에 따라, 검출부가 광센서(258)의 슬릿부(256)내를 통과하거나, 슬릿부(256)내로부터 이탈하는 것이 가능한 위치에 배치되어 있다.
슬라이드 홀더(216)의 이동에 따라, 기준위치 검출판(260)의 검출부 선단이 광센서(258)의 슬릿부(256)에 삽입되거나, 슬릿부(256)내로부터 이탈하거나 하면, 광센서(258)는 투수광소자에 의해 차광/비차광의 상태를 검출해서 각 상태에 따른 High/Low의 검출 신호를 출력한다. 그리고, 기준위치 센서유닛(254)은, 이 검출신호를 회로기판에 의해 증폭시켜서 컨트롤러(190)의 헤드 제어부에 출력한다.
컨트롤러(190)의 헤드 제어부는, 포커싱 모터(240)를 구동 제어해서 슬라이드 홀더(216)를 이동시켰을 때에, 기준위치 센서유닛(254)으로부터 입력된 검출신호의 출력레벨의 High/Low가 바뀌는 위치를, 슬라이드 홀더(216) 및 페어 쐐기유리(210)의 기준위치로 인식하고, 이 기준위치의 정보를 메모리에 기억한다. 그리고, 포커싱 모터(240)의 구동 제어에서는, 이 기준위치의 정보에 기초하여 포커싱 모터(240)를 구동 제어하는 제어신호를 생성하고, 또 필요에 따라 기준위치의 정보에 보정을 추가해서 제어신호를 생성하고, 포커싱 모터(240)에 출력한다.
오토 포커스유닛(59)에 있어서는, 컨트롤러(190)로부터의 신호에 의해 포커싱 모터(240)가 구동 제어되면, 슬라이드 홀더(216)에 유지된 페어 쐐기유리(210)는, 도11에 나타내듯이 도면중의 2점 쇄선으로 나타낸 기준위치로부터, 도11에 있어서 (A)에 나타내는 화살표 SA방향, 또는, 도11(B)에 나타내는 화살표 SB방향으로 이동한다.
여기에서, 페어 쐐기유리(210)가 기준위치에 있는 경우의 페어 쐐기유리(210)의 광입사면(210A)과 페어 쐐기유리(212)의 광출사면(212B)의 거리, 즉 상호간에 형성된 약간의 간극을 포함하는 페어 쐐기유리(210,212)의 토탈의 두께 치수를 t라고 하면, 두께 치수(t)는, 페어 쐐기유리(210)가 기준위치로부터 화살표 SA방향으로 소정 거리만큼 이동한 경우에는 Δt만큼 감소하고(-Δt), 페어 쐐기유리(210)가 기준위치로부터 화살표 SB방향으로 소정 거리만큼 이동한 경우에는 Δt만큼 증가한다(+Δt).
이렇게, 페어 쐐기유리(210,212)의 두께 치수(t)가 변화되면(±Δt), 레이저광이 페어 쐐기유리(210,212)를 투과하는 투과거리가 변화되고, 레이저광의 촛점거리(FD)가 변화된다(±ΔFD) 또, 도11에 나타낸 PS는 결상면을 나타내고 있다.
또한 페어 쐐기유리(210,212)의 굴절율(n)(본 실시형태에서는 n=1.53)로 하면, 이 페어 쐐기유리(210,212)의 두께 치수(t)의 변화량에 따른 레이저광의 촛점거리(FD)의 변화량은, 하기 식에 의해 구해진다.
+ΔFD=+Δt-(+Δt)/n
-ΔFD=-Δt-(-Δt)/n
이하, 컨트롤러(190)의 구성에 대해서 도12를 참조해서 설명한다.
