KR101118080B1 - Method of manufacturing nanofiber web - Google Patents

Method of manufacturing nanofiber web Download PDF

Info

Publication number
KR101118080B1
KR101118080B1 KR1020080078062A KR20080078062A KR101118080B1 KR 101118080 B1 KR101118080 B1 KR 101118080B1 KR 1020080078062 A KR1020080078062 A KR 1020080078062A KR 20080078062 A KR20080078062 A KR 20080078062A KR 101118080 B1 KR101118080 B1 KR 101118080B1
Authority
KR
South Korea
Prior art keywords
nozzle
collector
resin
polymer solution
nanofiber web
Prior art date
Application number
KR1020080078062A
Other languages
Korean (ko)
Other versions
KR20100019171A (en
Inventor
흥 렬 오
Original Assignee
코오롱패션머티리얼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱패션머티리얼 (주) filed Critical 코오롱패션머티리얼 (주)
Priority to KR1020080078062A priority Critical patent/KR101118080B1/en
Publication of KR20100019171A publication Critical patent/KR20100019171A/en
Application granted granted Critical
Publication of KR101118080B1 publication Critical patent/KR101118080B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 전기방사방식을 이용한 나노섬유 웹의 제조방법에 관한 것으로서, 고분자 용액을 고전압이 걸려 있는 노즐(30)에 공급한 후 노즐(3)에 공급된 고분자 용액을 노즐(3)과 반대 전하를 띄는 고전압이 걸려 있는 컬렉터(4)를 향해 전기방사하여 나노섬유 웹을 제조할 때 상기 노즐들이 배열된 노즐블록의 양측면에 설치된 공기분사장치(7)로 고분자 용액의 전기방사 방향으로 공기를 분사해 주는 것을 특징으로 한다.The present invention relates to a method for manufacturing a nanofiber web using an electrospinning method, wherein a polymer solution is supplied to a nozzle 30 subjected to a high voltage, and then a polymer solution supplied to the nozzle 3 is opposite to the nozzle 3. When producing a nanofiber web by electrospinning toward the collector (4) is a high voltage is applied to the air injection device (7) installed on both sides of the nozzle block in which the nozzles are arranged to inject air in the electrospinning direction of the polymer solution It is characterized by.

본 발명은 전기방사된 나노섬유가 컬렉터 표면을 벗어나 다른 곳으로 휘산되는 것을 효과적으로 방지하여 나노섬유 웹의 집적성을 향상시키고 생산성을 높히는 장점이 있다.The present invention has the advantage of effectively preventing the electrospun nanofibers from being volatilized out of the collector surface to improve the integration and productivity of the nanofiber web.

전기방사, 공기분사, 노즐, 집적성, 웹, 나노섬유, 컬렉터 Electrospinning, Air Spray, Nozzle, Integration, Web, Nanofiber, Collector

Description

나노섬유 웹의 제조방법{Method of manufacturing nanofiber web}Method of manufacturing nanofiber web {Method of manufacturing nanofiber web}

본 발명은 전기방사방식을 이용한 나노섬유 웹의 제조방법에 관한 것으로서, 보다 구체적으로는 전기방사된 나노섬유가 컬렉터 표면 외 다른곳으로 휘산되는 것을 효과적으로 방지할 수 있는 나노섬유 웹의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a nanofiber web using an electrospinning method, and more particularly, to a method for manufacturing a nanofiber web that can effectively prevent the electrospun nanofibers from being volatilized out of the collector surface. will be.

전기방사는 직경이 수십 내지 수백 ㎚인 초극세 섬유(이하"나노섬유"라고 한다)를 제조할 수 있는 비교적 간단한 방법으로 이미 1930년대에 독일에서 첫 선을 보였다. 그러나, 당시의 기술로는 이를 상품화하는 데에 한계가 있어 관심을 받지 못하다가 1970년대에 이르러서야 연구가 다시 시작되었다가 2000년대 이후에서야 본격적인 연구가 시작되었다.Electrospinning was first introduced in Germany in the 1930s in a relatively simple way to produce ultrafine fibers (hereinafter referred to as "nano fibers") with diameters of tens to hundreds of nm. However, the technology of the time was limited to commercialization of this technology, so it was not received attention, and research began again until the 1970s, and full-scale research began only after the 2000s.

