KR101138700B1 - Sno-based sputtering target - Google Patents

Sno-based sputtering target Download PDF

Info

Publication number
KR101138700B1
KR101138700B1 KR1020097010025A KR20097010025A KR101138700B1 KR 101138700 B1 KR101138700 B1 KR 101138700B1 KR 1020097010025 A KR1020097010025 A KR 1020097010025A KR 20097010025 A KR20097010025 A KR 20097010025A KR 101138700 B1 KR101138700 B1 KR 101138700B1
Authority
KR
South Korea
Prior art keywords
sno
sputtering target
film
sputtering
mass
Prior art date
Application number
KR1020097010025A
Other languages
Korean (ko)
Other versions
KR20090077071A (en
Inventor
다이조 모리나카
Original Assignee
미쓰이 긴조꾸 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이 긴조꾸 고교 가부시키가이샤 filed Critical 미쓰이 긴조꾸 고교 가부시키가이샤
Publication of KR20090077071A publication Critical patent/KR20090077071A/en
Application granted granted Critical
Publication of KR101138700B1 publication Critical patent/KR101138700B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

스퍼터막의 막응력을 절대값으로 작게 하여, 스퍼터 캐소드의 주변 구조물로부터의 막박리가 적은 SnO2계 소결체 타겟이 제공된다. 이 SnO2계 스퍼터링 타겟은, 10ppm 초과 1질량% 미만의 Sb2O3과, 합계 질량이 20질량% 이하인 Ta2O5 및/또는 Nb2O5와, 잔부(殘部)로서의 SnO2 및 불가피(不可避) 불순물로 이루어지는 소결체로 이루어진다.By reducing the film stress of the sputter film to an absolute value, a SnO 2 based sintered compact target having low film peeling from the surrounding structure of the sputter cathode is provided. This SnO 2 -based sputtering target includes Sb 2 O 3 of more than 10 ppm and less than 1 mass%, Ta 2 O 5 and / or Nb 2 O 5 having a total mass of 20 mass% or less, SnO 2 as the remainder and inevitable. It consists of a sintered compact which consists of impurities.

SnO2계 스퍼터링 타겟, 스퍼터 캐소드 SnO2-based sputtering target, sputter cathode

Description

SnO2계 스퍼터링 타겟{SNO-BASED SPUTTERING TARGET}SnO2-based sputtering target {SNO-BASED SPUTTERING TARGET}

본 발명은, SnO2계 스퍼터링 타겟에 관한 것이며, 구체적으로는, 플랫패널 디스플레이, 터치패널, 태양 전지 등의 각종 용도에서, 투명 전극, 대전 방지, 전자파 차폐, 가스 배리어, 열선 반사 등의 각종 막 기능을 확보하기 위해서 사용되는, SnO2계 스퍼터링 타겟에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SnO 2 -based sputtering target, specifically, in various applications such as flat panel displays, touch panels, solar cells, and the like, various films such as transparent electrodes, antistatic, electromagnetic shielding, gas barriers, and hot ray reflections. The present invention relates to a SnO 2 -based sputtering target used for securing a function.

근래, SnO2계 박막은, 플랫패널 디스플레이, 터치패널, 태양 전지 등의 폭넓은 용도로 사용되고 있다. 이 SnO2계 박막은, 공업적으로는, 스프레이법이나 CVD법에 의해 제조되는 것이 주류이다. 그러나, 이들 방법은, 막두께를 대(大)면적으로 균일화하는 것에는 적합하지 않고, 성막 프로세스의 제어도 곤란하며, 또한 성막시에 고온이 되거나 오염 물질인 염소계 가스를 생성하거나 하므로, 이들 결점이 없는 새로운 제조 방법이 요구되고 있다.In recent years, SnO 2 -based thin films are used in a wide range of applications, such as flat panel displays, touch panels, and solar cells. This SnO 2 based thin film is mainly produced industrially by a spray method or a CVD method. However, these methods are not suitable for uniformizing the film thickness to a large area, are difficult to control the film forming process, and also generate high temperature or produce chlorine-based gas which is a contaminant during film formation. There is a need for a new manufacturing method without this.

한편, 스퍼터링법에 의한 SnO2계 박막의 제조도 시도되고 있고, 그러기 위한 스퍼터링 타겟으로서, 타겟의 비저항을 내리기 위해서 Sb2O3이 첨가된 SnO2-Sb2O3 타겟이 오로지 공업적으로 실용화되어 있다. 그러나, 종래의 SnO2계 소결체 타겟은 적산 전력의 증가에 따라 막부착량이 늘면, 스퍼터 캐소드의 주변 구조물로부터의 막박리에 의한 파티클이 많이 발생하기 쉬웠다. 이 파티클이 박막에 부착하면 박막의 성능을 악화시켜 박막 결함의 원인이 될 수 있음도 알려져 있다. 이 때문에, 스퍼터링시에, 주변 구조물로부터의 막박리가 적은 SnO2계 스퍼터링 타겟이 요구되고 있다.On the other hand, the manufacture of SnO 2 type thin film by sputtering method is also tried, As a sputtering target for this, the SnO 2 -Sb 2 O 3 target to which Sb 2 O 3 was added in order to reduce the specific resistance of a target is industrially utilized only. It is. However, in the conventional SnO 2 -based sintered compact target, when the film deposition amount increases with increasing integration power, a lot of particles due to film peeling from the surrounding structure of the sputter cathode tended to occur. It is also known that if particles adhere to the thin film, the thin film may deteriorate its performance and cause thin film defects. For this reason, at the time of sputtering, the SnO 2 type sputtering target with little film peeling from a surrounding structure is calculated | required.