컨트롤러(190)는, 제어 컴퓨터(197)로부터의 입력에 기초하여 노광장치(100)를 제어하는 기능을 갖고,
A.노광헤드(166A)~노광헤드(166H)를 구동하는 구동유닛(191A)~노광헤드 구동유닛(191H),
B.제어 컴퓨터(197)로부터 입력된 화상 데이터를, 8개의 화상영역(168A)~화상영역(168H)에서 노광해야 할 화상의 화상 데이터로 분할해서 구동유닛(191A)~구동유닛(191H)의 각각에 입력하는 화상처리유닛(193A)~화상처리유닛(193H),
C.얼라이먼트 검출유닛(182)이 구비하는 얼라이먼트 카메라(No.1)~얼라이먼트 카메라(No.4)로부터의 화상 데이터를 처리해서 후술하는 메인 제어유닛에 입력하는 얼라이먼트 측정유닛(194),
D.얼라이먼트 측정유닛(194)에서 구한 얼라이먼트 데이터에 기초해서, 노광 스테이지(152)의 얼라이먼트를 조정하는 얼라이먼트 조정유닛(196),
E.노광헤드 구동유닛(191A)~노광헤드 구동유닛(191H)의 각각에 설치되고, 변위측정유닛(184)이 구비하는 레이저 변위계에 있어서의 변위측정결과 등에 기초해서 오토 포커스유닛(59)을 제어해서 포커싱을 행하는 포커싱 제어유닛(192A)~포커싱 제어유닛(192H),
F.얼라이먼트 측정유닛(194)으로부터의 화상 데이터의 입력에 기초해서, 얼라이먼트 조정유닛(196)을 통해 노광 스테이지의 얼라이먼트를 조정함과 아울러, 노광 스테이지(152)의 승강 및 Y축방향의 이송을 제어하고, 동시에 화상처리유닛(193A)~화상처리유닛(193H)을 통해 노광헤드 구동유닛(191A)~구동유닛(191H)을 제어하는 메인 제어유닛(195)의 각 유닛으로 구성된다.
화상처리유닛(193A)~화상처리유닛(193H) 및 얼라이먼트 측정유닛(194)에는, 서로 데이터를 주고받는 동시에 메인 제어유닛(195)과도 데이터나 지시를 주고받는 CANPCI가 설치되어 있다.
제어 컴퓨터(197)로부터의 지시 및 데이터는, 화상처리유닛(193A)~화상처리유닛(193H) 및 얼라이먼트 측정유닛(194)이 구비하는 CANPCI를 통해 메인 제어유닛(195)에도 입력된다.
2.노광장치(100)의 작용
이하, 노광장치(100)에 감광재료(150)를 셋트하고 나서 노광을 종료할 때까지의 일련의 순서에 대해서 설명한다.
2-1.실시예1
노광 스테이지(152)가 도1에 나타내는 위치에 있는 상태에서 감광재료(150)를 노광 스테이지(152)에 셋트하고, 오퍼레이터가 노광개시의 입력조작을 행하면, 컨트롤러(190)가 구비하는 제어 컴퓨터(197)로부터 메인 제어유닛(195)에 노광 스테이지(152)를 계측방향으로 이동시키는 동시에, 얼라이먼트 검출유닛(182) 및 변위측정유닛(184)을 기동해야한다라는 지령을 입력한다.
상기 지령이 메인 제어유닛(195)에 입력되면, 얼라이먼트 검출유닛(182)에 있어서 얼라이먼트 카메라(No.1)~얼라이먼트 카메라(No.4)가 기동하고, 감광재료 (150)에 형성된 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4)의 위치좌표의 측정이 행해진다. 동시에 변위측정유닛(184)에 있어서 레이저 변위계(No.1)~레이저 변위계(No.8)가 기동하고, 감광재료(150)의 노광면에 있어서의 변위의 측정이 행해진다. 또, 감광재료(150)에 형성된 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4)의 예를 도13에 나타낸다.
레이저 변위계(No.1)~레이저 변위계(No.8)로 측정된 변위의 측정결과는 각각 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 입력된다. 한편, 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4)의 위치좌표의 측정결과는, 얼라이먼트 측정유닛(194) 및 화상처리유닛(193A)의 CANPCI를 통해 메인 제어유닛(195)에 입력되고, 메인 제어유닛(195)으로부터 노광헤드 구동유닛(191A)~노광헤드 구동유닛(191H)을 통해 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 입력된다.
또한 유저가 미리 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4)의 XY좌표를 제어 컴퓨터(197)에 입력한 경우에는, 상기 XY좌표도 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 입력된다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 있어서는, 레이저 변위계(No.1)~레이저 변위계(No.8)에서 측정된 변위데이터에 대해서, 전회 측정된 변위데이터인 전회 데이터와의 차분을 구한다. 그리고, 도14에 나타내듯이 전회 데이터와의 사이에 계속해서 2회이상 소정값이상의 차분, 예를 들면 +100digit이상의 차분이 생겼을 때에는, 감광재료(150)에 단차가 있는 것이라고 판단하고, 상기 변위데이터를 기준구멍의 후보로 한다.
다음에 상기 변위데이터로부터 구멍의 범위를 결정한다. 구체적으로는, 예를 들면 최초에 +100digit이상의 차분이 생긴 위치로부터 3점전의 변위데이터에 대응하는 점을 구멍의 시작으로 하고, 마지막으로 +100digit이상의 차분이 생긴 위치로부터 3점후의 변위데이터에 대응하는 점을 구멍의 끝으로 한다.
