KR101129942B1 - 저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치및 전처리장치 - Google Patents

저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치및 전처리장치 Download PDF

Info

Publication number
KR101129942B1
KR101129942B1 KR1020050022645A KR20050022645A KR101129942B1 KR 101129942 B1 KR101129942 B1 KR 101129942B1 KR 1020050022645 A KR1020050022645 A KR 1020050022645A KR 20050022645 A KR20050022645 A KR 20050022645A KR 101129942 B1 KR101129942 B1 KR 101129942B1
Authority
KR
South Korea
Prior art keywords
signal
value
minimum value
likelihood
storage means
Prior art date
Application number
KR1020050022645A
Other languages
English (en)
Other versions
KR20060044395A (ko
Inventor
타카시 마에하타
Original Assignee
스미토모덴키고교가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모덴키고교가부시키가이샤 filed Critical 스미토모덴키고교가부시키가이샤
Publication of KR20060044395A publication Critical patent/KR20060044395A/ko
Application granted granted Critical
Publication of KR101129942B1 publication Critical patent/KR101129942B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1117Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
    • H03M13/1122Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule storing only the first and second minimum values per check node
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • H03M13/1117Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은, 패리티검사행렬의 행처리부에 있어서의 외부치 대수비 αmn을 산출하는 처리 시에, 행처리에서 이용되는 데이터 중, 절대치가 최소치 및 두 번째의 최소치를 기억한다. 처리데이터가, 최소치와 일치하는 경우에는, 두 번째의 최소치를 출력하고, 최소치와 불일치의 경우에는, 최소치를 출력한다. 이것에 의해, 복호처리 시, min-sum복호법에 따라서, 복호동작이 실시되는 처리에서 최소치를 구하는 Min연산을 실행하는 부분의 구성을 간략화할 수 있다. 저밀도 패리티검사부호의 복호회로의 규모를 저감할 수 있는 것을 특징으로 한 것이다.