SnO2-Sb2O3계의 재료로서는, 예를 들면 이하의 것이 제안되어 있다. 합계량이 산화물 환산으로 20질량% 이하의 Nb 또는, Nb 및 Ta와, 불가피적(不可避的) 불순물로서 10ppm 이하의 Sb2O3과, 잔부(殘部) SnO2로 이루어지는, 1450℃ 이상에서 소결한 소결체가 알려져 있다(예를 들면, 일본 특허 제3957917호 공보를 참조). 또한, 10.2질량%의 Sb2O3을 함유하는, 820℃ 이하에서 소결한 SnO2-Sb2O3 소결체가 알려져 있다(예를 들면, 일본 특허 제3662168호 공보를 참조). 또한, Sb2O3을 3~10질량% 함유하고, 잔부가 SnO2 및 불가피적 불순물로 이루어지는, 800℃에서 소결한 산화주석-산화제1안티몬 소결체 타겟이 알려져 있다(예를 들면, 일본 특허 제3710021호 공보를 참조). 또한, 6질량%의 산화안티몬과, 5~20질량%의 산화아연과, 잔부 SnO2로 이루어지는, 1500℃에서 소결한 주석-안티몬 산화물 소결체 타겟이 알려져 있다(예를 들면, 일본 특개2003-73819호 공보를 참조). 그러나, 이들 중 어느 문헌에서도, 10ppm 초과 1질량% 미만의 Sb2O3을 함유하는 소결체로 이루어지고, 스퍼터막의 막응력이 절대값으로 작고, 스퍼터링시에 스퍼터 캐소드의 주변 구 조물로부터의 막박리가 적은, SnO2계 스퍼터링 타겟에 대한 지견은 하등 나타나 있지 않다.As a material of the SnO 2 -Sb 2 O 3 system, for it is proposed to the following example. The total amount of not more than 20% by mass in terms of oxides of Nb or, Nb and Ta, and incidental (不可避的) impurities formed as by Sb 2 O 3 and a remainder (殘部) SnO 2 of 10ppm or less, a sintered at more than 1450 ℃ Sintered bodies are known (see, for example, Japanese Patent No. 3955917). Also, a one SnO 2 -Sb 2 O 3 sintered body sintered at, below 820 ℃ containing Sb 2 O 3 of 10.2% by weight is known (for example, see Japanese Patent No. 3662168 gazette). In addition, a tin oxide-antioxidant monoantimony sintered compact target sintered at 800 ° C. containing 3 to 10% by mass of Sb 2 O 3 and the balance of which is composed of SnO 2 and unavoidable impurities is known (for example, Japanese Patent No. See publication 3710021). Further, a tin sintered at 1500 ℃ consisting of 6% by mass of antimony oxide and 5 to 20% by weight of zinc oxide and a remainder of SnO 2 - there is an antimony oxide sintered body target is known (e.g., Japanese Patent Laid-Open 2003-73819 See the Gazette publication. However, in any of these documents, it is made of a sintered body containing more than 10 ppm and less than 1% by mass of Sb 2 O 3 , the film stress of the sputter film is small in absolute value, and the film peeling from the peripheral structure of the sputter cathode at the time of sputtering. Little is known about the SnO 2 -based sputtering target.

[발명의 개시][Initiation of invention]

본 발명자들은, 이번에, SnO2계 스퍼터링 타겟에서, Sb2O3 첨가량을 10ppm 초과 1질량% 미만으로 특정함으로써, 얻어진 SnO2계 소결체를 스퍼터링 타겟으로서 사용하면, 막응력이 절대값으로 작은 스퍼터막이 얻어져, 스퍼터링시에 스퍼터 캐소드의 주변 구조물로부터의 막박리가 적은 것을 알아냈다.The present inventors, at this time, specify the amount of Sb 2 O 3 added in the SnO 2 -based sputtering target to more than 10 ppm and less than 1 mass%, and when the obtained SnO 2 -based sintered compact is used as the sputtering target, the sputter film having a small film stress at an absolute value is obtained. It was obtained and found that the film peeling from the surrounding structure of the sputtering cathode was small at the time of sputtering.

