KR100514572B1 - A process of preparing for the ultra fine staple fiber - Google Patents

A process of preparing for the ultra fine staple fiber Download PDF

Info

Publication number
KR100514572B1
KR100514572B1 KR10-2001-0031586A KR20010031586A KR100514572B1 KR 100514572 B1 KR100514572 B1 KR 100514572B1 KR 20010031586 A KR20010031586 A KR 20010031586A KR 100514572 B1 KR100514572 B1 KR 100514572B1
Authority
KR
South Korea
Prior art keywords
short fibers
collector
spinning
polymer solution
present
Prior art date
Application number
KR10-2001-0031586A
Other languages
Korean (ko)
Other versions
KR20020093178A (en
Inventor
김용민
안경열
김찬
Original Assignee
이 아이 듀폰 디 네모아 앤드 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이 아이 듀폰 디 네모아 앤드 캄파니 filed Critical 이 아이 듀폰 디 네모아 앤드 캄파니
Priority to KR10-2001-0031586A priority Critical patent/KR100514572B1/en
Publication of KR20020093178A publication Critical patent/KR20020093178A/en
Application granted granted Critical
Publication of KR100514572B1 publication Critical patent/KR100514572B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 초극세 단섬유의 제조방법에 관한 것으로서, 고온의 폴리머용액을 고압 하에서 방사노즐(6)을 통해 콜렉터(8) 상에 토출·분사하여 초극세 단섬유를 제조함에 있어서, 전압부여 장치(12)를 사용하여 상기 방사노즐(6)과 콜렉트(8) 각각에 높은 전압을 부여하는 것을 특징으로 한다. 본 발명은 종래보다 섬도가 가는 초극세 단섬유를 높은 생산효율로 제조 할 수 있고, 안정성도 향상된다. 본 발명으로 제조된 단섬유들은 의료용 부직포, 산업용 부직포 등으로 사용된다.The present invention relates to a method for producing ultra-fine short fibers, wherein a high voltage polymer solution is produced by discharging and spraying a high temperature polymer solution on a collector 8 through a spinning nozzle 6 under high pressure to produce a ultra-fine short fibers. It is characterized in that a high voltage is applied to each of the spinning nozzle 6 and the collector (8). According to the present invention, ultrafine short fibers having finer fineness can be manufactured with high production efficiency, and stability is improved. The short fibers produced by the present invention are used as a medical nonwoven fabric, an industrial nonwoven fabric, and the like.

Description

초극세 단섬유의 제조방법 {A process of preparing for the ultra fine staple fiber}A process of preparing for the ultra fine staple fiber}

본 발명은 폴리머용액을 방사하여 초극세 단섬유를 제조하는 방법에 관한 것이다. 더욱 구체적으로 본 발명은 폴리머용액을 정전-용액 방사방법으로 방사하여 보다 세섬도를 갖는 초극세 단섬유를 높은 생산성으로 제조하는 방법에 관한 것이다. The present invention relates to a method for producing ultrafine short fibers by spinning a polymer solution. More specifically, the present invention relates to a method of producing ultrafine short fibers having finer fineness with high productivity by spinning a polymer solution by an electrostatic-solution spinning method.

본 발명에 있어서 초극세 단섬유는 섬도(직경)가 수십 나노미터 이하 수준인 단섬유(staple fiber)를 나타낸다. 초극세 단섬유들은 의료용 봉합 부직포, 산업용 필터 등 다양한 용도로 널리 사용되고 있다.In the present invention, ultrafine short fibers represent staple fibers having a fineness (diameter) of several tens of nanometers or less. Ultra-fine short fibers are widely used for a variety of applications, such as medical sealant nonwovens, industrial filters.

종래 초극세 단섬유들은 주로 정전방사(Electrostatic spinning)방법 또는 용액방사(Flash spinning) 방법으로 제조되어 왔다.Conventional ultrafine short fibers have been mainly produced by electrostatic spinning or electrospinning.