구멍의 Y좌표는, 구멍의 시작 및 끝에 대응하는 점이 원점으로부터 몇번째의 점인가라는 데이터와 인접하는 2개의 측정점의 간격으로부터 구해진다. 또한 구멍의 X좌표는, 레이저 변위계(No.1)~레이저 변위계(No.8)의 부착위치로부터 구해진다.
다음에 이렇게 해서 구한 구멍의 X좌표 및 Y좌표를, 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4)에 대해서 얼라이먼트 검출유닛(182)에 있어서 측정한 위치좌표, 및 유저가 입력한 위치좌표와 비교한다. 그리고 3자가 일치하면, 레이저 변위계(No.1)~레이저 변위계(No.8)에서 검출한 단차는 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4) 중 어느 하나이다라고 판정한다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)은, 상기 단차가 기준구멍(X1,Y1), 기준구멍(X2,Y2), 기준구멍(X3,Y3), 기준구멍(X4,Y4) 중 어느 하나이다라고 판정했을 때는, 구멍의 시작 및 끝을 결정한 것과 마찬가지로, 최초에 +100digit이상의 차분이 생긴 위치로부터 3점전의 변위데이터에 대응하는 점부터, 마지막으로 +100digit이상의 차분이 생긴 위치로부터 3점후의 변위데이터에 대응하 는 점까지의 범위에 대해서는, 양 점을 직선으로 연결한 범위라고 간주함과 아울러, 레이저 변위계(No.1)~레이저 변위계(No.8)에서 얻어진 데이터를 이동평균 처리해서 노이즈분을 제거하고, 화상영역(168A)~(168H)의 각각에 대해서 포커스맵을 작성한다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 있어서는, 화상영역(168A)~(168H)의 각각에 대해서 상기의 순서로 작성한 포커스맵에 기초해서 각 노광헤드(166A)~노광헤드(166H)에 있어서 오토 포커스유닛(59)의 포커싱 모터(240)를 구동해서 포커싱을 행한다.
이렇게, 본 실시형태에 따른 노광장치(100)에 있어서는, 얼라이먼트 카메라에 의해 측정한 기준구멍위치, 레이저 변위계에서의 측정값, 유저가 제어 컴퓨터에 입력한 데이터의 3자가 일치하는 위치를 구멍위치라고 판정하고, 예를 들면 구멍을 검출했을 때는, 구멍을 제외하고 포커스맵을 작성하고, 구멍부분의 데이터는 이동평균 처리해서 새로운 데이터로 새로 만들고, 이 포커스맵에 기초하여 포커싱을 행하므로, 노광헤드(166)로부터의 레이저광의 핀트 위치 어긋남이 없다. 따라서, 핀트 어긋남이 없는 선명한 화상이 얻어진다.
2-2. 실시예2
노광 스테이지(152)가 도1에 나타내는 위치에 있는 상태에서 감광재료(150)를 노광 스테이지(152)에 셋트하고, 오퍼레이터가 노광개시의 입력조작을 행하면, 컨트롤러(190)가 구비하는 제어 컴퓨터(197)로부터 메인 제어유닛(195)에 노광 스테이지(152)를 계측방향으로 이동시키는 동시에, 변위측정유닛(184)을 기동해야 한 다라는 지령을 입력한다.
상기 지령이 메인 제어유닛(195)에 입력되면, 변위측정유닛(184)에 있어서 레이저 변위계(No.1)~레이저 변위계(No.8)가 기동하고, 감광재료(150)의 노광면에 있어서의 변위의 측정이 행해진다.
레이저 변위계(No.1)~레이저 변위계(No.8)에서 측정된 변위의 측정결과는 각각 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 입력된다.
도15는, 변위측정시의 감광재료(150)와 레이저 변위계(No.1)~레이저 변위계(No.8)의 관계를 나타내는 측면도이다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 있어서는, 레이저 변위계(No.1)~레이저 변위계(No.8)에서 측정된 변위데이터에 대해서, 인접하는 레이저 변위계에서 동시에 측정된 변위데이터인 인접 데이터와의 차분을 구한다. 그리고, 인접 데이터와의 사이에 소정값이상의 차분, 예를 들면 +100digit이상의 차분이 생겼을 때는, 감광재료(150)에 단차가 있는 것이라고 판단하여, 구멍의 후보로 한다.
다음에 상기 변위데이터로부터 구멍의 범위를 결정한다. 구체적으로는, 레이저 변위계(No.1)와 레이저 변위계(No.2)의 차분, 레이저 변위계(No.2)와 레이저 변위계(No.3)의 차분이라는 것처럼, 순서대로 구해 가고, 최초에 +100digit이상의 차분이 생긴 위치의 변위데이터에 대응하는 점을 구멍의 시작으로 하고, 마지막으로 +100digit이상의 차분이 생긴 위치의 변위데이터에 대응하는 점을 구멍의 끝으로 한다. 도15에서는, No.2와 No.3 사이, No.3과 No.4 사이에 차가 있으므로, No.3이 구멍위치이다라고 판단한다.