따라서, 본 발명의 목적은, 스퍼터막의 막응력이 절대값으로 작고, 스퍼터링시에 스퍼터 캐소드의 주변 구조물로부터의 막박리가 적은, 10ppm 초과 1질량% 미만의 Sb2O3을 함유하여 이루어지는 소결체로 이루어지는 SnO2계 소결체 타겟을 제공하는 것에 있다.Accordingly, an object of the present invention is to provide a sintered body comprising Sb 2 O 3 of more than 10 ppm and less than 1% by mass, in which the film stress of the sputtering film is small in absolute value and the film peeling from the surrounding structure of the sputtering cathode is small during sputtering. It is providing the SnO 2 type sintered compact target which consists of.

즉, 본 발명에 의한 SnO2계 스퍼터링 타겟은, 10ppm 초과 1질량% 미만의 Sb2O3과, 합계 질량이 20질량% 이하인 Ta2O5 및/또는 Nb2O5와, 잔부로서의 SnO2 및 불가피 불순물로 이루어지는 소결체로 이루어지는 것이다.That is, the SnO 2 -based sputtering target according to the present invention includes Sb 2 O 3 of more than 10 ppm and less than 1 mass%, Ta 2 O 5 and / or Nb 2 O 5 having a total mass of 20 mass% or less, and SnO 2 as the remainder. And a sintered body made of unavoidable impurities.

[도 1] 막박리의 평가에 사용한 스퍼터링 장치의 개략모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic schematic diagram of the sputtering apparatus used for evaluation of film peeling.

[발명을 실시하기 위한 최량의 형태]BEST MODE FOR CARRYING OUT THE INVENTION [

SnO2계 스퍼터링 타겟SnO 2- based sputtering target

본 발명에 의한 SnO2계 스퍼터링 타겟은, 10ppm 초과 1질량% 미만의 Sb2O3과, 합계 질량이 바람직하게는 1~20질량%인 Ta2O5 및/또는 Nb2O5와, 잔부로서의 SnO2 및 불가피 불순물로 이루어지는 소결체로 이루어진다. 이와 같은 SnO2계 소결체를 스퍼터링 타겟으로서 사용하면, 막응력이 절대값으로 작은 스퍼터막이 얻어져, 스퍼터링시에 스퍼터 캐소드의 주변 구조물로부터의 막박리를 적게 할 수 있다.The SnO 2 -based sputtering target according to the present invention is Sb 2 O 3 of more than 10 ppm and less than 1% by mass, Ta 2 O 5 and / or Nb 2 O 5 with a total mass of preferably 1 to 20% by mass, and the remainder as it composed of a sintered body made of SnO 2 and inevitable impurities. When such a SnO 2 based sintered compact is used as the sputtering target, a sputtered film having a small film stress at an absolute value can be obtained, and the film peeling from the surrounding structure of the sputtering cathode can be reduced during sputtering.

본 발명의 바람직한 태양에 의하면, Sb2O3의 함유량은 11~9000ppm인 것이 바람직하고, 보다 바람직하게는 100~6000ppm이며, 더욱 바람직하게는 300~2000ppm이다. 이 조성 범위 내의 소결체로 이루어지는 스퍼터링 타겟을 사용한 스퍼터링에서는, 얻어지는 스퍼터막의 막응력을 절대값으로 보다 작게 하여, 스퍼터링시에 스퍼터 캐소드의 주변 구조물로부터의 막박리를 보다 적게 할 수 있다.According to a preferred aspect of the present invention, the content of Sb 2 O 3 is that the 11 ~ and 9000ppm, more preferably 100 ~ 6000ppm, more preferably 300 ~ 2000ppm. In sputtering using the sputtering target which consists of a sintered compact in this composition range, the film stress of the sputtering film obtained can be made smaller in absolute value, and the film peeling from the peripheral structure of a sputtering cathode can be reduced at the time of sputtering.

본 발명의 바람직한 태양에 의하면, Ta2O5의 함유량은 바람직하게는 0~15질량%이며, 또한 Nb2O5의 함유량은 바람직하게는 0~15질량%이다. 이 조성 범위 내의 원료 혼합 분말을 사용함으로써, 비교적 대형의 소결체를 제조할 수 있는 콜드 프레스법이나, 주입법(鑄入法)에 의해 소결체를 제작할 수 있고, 게다가 1300℃ 이상의 고온 조건에서 소결을 행할 수 있다.According to an exemplary embodiment of the present invention, the content of Ta 2 O 5 is preferably from 0 to 15% by mass and the content of Nb 2 O 5 is preferably from 0 to 15% by weight. By using the raw material mixed powder in this composition range, a sintered compact can be manufactured by the cold press method and the injection method which can manufacture a comparatively large sized sintered compact, and also sintering can be performed in high temperature conditions of 1300 degreeC or more. have.

본 발명의 바람직한 태양에 의하면, 본 발명에 의한 스퍼터링 타겟은, 1300℃ 이상에서 소결한 소결체로 이루어지는 것이 바람직하고, 보다 바람직하게는 1350~1650℃이며, 더욱 바람직하게는 1500~1650℃이다. 이 온도 범위에서 소결한 소결체는, 액상 소결이 충분히 진행하여 있어, 소결 밀도가 높은 소결체가 될 수 있다.According to a preferable aspect of the present invention, the sputtering target according to the present invention is preferably made of a sintered body sintered at 1300 ° C or higher, more preferably 1350 to 1650 ° C, still more preferably 1500 to 1650 ° C. In the sintered body sintered in this temperature range, liquid phase sintering sufficiently advances, and a sintered compact with high sintered density can be obtained.