Description

저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치 및 전처리장치{DECODING UNIT AND PREPROCESSING UNIT IMPLEMENTED ACCORDING TO LOW DENSITY PARITY CHECK CODE SYSTEM}
도 1은 본 발명이 적용되는 통신시스템의 구성을 개략적으로 나타낸 도면;
도 2는 송신데이터와 복조데이터의 대응의 일예를 예시한 도면;
도 3은 본 발명의 실시의 형태 1에 따르는 복호화기의 구성을 개략적으로 나타낸 도면;
도 4는 본 발명에 있어서의 복호법에 있어서 이용되는 부분집합을 정의하기 위한 도면;
도 5는 도 4에 나타낸 검사행렬의 타너 도표(Tanner graph)를 나타낸 도면;
도 6은 도 6A ~ 도 6C는, 도 3에 나타낸 행처리부의 조작내용을 나타낸 도면;
도 7은 도 3에 나타낸 열처리부의 처리조작을 나타낸 도면;
도 8은 도 3에 나타낸 루프판정부의 동작을 나타낸 흐름도;
도 9는 본 발명의 실시의 형태 1에 따르는 행처리부의 외부치 대수비 산출동작을 나타낸 흐름도;
도 10은 본 발명의 실시의 형태 1에 따르는 Min연산부의 구성을 개략적으로 나타낸 도면;
도 11은 도 10에 나타낸 선택기의 구성을 개략적으로 나타낸 도면;
도 12는 본 발명의 실시의 형태 1에 따르는 Min연산부의 전체의 구성을 개략적으로 나타낸 도면;
도 13은 본 발명의 실시의 형태 2에 따르는 Min연산부의 구성을 개략적으로 나타낸 도면;
도 14는 도 13에 나타낸 선택기의 구성을 개략적으로 나타낸 도면;
도 15는 도 13에 나타낸 Min연산부의 동작을 설명하기 위한 도면;
도 16은 도 3에 나타낸 행처리부의 부호산출부의 구성의 일예를 개략적으로 예시한 도면;
도 17은 본 발명의 실시의 형태 3에서 일예로서 이용되는 검사행렬을 예시한 도면;
도 18은 본 발명의 실시의 형태 3에 따르는 최소치 기억부의 구성을 개략적으로 나타낸 도면;
도 19는 본 발명의 실시의 형태 3에 변경예의 최소치 기억부의 구성을 개략적으로 나타낸 도면.
<도면의 주요부분에 대한 부호의 설명>
1: 부호화기 2: 변조기
3: 통신로 4: 복조기
4a: 복조회로 4b: 아날로그/디지털 변환회로
5: 복호화기 10: 산출부
12: 행처리부 14: 열처리부
16: 루프판정부 20: 절대치 기억부
22: 제1 최소치 기억부 24: 제2 최소치 기억부
26, 42: 선택기 30: 비교기
32, 52: 멀티플렉서(MUX) 40: 최소위치기억부
50: 비교기 60: 부호기억부
62: 부호 곱 유지회로 64: 판독회로
65: 우도비추출유지회로 66: 부호판정회로
67: 가산회로 70: Min연산부
71: 제 1의 기억부 72: 제1 대소비교부
73: 제2 기억부 74: 제2 대소비교부
80: 제 1의 임시 최소치 검출부 82: 제 2의 임시 최소치 검출부
84: 최소치 검출유지부
본 발명은, 입력부호를 복호하는 복호장치 및 해당 복호처리에 있어서의 소정의 처리에 대한 전처리를 실행하기 위한 회로에 관한 것이다. 보다 특정적으로는, 본 발명은, 저밀도 패리티검사부호를 복호하기 위한 회로장치의 구성에 관한 것이다.
데이터의 통신시스템을 구축하는 경우에는, 고속통신, 낮은 소비전력, 높은 통신품질(저비트 오류율) 등이 요구된다. 수신부호의 오류를 검출해서 정정하는 오류정정기술은, 이들의 요구를 만족하는 하나의 기술로서, 무선, 유선 및 기록시스템 등에서 폭넓게 이용되고 있다.
최근, 이 오류정정기술의 하나로서, 저밀도 패리티검사(LDPC: Low-Density Parity-Check)부호와, sum-product복호법이 주목받고 있다. 이 LDPC부호를 이용하는 복호조작은, Chung 등의 문헌(S.Y. Chung et al., "On the Design of Low-Density Parity-Check Codes within 0.0045dB of the Shannon Limit" IEEE COMUNIC ATIONS LETTERS, VOL.5, No.2, Feb. 2001, pp.58-60)에서 의론되어 있다. 이 Chung의 문헌에서는, 부호화율 1/2의 불규칙 LDPC부호를 이용해서 백색 가우스통신로의 샤논(Shannon)한계까지 0.04dB라고 하는 복호특성이 얻어짐이 표시되어 있다. 불규칙 LDPC부호는, 패리티검사행렬의 행가중치(column weight)(행에 있어서 1로 설정되는 수) 및 열가중치(row weight)(열에 있어서 1로 설정되는 수)가, 일정하지 않은 부호를 나타낸다. 행가중치 및 열가중치가 각 행 및 각 열에 있어서 일정한 LDPC부호는, 불규칙 LDPC부호라고 불린다.
Chung의 문헌에서는, LDPC부호를 sum-product복호법에 따라서 복호하는 수학적인 알고리즘이 표시되어 있지만, 그 방대한 계산을 구체적으로 실시하는 회로구성에 대해서는 하등 표시되어 있지 않다.
Yeo 등의 문헌(E. Yeo et al., "VLSI Architectures for Iterative Decoders in Magnetic Recording Channels" IEEE Trans. Magnetics, Vol, 37, No.2, March 2001, pp.748-755)은, LDPC부호의 복호장치의 회로구성에 대해서 검토하고 있다. 이 Yeo의 문헌에서는, 수신계열에 의거해서 정보심벌의 사후확률을, 격자에 의거하는 MAP(최대사후확률)알고리즘, 즉 BCJR알고리즘에 따라서 계산한다. 이 격자에서 전방향 및 후방향의 반복을 각 상태에 대해서 계산하고, 이들의 전방향 및 후방향의 반복치에 의거해서, 사후확률을 구하고 있다. 이 계산식에서, 가산/비교/선택/가산장치를 이용해서 계산한다. LDPC부호의 산출에서는, sum-product복호법에 의거해서, 검사행렬을 생성하고, 다른 체크노드로부터의 값을 이용해서, 추정치를 산출하도록 회로를 구성하고 있다.
또, 와다야마는, 「저밀도 패리티검사부호와 그 복호법에 대하여」, 신호기술보고 MR2001-83, 2001년 12월에 있어서, LDPC부호와 sum-product복호법을 해설하고, 또 대수영역에서의 min-sum복호법이 해설되어 있다. 이 와다야마의 문헌에서는, 가산, 최소, 정부(正負)의 판정 및 정부의 부호의 승산이라고 하는 4종류의 기본연산만으로 갈라거(Gallager)의 f함수에 따르는 처리를 실장할 수 있음이 표시되어 있다.
상술한 Yeo의 문헌 및 와다야마의 문헌에서는, 패리티검사행렬을 생성해서 1차 추정어를 산출하기 위하여, sum-product법에 따라서 갈라거(Gallager)의 f함수를 이용해서 외부치 대수비 α를 갱신하고, 이어서, 이 외부치 대수비에 의거해서 심벌의 사전치 대수비 β를 산출하는 처리가 실행된다. 이 때문에, 갈라거함수의 연산에 장시간을 필요로 하고, 또 회로규모도 증대한다.
상술한 와다야마의 문헌에서는, sum-product복호법과 min-sum복호법과는 등가이며, min-sum복호법을 이용함으로써, 실장 시의 회로구성을 간략화할 수 있음을 표시하고 있다. 그러나, 이 min-sum복호법을 이용하는 경우에서도, 패리티검사용의 검사행렬을 이용해서 최소치를 산출하는 Min연산처리에서는, 각 요소마다 Min연산을 실행하여 최소치를 구하고 있으며, 부호의 길이가 증대함에 따라서, 연산 대상의 요소수가 증대하고, 마찬가지로, 처리시간이 장시간으로 되고, 또 회로규모가 커지며, 또, 그 구성도 복잡하게 된다.
본 발명의 목적은, 간이한 회로구성에 의해, 수신부호를 복호할 수 있는 복호장치를 제공하는 것이다.
본 발명의 다른 목적은, LDPC부호의 복호화처리에 있어서의 min-sum처리스텝을 간이한 회로구성으로 실현할 수 있는 복호장치를 제공하는 것이다.
본 발명의 제 1의 관점에 관련되는 복호장치는, 소정수의 신호로 구성되는 1단위 내의 신호에 대해서, 우도(尤度)가 가장 낮은 제 1의 신호와 이 제 1의 신호의 다음에 우도가 낮은 제 2의 신호를 추출해서 기억하는 우도기억수단과, 1단위 내의 신호 각각에 대해서, 1단위 내에서 자신을 제외하고 최소우도의 신호가 선택되도록 제 1 및 제 2의 신호의 한 쪽을 선택해서 출력하는 선택수단과, 이 선택수단에 의해 선택된 신호와 1단위 내의 신호의 부호로부터 새로운 신호를 생성해서 1단위의 신호의 추정신호계열을 생성하는 수신신호추정수단을 포함한다.
본 발명의 제 2의 관점에 관련되는 전처리장치는, 패리티검사행렬의 제 1의 방향으로 정렬하는 요소를 이용해서 입력신호의 추정치를 산출하는 처리의 전처리를 실행하는 장치로서, 입력신호의 1처리단위의 신호를 입력하고, 절대치가 작은 쪽으로부터 2개의 신호를 추출해서 기억하는 기억수단과, 이 1처리단위의 신호에 대해서, 이 1처리단위의 신호에서 자신을 제외한 신호 중의 절대치가 가장 작은 신호가 선택되도록 기억수단에 기억된 2개의 신호의 한 쪽을 선택해서 출력하는 최소치검출수단을 포함한다. 이 최소치검출수단의 출력치에 따라서 1처리단위의 신호의 검사행렬의 제 1의 방향으로 정렬하는 요소에 의거하는 처리가 실행된다.
제 1의 관점의 복호장치에서는, 우도가 낮은 2개의 신호치를 기억하는 것이 요구될 뿐이며, 처리단위 내의 신호치를 모두 기억하는 것은 요구되지 않는다. 따라서, 회로규모를 저감할 수 있다. 또, 단지, 2개의 신호를 후보로서 선택을 할뿐이며, 1처리단위 내의 다른 신호 모두를 선택 대상으로서 선택처리를 할 필요가 없어서, 계산량이 저감되고, 처리시간을 단축할 수 있다.
제 2의 관점의 전처리장치에서는, 입력신호의 1처리단위의 신호로부터 절대치가 작은 쪽으로부터 2개의 신호를 추출해서 기억하고, 이 1처리단위의 신호에 대해서, 자신을 제외한 신호 중의 절대치가 가장 작은 신호가 선택되도록 기억수단에 기억된 2개의 신호 중 한 쪽을 선택하고 있다. 따라서, 이 최소치검출 시에, 모든 신호를 기억하여 이 1처리단위 내의 다른 신호를 모두 선택 대상으로서 최소치검출처리를 실행할 필요가 없어서, 회로규모가 저감되고, 또 처리시간도 저감된다. 이것에 의해, 복호 시의 최소치검출이라고 하는 외부치 대수비의 산출에 대한 전처리를 고속으로 실행할 수 있다.
본 발명의 상기 및 다른 목적, 특징, 국면 및 이점은, 첨부의 도면과 관련해서 이해되는 본 발명에 관한 다음의 상세한 설명으로부터 분명해질 것이다.
<발명을 실시하기 위한 최선의 형태>
[실시의 형태 1]
도 1은, 본 발명에 따르는 복호장치를 이용하는 통신시스템의 구성의 일예를 표시하는 도면이다. 도 1에서, 통신시스템은, 송신쪽에서, 송신정보에 오류정정용의 장황한 비트를 부가해서 송신부호를 생성하는 부호화기(1)와, 이 부호화기(1)로부터의 (K+M)비트의 부호를 소정의 방식에 따라서 변조해서 통신로(3)에 출력하는 변조기(2)를 포함한다.