구멍의 Y좌표는, 구멍의 시작 및 끝에 대응하는 점이 원점으로부터 몇번째의 점인가라는 데이터와 인접하는 2개의 측정점의 간격으로부터 구해진다. 또한 구멍의 X좌표는, 레이저 변위계(No.1)~레이저 변위계(No.8)의 설치위치로부터 구해진다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)은, 상기 단차가 구멍이라고 판정했을 때는, 구멍의 시작 및 끝을 결정한 것과 마찬가지로, 최초에 +100digit이상의 차분이 생긴 위치의 변위데이터에 대응하는 점으로부터, 마지막으로 +100digit이상의 차분이 생긴 위치의 변위데이터에 대응하는 점까지의 범위에 대해서는, 양 점을 직선으로 연결한 범위라고 간주하는 동시에, 구멍위치의 직전에 레이저 변위계에서 얻어진 데이터를 구멍위치의 데이터로 해서, 화상영역(168A)~(168H)의 각각에 대해서 포커스맵을 작성한다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 있어서는, 화상영역(168A)~(168H)의 각각에 대해서 상기의 순서로 작성한 포커스맵에 기초하여 각 노광헤드(166A)~노광헤드(166H)에 있어서 오토 포커스유닛(59)의 포커싱 모터(240)를 구동해서 포커싱을 행한다.
이렇게, 본 실시형태에 따른 노광장치(100)에 있어서는, 인접하는 레이저 변위계간의 측정데이터의 차에 기초해서 구멍위치의 판정을 행하고, 구멍을 검출했을 때는, 구멍을 제외하고 포커스맵을 작성하고, 구멍부분의 데이터는, 구멍의 주변위치의 데이터로 치환하고, 이 포커스맵에 기초하여 포커싱을 행하므로, 노광헤드(166)로부터의 레이저광의 핀트 위치 어긋남이 없다. 따라서, 핀트 어긋남이 없는 선명한 화상이 얻어진다.
2-3. 실시예3
감광재료(150)에 구멍을 형성하는 경우에는, 노광하기 전에, 기판가공 공정에서 드릴에 의한 구멍형성동작을 실시하고 있다. 이 때의 구멍위치정보(XY좌표)는, RIP 등의 장치로부터 노광장치에 전달되고, 또한 각각 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 입력된다. 구멍위치정보의 위치에서는, 감광재료(150)에 단차가 있는 것이라고 판단하고, 상기 변위데이터를 구멍이다라고 판정한다.
도16은, 기판가공 공정에 의해 구멍위치를 판단하는 방법을 나타내는 블럭도이다.
기판가공 공정(302)에서 드릴에 의한 구멍형성동작을 실시하면, 감광재료(150)상의 구멍위치의 정보가 RIP(300)에 통지된다. 그 후에 노광전에 RIP(300)로부터 노광장치(100)의 컨트롤러(190)에, 노광을 위한 화상 데이터와 함께 구멍위치정보가 전달된다.
노광장치(100)에 구비되어 있는 포커싱 제어유닛(192A)~포커싱 제어유닛(192H)은, 전달된 상기 구멍위치정보에 의해 감광재료(150)상의 구멍의 위치를 판정하고, 구멍위치의 직전에 레이저 변위계(No.1)~레이저 변위계(No.8)에서 얻어진 데이터를, 구멍위치의 데이터로 해서 화상영역(168A)~(168H)의 각각에 대해서 포커스맵을 작성한다.
포커싱 제어유닛(192A)~포커싱 제어유닛(192H)에 있어서는, 화상영역(168A)~(168H)의 각각에 대해서 상기의 순서로 작성한 포커스맵에 기초하여 각 노광헤드 (166A)~노광헤드(166H)에 있어서 오토 포커스유닛(59)의 포커싱 모터(240)를 구동해서 포커싱을 행한다.
이렇게, 본 실시형태에 따른 노광장치(100)에 있어서는, 기판가공 공정에 있어서 가공된 구멍위치의 데이터에 기초해서 구멍위치의 판정을 행하고, 구멍을 검출했을 때는, 구멍을 제외하고 포커스맵을 작성하고, 구멍부분의 데이터는, 구멍의 주변위치의 데이터로 치환하고, 이 포커스맵에 기초하여 포커싱을 행하므로, 가공된 구멍위치를 정확하게 판정하는 것이 가능하며, 노광헤드(166)로부터의 레이저광의 핀트 위치 어긋남이 없다. 따라서, 핀트 어긋남이 없는 선명한 화상이 얻어진다.