본 발명의 바람직한 태양에 의하면, 본 발명에 의한 스퍼터링 타겟은, 상대 밀도가 60% 이상인 소결체로 이루어지는 것이 바람직하고, 보다 바람직하게는 75% 이상이며, 더욱 바람직하게는 95% 이상이다. 이 상대 밀도의 범위에서는, 스퍼터링시의 성막 속도를 빠르게 하고, 또한 타겟의 사용 기간을 길게 하고, 또한 스퍼터링 중의 아킹을 적게 할 수 있다. 또한, 소결 밀도가 높아지면, 소결체 내부의 기포 등을 저감할 수 있다.According to a preferred aspect of the present invention, the sputtering target according to the present invention preferably comprises a sintered body having a relative density of 60% or more, more preferably 75% or more, and still more preferably 95% or more. Within this relative density range, the film formation speed during sputtering can be increased, the service life of the target can be extended, and arcing during sputtering can be reduced. Moreover, when sintering density becomes high, the bubble etc. in a sintered compact can be reduced.

본 발명의 바람직한 태양에 의하면, 본 발명에 의한 스퍼터링 타겟을 스퍼터링에 사용했을 때에, 막응력의 절대값이 1050MPa 이하인 스퍼터막을 얻는 것이 바람직하고, 보다 바람직하게는 1000MPa 이하이다. 이 막응력값의 범위 내에서는, 스퍼터 캐소드의 주변 구조물로부터의 막박리가 적어, 막박리에 의한 파티클의 발생을 억제할 수 있다.According to a preferred aspect of the present invention, when the sputtering target according to the present invention is used for sputtering, it is preferable to obtain a sputtering film having an absolute value of film stress of 1050 MPa or less, more preferably 1000 MPa or less. Within this film stress value range, film peeling from the surrounding structure of the sputtering cathode is small, and generation of particles due to film peeling can be suppressed.

SnO2계 스퍼터링 타겟의 제조 방법Manufacturing method of SnO 2 -based sputtering target

본 발명에 의한 SnO2계 스퍼터링 타겟의 제조 방법은 특별히 한정되지 않지만, 이하에 나타내는 바람직한 태양에 따라 행할 수 있다. 즉, 본 발명의 바람직한 태양에 의하면, 우선, SnO2를 주성분으로 하고, Sb2O3을 10ppm 초과 1질량% 미만 함유하고, Ta2O5 및/또는 Nb2O5를 합계 질량으로 20질량% 이하 함유하는, 미(未)소결 의 성형체를 준비한다. 본 발명에서 미소결의 성형체는, 상기 조성을 함유하는 원료분을 성형한 것이면 어떠한 방법에 의해 성형된 것이어도 좋고, 예를 들면, SnO2 분말, Sb2O3 분말, Ta2O5 분말, 및 Nb2O5 분말을 상기 조성을 만족시키는 배합량비로 혼합하여 원료분을 제조하고, 이 원료분을 성형함으로써 제작할 수 있다.Production method of SnO 2 based sputtering target according to the present invention is not particularly limited, it can be performed according to the preferred embodiment described below. That is, according to a preferable aspect of the present invention, first, SnO 2 is used as a main component, Sb 2 O 3 is contained in an amount of more than 10 ppm and less than 1 mass%, and 20 masses of Ta 2 O 5 and / or Nb 2 O 5 are present in the total mass. An unsintered molded body containing% or less is prepared. In the present invention, the molded article of the microcrystal may be molded by any method as long as the raw powder containing the composition is molded. For example, SnO 2 powder, Sb 2 O 3 powder, Ta 2 O 5 powder, and Nb. mix 2 O 5 powder ratio of the amount satisfying the above composition to prepare a raw meal, and can be produced by molding the raw meal.

본 발명의 바람직한 태양에 의하면, 원료분을 사용한 미소결체의 성형체는, 원료분에 바인더를 첨가하여 소정의 형상을 부여하기 쉽게 하는 것이 바람직하다. 이와 같은 바인더로서는, 가열에 의해 소실 내지 비산하는 공지의 바인더이면 한정되지 않고, 폴리비닐알코올 수용액 등이 사용 가능하다. 건조 및 가열의 방법은 한정되는 것은 아니지만, 우선 50~130℃에서 5~30시간 건조를 행하고, 이어서 500~800℃에서 6~24시간 가열하여 탈지를 행하는 것이 바람직하다.According to the preferable aspect of this invention, it is preferable that the molded object of the green body using a raw material powder makes it easy to provide a predetermined shape by adding a binder to a raw material powder. As such a binder, it is not limited, if it is a well-known binder which loses | disappears and scatters by heating, Polyvinyl alcohol aqueous solution etc. can be used. Although the method of drying and a heating is not limited, First, it is preferable to dry at 50-130 degreeC for 5 to 30 hours, and to carry out degreasing by heating at 500-800 degreeC for 6 to 24 hours next.