부호화기(1)는, K비트의 정보에 대해서, 패리티계산용의 장황한 비트 M비트를 부가해서, (K+M)비트의 LDPC부호(저밀도 패리티검사부호)를 생성한다. 패리티검사행렬에서는, 행이 장황한 비트에 대응하고, 열이 부호비트에 대응한다.
변조기(2)는, 이 통신로(3)의 구성에 따라서, 진폭변조, 위상변조, 코드변조, 주파수변조 또는 직행주파수분할다중변조 등의 변조를 실시한다. 예를 들면, 통신로(3)가, 광파이버인 경우, 변조기(2)에서는, 레이저다이오드의 휘도를 송신정보비트치에 따라서 변경시킴으로써, 광의 강도변조(일종의 진폭변조)를 실시하고 있다. 예를 들면, 송신데이터비트가 "0"인 경우에는, 이 레이저다이오드의 발광강도를 강하게 해서 "+1"로 해서 송신하고, 또 송신데이터비트가 "1"인 경우, 레이저다이오드의 발광강도를 약하게 해서, "-1"로 변환해서 송신한다.
수신부에서는, 통신로(3)를 통해서 송신된 변조신호에 복조처리를 실행하여, (K+M)비트의 디지털부호를 복조하는 복조기(4)와, 이 복조기(4)로부터의 (K+M)비트의 부호에 패리티검사행렬연산처리를 실행해서 본래의 K비트의 정보를 재생하는 복호화기(5)가 설치된다.
복조기(4)는, 이 통신로(3)에 있어서의 송신형태에 따라서 복조처리를 실행한다. 예를 들면, 진폭변조, 위상변조, 코드변조, 주파수변조 및 직행주파수분할다중변조 등의 경우, 복조기(4)에서, 진폭복조, 위상복조, 코드복조, 및 주파수복조 등의 처리가 실행된다.
도 2는, 통신로(3)가 광파이버의 경우의 변조기(2) 및 복조기(4)의 출력데이터의 대응관계를 일람하게 해서 표시하는 도면이다. 도 2에서, 상술한 바와 같이, 통신로(3)가 광파이버인 경우, 변조기(2)에서는, 송신데이터가 "0"인 경우에는, 송신용의 레이저다이오드(발광다이오드)의 발광강도를 강하게 해서, "1"을 출력하고, 또 송신데이터비트가 "1"인 경우에는, 이 발광강도를 약하게 해서 비트 "-1"을 송신한다.
이 통신로(3)에 있어서의 전송손실 등에 의해, 복조기(4)에 전달되는 광강도는, 가장 강한 강도에서 가장 약한 강도까지의 사이의 아날로그적인 강도분포를 가진다. 복조기(4)에서는, 이 입력된 광신호를 양자화처리(아날로그/디지털변환)를 실행해서, 이 수광레벨을 검출한다. 도 2에서는, 8단계에 수광레벨이 양자화된 경우의 수신신호강도를 표시한다. 즉, 수광레벨이 데이터 "7"인 경우에는, 발광강도가 상당히 강하고, 수광레벨이 "0"인 경우에는, 광강도가 상당히 약한 상태이다. 각 수광레벨은, 부호첨부데이터에 대응되고, 복조기(4)로부터 출력된다. 이 복조기(4)의 출력은, 수광레벨이 "7"인 경우에는 데이터 "3"이 출력되고, 수광레벨이 "0"인 경우에는, 데이터 "-4"가 출력된다. 따라서 이 복조기(4)로부터는, 1비트의 수신신호에 대해서, 다치(多値) 양자화된 신호가 출력된다.
복호화기(5)는, 이 복조기(4)로부터 주어진 (K+M)비트의 수신정보(각 비트는, 다치정보를 포함함)를 입력하고, 이후에 상세히 설명하는, min-sum복호법에 따라서 LDPC패리티검사행렬을 적용해서, 본래의 K비트의 정보를 복원한다.
또한, 이 도 2에서는, 복조기(4)에서, 8레벨에 양자화된 비트가 생성되어 있다. 그러나, 일반적으로, 이 복조기(4)에서는, L값(L≥2)으로 양자화된 비트를 이용해서 복호처리를 실행할 수 있다.
또, 도 2에서는, 비교기를 이용해서, 어느 한계치를 사용하여 수신신호의 레벨을 판정하고, 2값 신호를 생성해도 된다.
도 3은, 본 발명에 따르는 복호화기(5)의 구성을 개략적으로 표시하는 도면이다. 이 도 3에서는, 복조기(4) 및 통신로(3)도 아울러 표시한다. 복조기(4)는, 통신로(3)로부터 주어진 신호를 복조하는 복조회로(4a)와, 이 복조회로(4a)에 의해 생성된 아날로그 복조신호를 디지털 신호로 변환하는 아날로그/디지털 변환회로(4b)를 포함한다. 이 아날로그/디지털 변환회로(4b)의 출력데이터 Xn이 복호화기(5)에 주어진다. 이 복호화기(5)에 주어지는 데이터 Xn은, L값(L≥2)의 데이터이다. 이하, 데이터 Xn은, 다치 양자화데이터이기 때문에, 심벌이라고 칭한다. 복호화기(5)는, 이 입력심벌 Xn계열에 대해서 min-sum복호법에 따라서 복호처리를 실행 해서 부호비트 Cn을 생성한다.
복호화기(5)는, 복조기(4)로부터의 복조심벌 Xn의 대수우도비 λn을 생성하는 대수우도비 산출부(10)와, 패리티검사행렬의 행처리를 실행하는 행처리부(12)와, 패리티검사행렬의 열처리를 실행하는 열처리부(14)와, 대수우도비 산출부(10)로부터의 대수우도비 λn과 행처리부(12)의 출력비트(외부치 대수비) αmn에 따라서 부호를 생성하는 루프판정부(16)를 포함한다.
대수우도비 산출부(1O)는, 이 수신신호의 노이즈정보와 독립적으로, 대수우도비 λn을 생성한다. 통상, 노이즈정보를 고려한 경우, 이 대수우도비 λn은, Xn/2ㆍσ으로 주어진다. 여기서, σ는, 노이즈의 분산을 표시한다. 그러나, 본 실시의 형태 1에서는, 이 대수우도비 산출부(10)는, 버퍼회로 또는 정수승산회로로 형성되고, 대수우도비 λn은, Xnㆍf로 주어진다. 여기서, f는 0이 아닌 정의 수이다. 이 노이즈정보를 이용하지 않고, 대수우도비를 산출함으로써, 회로구성이 간략화되고, 또 계산처리도 간략화된다. min-sum복호방법에서는, 검사행렬의 처리에서, 최소치를 이용해서 연산을 실행하기 때문에, 신호처리에서 선형성이 유지된다. 이 때문에, 노이즈정보에 따라서 출력데이터를 정규화하는 등의 처리는 불필요하다.
행처리부(12) 및 열처리부(14)는, 각각, 다음식 (1) 및 (2)에 따라서, 연산처리를 실행하고, 패리티검사행렬의 행의 각 요소에 대한 처리(행처리) 및 열에 대한 각 요소에 대한 처리(열처리)를 실행한다. 행처리부(12)에서, 열처리부(14)로부터 주어지는 사전치 대수비 βmn과 대수우도비 λn에 따라서 외부치 대수비 αmn을 갱신한다.
[수 1]
Figure 112005014294245-pat00001
여기서, 상기식 (1) 및 (2) 각각에서, n' ∈A(m)\n 및 m' ∈B(n)\m은, 자신을 제외한 요소를 의미한다. 외부치 대수비 αmn에 대해서는, n'≠n이며, 사전치 대수비 βmn에 대해서는, m'≠m이다. 또, α 및 β의 행렬 내의 위치를 표시하는 첨자 "mn"은, 통상은 하부에 기입한 문자로 표시되지만, 본 명세서에서는, 읽기 쉬게 하기 위해서, 「병렬의 문자」로 표시한다.
또, 함수 sign(x)는, 다음식 (3)으로 정의된다.
[수 2]
Figure 112005014294245-pat00002
여기서, 함수 min은, 최소치를 구하는 연산을 표시한다.
또, 집합 A(m) 및 B(n)은, 2원(元) MㆍN행렬 H=[Hmn]을 복호 대상의 LDPC부호의 검사행렬로 한 경우, 집합 [1, N]={1, 2, …, N}의 부분집합이다.
A(m) = {n: Hmn=1} ···· (4)
B(n) = {m: Hmn=1} ···· (5)
즉, 부분집합 A(m)는, 검사행렬 H의 제 m행째에서 "1"을 캐리하고 있는 열인덱스의 집합을 의미하고, 부분집합 B(n)은, 검사행렬 H의 제 n열째에 있어서 "1"을 캐리하고 있는 행인덱스의 집합을 표시한다.
구체적으로, 지금, 도 4에 표시하는 검사행렬 H를 가정해 보자. 이 도 4에 표시하는 검사행렬 H에서는, 제 1행의 제 1열로부터 제 3열에 "1"이 존재하고, 또 제 2행의 제 3열 및 제 4열에 "1"이 존재하며, 또 제 3행의 제 4열로부터 제 6열에, "1"이 존재한다. 따라서, 이 경우, 부분집합 A(m)는 이하와 같이 된다.
A(1) = {1, 2, 3},
A(2) = {3, 4},
A(3) = {4, 5, 6}.
마찬가지로, 부분집합 B(n)에 대해서는, 이하와 같이 된다.
B(1) = B(2) = {1},
B(3) = {1, 2},
B(4) = {2, 3},
B(5) = B(6) = {3}
이 검사행렬 H에서, 타너(Tanner) 도표를 이용한 경우, 열에 대응하는 변수노드와 행에 대응하는 체크노드의 접속관계가, 이 "1"에 의해 표시된다. 이것을, 본 명세서에서는 「"1"을 캐리한다」라고 칭하고 있다. 즉, 도 5에 나타낸 바와 같이, 변수노드 1, 2, 3은, 체크노드 X(제 1행)에 접속되고, 변수노드 3, 4가, 체크노드 Y(제 2행)에 접속된다. 변수노드 4, 5, 6이, 체크노드 Z(제 3행)에 접속된다. 이 변수노드가 검사행렬 H의 열에 대응하고, 체크노드(X, Y 및 Z)가, 이 검사행렬 H의 각 행에 대응한다. 따라서, 도 4에 표시하는 검사행렬은, 정보비트가 3비트, 장황한 비트가 3비트의 합계 6비트의 부호에 대해서 적용된다.
이 검사행렬 H는, "1"의 수는 적어서, 저밀도의 검사행렬이며, 이것에 의해, 계산량을 저감할 수 있다.
이 변수노드와 체크노드의 사이에서 각 조건확률 P(Xi|Yi)를 전파시키고, MAP알고리즘에 따라서, 그럴듯한 부호를 각 변수노드에 대해서 결정한다. 여기서, 조건부 확률 P(Xi|Yi)는, Yi의 조건 하에서 Xi로 되는 확률을 표시한다.
루프판정부(16)는, 이들의 행처리부(12) 및 열처리부(14)에 있어서의 연산처리결과에 의거해서, 1차 추정어를 생성하고, 이들의 1차 추정어가 부호어를 구성하고 있는지를 검사한다. 이 패리티검사 시에 있어서, 신드롬이 "O"으로 되지 않는 경우에는, 다시 처리를 반복 실행한다. 이 처리의 반복횟수가 소정치에 도달하면, 그 때의 1차 추정어를 부호어로서 출력한다.
본 발명에서는, 상술한 식 (1)에 있어서의 최소치 함수 min의 연산처리조작(이하, Min연산이라고 칭함) 시에, 모든 입력데이터(심벌) Xn의 대수우도비 λn 및 사전치 대수비 βmn을 이용하는 대신에, 부호계열의 |λn+βmn|의 최소치 및 다음의 최소치를 기억하고, 이들의 어느 하나를 선택함으로써, 이 최소치 함수 min의 연산을 실행한다.
이하, 이 행처리부(12)에 있어서의 외부치 대수비 αmn을 산출하는 동작에 대해서 구체적으로 설명한다. 지금, 입력심벌 Xn의 계열로서, 다음식으로 표시되는 입력심벌을 가정해 보자.
Xn = (3, 1, 2, -1, 1, 2)
패리티검사행렬(이하, 단지 검사행렬이라고 칭함) H로서는, 도 4에 표시하는 검사행렬 H를 이용한다.