이상, 본 발명의 노광장치에 대해서 상세하게 설명했지만, 본 발명은 상기 실시형태에 한정되지 않고, 본 발명의 주지를 일탈하지 않는 범위에서, 여러가지 개량이나 변경을 행해도 되는 것은 물론이다.
이상에서 설명한 바와 같이, 본 발명에 의하면, 감광재료에 구멍이 형성되어 있는 경우나, 홈 등이 형성되어 있는 경우에 있어서도, 감광재료에 대해서 정확하게 핀트를 맞춰서 노광할 수 있는 노광장치 및 노광방법이 제공된다.

Claims (26)

  1. 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔을 출사하는 노광수단에 의해 노광하는 노광장치로서,
    상기 감광재료의 피노광면의 구멍위치를 판단하는 구멍위치 특정수단;
    상기 노광수단의 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 포커싱수단; 및
    상기 구멍위치 특정수단에 의한 판단결과에 기초하여 구멍이라고 판단된 위치를 제외하고, 상기 포커싱수단에 의한 포커스 제어를 위한 변위데이터를 작성하는 변위데이터 작성수단을 갖고,
    상기 구멍위치 특정수단은, 상기 감광재료의 피노광면의 위치와 높이를 계측하는 거리계측수단에 의한 상기 감광재료의 피노광면의 위치와 높이 계측 데이터에 기초하여 상기 감광재료의 피노광면의 구멍위치를 판단하는 것이며,
    상기 변위데이터 작성수단은, 소정 측정위치(A)에 있어서의 상기 거리계측수단에 의한 계측 데이터를, 그 근방의 측정위치에 있어서의 상기 거리계측수단에 의한 계측 데이터와 비교해서, 이들의 값의 차가 소정값을 초과하는 경우에, 상기 측정위치(A)에 있어서의 상기 거리계측수단에 의한 계측 데이터를 보정 또는 무시하는 것임을 특징으로 하는 노광장치.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 상기 거리계측수단과 포커싱수단에 추가해서, 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍좌표 측정수단을 갖고,
    상기 거리계측수단에 의해 취득한 소정 측정위치(B)에 있어서의 계측 데이터(C)가 소정값이상의 값인 경우에는,
    상기 변위데이터 작성수단은, 상기 계측 데이터(C)를 취득한 측정위치(B)와 상기 구멍좌표 측정수단에 의해 구한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(C)를 취득한 측정위치(B)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것이라고 판정하고, 상기 측정위치(B)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(C)를 보정 또는 무시하는 것임을 특징으로 하는 노광장치.
  6. 삭제
  7. 제1항에 있어서, 상기 거리계측수단과 포커싱수단에 추가해서, 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍좌표 측정수단과 유저에 의한 상기 감광재료상에 있어서의 구멍위치를 특정하기 위한 구멍위치좌표 입력수단을 갖고,
    상기 거리계측수단에 의해 취득한 소정 측정위치(F)에 있어서의 계측 데이터(G)가 소정값이상의 값인 경우에는,
    상기 변위데이터 작성수단은, 상기 계측 데이터(G)를 취득한 측정위치(F)와 상기 구멍좌표 측정수단에 의해 구한 구멍좌표위치(H)와 유저가 미리 입력한 구멍좌표위치(I)를 비교해서, 이들 3자가 일치하는 경우에는, 상기 계측 데이터(G)를 취득한 측정위치(F)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(F)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(G)를 보정 또는 무시하는 것임을 특징으로 하는 노광장치.
  8. 제1항, 제5항 또는 제7항 중 어느 한 항에 있어서, 상기 변위데이터 작성수단은, 상기 구멍으로 판정된 좌표위치를 중심으로 하는 소정의 범위에 대해서, 상기 측정위치에 있어서 계측된 계측 데이터와는 다른 데이터를, 상기 구멍으로 판정된 좌표위치의 주변의 계측 데이터로서 설정하는 것임을 특징으로 하는 노광장치.
  9. 제1항, 제5항 또는 제7항 중 어느 한 항에 있어서, 상기 변위데이터 작성수단은, 상기 거리계측수단에 의해 취득한 계측 데이터를 이동평균 처리해서 새로운 계측 데이터로 하는 것임을 특징으로 하는 노광장치.