본 발명의 바람직한 태양에 의하면, 상기와 같이 준비된 미소결의 성형체를 1300℃ 이상에서 소결하는 것이 바람직하고, 보다 바람직하게는 1350~1650℃이며, 더욱 바람직하게는 1500~1650℃이다. 이 온도 범위에서 소결을 행함으로써, 액상 소결이 충분히 진행하여 소결 밀도를 높게 할 수 있고, 또한, SnO2의 용융을 방지하여 원하는 형상의 소결체의 제작을 행하기 쉽게 할 수 있다.According to the preferable aspect of this invention, it is preferable to sinter the green body molded product prepared as mentioned above at 1300 degreeC or more, More preferably, it is 1350-1650 degreeC, More preferably, it is 1500-1650 degreeC. By performing the sintering in the temperature range, it is possible to increase the sintered density to the liquid phase sintering proceeds sufficiently, and also, it is possible to prevent melting of SnO 2 can easily carry out the production of the sintered body having a desired shape.

본 발명의 바람직한 태양에 의하면, 소결은, 2~20시간 행해지는 것이 바람직하고, 보다 바람직하게는 3~12시간이며, 더욱 바람직하게는 4~8시간이다. 이 범위 내이면, 전력소비량을 억제하고, 또한 높은 생산성을 확보하면서, 충분히 소결을 행할 수 있다.According to a preferable aspect of the present invention, the sintering is preferably performed for 2 to 20 hours, more preferably 3 to 12 hours, still more preferably 4 to 8 hours. If it is in this range, sintering can fully be carried out, suppressing an electric power consumption amount and ensuring high productivity.

본 발명의 바람직한 태양에 의하면, 소결은, 높은 소결 밀도를 확보하기 위해서 산소 함유 분위기 하에서 행해지는 것이 바람직하고, 예를 들면, 산소 가압 분위기 하, 산소 분위기 하, 혹은 대기 분위기 하에서 행할 수 있다.According to a preferred aspect of the present invention, the sintering is preferably performed under an oxygen-containing atmosphere in order to secure a high sintered density. For example, the sintering can be performed under an oxygen pressurized atmosphere, under an oxygen atmosphere, or under an atmospheric atmosphere.

[예1~37][Examples 1 ~ 37]

(1) 스퍼터링 타겟의 제작(1) Preparation of Sputtering Target

우선, 이하의 4종류의 원료 분말을 준비했다.First, the following four types of raw material powders were prepared.

SnO2 분말 : 순도 99.99%(4N), 평균 입경 0.7~1.1㎛, 비표면적 2.0~2.7m2/gSnO 2 powder: Purity 99.99% (4N), Average particle size 0.7 ~ 1.1㎛, Specific surface area 2.0 ~ 2.7m 2 / g

Ta2O5 분말 : 순도 99.9%(3N), 평균 입경 0.6~0.8㎛, 비표면적 2.0~3.1m2/gTa 2 O 5 powder: Purity 99.9% (3N), average particle size 0.6 ~ 0.8㎛, specific surface area 2.0 ~ 3.1m 2 / g

Nb2O5 분말 : 순도 99.9%(3N), 평균 입경 0.6~1.0㎛, 비표면적 2.1~2.7m2/gNb 2 O 5 powder: Purity 99.9% (3N), average particle diameter 0.6 ~ 1.0㎛, specific surface area 2.1∼2.7m 2 / g

Sb2O3 분말 : 순도 99.9%(3N), 평균 입경 0.6~1.0㎛,Sb 2 O 3 powder: purity 99.9% (3N), average particle size 0.6∼1.0㎛,