검사행렬 H의 제 1행의 처리로서는, 도 5에 표시하는 체크노드 X에 있어서의 처리가 실행된다. 이 경우, 도 6(A)에 나타낸 바와 같이, 외부치 대수비 αmn은, 변수노드 2 및 3의 값(λ2+β12) 및 (λ3+β13)을 이용해서 절대치의 최소치를 검출하고, 또한 이들의 변수노드 2 및 3의 값의 부호를 승산함으로써 구해진다. 따라서, 외부치 대수비 α11은, 다음식으로 나타내진다.
α11 = sign(λ2+β12)ㆍsign(λ3+β13)
ㆍMin(|λ2+β12|, |λ3+β13|)
체크노드(4 내지 6)는, 검사행렬 H의 대응의 요소가 "0"이며, 이 연산처리에는 이용되지 않는다. 부호 "ㆍ"은, 승산을 표시한다.
도 6B에 나타낸 바와 같이, 외부치 대수비 α12는, 마찬가지로, 체크노드(1 및 3)의 B값(λ1+β11) 및 (λ3+β13)을 이용해서, 다음식으로 구해진다.
α12 = sign(λ1+β11)ㆍsign(λ3+β13)ㆍMin(|λ1+β11|, |λ3+β13|)
또, 도 6C에 나타낸 바와 같이, 외부치 대수비 α13은, 체크노드(1 및 2)의 값(λ1+β11) 및 (λ2+β12)를 이용해서 산출된다. 이 외부치 대수비 α13은, 따라서, 다음식으로 나타내진다.
α13 = sign(λ1+β11)ㆍsign(λ2+β12)ㆍMin(|λ1+β11, |λ2+β12|)
상술한 바와 같이 제 1행의 연산조작에서는, 도 6A에서 도 6C에 나타낸 바와 같이, 대응의 행 내에서 자신을 제외한 가장 절대치가 작은 요소를 산출하고, 또한 그들의 부호를 승산한다.
따라서, 처리단위 내의 심벌에서, 절대치가 가장 작은 심벌, 즉 가장 우도가 낮은 정보(정확함에 대한 신뢰성에 관련되는 정보, 즉 확률정보에 대응)를 구하여, 외부치 대수비를 구한다. 즉, 패리티검사행렬을 이용하는 경우, "1"이 존재하는 비트위치의 심벌은, 통신로에 있어서의 신뢰성에 관한 정보를 가지고 있다. 그래서, 신뢰성이 가장 낮은(우도가 가장 낮은), 즉 절대치가 가장 작은, 오류하고 있을 가능성이 가장 높은 심벌을 검출하여, 그 미치는 영향이 가장 크다고 생각되는 것을 이용해서 절대치를 구한다. 이것이 Min연산의 구체적인 처리내용이다.
이 외부치 대수비 αmn의 부호는, 처리단위 내의 신호계열의 영향을 미치는 오류가 있을 가능성이 높은 부호에 대한 부호를 모두 승산함으로써, 이 부호(외부치 대수비)의 부호를 추정한다. 가장 신뢰성이 낮은 상태로부터 처리를 개시하고, 이 처리를 반복 실행함으로써, 가장 신뢰성이 높은 부호치에 도달한다. 이 처리조작이, min-sum복호법에 있어서의 Min연산처리의 내용이다.
예를 들면, 도 2에 표시하는 복조기의 출력에서, 송신부호비트가 "1" 또는 "0"일 경우에는, 출력치는, "3" 또는 "-4"로 된다. 그러나, 통신로에 있어서의 전송손실 등의 영향에 의해, 값이 "O" 또는 "-1"로 되면, 그들의 절대치가 작아지고 있으며, 오류가 발생하고 있을 가능성이 높다. 이와 같은 절대치가 작은, 불확실한 수신신호를 이용해서 본래의 부호를 복원한다.
이하의 설명에서는, 이 절대치가 가장 작은 신호를, 에러의 발생확률이 높기 때문에, 우도가 가장 낮은 신호라고 칭한다.
이들의 구해진 외부치 대수비 αmn은, 도 3에 표시하는 열처리부(14) 및 루프판정부(16)에 공급된다. 이 열처리부(14)는, 앞의 식 (2)에서 표시된 연산처리를 실행하고, 검사행렬 H의 각 행에서 생성된 외부치 대수비를 이용해서, 자신을 제외한 행 이외의 대응의 열의 "1"을 캐리하고 있는 위치의 외부치 대수비를 가산한다. 따라서, 검사행렬 H가 도 4에 표시되는 구성인 경우, 도 7에 나타낸 바와 같이, 사전치 대수비 β11은, 제 1열에서 자신이 속하는 제 1행 이외에는 "1"로 존재하고 있지 않기 때문에, "0"으로 된다.
루프판정부(16)는, 이 행처리부(12)에서 생성되는 외부치 대수비 αmn과 대수우도비 산출부(1O)로부터의 대수우도비 λn을 이용해서, 복수의 부호로 구성되는 부호어를 생성한다. 부호의 수는, 검사행렬의 열의 수에 대응한다.
도 8은, 이 루프판정부(16)의 처리동작을 표시하는 흐름도이다. 이하, 도 8을 참조해서, 루프판정부(16)의 처리조작에 대해서 설명한다.
우선, 초기동작으로서, 루프횟수 및 사전치 대수비 βmn의 초기설정이 실시된다. 이 루프횟수는, 열처리부(14)에서 생성된 사전치 대수비 βmn을 이용해서 다시 행처리부(12)에서 외부치 대수비 αmn을 생성하는 루프에 있어서의 연산횟수를 표시한다. 이 루프횟수에서는, 최대치가 사전에 결정된다. 사전치 대수비 βmn은, "O"으로 초기 설정된다(스텝 SP1).
다음에, 수신심벌계열에 따라서, 대수우도비 λn 및 외부치 대수비 αmn이, 각각, 대수우도비 산출부 및 행처리부에 의해 생성되어서, 루프판정부(16)에 공급된다(스텝 SP2).
루프판정부(16)는, 이들의 공급된 대수우도비 λn 및 외부치 대수비 αmn에 따라서, 연산 λn+Σαmn을 실행해서 추정수신어 Qn을 산출한다(스텝 SP3). 여기서, 총계 Σ는, 부분집합 B(n)의 요소 m에 대해서 실행된다.
이 스텝 SP3에서 산출된 값 Qn의 정부(正負)의 부호를 판정하고(스텝 SP4), 1차 추정부호 Cn을 생성한다(스텝 SP5). 이 부호의 정/부 판정에서는, 예를 들면, 추정수신어 Qn이 2의 보수 표시되어 있을 경우에는, 최상위 비트(부호비트)의 비트치를 봄으로써, 정 및 부의 판정을 실시할 수 있다.
추정부호 Cn이 모두 생성되고, 부호어(C1, …, CN)가 생성되면, 이어서 패리티검사를 실행한다(스텝 SP6). 이 패리티검사에서는, 앞의 검사행렬 H의 전치행렬을 이용해서, (C1, …, CN)ㆍHt=0을 계산한다. 이 계산에 의해, 생성되는 신드롬이 0이면, 1차 추정어(C1, …, CN)를 추정어로서 출력한다(스텝 SP9).
한편, 이 생성된 신드롬이 0과 다른 경우에는, 루프횟수가 최대치인지의 판정이 실시된다(스텝 SP7). 즉, 이 1차 추정어의 생성횟수를 계산하고, 그 생성횟수가 소정의 최대횟수에 도달하면, 그 부호에 대한 산출을 그 이상을 그만두고, 현재 생성되어 있는 1차 추정어를 부호어로서 출력한다(스텝 SP9). 이것에 의해, 수렴성이 나쁜 잡음의 부호에 대해서, 불필요하게 연산처리시간이 필요로 하는 것을 방지 한다.
스텝 SP7에서, 루프횟수가 최대치에 도달하고 있지 않다고 판정되면, 이 루프횟수를 1증분해서, 다시, 행처리부(12) 및 열처리부(14)에 있어서의 처리를 개시시켜서, 다시 스텝 SP2로부터의 처리를 실행한다.
이들 일련의 처리가, 이른바 LDPC의 min-sum복호법의 처리동작이다. 패리티계산행렬 H로서, 희소행렬, 즉 1의 수가 적은 행렬을 이용함으로써, 계산횟수를 저감한다. 그러나, Min연산에서는, "1"이 존재하는 노드의 값을 모두 이용해서 최소 절대치를 검출할 필요가 있다. 따라서, 이 패리티검사행렬 H의 규모가, 수신심벌의 수의 증대에 따라서 커진 경우, 따라서 "1"의 수도 증대하고, 이 Min연산을 실행하는 부분의 회로규모가 증대한다. 본 발명에서는, Min연산을, 이하에 설명하는 순서에 따라서, 소규모의 회로를 이용해서 고속으로 연산한다.
도 9는, 본 발명의 실시의 형태 1에 따르는 행처리부(12)의 처리조작을 표시하는 흐름도이다. 이하, 도 9를 참조해서, 본 발명의 실시의 형태 1에 따르는 행처리부의 조작에 대해서 설명한다.
또, 검사행렬 H의 부분집합 A(m)에 따라서, |λn'+βmn'|의 계열을 추출한다(스텝 SP10).
이들의 추출된 절대치계열로부터, 최소치 및 두 번째의 최소치를 검출해서 기억한다(스텝 SP11). 최소치 및 두 번째의 최소치는, 값이 동일한 경우도 허용된다. 즉, 외부치 대수비 αmn의 산출 시에는, 자신을 제외한 집합으로부터, 최소 절대치(이하, 단지 최소치라고 칭함)를 선택하는 조작이 필요하게 되기 때문에, 이 최소치 및 두 번째의 최소치가 동일한 값이어도 된다. 다음에, Min연산을 실행한다. 입력치 |λn'+βmn'|가, 기억된 최소치와 일치하는지의 판정이 실시된다(스텝 SP12).
최소치와 일치하는 경우에는, 두 번째의 최소치가 대응의 Min연산치로서 선택된다(스텝 SP13). 한편, 이 최소치와 일치하지 않는 경우에는, 비교된 최소치를 Min연산치로서 선택해서 출력한다(스텝 SP14).
이들의 스텝 SP13 및 SP14에 의해 선택된 Min연산치에 대하여, 부호를 승산해서, 외부치 대수비 αmn을 생성한다(스텝 SP15).
따라서, 타너 도표의 변수노드(검사행렬의 "1"을 캐리한 노드)의 값을 모두 기억하는 것은 요구되지 않고, 첫 번째 및 두 번째의 최소치를 기억하는 것이 요구될 뿐이며, 큰 폭으로 회로규모를 저감할 수 있다. 또, 단지, 최소치와의 비교만으로 Min연산이 실행되기 때문에, 나머지의 절대치성분과의 비교를 실시할 필요가 없어서, 연산시간이 단축된다.
스텝 SP15에 있어서의 부호의 승산 시에서는, 단지, 자신을 제외한 값의 부호의 승산뿐이며, 각 노드에 대한 값이 2의 보수 표시인 경우, 1비트로 부호를 표시할 수 있고, 부호 승산을 위한 부호를 기억하는 기억부의 용량은 큰 폭으로 저감된다. 이 경우, 모든 변수노드의 부호의 승산치를 사전에 최소치 검출 시에 구해 두면, 모든 부호의 곱의 값과 자신의 부호에 의거해서, 부호의 승산을 용이하게 실행할 수 있다. 즉, 모든 변수노드의 부호의 곱이 정일 경우, 자신이 부이면, 자신을 제외한 연산치의 부호의 곱은 부이다. 따라서, 예를 들면 2의 보수 표시로 부호 비트의 "1"이 부를 나타내는 경우, 모든 노드의 부호의 곱을 표시하는 부호비트와 자신의 부호와의 일치/불일치를 봄으로써, 부호연산의 승산처리를 실행할 수 있고, 마찬가지로, 부호승산처리도 간략화되어서, 외부치 대수비 αmn의 산출이 큰 폭으로 간략화된다.
지금, 이하에 표시하는 부분집합 Vm을 가정해 보자.
Vm = {v1, v2, v3, …, vk-1, vk}
여기서, vi = |λi+βmi|
Min연산을 가정해 보자. 지금, 최소치가 v1이며, 두 번째의 최소치가 vk이라고 가정한다. 이 경우, Min연산을, 외부치 대수비 αm1에 대해서 실행하는 경우를 가정해 보자. 이 경우, 값 v2로부터 vk 중의 최소치를 산출한다. 지금, 최소치가, 값 v1이기 때문에, 이 값 v1에 대한 Min연산으로서는, 두 번째의 최소치 vk를 선택함으로써, 올바른 Min연산 결과가 구해진다. v2에 대해서는, 값 v1 및 v3으로부터 vk 중의 최소치를 구하기 때문에, 최소치 v1을 선택함으로써, Min연산 결과가 구해진다. 마찬가지로, 값 vk에 대해서는, 자신 이외도 v1에서 vk-1의 사이의 최소치를 선택하기 때문에, v1을 선택한다. 따라서 상술한 도 9에 표시하는 스텝 SP12에서 SP14의 조작을 실시함으로써, 정확하게, Min연산을 실행할 수 있다.