  10. 제1항, 제5항 또는 제7항 중 어느 한 항에 있어서, 상기 포커싱수단은, 상기 노광수단을 구성하는 1개이상의 노광헤드의 각 출사측에 설치되는 동시에, 광투과성 재료에 의해 쐐기형상으로 형성되고, 상기 노광헤드로부터 출사되는 광빔의 광축을 따라 서로 반전된 방향으로 인접 배치된 복수의 광학부재;
    상기 복수의 광학부재에 있어서의 1개의 광학부재를 다른 광학부재와 서로 대향하는 면을 따라 이동할 수 있게 지지하는 광학부재 지지수단; 및
    상기 1개의 광학부재를 상기 서로 대향하는 면을 따라 상기 다른 광학부재에 대해서 이동시키는 광학부재 주사수단을 구비해서 이루어지는 것임을 특징으로 하는 노광장치.
  11. 제10항에 있어서, 상기 노광헤드는, 입력된 화상정보에 따라 각 화상의 변조상태를 변화시켜서 화소를 온/오프함으로써 묘화하는 것임을 특징으로 하는 노광장치.
  12. 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔의 출사에 의해 노광하는 노광방법으로서,
    상기 감광재료의 피노광면의 위치와 높이를 계측하고, 상기 감광재료의 피노광면의 위치와 높이 계측 데이터에 기초하여 상기 감광재료의 피노광면의 구멍위치를 판단하고,
    상기 감광재료의 피노광면의 구멍위치라고 판단된 위치에 있어서의 계측데이터를 사용하지 않고, 소정 측정위치(A)에 있어서의 계측 데이터를, 그 근방의 측정위치에 있어서의 계측 데이터와 비교해서, 이들 값의 차가 소정값을 초과하는 경우에, 상기 측정위치(A)에 있어서의 계측 데이터를 보정 또는 무시하는 것에 의해, 포커스 제어를 위한 변위데이터를 작성하고,
    상기 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 것을 특징으로 하는 노광방법.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 제12항에 있어서, 취득한 소정 측정위치(B)에 있어서의 계측 데이터(C)가 소정값이상의 값인 경우에는,
    상기 계측 데이터(C)를 취득한 측정위치(B)와 구멍좌표의 측정에 의해 구한 구멍좌표위치를 비교해서, 양자가 일치하는 경우에는, 상기 계측 데이터(C)를 취득한 측정위치(B)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(B)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(C)를 보정 또는 무시하는 것을 특징으로 하는 노광방법.
  17. 삭제
  18. 제12항에 있어서, 소정 측정위치(F)에 있어서의 계측 데이터(G)가 소정값이상의 값인 경우에는,
    상기 계측 데이터(G)를 취득한 측정위치(F)와 구멍좌표위치(H)와 유저가 미리 입력한 구멍좌표위치(I)를 비교해서, 이들 3자가 일치하는 경우에는, 상기 계측 데이터(G)를 취득한 측정위치(F)는 상기 감광재료상에 있어서의 구멍위치에 대응하는 것으로 판정하고, 상기 측정위치(F)를 중심으로 하는 소정의 범위에 대해서, 상기 계측 데이터(G)를 보정 또는 무시하는 것을 특징으로 하는 노광방법.
  19. 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광장치로서,
    상기 워크의 피노광면의 변위를 측정하는 워크변위 측정수단;
    상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정수단;
    상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성수단; 및
    상기 변위데이터 작성수단으로 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱수단을 구비하고,
    상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은, 상기 변위량의 검출위치와 상기 구멍좌표 측정수단에서 구한 구멍좌표위치를 비교해서 양자가 일치할 때는, 상기 변위량의 검출위치는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광장치.
  20. 삭제
  21. 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광장치로서,
    상기 워크의 피노광면의 변위를 측정하는 워크변위 측정수단;
    상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정수단;
    상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성수단; 및
    상기 변위데이터 작성수단으로 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱수단을 구비하고,
    상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에는, 상기 변위데이터 작성수단은, 상기 워크변위 측정수단에 의한 상기 변위량의 검출위치와, 상기 구멍좌표 측정수단으로 구한 구멍좌표위치와, 유저가 미리 입력한 구멍좌표위치를 비교해서, 3자가 일치했을 때에 상기 변위량의 검출위치는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광장치.
  22. 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광방법으로서,
    상기 워크의 피노광면의 변위를 측정하는 워크변위 측정공정;
    상기 워크변위 측정수단에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성공정;
    상기 변위데이터 작성공정에서 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱공정; 및
    상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정공정을 갖고,
    상기 워크변위 측정공정에 있어서 소정의 크기이상의 변위량을 검출했을 때는, 상기 변위데이터 작성공정에 있어서, 상기 변위량의 검출위치와, 상기 구멍좌표 측정공정에서 구해진 구멍좌표위치를 비교해서, 양자가 일치할 때는, 상기 변위량의 검출위치는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광방법.