전기방사는 고분자용액에 수천 내지 수만 볼트의 높은 전압을 가하여 고분자 용액으로부터 용매의 표면장력을 넘는 접선벡터의 힘이 가해져서 고분자용액으로부터 미세한 폴리머 제트가 형성되어 고분자용액에 가해진 전하와 반대의 전하를 띠는 물체를 향해 빠른 속도로 진행하게 된다. 분사된 고분자 제트는 이어 수많은 미세 섬유로 다시 분산되어 뿌려지게 되는데 이때의 미세 섬유의 직경은 수십내지 수백 나노미터의 굵기를 가진다.Electrospinning applied a high voltage of several thousand to tens of thousands of volts to the polymer solution, and the force of the tangential vector exceeding the surface tension of the solvent was applied from the polymer solution to form a fine polymer jet from the polymer solution. The band advances rapidly toward the object. The jets of polymer jets are then dispersed and scattered back into a number of fine fibers, which have a diameter of tens to hundreds of nanometers.

전기방사를 이용하면 고분자용액으로부터 수십 내지 수백 나노미터의 굵기를 가지는 나노섬유로 이루어진 도 5와 같은 나노섬유 웹을 제조할 수 있으며, 이를 이용하여 고기능성 의류, 초정밀 필터, 세포배양용 소재(scaffold) 등의 고성능 제품을 얻을 수 있다.Electrospinning can be used to produce nanofiber webs as shown in Figure 5 consisting of nanofibers having a thickness of several tens to hundreds of nanometers from a polymer solution, using them for high functional clothing, ultra-precision filters, cell culture materials (scaffold). High performance products, such as) can be obtained.

도 5는 나노섬유 웹의 전자현미경사진이다.5 is an electron micrograph of a nanofiber web.

상업적으로 나노섬유 웹을 제조하기 위해서 한국등록특허 제0412241호, 한국등록특허 제0422459호 및 한국공개특허 제2005-15610호 고분자 용액을 다수의 노즐을 통해 전기방사하는 방법을 제안하고 있다.In order to commercially manufacture a nanofiber web, Korean Patent No. 0412241, Korean Patent No. 0422459 and Korean Patent Application No. 2005-15610 propose a method of electrospinning a plurality of nozzles through a plurality of nozzles.

구체적으로, 상기의 종래 방법은 도 4에 도시된 바와 같이 고분자 용액을 계량펌프(2)를 통해 고전압이 걸려있는 다수의 노즐(3)에 공급한 다음, 이를 노즐과 반대 전하를 띠는 고전압이 걸려있는 컬렉터(4)상에 위치하는 섬유기재상에 전기방사하여 나노섬유 웹을 제조하였다.Specifically, according to the conventional method, as shown in FIG. 4, the polymer solution is supplied to the plurality of nozzles 3 subjected to the high voltage through the metering pump 2, and then the high voltage having the opposite charge to the nozzle is supplied. Nanofiber web was prepared by electrospinning on a fiber substrate placed on the hanging collector (4).

도 4는 종래 전기방사 공정 개략도이다.4 is a schematic diagram of a conventional electrospinning process.

상기의 종래방법은 노즐(3)에서 전기방사되는 나노섬유들이 컬렉터(4)의 표면이 아닌 다른 곳으로도 휘산되어 생산성이 저하되거나, 제조되는 나노섬유 웹의 균일성이 저하되는 문제가 발생하였다.According to the conventional method, the nanofibers electrospun from the nozzle 3 are volatilized to a place other than the surface of the collector 4, thereby lowering the productivity or decreasing the uniformity of the manufactured nanofiber web. .

본 발명의 목적은 전기방사된 나노섬유가 컬렉터 표면을 벗어나 다른 곳으로 휘산되는 것을 효과적으로 방지하여 생산성과 나노섬유의 집적성을 향상시키고, 나노섬유 웹의 균일성을 개선하기 위한 것이다.An object of the present invention is to effectively prevent the electrospun nanofibers from being volatilized out of the collector surface to improve productivity and the integration of nanofibers, and to improve the uniformity of the nanofiber webs.