도 10은, 도 3에 표시하는 행처리부(12)의 Min연산을 실시하는 부분의 구성을 개략적으로 표시하는 도면이다. 도 10에서, Min연산부는, 입력치 λn+βmn을 이용해서 그 절대치를 기억하는 절대치 기억부(20)와, 입력치 λn+βmn을 순차적으로 입력해서 절대치가 가장 작은 제1 최소치 FIM을 기억하는 제1 최소치 기억부(22) 와, 입력치 λn+βmn의 계열을 받고, 제 두 번째의 최소치 SEM을 기억하는 제2 최소치 기억부(24)와, 이 입력치계열의 위치정보 i에 따라서 절대치 기억부(20)의 대응의 절대치 val을 판독하여, 제1 최소치 FIM과 비교하고 그 비교 결과에 의거해서 제1 최소치 FIM 및 제2 최소치 SEM의 한 쪽을 선택해서 Min연산 결과 MIN을 출력하는 선택기(26)를 포함한다.
이 절대치 기억부(20)에서는, 검사행렬 H의 대응의 행(제 m행)의 요소가 순차적으로 입력되어서 그 절대치가 저장된다. 이 경우, 검사행렬 H에서 "1"을 캐리하는 부분집합 A(m)의 열인덱스에 대응하는 요소만이 순차적으로 입력된다. 위치정보 i는, 이 부분집합 A(m)에 있어서의 각 요소의 위치를 표시한다.
도 11은, 도 10에 표시하는 선택기(26)의 구성의 일예를 표시하는 도면이다. 도 11에서, 선택기(26)는, 절대치 기억부(20)로부터 위치정보 i에 따라서 판독된 절대치 val과 제1 최소치 기억부(22)에 저장된 제1 최소치 FIM과 비교하는 비교기(30)와, 비교기(30)의 출력신호에 따라서 제1 최소치 FIM 및 제2 최소치 SEM의 한 쪽을 선택해서 Min연산 결과 MIN을 출력하는 멀티플렉서(MUX)(32)를 포함한다.
비교기(30)가, 절대치 기억부(20)로부터 판독된 절대치 val과 제1 최소치 FIM이 동일한 것을 표시하고 있을 경우에는, 멀티플렉서(32)는, 제2 최소치 SEM을 선택해서, Min연산 결과 MIN으로서 출력한다. 한편, 비교기(30)가, 절대치 기억부(20)로부터의 절대치 val이 제1 최소치 FIM과 값이 다른 것을 검출한 경우에는, 멀티플렉서(32)는, 제1 최소치 FIM을 선택해서, Min연산 결과 MIN으로서 출력한다.
따라서, 도 10 및 도 11에 나타낸 바와 같이, 단지 각 절대치 val과 제1 최소치 FIM의 비교 결과에 의거해서, 제 1의 최소치 FIM 및 제 2의 최소치 SEM의 한 쪽을 선택하는 것만으로, Min연산 결과를 생성할 수 있어서, 회로규모 및 연산시간을 큰 폭으로 단축할 수 있다.
또한, 이 절대치 기억부(20)는, 예를 들면 시프트레지스터회로 등의 FIFO(퍼스트 인ㆍ퍼스트 아웃 회로)로 구성되어 있는 경우, 이 부분집합 A(m) 내의 요소의 위치를 표시하는 위치정보 i를 특별히 줄 필요는 없다. 검사행렬의 대응의 행의 "O"에 대응하는 열의 요소는 이용되지 않기 때문에, 이 FIFO회로로부터 순차적으로 절대치 val을, 그 입력 순서에 따라서 순차적으로 출력할 수 있고, 위치정보 i를 이용하는 일없이, 절대치 기억부(20)로부터 절대치 val을 위치 순으로 판독할 수 있다.
또한, 절대치 기억부(20)에 저장되는 절대치는, 이 연산치가, 2의 보수 표시인 경우, 단지 부호비트를 제외한 비트를 연산치에 대해서 저장한다. 또, 이 2의 보수 표시를 이용하는 경우, 부호비트에 있어서의 "1"의 수를 계산함으로써, 절대치 기억부(20)에 저장되는 값의 부호의 모든 부호의 곱의 정/부를 판정할 수 있다. 위치정보 i에 따라서, 이 절대치 기억부(20)에 저장되는 절대치 val에 대응하는 부호비트와 모든 부호의 곱의 일치/불일치를 판정함으로써, Min연산에 의해 이용되는 요소의 부호의 승산결과를 구할 수 있다.
따라서, 이 경우에는, Min연산 및 부호승산연산을 병행해서 실행하여, 외부치 대수비 αmn을 고속으로 검출할 수 있다.
도 12는, M행 N열의 검사행렬에 대한 Min연산부의 구성을 표시하는 도면이다. 이 도 12에 나타낸 바와 같이, 제 1행으로부터 제 M행 각각에 대해서, Min연산부 35-1~35-M이 형성된다. 제 1행 Min연산부 35-1에 대해서는, 입력치 λn+β1n이 주어지고, Min연산 결과 MIN(1)이 출력된다. 제 2행 Min연산부 35-2에 대해서는, 입력치 λn+β2n이 주어지고, Min연산 결과 MIN(2)이 출력된다. 제 M행 Min연산부 35-M에서는, 입력치 λn+βMn이 주어지고, Min연산 결과 MIN(M)이 출력된다.
이들의 Min연산부 35-1로부터 35-M은, 도 10 및 도 11에 표시하는 구성을 구비한다. 각각에 대해서, 대응의 행에 있어서의 "1"이 존재하는 열을 표시하는 정보가 위치정보로서 주어져서, Min연산처리가 실행된다.
따라서, 패리티계산행렬 H의 규모가 커지는 경우에서도, 단지, 이 도 12에 나타낸 바와 같이 행 각각에, Min연산부 35-1~35-M이 형성될 뿐이다. Min연산부 35-1~35-M 각각에서는, 제 1 및 제 2의 최소치를 기억하고, 또한 각 부분집합 A(m)에 대응하는 값을 기억하는 것이 요구될 뿐이며, 회로규모는, 행방향에 있어서 증대할 뿐이고, 열방향에 있어서의 회로규모의 증대는 억제된다.
이 Min연산부는, LDPC부호의 복호화처리에서 이용된다. 그러나, 패리티검사행렬 H가 희소(sparse)행렬이 아니고, "1"의 수가 크고, 해밍 행가중치(행에 있어서의 "1"이 존재하는 수)가 큰 경우에서도, 단지 제 1 및 제 2의 최소치를 기억하는 것이 요구될 뿐이다. 따라서, 이 Min연산부의 구성을 이용함으로써, LDPC부호 이외의 BCH부호 및 CRC부호 등에서도, 마찬가지의 min-sum복호 알고리즘을 이용해서 복호처리를 실행할 수 있다.
또한, 위치정보 i는, 이 Min연산처리에서, 클록신호에 동기한 처리가 실행되 는 경우, 이 처리사이클을 규정하는 클록신호를 계산함으로써, 생성할 수 있다.
이상과 같이, 본 발명의 실시의 형태 1에 따르면, Min연산처리에서, 부분집합에 대응하는 요소의 제 1 및 제 2의 최소치를 기억해서, 각 요소의 절대치와 비교하고 있으며, 검사행렬의 행이 증대하는 경우에서도, 회로규모의 증대를 억제하여, 고속으로 Min연산처리를 실행할 수 있다.
[실시의 형태 2]
도 13은, 본 발명의 실시의 형태 2에 따르는 Min연산부의 구성을 개략적으로 표시하는 도면이다. 도 13에서, Min연산부는, 입력치 λn+βmn을 이용해서, 그 절대치의 제 1 및 제 2의 최소치를 각각 기억하는 제1 최소치 기억부(22) 및 제2 최소치 기억부(24)와, 이 제1 최소치 기억부(22)에 저장되는 제 1의 최소치의 행처리의 처리단위 내의 위치정보 POS를 기억하는 최소위치기억부(40)와, 이 최소위치기억부(40)의 위치 POS와 연산 대상의 신호의 위치정보 i와의 비교에 의거해서 제1 최소치 FIM 및 제2 최소치 SEM의 한 쪽을 선택해서 Min연산 결과 MIN을 출력하는 선택기(42)를 포함한다.
이 도 13에 표시하는 Min연산부의 구성에서는, 단지 제 1의 최소치 FIM의 행처리단위 내의 위치정보를 기억하는 것이 요구될 뿐이며, 각 행처리단위 내의 신호의 값을 기억할 필요는 없어서, 회로규모가 더욱더 저감된다.
도 14는, 도 13에 표시하는 선택기(42)의 구성을 개략적으로 표시하는 도면이다. 도 14에서, 선택기(42)는, 연산 대상의 값의 위치를 표시하는 위치정보 i와 제 1의 최소치 FIM의 신호처리단위 내의 위치를 표시하는 위치정보 POS를 비교하는 비교기(50)와, 비교기(50)의 출력신호에 따라서 제 1의 최소치 FIM과 제 2의 최소치 SEM의 한 쪽을 선택해서 Min연산 결과 MIN을 출력하는 멀티플렉서(MUX)(52)를 포함한다.
이 선택기(42)는, 비교기(50)가 위치정보 i 및 POS가 모두 동일한 것을 표시할 경우에는 제 2의 최소치 SEM을 선택해서 Min연산 결과 MIN으로서 출력한다. 비교기(50)가, 위치정보 i 및 POS가 서로 다른 것을 표시하는 경우에는, 멀티플렉서(52)는, 제 1의 최소치 FIM을 선택해서, Min연산 결과 MIN으로서 출력한다.
제 1의 최소치 FIM을 가지는 위치가 복수개 존재하는 경우에서도, 그 위치정보는 1개의 제1 최소치의 위치를 기억하는 것만으로 된다.
구체적으로, 도 15에 나타낸 바와 같이, 지금, 변수노드 1로부터 6에 있어서, 각각의 값이 3, 1, 2, -1, -1, 2가 할당되어 있는 상태를 가정해 보자. 이 신호계열에서 Min연산을 실행하는 경우, 우선 절대치의 최소치를 산출하는 경우, 변수노드 2의 값 "1"이, 제 1의 최소치 FIM으로서 기억되고, 그 노드번호 "2"가 최소위치정보 POS로서 기억된다. 변수노드 4 또는 5는, 그 절대치가 1이며, 이 경우, 변수노드 4의 값을 제 2의 최소치 SEM으로서 기억한다. 변수노드 4의 제 2의 최소치 SEM은, 절대치를 취하기 때문에, "1"이다. 따라서, 이 경우에는, 제 1의 최소치 FIM 및 제 2의 최소치 SEM은 서로 동일한 값으로 된다. 변수노드 2에 대한 Min연산을 실행하는 경우, 이 변수노드 2를 제외하는 변수노드의 신호치를 참조해서, 절대치의 최소치를 선택하기 때문에, 제 2의 최소치 SEM이 선택된다. 변수노드 4에 대해서, Min연산을 실행하는 경우, 이 변수노드 4를 제외하는 변수노드의 신호치를 참조해서 Min연산이 실행되기 때문에, 이 경우, 변수노드 2의 제 1의 최소치 FIM이 선택된다. 마찬가지로, 변수노드 5에 대해서도, 변수노드 2의 제 1의 최소치 FIM이 선택된다.
따라서, 제 1의 최소치와 동일한 절대치의 신호치가, 복수개 존재하는 경우에서도, 이들 중의 2개의 값을, 각각, 제 1 및 제 2의 최소치로서 기억하고, 또한 제 1의 최소치의 위치정보만을 기억함으로써, 연산 대상의 신호치의 위치에 따라서 제 1 또는 제 2의 최소치를 선택함으로써, 정확히, Min연산을 실행할 수 있다.
이 도 13에 표시하는 Min연산부는, 도 12에 표시하는 구성과 마찬가지로, 검사행렬의 각 행에 대응해서 병렬로 배치되고, 각 행단위로 병렬로, αmn을 구하는 행처리에 있어서의 Min연산이 실행된다.
도 16은, 행처리부에 있어서의 외부치 대수비 αmn의 부호 SGN을 산출하는 부분의 구성의 일예를 개략적으로 표시하는 도면이다. 도 16에서, 부호생성부는, 입력신호 λn+βmn의 부호를 순차적으로 기억하는 부호기억부(60)와, 부호기억부(60)에 기억된 부호의 모든 곱을 취해서 그 곱의 결과를 유지하는 모든 부호 곱 유지회로(62)와, 위치정보 i에 따라서 부호기억부(60)에 기억된 부호를 판독하는 판독회로(64)와, 판독회로(64)에 의해 판독된 부호 sign(i)과 모든 부호 곱 유지회로(62)에 유지되는 모든 부호 곱의 부호 ALS에 의거해서 외부치 대수비 αmn의 부호 SGN을 결정하는 부호판정회로(66)를 포함한다.