  23. 삭제
  24. 워크에 대해서 상대적으로 이동하는 1개 또는 복수의 노광헤드에 의해 상기 워크를 노광하는 노광방법으로서,
    상기 워크의 피노광면의 변위를 측정하는 워크변위 측정공정;
    상기 워크에 형성된 구멍의 좌표를 구하는 구멍좌표 측정공정;
    상기 워크변위 측정공정에 있어서의 측정결과로부터 상기 피노광면의 변위데이터를 작성하는 변위데이터 작성공정; 및
    상기 변위데이터 작성공정에서 작성된 변위데이터에 기초해서, 상기 노광헤드로부터 조사되는 광빔의 초점을 상기 피노광면에 맞추는 포커싱공정을 갖고,
    상기 워크변위 측정수단에 있어서 소정의 크기이상의 변위량을 검출한 경우에 있어서는, 상기 변위데이터 작성공정에 있어서, 상기 워크변위 측정수단에 의한 상기 변위량의 검출위치와, 상기 구멍좌표 측정수단에서 구한 구멍좌표위치와, 유저가 미리 입력한 구멍좌표위치를 비교해서, 3자가 일치할 때 비로소 상기 변위량의 검출위치는 상기 워크에 형성된 구멍에 대응하는 것으로 판정하는 동시에, 상기 구멍을 중심으로 하는 소정의 범위에 대해서, 측정된 변위량과는 다른 변위량을 설정해서 변위데이터를 작성하는 것을 특징으로 하는 노광방법.
  25. 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔을 출사하는 노광수단에 의해 노광하는 노광장치로서,
    상기 감광재료의 피노광면의 요철부위치를 판단하는 요철부위치 특정수단;
    상기 노광수단의 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 포커싱수단; 및
    상기 요철부위치 특정수단에 의한 판단결과에 기초하여 요철부라고 판단된 위치를 제외하고, 상기 포커싱수단에 의한 포커스 제어를 위한 변위데이터를 작성하는 변위데이터 작성수단을 갖고,
    상기 변위데이터 작성수단은, 소정 측정위치에 있어서의 거리계측수단에 의한 계측 데이터를, 그 근방의 측정위치에 있어서의 상기 거리계측수단에 의한 계측 데이터와 비교해서, 이들의 값의 차가 소정값을 초과하는 경우에, 상기 측정위치에 있어서의 상기 거리계측수단에 의한 계측 데이터를 보정 또는 무시하는 것임을 특징으로 하는 노광장치.
  26. 감광재료를 상대적으로 이동시키면서, 화상 데이터에 따라 변조된 광빔의 출사에 의해 노광하는 노광방법으로서,
    상기 감광재료의 피노광면의 요철부위치를 판단하고,
    상기 감광재료의 피노광면의 요철부위치라고 판단된 위치에 있어서의 계측데이터를 사용하지 않고, 소정 측정위치에 있어서의 계측 데이터를, 그 근방의 측정위치에 있어서의 계측 데이터와 비교해서, 이들 값의 차가 소정값을 초과하는 경우에, 상기 측정위치에 있어서의 계측 데이터를 보정 또는 무시하는 것에 의해, 포커스 제어를 위한 변위데이터를 작성하고,
    상기 광빔의 초점위치를 상기 피노광면에 일치시키는 포커스 제어를 행하는 것을 특징으로 하는 노광방법.