이와 같은 과제를 달성하기 위한 본 발명에 따른 나노섬유 웹의 제조방법은, 고분자 용액을 고전압이 걸려 있는 노즐(30)에 공급한 후 노즐(3)에 공급된 고분자 용액을 노즐(3)과 반대 전하를 띄는 고전압이 걸려 있는 컬렉터(4)를 향해 전기방사하여 나노섬유 웹을 제조할 때 상기 노즐들이 배열된 노즐블록의 양측면에 설치된 공기분사장치(7)로 고분자 용액의 전기방사 방향으로 공기를 분사해 주는 것을 특징으로 한다.According to the method of manufacturing a nanofiber web according to the present invention for achieving the above object, the polymer solution supplied to the nozzle (3) after supplying the polymer solution to the high voltage is applied to the nozzle (3) as opposed to the nozzle (3) When the nanofiber web is manufactured by electrospinning toward the collector 4, which is charged with a high voltage, the air is sprayed to the electrospinning direction of the polymer solution by an air spraying device 7 installed on both sides of the nozzle block. It is characterized by spraying.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명은 도 1 내지 도 2에 도시된 바와 같이 고분자 용액 주탱크(1)내에 보관중인 고분자 용액을 고분자 용액 공급 펌프(2)를 통해 고전압이 걸려 있는 노즐(3)로 공급한다.First, the present invention supplies the polymer solution stored in the polymer solution main tank 1 to the nozzle 3 under high voltage through the polymer solution supply pump 2 as shown in FIGS.

상기 노즐(3)은 노즐블록 상에 나란히 배열되어 있다.The nozzles 3 are arranged side by side on the nozzle block.

다음으로는, 노즐(3)에 공급된 고분자 용액을 고전압이 걸려있는 컬렉터(4)를 향해 전기방사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 상기 컬렉 터(4) 상에 적층하여 나노섬유 웹을 제조한다.Next, the polymer solution supplied to the nozzle 3 is electrospun toward the collector 4 subjected to the high voltage to volatilize the nanofibers, and the volatilized nanofibers are laminated on the collector 4 to form nano Prepare a fibrous web.

본 발명은 노즐(3)을 고분자 용액을 전기방사함과 동시에 상기 노즐들이 배열된 노즐블록의 양측면에 설치된 공기분사장치(7)로 고분자 용액의 전기방사 방향으로 공기를 분사해 주는 것을 특징으로 한다.The present invention is characterized in that the nozzle 3 is electrospun to the polymer solution and at the same time the air is sprayed to the electrospinning direction of the polymer solution to the air spraying device 7 provided on both sides of the nozzle block in which the nozzles are arranged .

도 1 내지 도 2는 본 발명의 공정 개략도이다.1 to 2 are process schematics of the present invention.

상기 노즐(3)과 컬렉터(4) 각각에는 전기방사를 위해 서로 다른 전하를 띄는 고전압이 걸려진다.Each of the nozzle 3 and the collector 4 is subjected to a high voltage with a different charge for electrospinning.

도 3에 도시된 바와 같이 상기 공기분사장치는 내부가 중공(中空)이고 표면에 공기분사장치에 천공된 구멍(7a)들이 형성된 파이프(Pipe) 등이다.As shown in FIG. 3, the air spraying device is a pipe having a hollow inside and having holes 7a formed in the surface of the air spraying device.

도 3은 본 발명에서 사용하는 공기분사장치(7)의 사시개략도 이다.3 is a perspective schematic view of the air injector 7 used in the present invention.

노즐(3)로 공급된 고분자 용액은 노즐(3)과 컬렉터(4)에 걸려있는 고전압에 의해 고분자 용액의 표면장력보다 법선벡터 방향으로 응력이 커져서 고분자 제트(Jet)를 형성하게 된다.The polymer solution supplied to the nozzle 3 has a higher stress in the normal vector direction than the surface tension of the polymer solution due to the high voltage applied to the nozzle 3 and the collector 4 to form a polymer jet.

상기 고분자 제트는 반대 전하를 띄는 컬렉터(4)를 향하게 되며, 노즐(3)으로부터 일정구간까지는 제트(Jet) 상태를 유지하다가 그 이후에는 나노섬유(70)로 변하면서 휘산되어 컬렉터(4) 상에 집적된다.The polymer jet is directed toward the collector 4 having the opposite charge, and maintains a jet state from the nozzle 3 to a predetermined period, and then volatilizes to change into the nanofibers 70 and onto the collector 4. Is integrated in.