부호기억부(60)는, 예를 들면 FIFO회로로 구성되고, 입력신호 λn+βmn의 부호를 순차적으로 기억한다. 부호 곱 유지회로(62)는, 이 부호기억부(60)에 저장되 는 부호를 순차적으로 승산하고, 최종승산결과를 유지한다. 판독회로(64)는, 위치정보 i에 따라서, 이 부호기억부(6O)에 저장되는 부호 sign(i)을 판독한다.
부호판정회로(66)에서는, 판독회로(64)에 의해 판독된 부호 sign(i)이 정인 경우에는, 모든 부호 곱의 결과 ALS를 외부치 대수비 αmn의 부호 SGN으로서 출력한다. 판독회로(64)로부터의 부호 sign(i)이 부인 경우에는, 부호판정회로(66)는, 이 모든 부호 곱 유지회로(62)로부터의 부호 ALS를 반전해서 외부치 대수비 αmn의 부호 SGN을 생성한다.
이것에 의해, Min연산과 병행해서, 부호 SIGN을 검출할 수 있다. 이 부호판정회로(66)는, 예를 들면, 각 심벌의 부호가 1비트로 나타내지는 경우에는, 정의 부호가 부호비트 "0"으로 나타내지고, 부의 부호가 부호비트 "1"로 나타내지는 경우에는, 이 부호판정회로(66)는, 예를 들면 EXOR회로를 이용해서 실현할 수 있다.
이상과 같이, 본 발명의 실시의 형태 2에 따르면, Min연산 실행 시, 대응의 신호계열의 제 1 및 제 2의 최소치를 기억하고, 또한 그 최소치의 위치를 기억하고, 그 위치정보에 의거해서, 제 1 및 제 2의 최소치의 한 쪽을 선택해서 Min연산 결과로서 출력하고 있으며, 입력신호계열을 모두 기억할 필요는 없어서, 검사행렬의 규모가 증대하는 경우에서도, 회로규모를 저감하여 고속으로 행처리를 실행할 수 있다.
[실시의 형태 3]
지금, 도 17에 나타낸 바와 같이, 6행 12열의 검사행렬을 가정해 보자. 입력신호 X(1)로부터 X(12)에 대해서, Min연산을 실행한다. 이 도 17에 표시하는 검사행렬인 경우, 제 1행에서는, "1"로 설정되어 있는 위치는, 제 1열, 제 4열, 제 6열, 제 8열, 제 10열, 및 제 11열이다. 이 제 1행의 행처리에 있어서의 Min연산을 실행하는 경우, 이들의 열 위의 입력신호 X(1), X(4), X(6), X(8), X(10), 및 X(11)로부터, 제 1 및 제 2의 최소치를 검출해서 유지한다. 이 최소치를 검출하는 처리방법으로서는, 입력신호를 순차적으로 입력해서 검출하는 방법과, 이들을 병렬로 처리하는 방법이 존재한다. 이하, 순으로, 최소치 검출을 순차적으로 입력신호를 처리해서 실행하는 방법 및 병렬로 입력신호를 처리해서 최소치를 검출하는 방법에 대해서 설명한다.
도 18은, 본 발명의 실시의 형태 3에 따르는 Min연산부의 구성을 개략적으로 표시하는 도면이다. 도 18에서는, 대수우도비 λn(입력신호 Xn)으로부터, 이 검사행렬의 "1"의 위치에 따라서 우도비를 추출하는 우도비추출유지회로(65)와, 이 우도비추출유지회로(65)가 유지하는 우도비와 열처리부로부터의 사전치 대수비 βmn을 가산하고 또한 그 가산치의 절대치를 구하는 연산 ABS를 실행해서 입력신호 X(n)를 생성하는 가산회로(67)가, Min연산의 전처리회로로서 형성된다.
우도비추출유지회로(65)에서는, 대응의 부분집합 A(m)에 따라서, 순차적으로 주어지는 대수우도비 λn(입력심벌 Xn)을 추출해서 유지한다.
가산회로(67)에 의해 절대치 |λn+βmn|가 생성되어서, 입력신호 X(n)로서 Min연산부(70)에 순차적으로 주어진다.
Min연산부(70)는, 입력신호 X(n)와 제 1의 기억부(71)에 저장되는 값을 비교하고, 우도가 큰 쪽을 다음단계 회로에 전송하고, 우도가 작은 쪽의 값을 제1 기억 부(71)에 저장하는 제1 대소비교부(72)와, 이 제1 대소비교부(72)로부터 전송된 값과 제2 기억부(73)에 저장된 값을 비교하고, 우도가 작은 쪽을 제2 기억부(73)에 저장하는 제2 대소비교부(74)를 포함한다. 제1 기억부(71) 및 제2 기억부(73)는, 각각, 초기화 시에, 그 저장데이터가 입력신호 X(n)의 최대치로 설정된다. 이 제1 기억부(71)에는, 또, 기억정보의 대응의 부분집합 A(m) 내의 위치를 표시하는 위치정보가 저장된다.
제1 대소비교부(72)에 의한 대소비교에 의해, 제1 기억부(71)에는, 입력신호 X(n)가 작은 쪽의 값이 대응의 위치정보 i와 더불어 저장된다. 이 입력신호 X(n)와 제 1의 기억부(71)에 저장되는 값이 동일한 경우에는, 제 1의 대소비교부(72)는, 입력신호 X(n)를 다음단계의 제2 대소비교부(74)에 전송한다. 따라서, 이 제1 기억부(71)에는, 입력신호 X(n)의 계열 중의 가장 작은 값(절대치가 가장 작은 값)이, 그 위치정보와 더불어 저장된다. 이것에 의해, 제1 최소치 FIM 및 위치정보 P0S를 추출할 수 있다.
제2 대소비교부(74)에서는, 제1 대소비교부(72)로부터 전송된 신호치를 제2 기억부(73)의 기억치와 비교하고, 제1 대소비교부(72)로부터 주어지는 신호치가 제2 기억부(73)의 기억치보다도 작을 경우에 제 2의 기억부(73)의 기억치를 갱신한다. 따라서, 제2 대소비교부(74)에서는, 제1 최소치 FIM과 동일한 절대치의 크기의 경우를 포함하는 제2 최소치가 저장된다. 이 제2 기억부(73)의 기억치가, 제2 최소치 SEM으로서 출력된다.
따라서, 입력신호 Xn이 입력되고, 우도비추출유지회로(65)에 의해 추출되어 서 유지되고, 이어서, 입력신호 X(n)가 Min연산부(70)에 순차적으로 전송되면, 모든 입력신호 X(n)의 전송이 완료한 시점에서, 제1 최소치 FIM 및 그 위치정보 P0S와, 제2 최소치 SEM의 검출동작이 완료한다. 이 위치정보 POS는, 주어진 입력신호 X(n)에 대한 제1 대소비교부(72)에 있어서의 비교동작의 횟수를 계산함으로써 검출할 수 있다.
이 Min연산부(70)는, DSP(디지털 신호프로세서) 등의 펌웨어를 이용해서 실현되어도 되고, 또, 소프트웨어를 이용해서 비교 및 검출동작이 실행되어도 되고, 또, 전용의 하드웨어로 이들의 회로구성이 실현되어도 된다. 예를 들면, 제1 및 제2 기억부(71 및 73)는, 각각, 대응의 대소비교기(72 및 74)로부터의 비교결과지시신호를 스트로브(strobe)지시신호(기억갱신지시신호)로서 받는 레지스터회로 또는 래치회로로 구성할 수 있다. 비교결과지시신호가, 주어진 신호가 기억치보다도 작은 것을 표시할 경우에, 이들의 기억부(71 또는 73)가, 대응의 대소비교기(72 또는 74)로부터 주어진 신호치를 받아들여서 유지한다.
도 19는, 본 발명의 실시의 형태 3에 따르는 최소치 검출부의 다른 구성을 개략적으로 표시하는 도면이다. 이 도 19에 표시하는 최소치 검출부에서는, 연산 대상의 입력신호 X(1), X(4), X(6), X(8), X(10), 및 X(11)을 2개의 그룹으로 분할하고, 각 그룹에서 제 1 및 제 2의 최소치를 잠정적으로 검출한다. 즉, 제 1의 임시 최소치 검출부(80)에는, 입력데이터 X(1), X(4), 및 X(6)이 주어지고, 임시의 제 1의 최소치 F1 및 그 위치정보 P1과 임시의 제 2의 최소치 S1이 검출된다. 제 2의 임시 최소치 검출부(82)에는, 입력데이터 X(8), X(10), 및 X(11)이 주어져서, 임시의 제 1의 최소치 F2 및 그 위치정보 P2와 임시의 제 2의 최소치 S2가 검출된다. 이들의 임시의 최소치 F1, S1, F2 및 S2가, 위치정보 P1 및 P2와 더불어 최소치 검출유지부(84)에 주어진다.
이 최소치 검출유지부(84)는, 주어진 임시의 최소치 F1, S1, F2 및 S2로부터, 제 1의 최소치 FIM 및 제 2의 최소치 SEM을 검출하고, 또, 검출된 제 1의 최소치의 위치정보 POS를 검출해서 유지한다.
이 최소치 검출유지부(84)에서는, 최소치 F1, F2, S1 및 S2의 대소비교동작이 순차적으로 실시되고, 그 비교 결과에 의거해서, 제 1 및 제 2의 최소치 FIM 및 SEM이 검출되어도 된다. 또, 이것을 대신해서, 이하의 알고리즘에 따라서, 최종적인 제 1의 최소치 FIM 및 제 2의 최소치 SEM이 검출되어도 된다.
(i) S1≤F2일 경우, F1≤S1≤F2≤S2이다. 따라서, 제 1의 최소치 FIM 및 제2 최소치 SEM으로서, 각각, F1 및 S1을 설정한다.
(ⅱ) S2≤F1일 경우, F2≤S2≤F1≤S1이다. 따라서, F2 및 S2를, 각각 제 1의 최소치 FIM 및 제 2의 최소치 SEM으로서 설정한다.
(ⅲ) S1>F2 또한 S2>F1일 경우, F1, F2<S1, S2이다. 따라서, F1 및 F2의 대소관계에 따라서, 작은 쪽을 제 1의 최소치 FIM, 큰 쪽을 SEM으로 설정한다. F1=F2일 경우에는, 예를 들면, F1을 제 1의 최소치 FIM으로서 설정한다.
따라서, 도 19에 나타낸 바와 같이 입력데이터에 대해서 병렬로 처리를 실행함으로써, 고속으로 , 최소치 검출동작을 실시할 수 있다.
이들의 최소치 검출부(80 및 82) 및 최소치 검출유지부(84)는, 그 검출동작 이 소프트웨어에 의해 실행하도록 구성되어도 되고, 하드웨어에 의해 검출동작이 실행되도록 구성되어도 된다.
이상과 같이, 본 발명의 실시의 형태 3에 따르면, 연산 대상의 데이터의 비교에 의거해서 최소치를 검출하고 있으며, 정확한 최소치 검출을 실시할 수 있다.
본 발명에 따르는 min-sum복호법에서는, Min연산 실행 시, 단지 제 1 및 제 2의 최소치를 이용해서 연산을 실행하고 있을 뿐이다. 따라서, 검사행렬 H의 행의 가중치(검사행렬의 행에 있어서의 "1"의 수)가 큰 경우에 있어서도, 이 Min연산부의 규모는 증대하지 않는다. 장황한 비트수에 따라서, 행방향의 수가 증대할 뿐이다. 따라서, LDPC부호로 한정되지 않고, 다른 BHC부호 및 CRC부호 등에 대해서도, 마찬가지의 min-sum복호법에 따라서 패리티검사행렬을 생성해서 부호의 복호동작을 실시할 수 있다. 즉, 저밀도가 아닌 검사행렬에 대해서도, 본 발명을 마찬가지로 적용해서 복호처리를 실행할 수 있다.
따라서, 본 발명은, LDPC부호의 복호처리를 실행하는 통신시스템에 적용할 수 있고 또, 다른 부호를 이용하는 통신시스템의 수신부에 있어서의 복호장치에 대해서도 적용할 수 있다.
본 발명을 상세히 설명하며 표시해 왔지만, 이것은 예시를 위한 것일뿐으로서, 한정으로 취해서는 아니되며, 발명의 정신과 범위는 첨부의 청구의 범위에 의해서만 한정됨이 분명히 이해될 것이다.