각 예에 대해, 상기 4종류의 원료 분말을, 각각 칭량하고, 드라이 볼 밀로 21시간 혼합했다. 이 혼합분에 폴리비닐알코올 수용액을 첨가하고, 충분히 혼합한 후, 400×800mm 치수의 금형에 충전하고, 800kgf/cm2의 압력으로 프레스 성형했다. 이 성형체를 80℃에서 12시간 건조시켰다. 이 건조체를, 산소 분위기 하에서, 표 1에 나타내는 소성 온도에서 8시간 소성하여, 소결체를 얻었다. 이 때, 승온 속도 는 400℃/시간, 강온 속도는 100℃/시간으로 제어했다. 얻어진 소결체를 직경 152.4mm, 두께 5mm의 크기로 기계 가공하여, SnO2계 스퍼터링 타겟을 얻었다. 또한, 소결체의 가공 단재(端材)에 대해, 유발(乳鉢)을 사용하여 분쇄하고, 테프론(등록상표)제 용기에, 그 분쇄분, 질산과 염산의 혼산, 및 초순수를 가하여 가수 분해한 후, 정(定)용액으로 했다. 얻어진 정용액 중의 Ta, Nb, 및 Sb의 각 원소의 측정을, ICP 질량 분석 장치(Agilent사제4500)를 사용하여, ICP 질량 분석법으로 행했다. 산화물 환산한 값을 표 1에 나타낸다.For each example, the four kinds of raw material powders were weighed and mixed for 21 hours in a dry ball mill. The polyvinyl alcohol aqueous solution was added to this mixed powder, and after fully mixing, it filled into the metal mold | die of 400 * 800mm dimension, and press-molded at the pressure of 800 kgf / cm <2> . This molded product was dried at 80 ° C for 12 hours. This dried body was baked for 8 hours at the baking temperature shown in Table 1 in oxygen atmosphere, and the sintered compact was obtained. At this time, the temperature increase rate was 400 degreeC / hour, and the temperature-fall rate was controlled at 100 degreeC / hour. The resulting sintered compact was machined to a size of 152.4 mm in diameter and 5 mm in thickness to obtain a SnO 2 -based sputtering target. In addition, the processed cutting material of the sintered compact is ground using a mortar, and hydrolyzed by adding the ground powder, mixed acid of nitric acid and hydrochloric acid, and ultrapure water to a container made of Teflon (registered trademark). It was set as the fixed solution. The measurement of each element of Ta, Nb, and Sb in the obtained fixed solution was performed by ICP mass spectrometry using the ICP mass spectrometer (4500 by Agilent). Table 1 shows the oxide equivalents.

(2) 평가(2) evaluation

얻어진 스퍼터링 타겟에 대해, 이하에 나타내는 각종 평가 시험을 행했다.The various evaluation tests shown below were done about the obtained sputtering target.

평가1 : 상대 밀도의 측정Evaluation 1: Measurement of Relative Density

각 스퍼터링 타겟의 상대 밀도를 아르키메데스법에 의해 측정했다. 이 때, 각 원료의 밀도를 SnO2 : 6.95g/cm3, Ta2O5 : 8.74g/cm3, Nb2O5 : 4.47g/cm3으로 하여 가중 평균 밀도(이론 밀도)를 산출하고, 이 가중 평균 밀도를 100%로 하여 상대 밀도를 산출했다. 그 결과는, 표 1에 나타내는 대로였다.The relative density of each sputtering target was measured by the Archimedes method. At this time, the density of each material SnO 2: 6.95g / cm 3, Ta 2 O 5: 8.74g / cm 3, Nb 2 O 5: Due to 4.47g / cm 3, and calculates the weighted average density (theoretical density) The relative density was calculated by making the weighted average density 100%. The result was as having shown in Table 1.

평가2 : 스퍼터막의 막응력의 평가Evaluation 2: Evaluation of Film Stress of Sputter Film

예1~37에서 얻어진 스퍼터링 타겟을 무산소 구리제의 버킹 플레이트(bucking plate)에 메탈 본딩했다. 그리고, 메탈 본딩한 각 스퍼터링 타겟에 대해, 이하에 나타내는 스퍼터 조건에서, 직류 전원을 사용한 스퍼터링을 행하여, 실리콘 웨이퍼에 스퍼터 성막했다.The sputtering target obtained in Examples 1-37 was metal-bonded to the bucking plate made of oxygen-free copper. Then, sputtering using a DC power supply was performed on each metal-bonded sputtering target under the sputtering conditions shown below, and sputter film deposition was performed on the silicon wafer.

캐소드 : 강자장 자기 회로Cathode: magnetic field magnetic circuit

타겟/기판간 거리 : 50mmTarget / Board Distance: 50mm

스퍼터실 도달 압력 : <1×10-4PaSputtering chamber attainment pressure: <1 × 10 -4 Pa

기판 온도 : 실온(가열없음)Substrate temperature: Room temperature (no heating)

도입 가스 : 아르곤+산소(산소 농도 1체적%)Introductory gas: Argon + oxygen (oxygen concentration 1% by volume)

도입 가스 분압 : 0.67PaInlet gas partial pressure: 0.67Pa

직류 인가 전력 : 360WDC applied power: 360W

막두께 : 500nmFilm thickness: 500nm

기판 : Φ4inch×525㎛ 실리콘 웨이퍼Substrate: Φ4inch × 525㎛ Silicon Wafer

이렇게 하여 얻어진 스퍼터막에 대해, FLX-2320-5(도메이테크놀로지사제)를 사용하여 곡률 반경을 측정하고, 이하의 계산식을 사용하여, 응력을 산출했다. 막응력의 부(-)부호는 압축 응력인 것을 나타낸다.About the sputter film obtained in this way, the curvature radius was measured using FLX-2320-5 (made by Tomei Technologies Co., Ltd.), and the stress was computed using the following formula. The negative sign of the film stress indicates that it is a compressive stress.