이때, 상기의 공기분사장치(7)에서 분사되는 공기의 흐름은 전기방사되는 나노섬유가 컬렉터(4)의 표면을 벗어나 다른 곳으로 휘산되는 것을 효과적으로 방지하게 된다.At this time, the flow of air injected from the air injector 7 effectively prevents the electrospun nanofibers from being volatilized out of the surface of the collector 4.

상기 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스 수지, 폴리비닐아세테이트 수지, 폴리비닐클로라이드 수지, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 또는 폴리비닐리덴 플루오라이드 수지 등과 같이 용해 가능한 모든 섬유형성능 고분자를 사용할 수 있다.The polymer solution is polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose resin, polyvinylacetate resin, polyvinyl chloride resin, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile resin, polymethylmetha Any soluble fiber-forming polymer such as acrylate resin, polystyrene resin, polyacrylic acid resin, polyolefin resin, wholly aromatic polyamide resin or polyvinylidene fluoride resin can be used.

또, 고분자 물질을 용해하기 위한 용매의 종류에도 제한이 없다. 용매는 고분자에 따라 한정이 되는 것이며 나노섬유 웹을 제조하는 데에 사용되는 고분자에 따라 용매를 자유로이 할 수 있다. 또, 고분자 용액의 제조방법에 대해서도 제한이 없다. Moreover, there is no restriction | limiting also in the kind of solvent for melt | dissolving a high molecular substance. The solvent is limited depending on the polymer, and the solvent can be freely determined depending on the polymer used to prepare the nanofiber web. Moreover, there is no restriction also about the manufacturing method of a polymer solution.

고분자 용액의 농도는 1% 이하의 낮은 농도부터 50% 이하의 높은 농도에 까지 이른다.The concentration of the polymer solution can range from as low as 1% or less to as high as 50% or less.

또한, 두 종류 이상의 고분자를 동시에 사용할 수 있다. 두 종류 이상의 상이한 고분자를 용매에 녹여 사용하는 것도 가능하며, 동종의 고분자에 있어 분자량 등의 특성이 상이한 고분자를 용매에 녹여 사용하는 것도 가능하다.In addition, two or more kinds of polymers may be used simultaneously. It is also possible to dissolve two or more kinds of different polymers in a solvent, or to dissolve and use polymers having different properties such as molecular weight in solvents.

컬렉터(4) 위에는 섬유기재 또는 필름이 위치할 수도 있다.On the collector 4, a fibrous base or film may be located.

상기 컬렉터(4)는 노즐(3)의 수평면, 하부면, 상부면 등에 위치하고, 일정한 선속도로 운동한다.The collector 4 is located on the horizontal, lower, upper surface, etc. of the nozzle 3, and moves at a constant linear velocity.

노즐(3)과 컬렉터(4) 표면은 금, 은, 텅스텐, 구리, 스테인레스 강 또는 이들의 합금 등이고, 보다 바람직 하기로는 스테인레스 강에 백금이 코팅된 것이 좋다.The surfaces of the nozzle 3 and the collector 4 are gold, silver, tungsten, copper, stainless steel, alloys thereof, and the like, and more preferably, platinum is coated on stainless steel.

본 발명은 전기방사된 나노섬유가 컬렉터 표면을 벗어나 다른 곳으로 휘산되는 것을 효과적으로 방지하여 나노섬유 웹의 집적성을 향상시키고 생산성을 높히는 장점이 있다.The present invention has the advantage of effectively preventing the electrospun nanofibers from being volatilized out of the collector surface to improve the integration and productivity of the nanofiber web.

이하 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to the following examples.

실시예Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 1에 도시된 공정에 따라 고분자 용액 주탱크(1) 내에 저장된 폴리아미드 용액을 고분자 용액 공급 펌프(2)를 통해 음극의 고전압이 걸린 상태로 노즐블록 상에 배열된 노즐(3) 들에 공급한 다음, 노즐(3)을 통해 노즐(3)에 공급된 고분자 용액을 양극의 고전압이 걸려 있는 컬렉터(4)를 향해 분사시킨 다음, 휘산되는 나노섬유를 컬렉터(4) 위에 적층하여 나노섬유 웹을 제조한다.According to the process shown in FIG. 1, the polyamide solution stored in the polymer solution main tank 1 is supplied to the nozzles 3 arranged on the nozzle block with the high voltage of the cathode applied through the polymer solution supply pump 2. Then, the polymer solution supplied to the nozzle 3 through the nozzle 3 is sprayed toward the collector 4 subjected to the high voltage of the anode, and then the volatilized nanofibers are laminated on the collector 4 to form a nanofiber web. To prepare.