Claims (9)

  1. 소정수의 신호의 블록단위로 복호를 실시하는 복호장치로서,
    1블록 단위 내의 상기 소정수에 포함되는 신호에 대해서, 우도(尤度)가 가장 낮은 제 1의 신호와 상기 제 1의 신호의 다음에 우도가 낮은 제 2의 신호를 추출해서 기억하는 우도기억수단,
    상기 1블록 단위 내의 신호 각각에 대해서, 상기 1블록 단위 내에서 자신을 제외하고 최소 우도의 신호가 선택되도록 상기 제 1 및 제 2의 신호의 한 쪽을 선택해서 출력하는 선택수단, 및
    상기 선택수단에 의해 선택된 신호와 상기 1블록 단위 내의 신호의 부호로부터 새로운 신호를 생성하여 상기 1블록 단위의 신호의 추정신호계열을 생성하는 수신신호추정수단을 구비하고,
    상기 선택수단은, 상기 우도기억수단에 기억된 상기 제1의 신호의 상기 1블록 단위 내의 일련의 신호에 있어서의 위치에 대한 위치정보를 기억하는 위치정보기억수단과, 상기 1블록단위 내의 각 신호의 위치정보와 상기 위치정보기억수단에 기억된 상기 위치정보와의 비교결과에 따라서 상기 제1 및 제2의 신호의 한쪽을 선택해서 각 상기 자신 이외의 최소우도신호를 선택하는 신호선택수단을 포함하는 것을 특징으로 하는 복호장치.
  2. 삭제
  3. 삭제
  4. 제1 항에 있어서,
    상기 1블록 단위 내의 각 신호는, 부호부의 값을 가지고, 그 절대치를 우도로서 상기 우도기억수단이, 상기 제 1 및 제 2의 신호를 기억하는 것을 특징으로 하는 복호장치.
  5. 제1 항에 있어서,
    입력되는 신호의 대수우도비를 산출하여 상기 1블록 단위 내의 각 신호를 생성해서 상기 우도기억수단에 주는 수단을 부가해서 구비하는 것을 특징으로 하는 복호장치.
  6. 제1 항에 있어서,
    상기 우도기억수단은,
    제 1의 기억수단과,
    상기 1블록 단위의 신호를 순차적으로 입력하고, 상기 제 1의 기억수단의 기억치와 각 입력신호를 비교하여, 해당 기억치와 입력신호 중 우도가 작은 쪽을 상기 제 1의 기억수단에 저장하고, 또한 우도가 크다고 판정된 신호를 다음단계로 전송하는 제 1의 비교수단과,
    제 2의 기억수단과,
    상기 제 1의 비교수단으로부터 전송된 신호와 상기 제 2의 기억수단의 기억치를 비교하고, 우도가 작은 쪽을 상기 제 2의 기억수단에 저장하는 제 2의 비교수단을 구비하는 것을 특징으로 하는 복호장치.
  7. 제6 항에 있어서,
    상기 위치정보기억수단은 상기 제 1의 기억수단에 저장되는 신호치의 상기 1블록 단위 내의 일련의 신호에 있어서의 위치를 나타내는 정보를 상기 위치정보로서 저장하는 수단을 부가해서 구비하는 것을 특징으로 하는 복호장치.
  8. 제1 항에 있어서,
    상기 1블록 단위의 일련의 신호로부터, 검사행렬의 제 1의 방향에 있어서 "1"을 캐리하는 위치에 대응하는 신호를 추출하고, 상기 추출한 신호를 상기 우도기억수단에 전송하는 추출수단을 부가해서 구비하는 것을 특징으로 하는 복호장치.
  9. 패리티검사행렬의 제 1의 방향으로 정렬하는 요소를 이용해서 입력신호의 추정치를 산출하는 처리의 전처리를 실행하는 전처리장치로서,
    상기 입력신호의 1처리의 단위의 신호를 입력하고, 절대치가 작은 쪽으로부터 제1 및 제2의 2개의 신호를 추출해서, 상기 추출한 신호를 상기 제1의 신호의 상기 1처리단위 내의 위치를 나타내는 위치정보와 함께 기억하는 기억수단과,
    상기 1처리단위 내의 각 신호에 대해서, 상기 기억수단에 기억된 위치정보와 각 신호의 상기 1처리단위 내의 위치를 나타내는 위치정보와의 비교에 의거해서 상기 1처리단위의 상기 각 신호에 있어서 자신을 제외한 신호 중으로부터 절대치가 가장 작은 신호가 선택되도록 상기 기억수단에 기억된 2개의 신호 중 한 쪽을 선택해서 출력하는 최소치검출수단을 구비하고, 상기 최소치검출수단의 출력치에 따라서, 상기 1처리단위의 신호에 대해서 상기 검사행렬의 제 1의 방향으로 정렬하는 요소에 의거하는 처리가 실행되는 것을 특징으로 하는 전처리장치.
KR1020050022645A 2004-03-22 2005-03-18 저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치및 전처리장치 KR101129942B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00082768 2004-03-22
JP2004082768A JP3891186B2 (ja) 2004-03-22 2004-03-22 復号装置および前処理装置