KR1020050061525A 2004-07-09 2005-07-08 노광장치 및 노광방법 KR101215316B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004203118 2004-07-09
JPJP-P-2004-00203118 2004-07-09
JP2005010237A JP4676205B2 (ja) 2004-07-09 2005-01-18 露光装置および露光方法
JPJP-P-2005-00010237 2005-01-18

Publications (2)

Publication Number Publication Date
KR20060049965A KR20060049965A (ko) 2006-05-19
KR101215316B1 true KR101215316B1 (ko) 2012-12-26

Family

ID=35657203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050061525A KR101215316B1 (ko) 2004-07-09 2005-07-08 노광장치 및 노광방법

Country Status (4)

Country Link
US (1) US20060018560A1 (ko)
JP (1) JP4676205B2 (ko)
KR (1) KR101215316B1 (ko)
TW (1) TW200608160A (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952182B2 (ja) * 2006-03-20 2012-06-13 株式会社ニコン 走査型露光装置、マイクロデバイスの製造方法、走査露光方法、及びマスク
US8654307B2 (en) 2006-03-20 2014-02-18 Nikon Corporation Scanning type exposure apparatus, method of manufacturing micro-apparatus, mask, projection optical apparatus, and method of manufacturing mask
JP2008058797A (ja) * 2006-09-01 2008-03-13 Fujifilm Corp 描画装置及び描画方法
TWI452437B (zh) * 2006-11-27 2014-09-11 尼康股份有限公司 An exposure method, a pattern forming method, and an exposure apparatus, and an element manufacturing method
US20080299499A1 (en) * 2007-05-30 2008-12-04 Naomasa Shiraishi Exposure method, method of manufacturing plate for flat panel display, and exposure apparatus
JP4974821B2 (ja) * 2007-09-20 2012-07-11 富士フイルム株式会社 画像記録方法、および画像記録システム
JP4974826B2 (ja) * 2007-09-27 2012-07-11 富士フイルム株式会社 画像記録方法、および画像記録システム
JP5624580B2 (ja) * 2012-04-03 2014-11-12 株式会社アドテックエンジニアリング 画像記録方法、および画像記録システム
ITUD20120107A1 (it) * 2012-06-07 2013-12-08 Steelco Spa Dispositivo per l'apertura di contenitori per liquidi e per il trattenimento dei relativi coperchi
CN109478024B (zh) 2016-07-19 2021-03-26 Asml荷兰有限公司 用于直接写入无掩模光刻的设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303329B2 (ja) * 1992-03-25 2002-07-22 株式会社ニコン 焦点置検出装置、露光装置及び方法
JP3477777B2 (ja) * 1993-01-22 2003-12-10 株式会社日立製作所 投影露光装置およびその方法
JP3305448B2 (ja) * 1993-09-14 2002-07-22 株式会社ニコン 面位置設定装置、露光装置、及び露光方法
JP3518826B2 (ja) * 1996-03-01 2004-04-12 キヤノン株式会社 面位置検出方法及び装置並びに露光装置
JPH104055A (ja) * 1996-06-13 1998-01-06 Canon Inc 自動焦点合わせ装置及びそれを用いたデバイスの製造方法
JPH10234586A (ja) * 1997-02-26 1998-09-08 Taku Nakajima 卓上串焼器
TW490596B (en) * 1999-03-08 2002-06-11 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing a device using the lithographic projection apparatus, device manufactured according to the method and method of calibrating the lithographic projection apparatus
JP2001093813A (ja) * 1999-09-22 2001-04-06 Nec Corp ステッパ式露光方法
JP2002334826A (ja) * 2001-05-09 2002-11-22 Canon Inc 露光方法、面位置合わせ方法、露光装置及びデバイス製造方法
US20050134865A1 (en) * 2003-12-17 2005-06-23 Asml Netherlands B.V. Method for determining a map, device manufacturing method, and lithographic apparatus

Also Published As

Publication number Publication date
US20060018560A1 (en) 2006-01-26
KR20060049965A (ko) 2006-05-19
TW200608160A (en) 2006-03-01
JP4676205B2 (ja) 2011-04-27
JP2006047958A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
KR101215316B1 (ko) 노광장치 및 노광방법
JP3634068B2 (ja) 露光方法及び装置
JP2005266779A (ja) 露光装置及び方法
JP4486323B2 (ja) 画素位置特定方法、画像ずれ補正方法、および画像形成装置
KR101051396B1 (ko) 노광장치
KR20040111029A (ko) 화소위치 특정방법, 화상어긋남 보정방법 및 화상형성장치
JP3880155B2 (ja) 位置決め方法及び位置決め装置
JP2006234921A (ja) 露光装置および露光方法
US20090251676A1 (en) Exposure apparatus and exposure method
JP5117250B2 (ja) 露光装置
JP2007078764A (ja) 露光装置および露光方法
KR20080016494A (ko) 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치
JP2006337878A (ja) 露光装置及び露光方法
US9041907B2 (en) Drawing device and drawing method
JP2005294373A (ja) マルチビーム露光装置
JP4583827B2 (ja) 画像形成装置および画像形成方法
CN1133866C (zh) 差分干涉仪系统和配有该系统的平版印刷分步扫描装置
JP2006234959A (ja) 露光方法および露光装置
TWI759621B (zh) 描繪裝置以及描繪方法
JP2008242066A (ja) 位置情報管理装置、描画システム、及び位置情報管理方法
JP2006337874A (ja) 露光装置及び露光方法
WO2006090575A1 (ja) 露光方法および露光装置
JP5064862B2 (ja) アライメントマーク測定方法および装置並びに描画方法および装置
TW201913238A (zh) 曝光裝置
JP2008076590A (ja) 描画位置測定方法および装置

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171117

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191115

Year of fee payment: 8