이때, 노즐(3)로 고분자 용액을 분사함과 동시에 상기 노즐블록의 양측면에 설치된 공기분사장치(7)로 0.5㎏/㎠ 공기를 고분자 용액의 분사방향과 동일한 방향으로 분사하였다.At this time, 0.5 kg / cm 2 air was sprayed in the same direction as the injection direction of the polymer solution with the injection of the polymer solution through the nozzle 3 and the air injection device 7 provided on both sides of the nozzle block.

이때, 노즐(3)과 컬렉터(4)에는 220볼트, 60Hz의 교류전원이 연결된 전압 발 생장치(60)를 이용하여 55,000볼트의 전압을 걸었다.At this time, a voltage of 55,000 volts was applied to the nozzle 3 and the collector 4 by using a voltage generator 60 connected to an AC power source of 220 volts and 60 Hz.

상기 노즐(3)과 컬렉터(4)의 표면은 스테인레스 강에 백금이 코팅된 재질로 구성되며, 노즐(3)과 컬렉터(4)의 간격은 30㎝로 설정하였다.The surfaces of the nozzle 3 and the collector 4 are made of a material coated with platinum on stainless steel, and the distance between the nozzle 3 and the collector 4 is set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예Example 2 ~  2 ~ 실시예Example 6 6

컬렉터의 위치, 고분자 용액을 구성하는 고분자 및 용매 종류, 컬렉터 및 노즐에 가해지는 전압 및 노즐과 컬렉터간의 간격을 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.The nanofiber web was manufactured under the same conditions as in Example 1 except that the position of the collector, the polymer and solvent constituting the polymer solution, the voltage applied to the collector and the nozzle, and the distance between the nozzle and the collector were changed as shown in Table 1. It was.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예 1~ 실시예 6의 제조조건Manufacturing conditions of Example 1 to Example 6 구분division 컬렉터(4)의 위치Position of collector (4) 고분자
종류
Polymer
Kinds
용매menstruum 전압
(볼트)
Voltage
(volt)
노즐-컬렉터 간격(㎝)Nozzle-collector spacing (cm)
실시예 1Example 1 노즐(3)의 하부위
Above the lower part of the nozzle (3)
Chi
폴리아미드Polyamide 개미산Formic acid 55,00055,000 3030
실시예 2Example 2 노즐(3)의 하부위치Lower position of the nozzle (3) 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 3030 실시예 3Example 3 노즐(3)의 하부위치Lower position of the nozzle (3) 폴리아미드Polyamide 개미산Formic acid 70,00070,000 4545 실시예 4Example 4 노즐(3)과 수평위치Nozzle (3) and horizontal position 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 4545 실시예 5Example 5 노즐(3)과 수평위치Nozzle (3) and horizontal position 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 3030 실시예 6Example 6 노즐(3)과 수평위치Nozzle (3) and horizontal position 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 4545

비교실시예Comparative Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 4에 도시된 공정에 따라 고분자 용액 주탱크(1)내에 저장된 폴리아미드 용액을 고분자 용액 공급 펌프(2)를 통해 양극의 고전압이 걸려있는 다수의 노즐(3)에 공급한 다음, 이를 음극의 고전압이 걸려 있는 금속판의 컬렉터(4)를 향해 분사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 컬렉터 상에 적층하여 나노섬유 웹을 제조하였다.According to the process shown in FIG. 4, the polyamide solution stored in the polymer solution main tank 1 is supplied to the plurality of nozzles 3 in which the high voltage of the anode is applied through the polymer solution supply pump 2, and then, The nanofibers were volatilized by spraying toward the collector 4 of the metal plate under high voltage, and then the volatilized nanofibers were laminated on the collector to prepare a nanofiber web.

이때, 공기분사장치(7)를 사용해 공기를 고분자 용액의 분사방향으로 분사하는 것을 생략하였고, 다수의 노즐(3)과 컬렉터(4)에는 220볼트, 60Hz의 교류전원이 연결된 전압발생장치(6)를 이용하여 55,000 볼트의 전압을 걸어 주었고, 노즐 토출량은 0.5ml/분으로 하였다.At this time, it is omitted to inject the air in the injection direction of the polymer solution using the air injection device (7), a plurality of nozzles (3) and the collector (4) is a voltage generator (220 volts, 60Hz AC power is connected) ), A voltage of 55,000 volts was applied, and the nozzle discharge amount was 0.5 ml / min.