Publications (2)

Publication Number Publication Date
KR20060044395A KR20060044395A (ko) 2006-05-16
KR101129942B1 true KR101129942B1 (ko) 2012-04-24

Family

ID=34987799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050022645A KR101129942B1 (ko) 2004-03-22 2005-03-18 저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치및 전처리장치

Country Status (6)

Country Link
US (1) US7603607B2 (ko)
JP (1) JP3891186B2 (ko)
KR (1) KR101129942B1 (ko)
CN (1) CN100527637C (ko)
CA (1) CA2499177A1 (ko)
TW (1) TWI335144B (ko)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291290B (en) * 2005-04-21 2007-12-11 Univ Nat Chiao Tung Method for updating check-node of low-density parity-check (LDPC) codes decoder and device using the same
JP4622654B2 (ja) * 2005-04-25 2011-02-02 ソニー株式会社 復号装置および復号方法
JP2006340016A (ja) * 2005-06-01 2006-12-14 Toshiba Microelectronics Corp 誤り訂正符号復号装置及びそれを用いた復号方法
KR101021465B1 (ko) 2005-10-26 2011-03-15 삼성전자주식회사 저밀도 패리티 검사 코드를 사용하는 통신 시스템에서 신호수신 장치 및 방법
US7797613B1 (en) * 2006-02-22 2010-09-14 Aquantia Corporation Digital implementation of an enhanced minsum algorithm for error correction in data communications
JP4739086B2 (ja) * 2006-04-05 2011-08-03 三菱電機株式会社 誤り訂正復号装置および誤り訂正復号方法
CN101432970B (zh) 2006-04-28 2012-11-14 英特尔公司 使用最小和原理的低密度奇偶校验码的多阈消息传递解码
FR2904499B1 (fr) * 2006-07-27 2009-01-09 Commissariat Energie Atomique Procede de decodage a passage de messages avec ordonnancement selon une fiabilite de voisinage.
KR100938068B1 (ko) * 2007-01-30 2010-01-21 삼성전자주식회사 통신 시스템에서 신호 수신 장치 및 방법
US20080263123A1 (en) * 2007-04-23 2008-10-23 Paul Penzes Method and system for determining a minimum number and a penultimate minimum number in a set of numbers
US8359522B2 (en) 2007-05-01 2013-01-22 Texas A&M University System Low density parity check decoder for regular LDPC codes
US8234320B1 (en) * 2007-10-25 2012-07-31 Marvell International Ltd. Bitwise comparator for selecting two smallest numbers from a set of numbers
JP4645640B2 (ja) * 2007-11-30 2011-03-09 住友電気工業株式会社 復号器、受信装置及び符号化データの復号方法
DE602007012565D1 (de) * 2007-12-14 2011-03-31 Sony Corp Strahlensteueralgorithmus für NLOS-Drahtlossysteme mit vordefinierten Parametern
US8156409B2 (en) * 2008-02-29 2012-04-10 Seagate Technology Llc Selectively applied hybrid min-sum approximation for constraint node updates of LDPC decoders
EP2181504A4 (en) * 2008-08-15 2010-07-28 Lsi Corp DECODING LIST OF CODED WORDS CLOSE IN A ROM MEMORY
US20100169735A1 (en) * 2008-12-31 2010-07-01 Texas Instruments Incorporated Low density parity check code row update instruction
JP5434454B2 (ja) * 2009-10-08 2014-03-05 富士通株式会社 復号化装置
JP5523064B2 (ja) * 2009-11-13 2014-06-18 三菱電機株式会社 復号装置及び方法
JP5148586B2 (ja) * 2009-12-01 2013-02-20 株式会社東芝 復号装置および復号方法
EP2682860A3 (en) * 2010-07-29 2014-10-08 Nxp B.V. Partial averaging circuit and method
JP2012080283A (ja) * 2010-09-30 2012-04-19 Jvc Kenwood Corp 復号装置および復号方法
JP5370337B2 (ja) * 2010-10-29 2013-12-18 株式会社Jvcケンウッド 復号装置および復号方法
CN103092812A (zh) * 2011-11-04 2013-05-08 Nxp股份有限公司 分类电路和方法
US8930790B1 (en) * 2013-09-13 2015-01-06 U-Blox Ag Method and apparatus for identifying selected values from among a set of values
WO2015087643A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 誤り訂正復号装置
JP2015169949A (ja) * 2014-03-04 2015-09-28 株式会社東芝 無線通信装置
US9935654B2 (en) * 2015-02-06 2018-04-03 Alcatel-Lucent Usa Inc. Low power low-density parity-check decoding
US9590657B2 (en) 2015-02-06 2017-03-07 Alcatel-Lucent Usa Inc. Low power low-density parity-check decoding
JP6511284B2 (ja) 2015-02-13 2019-05-15 パナソニック株式会社 最小値選択回路、復号器及び最小値選択方法
US10476524B2 (en) * 2017-11-27 2019-11-12 Goke Us Research Laboratory Method and apparatus for efficient data decoding
US10419026B2 (en) * 2017-11-27 2019-09-17 Goke Us Research Laboratory Method and apparatus for efficient data decoding
WO2019126595A1 (en) * 2017-12-20 2019-06-27 Goke Us Research Laboratory Method and apparatus for efficient data decoding
CN111464190B (zh) * 2020-05-14 2023-01-13 中国科学院微电子研究所 Ldpc码与crc结合的交换校验译码方法及装置
TWI774417B (zh) * 2021-06-11 2022-08-11 瑞昱半導體股份有限公司 基於權重調整演算法參數的解碼方法與解碼系統

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095749A (ko) * 2001-06-15 2002-12-28 엘지전자 주식회사 부분 보정을 이용한 그래프 디코딩 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421804B1 (en) * 1999-12-20 2002-07-16 Agere Systems Guardian Corp. Generating reliability values for iterative decoding of block codes
WO2001076079A2 (en) * 2000-04-04 2001-10-11 Comtech Telecommunication Corp. Enhanced turbo product code decoder system
JP2006508577A (ja) 2002-11-27 2006-03-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ランニングミニマム・メッセージパッシングldpc復号化
JP4062435B2 (ja) 2002-12-03 2008-03-19 日本電気株式会社 誤り訂正符号復号装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095749A (ko) * 2001-06-15 2002-12-28 엘지전자 주식회사 부분 보정을 이용한 그래프 디코딩 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Farhad Zarkeshvari et al. "On Implementation of Min-Sum Algorithm for Decoding Low-Density Parity-Check(LDPC) Codes," '02 IEEE GLOBECOM, Vol. 2, pp. 1349-1353, 17-21 Nov. 2002. *
Farhad Zarkeshvari et al. "On Implementation of Min-Sum Algorithm for Decoding Low-Density Parity-Check(LDPC) Codes," '02 IEEE GLOBECOM, Vol. 2, pp. 1349-1353, 17-21 Nov. 2002.*

Also Published As

Publication number Publication date
KR20060044395A (ko) 2006-05-16
TWI335144B (en) 2010-12-21
TW200612671A (en) 2006-04-16
CN1674446A (zh) 2005-09-28
JP2005269535A (ja) 2005-09-29
US7603607B2 (en) 2009-10-13
US20050210366A1 (en) 2005-09-22
CN100527637C (zh) 2009-08-12
CA2499177A1 (en) 2005-09-22
JP3891186B2 (ja) 2007-03-14

Similar Documents

Publication Publication Date Title
KR101129942B1 (ko) 저밀도 패리티검사부호화방식에 따라서 실현되는 복호장치및 전처리장치
KR101093313B1 (ko) 패리티 검사 디코더들에서 사용하기 위한 노드 처리기들
JP3923618B2 (ja) 誤り訂正符号を有する情報ビットの変換方法およびこの方法を実行する符号化器と復号化器
JP2014027704A (ja) 複数のチェックノード・アルゴリズムを用いる誤り訂正デコーダ
EP2479897A2 (en) Decoding device and decoding method
US8572453B2 (en) Error correcting decoding apparatus for decoding low-density parity-check codes
RU2391774C2 (ru) Устройство декодирования и устройство приема
US20100325514A1 (en) Decoding method and decoding device
JP2007306495A (ja) 復号装置および復号プログラム
CN111164897B (zh) 广义低密度奇偶校验码
JP4645640B2 (ja) 復号器、受信装置及び符号化データの復号方法
JP2007323515A (ja) 比較装置および復号装置
CN101895375A (zh) 低密度校验码的译码系统
JP4341646B2 (ja) 復号装置
JP4973647B2 (ja) 誤り訂正符号の復号評価装置
KR20070084951A (ko) 통신 시스템에서 신호 수신 장치 및 방법
JP2011160491A (ja) 復号器
JP4755238B2 (ja) 復号器
JP4766013B2 (ja) 復号器、受信装置及び符号化データの復号方法
US20230004852A1 (en) Conversion method, conversion device, reception device, and transmission device
JP4728381B2 (ja) 復号装置
Rajagopal et al. FPGA IMPLEMENTATION OF SSPA DECODER
KR20080020819A (ko) 저밀도 패리티 검사 코드의 복호장치
JP2011139544A (ja) 復号装置

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 9