σ=Eb2/{6(1-ν)*rd}σ = Eb 2 / {6 (1-ν) * rd}

σ : 응력σ: stress

E : 기판의 영률(Young's modulus)E: Young's modulus of the substrate

b : 기판의 두께b: thickness of the substrate

ν : 기판의 푸아송비(Poisson's ratio)ν: Poisson's ratio of the substrate

d : 막두께d: film thickness

r : 성막 후의 기판의 곡률 반경(뉴톤법에 의해 측정)r: radius of curvature of the substrate after film formation (measured by the Newton method)

결과는 표 1에 나타내는 대로이며, 본 발명의 조성을 만족시키는 스퍼터링 타겟을 사용하여 성막한 스퍼터막은, 어느 것도 낮은 막응력을 가짐을 알 수 있다.The results are as shown in Table 1, and it can be seen that any of the sputtered films formed by using the sputtering target that satisfies the composition of the present invention has a low film stress.

평가3 : 막박리의 평가Evaluation 3: Evaluation of Membrane Peeling

예1~37에서 얻어진 스퍼터링 타겟을, 도 1에 나타내는 스퍼터링 장치를 사용하여 이하와 같이 하여 막박리의 평가를 행했다. 도 1에 나타내는 스퍼터링 장치는, 챔버(1) 내에, 타겟(2)이 재치(載置)되기 위한 버킹 플레이트(3)와, 버킹 플레이트(3)와 대향하여 마련되는 기판 홀더(4)를 구비하여 이루어진다. 그리고, 챔버(1) 내에는, 타겟(2) 및 버킹 플레이트(3)의 측면을 보호하는 어스쉴드(5)와, 챔버(1)에의 피막 형성을 방지하는 방착판(6)이 또한 마련된다.The sputtering target obtained in Examples 1-37 was evaluated as follows using the sputtering apparatus shown in FIG. 1 as follows. The sputtering apparatus shown in FIG. 1 is provided with the bucking plate 3 in which the target 2 is mounted, and the board | substrate holder 4 provided in the chamber 1 facing the bucking plate 3. It is done by In the chamber 1, an earth shield 5 for protecting the side surfaces of the target 2 and the bucking plate 3, and an adhesion plate 6 for preventing the formation of a film on the chamber 1 are also provided. .

우선, 각 스퍼터링 타겟을, 챔버(1) 내의 버킹 플레이트(3)에 메탈 본딩했다. 그리고, 메탈 본딩한 타겟(2)에 대해, 이하에 나타내는 스퍼터 조건에서, 연속 방전했다. 연속 방전 후, 기판 홀더(4), 어스쉴드(5), 및 방착판(6)에 부착한 막을 관찰하여, 명백하게 막박리하여 있는 것을 ×, 그렇지 않은 것을 ○으로 했다.First, each sputtering target was metal-bonded to the bucking plate 3 in the chamber 1. And the target 2 metal-bonded was continuously discharged in the sputter | spatter conditions shown below. After the continuous discharge, the films attached to the substrate holder 4, the earth shield 5, and the anti-deposition plate 6 were observed, so that the films were apparently separated from each other, and X was not.

캐소드 : 강자장 자기 회로Cathode: magnetic field magnetic circuit

스퍼터실 도달 압력 : <1×10-4PaSputtering chamber attainment pressure: <1 × 10 -4 Pa

도입 가스 : 아르곤+산소(산소 농도 1체적%)Introductory gas: Argon + oxygen (oxygen concentration 1% by volume)

도입 가스 분압 : 0.67PaInlet gas partial pressure: 0.67Pa

직류 인가 전력 : 360WDC applied power: 360W

막두께 : 500nmFilm thickness: 500nm

스퍼터 시간 : 연속 30hr 방전Sputter time: continuous 30hr discharge

어스쉴드 : 알룬덤(Alundum)#60 블라스트 처리품Earth Shield: Alundum # 60 blasted product

기판 홀더 : 알룬덤#60 블라스트 처리품Board Holder: Alundom # 60 blasted product

방착판 : 알룬덤#60 블라스트 처리품Anti-rust board: Alundom # 60 blasted product

결과는 표 1에 나타내는 대로이며, 본 발명의 조성을 만족시키는 스퍼터링 타겟을 사용하여 연속 방전한 후, 도 1에 나타내는 기판 홀더(4), 어스쉴드(5), 및 방착판(6)에 부착한 막은 어느 것도 막박리를 발생시키지 않음을 알 수 있다.The results are as shown in Table 1, and after continuous discharge using a sputtering target that satisfies the composition of the present invention, they are attached to the substrate holder 4, the earth shield 5, and the adhesion plate 6 shown in FIG. It can be seen that none of the membranes causes membrane detachment.