또한 노즐(3)과 컬렉터(4)의 간격은 30㎝로 설정하였다.In addition, the space | interval of the nozzle 3 and the collector 4 was set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예Comparative Example 2 ~ 2 ~ 비교실시예Comparative Example 6 6

고분자 용액을 구성하는 고분자 및 용매종류, 컬렉터 및 노즐들에 가해지는 전압, 노즐의 토출량 및 노즐과 컬렉터간의 간격을 표 2와 같이 변경한 것을 제외하고는 비교실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.Nanofiber web under the same conditions as in Comparative Example 1 except for changing the polymer and solvent constituting the polymer solution, the voltage applied to the collector and the nozzles, the discharge amount of the nozzle and the interval between the nozzle and the collector as shown in Table 2 Was prepared.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예 1 ~ 비교실시예 6의 제조조건Comparative Example 1 to Preparation Conditions of Comparative Example 6 구분division 공기분사
여부
Air spray
Whether
고분자종류Polymer Type 용매menstruum 전압
(볼트)
Voltage
(volt)
노즐
토출량
(ml/min)
Nozzle
Discharge
(ml / min)
노즐-컬렉터 간격
(㎝)
Nozzle-Collector Spacing
(Cm)
비교실시예 1Comparative Example 1 분사안함No spray 폴리아미드Polyamide 개미산Formic acid 55,00055,000 0.50.5 3030 비교실시예 2Comparative Example 2 분사안함No spray 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 0.60.6 3030 비교실시예 3Comparative Example 3 분사안함No spray 폴리아미드Polyamide 개미산Formic acid 70,00070,000 0.70.7 4545 비교실시예 4Comparative Example 4 분사안함No spray 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 0.80.8 4545 비교실시예 5Comparative Example 5 분사안함No spray 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 0.50.5 3030 비교실시예 6Comparative Example 6 분사안함No spray 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 0.80.8 4545

물성평가 결과Property evaluation result 구분division 투습도평균
(g/㎡/day)
Breathable average
(g / ㎡ / day)
투습도표준편차
(g/㎡/day)
Permeability Standard Deviation
(g / ㎡ / day)
결점
(개)
fault
(dog)
실시예1Example 1 14,00014,000 280280 00 실시예2Example 2 15,00015,000 300300 00 실시예3Example 3 17,00017,000 290290 00 실시예4Example 4 16,00016,000 310310 00 실시예5Example 5 14,00014,000 290290 00 실시예6Example 6 17,00017,000 270270 00 비교실시예1Comparative Example 1 18,00018,000 2,5002,500 1111 비교실시예2Comparative Example 2 18,00018,000 1,8001,800 1212 비교실시예3Comparative Example 3 15,00015,000 1,9001,900 66 비교실시예4Comparative Example 4 18,00018,000 1,5001,500 1010 비교실시예5Comparative Example 5 19,00019,000 2,2002,200 1212 비교실시예6Comparative Example 6 20,00020,000 2,0002,000 99

상기의 평가 결과에서 보는 바와 같이 실시예 1 내지 실시예 6으로 제조된 나노섬유 웹의 투습도 표준편차는 500g/㎡/day 이하로 매우 균일하다. 또, 나노 섬유 웹 상의 결점도 없는 매우 우수한 품질의 나노섬유 웹을 얻을 수 있었다.As can be seen from the above evaluation results, the standard deviation of the water vapor transmission rate of the nanofiber webs prepared in Examples 1 to 6 is very uniform, not more than 500 g / m 2 / day. In addition, a very good quality nanofiber web without defects on the nanofiber web was obtained.

그러나, 비교실시예 1 내지 비교실시예 6으로 제조된 나노섬유 웹은 실시예 1 내지 실시예 6과 거의 동일한 투습도를 나타내는 가운데 표준편차가 2,000g/㎡/day 이상으로 매우 높게 나타났다. 또, 결점도 6개 내지 12개 수준으로 실시예 1 내지 실시예 6으로 제조한 나노섬유 웹에 비교하여 매우 많다. 결점은 대부분 노즐에서 떨어진 고분자용액이며 품종 교체에 따른 노즐의 막힘의 영향도 발생하였다.However, the nanofiber webs prepared in Comparative Examples 1 to 6 exhibited substantially the same moisture permeability as Examples 1 to 6, but showed a very high standard deviation of 2,000 g / m 2 / day or more. In addition, there are also many defects compared to the nanofiber web prepared in Examples 1 to 6 at the level of 6 to 12. The defects are mostly polymer solutions away from the nozzles, and the clogging of nozzles has also been affected by varieties.

표 3의 물성들은 아래와 같은 방법으로 평가하였다.Properties of Table 3 were evaluated by the following method.

?나노섬유 웹의 ? Of nanofiber web 투습도Moisture permeability

나노섬유 웹의 투습도를 측정 부위를 달리하여 각 10회 평가하고 그 평균 값과 표준편차를 구하였다. 투습도 평가 방법은 원단에 일정한 압력으로 습기를 가하고 24시간 경과 후 통과한 수분의 g 수를 평가하는 것으로 한국공업규격 KS K 0594를 따른다.The water vapor permeability of the nanofiber web was evaluated 10 times with different measurement sites, and the average value and standard deviation were calculated. The method of evaluating moisture permeability is to evaluate the number of grams of moisture passed after 24 hours of application of moisture to a fabric under a certain pressure, according to Korean Industrial Standard KS K 0594.

?나노섬유 웹의 결점Drawbacks of Nanofiber Web

나노섬유 웹에 대해 폭 45cm, 길이 5m 내에서의 결점의 수를 육안검사를 통해 파악한다. 결점은 고분자 용액이 낙하한 지점의 수와 나노섬유가 도포되지 않은 지점의 수로 평가하였다.The number of defects within 45 cm wide and 5 m long for the nanofiber web is visually determined. The defects were evaluated by the number of points where the polymer solution fell and the number of points where no nanofibers were applied.

도 1 내지 도 2는 본 발명의 공정 개략도.1 to 2 are process schematic diagrams of the present invention.

도 3은 본 발명에서 사용하는 공기분사장치(7)의 사시개략도.3 is a perspective schematic view of the air injector 7 used in the present invention.

도 4는 종래 전기방사 공정 개략도.4 is a schematic diagram of a conventional electrospinning process.

도 5는 나노섬유 웹의 전자현미경 사진.5 is an electron micrograph of the nanofiber web.

* 도면 중 주요 부분 설명* Description of the main parts of the drawings

1 : 고분자 용액 주탱크 2: 고분자 용액 공급펌프1: Polymer solution main tank 2: Polymer solution supply pump

3 : 노즐 4 : 컬렉터3: nozzle 4: collector

5 : 전압전달로드 6 : 전압발생장치5: voltage transfer rod 6: voltage generator

7 : 공기분사장치 8 : 공기공급장치7: Air injection device 8: Air supply device

7a : 공기분사장치에 천공된 구멍7a: Hole punched in the air sprayer

Claims (6)