[표 1][Table 1]

Figure 112009029251721-pct00001
Figure 112009029251721-pct00001

Claims (5)

10ppm 초과 1질량% 미만의 Sb2O3과, 1~20질량%의 Ta2O5 또는 Nb2O5, 혹은 합계 질량이 1~20질량%인 Ta2O5 및 Nb2O5와,잔부(殘部)로서의 SnO2 및 불가피(不可避) 불순물로 이루어지는 소결체로 이루어지는, SnO2계 스퍼터링 타겟.Sb 2 O 3 of more than 10 ppm and less than 1% by mass, Ta 2 O 5 or Nb 2 O 5 of 1-20% by mass, or Ta 2 O 5 and Nb 2 O 5 having a total mass of 1-20% by mass, balance (殘部) as SnO 2 and inevitable (不可避) impurities formed of a sintered body made of, SnO 2 based sputtering target. 제1항에 있어서,The method of claim 1, Sb2O3의 함유량이 11~9000ppm인 스퍼터링 타겟.When the content of Sb 2 O 3 11 ~ 9000ppm of a sputtering target. 제1항에 있어서,The method of claim 1, Sb2O3의 함유량이 100~6000ppm인 스퍼터링 타겟.A sputtering target content of Sb 2 O 3 is 100 ~ 6000ppm. 제1항에 있어서,The method of claim 1, Sb2O3의 함유량이 300~2000ppm인 스퍼터링 타겟.A sputtering target when the content of Sb 2 O 3 300 ~ 2000ppm. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, Ta2O5의 함유량이 1~15질량%이며, 또한 Nb2O5의 함유량이 1~15질량%인 스퍼터링 타겟.If the content of Ta 2 O 5 1 ~ 15% by weight, and also a sputtering target when the content of Nb 2 O 5 1 ~ 15% by weight.
KR1020097010025A 2007-11-09 2008-11-06 Sno-based sputtering target KR101138700B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-291592 2007-11-09
JP2007291592A JP5249560B2 (en) 2007-11-09 2007-11-09 SnO2-based sputtering target
PCT/JP2008/070215 WO2009060901A1 (en) 2007-11-09 2008-11-06 Sno-based sputtering target

Publications (2)

Publication Number Publication Date
KR20090077071A KR20090077071A (en) 2009-07-14
KR101138700B1 true KR101138700B1 (en) 2012-04-19

Family

ID=40625788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097010025A KR101138700B1 (en) 2007-11-09 2008-11-06 Sno-based sputtering target

Country Status (5)

Country Link
JP (1) JP5249560B2 (en)
KR (1) KR101138700B1 (en)
CN (1) CN101568665A (en)
TW (1) TWI406963B (en)
WO (1) WO2009060901A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120279856A1 (en) * 2009-10-15 2012-11-08 Medvedovski Eugene Tin Oxide Ceramic Sputtering Target and Method of Producing It
KR101323204B1 (en) * 2012-04-10 2013-10-30 (주)이루자 Non-magnetron sputtering apparatus
EP3333127B1 (en) * 2015-08-04 2021-01-20 Mitsui Mining and Smelting Co., Ltd. Electrode catalyst for fuel cells comprising tin oxide, membrane electrode assembly, and solid polymer fuel cell
JP2018206467A (en) * 2017-05-30 2018-12-27 株式会社アルバック Transparent conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853761A (en) * 1993-07-28 1996-02-27 Asahi Glass Co Ltd Production of transparent electrically conductive film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957917B2 (en) * 1999-03-26 2007-08-15 三井金属鉱業株式会社 Thin film forming materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853761A (en) * 1993-07-28 1996-02-27 Asahi Glass Co Ltd Production of transparent electrically conductive film

Also Published As

Publication number Publication date
JP2009114531A (en) 2009-05-28
CN101568665A (en) 2009-10-28
KR20090077071A (en) 2009-07-14
JP5249560B2 (en) 2013-07-31
TW200936790A (en) 2009-09-01
TWI406963B (en) 2013-09-01
WO2009060901A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
EP1897968A1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
KR101138700B1 (en) Sno-based sputtering target
KR20080066866A (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
CN103717779A (en) Zn-sn-o type oxide sintered body and method for producing same
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
JPWO2016072441A1 (en) ITO sputtering target, method for producing the same, ITO transparent conductive film, and method for producing ITO transparent conductive film
KR20140116182A (en) Oxide sintered body and sputtering target, and method for manufacturing same
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
CN103710577A (en) Vanadium-nickel alloy magnetron sputtering rotating target material containing small amount of rare-earth elements and preparation method thereof
KR100948557B1 (en) ???2 sputtering target and process for producing same
JP2008255477A (en) ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP5000230B2 (en) Lanthanum oxide containing oxide target
JP4859726B2 (en) SnO2-based sputtering target and sputtered film
JP5292130B2 (en) Sputtering target
JP2013001919A (en) In2O3-ZnO-BASED SPUTTERING TARGET AND OXIDE CONDUCTIVE FILM
JP2002302762A (en) Ito sputtering target
JP2008255476A (en) ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP5081960B2 (en) Oxide sintered body and oxide semiconductor thin film
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP4960052B2 (en) Ytterbium oxide containing oxide target
JP2006298714A (en) Oxide sintered compact, sputtering target and transparent conductive film
JP2012172262A (en) ZnO-BASED SINTERED TARGET, AND METHOD FOR MANUFACTURING THE SAME
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
JP2001081551A (en) Ito sputtering target

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 8