고분자 용액을 고전압이 걸려 있는 노즐(30)에 공급한 후 노즐(3)에 공급된 고분자 용액을 노즐(3)과 반대 전하를 띄는 고전압이 걸려 있는 컬렉터(4)를 향해 전기방사하여 나노섬유 웹을 제조함에 있어서, 상기 노즐들이 배열된 노즐블록의 양측면에 설치되어 있으며 내부가 중공(中空)이고 표면에 공기분사장치에 천공된 구멍(7a)들이 형성된 파이프(Pipe)인 공기분사장치(7)로 고분자 용액의 전기방사 방향으로 공기를 분사해 주는 것을 특징으로 하는 나노섬유 웹의 제조방법.After supplying the polymer solution to the nozzle 30 under high voltage, the polymer solution supplied to the nozzle 3 is electrospun toward the collector 4 under high voltage having a charge opposite to that of the nozzle 3. In manufacturing the air spraying device 7 which is installed on both sides of the nozzle block in which the nozzles are arranged, the inside is hollow and a pipe formed with holes 7a bored in the air spraying device on the surface thereof. Method of producing a nanofiber web, characterized in that for spraying air in the direction of electrospinning of the polymer solution. 삭제delete 제1항에 있어서, 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스 수지, 폴리비닐아세테이트 수지, 폴리비닐클로라이드 수지, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 및 폴리비닐리덴 플루오라이드 수지로 이루어진 그룹 중에서 선택된 1종인 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of claim 1, wherein the polymer solution is a polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose resin, polyvinylacetate resin, polyvinyl chloride resin, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile A method for producing a nanofiber web, characterized in that one selected from the group consisting of resins, polymethylmethacrylate resins, polystyrene resins, polyacrylic acid resins, polyolefin resins, wholly aromatic polyamide resins, and polyvinylidene fluoride resins. 1항에 있어서, 컬렉터(4)가 일정한 선속도로 운동하는 것을 특징으로 하는 나노섬유 웹의 제조방법.A method according to claim 1, characterized in that the collector (4) moves at a constant linear velocity. 1항에 있어서, 노즐(3) 및 컬렉터(4)의 표면은 금, 텅스텐, 은, 구리, 스테인레스 강 및 이들의 합금들 중에서 선택된 1종의 재질로 이루어져 있는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of claim 1, wherein the surface of the nozzle (3) and the collector (4) is made of a nanofiber web, characterized in that made of one material selected from gold, tungsten, silver, copper, stainless steel and alloys thereof. Way. 1항에 있어서, 컬렉터(4)위에 섬유기재 또는 필름이 위치하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, characterized in that a fibrous base or film is placed on the collector (4).
KR1020080078062A 2008-08-08 2008-08-08 Method of manufacturing nanofiber web KR101118080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080078062A KR101118080B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080078062A KR101118080B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Publications (2)

Publication Number Publication Date
KR20100019171A KR20100019171A (en) 2010-02-18
KR101118080B1 true KR101118080B1 (en) 2012-03-12

Family

ID=42089676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080078062A KR101118080B1 (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Country Status (1)

Country Link
KR (1) KR101118080B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696953B2 (en) * 2010-09-09 2014-04-15 Panasonic Corporation Support structure, nanofiber manufacturing apparatus using the support structure, and nanofiber manufacturing method using the support structure
CN105586644A (en) * 2015-12-10 2016-05-18 厦门大学 Electrospinning device for preparing fluffy nanometer fibers
KR102052640B1 (en) * 2018-08-10 2019-12-05 영남대학교 산학협력단 Apparatus for collecting electrospun fibers and electrospinning apparatus comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047873A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
JP2007303031A (en) * 2006-05-12 2007-11-22 Kato Tech Kk Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047873A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
JP2007303031A (en) * 2006-05-12 2007-11-22 Kato Tech Kk Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Also Published As

Publication number Publication date
KR20100019171A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
KR101147726B1 (en) Method of manufacturing nanofiber web
US7959848B2 (en) Method and device for producing electrospun fibers
Zhou et al. Manufacturing technologies of polymeric nanofibres and nanofibre yarns
KR101118081B1 (en) Method of manufacturing nanofiber web
KR100749965B1 (en) Water repellent and breathable fabric
KR20110026185A (en) Apparatus and method for manufacturing nanofiber web using electro-spinning
KR100702866B1 (en) Electrospinning device
CN201280610Y (en) Electrostatic spinning equipment used for large-scale production of nano fibre
KR101118080B1 (en) Method of manufacturing nanofiber web
KR20100019169A (en) Method of manufacturing nanofiber web
Mîndru et al. Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning
KR101118079B1 (en) Method of manufacturing nanofiber web
CN107974716B (en) The construction method of template assist three-dimensional nanostructure
CN114293322A (en) Preparation method of high-moisture-permeability low-water-permeability composite non-woven fabric
KR20100019172A (en) Method of manufacturing nanofiber web
EP3559323A1 (en) Method for producing fibres and nonwoven fabrics by solution blow spinning and nonwoven fabric produced thereby
KR101452251B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
KR100514572B1 (en) A process of preparing for the ultra fine staple fiber
KR20060022406A (en) A non-woven fabric composed of nanofiber with excellent water repellency and oil repellancy, and method of manufacturing for the same
KR101406264B1 (en) Hybrid nanofiber filter media
KR101386424B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
KR102121936B1 (en) Method for manufacturing of polystyrene fiber using electrospinning
KR102363555B1 (en) Submicron fiber membrane and manufacturing method thereof
KR20100003817A (en) Dustproof mask
KR20120077244A (en) Nozzle block for electrospinning

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 8