일본 공개특허 공보 평3-161502호 및 미국특허 4,323,525호 등에서는 정전방사 방법으로 초극세 단섬유를 제조하는 방법을 제안하고 있다.Japanese Unexamined Patent Application Publication No. Hei 3-161502 and U.S. Patent No. 4,323,525 and the like propose a method of producing ultra-fine short fibers by the electrostatic spinning method.

도 1은 정전방사 방법으로 초극세 단섬유를 제조하는 공정 개략도 이다. 정전 방사 방법은 폴리머용액(3)을 전계(電界) 내로 도입하여 단섬유를 제조하는 방법이다. 보다 구체적으로 + 전극을 갖는 방사노즐(5)을 통해 폴리머용액을 방사(분사)한 다음, 이를 - 전극을 갖는 셕선콜렉터(8)로 포집하여 초극세 단섬유를 제조하는 방법이다.1 is a process schematic diagram of producing ultra-fine short fibers by the electrospinning method. The electrospinning method is a method in which the polymer solution 3 is introduced into an electric field to produce short fibers. More specifically, the polymer solution is spun (sprayed) through the spinning nozzle 5 having the + electrode, and then collected by the X-ray collector 8 having the − electrode to produce ultrafine short fibers.

그러나 상기 정전 방사 방법은 단섬유의 섬도를 가늘게는 할 수 있으나 폴리머를 용해하는데 사용되는 용제가 불안정하여 대량생산에는 한계가 있고 생산성도 나쁜 문제가 있었다.However, the electrospinning method can reduce the fineness of the short fibers, but the solvent used to dissolve the polymer is unstable, so there is a limit in mass production and a bad productivity.

한편, 도 2는 종래 용액 방사 방법으로 초극세 단섬유를 제조하는 공정 개략도 이다. 용액 방사 방법은 저장탱크(1) 내 폴리머용액을 압력펌퍼(2)로 방사구금(5) 내로 유입시킨 다음 가열 및 가압하여 고온·고압의 폴리머용액으로 제조한 후, 이를 방사구금(6)을 통해 콜렉터(8)로 방사(분사)하는 방법으로 초극세 단섬유를 제조하는 방법이다. 그러나, 상기 용액 방사 방법은 생산성이 높고 대량생산이 가능하나, 높은 압력을 부여하기 때문에 위험하며 특히 단섬유의 섬도를 가늘게 하는 데에는 한계가 있었다.On the other hand, Figure 2 is a schematic diagram of a process for producing ultra-fine short fibers by the conventional solution spinning method. In the solution spinning method, the polymer solution in the storage tank (1) is introduced into the spinneret (5) by a pressure pump (2), and then heated and pressurized to produce a polymer solution of high temperature and high pressure. It is a method for producing ultra-fine short fibers by spinning (spraying) the collector 8 through. However, the solution spinning method is high in productivity and capable of mass production, but it is dangerous because of high pressure, and there is a limit in thinning the fineness of short fibers.

본 발명의 목적은 이와 같은 종래 문제점들을 해결하므로서 높은 생산성으로 나노미터 수준의 초극세 단섬유를 대량 생산 할 수 있는 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a manufacturing method capable of mass-producing ultrafine short fibers of nanometer level with high productivity while solving such conventional problems.

본 발명은 용액 방사 방법과 정전 방사 방법을 유기적으로 결합하므로서 나노수준의 초극세 단섬유를 높은 생산성으로 대량 제조 할 수 있는 방법을 제공하고자 한다. 또한 본 발명은 용액 방사시 높은 압력으로 인해 발생 될 수 있는 안전사고도 예방 할 수 있는 초극세 단섬유의 제조방법을 제공하고자 한다.The present invention is to provide a method that can mass-produce nanoscale ultrafine short fibers with high productivity by organically combining a solution spinning method and an electrostatic spinning method. In another aspect, the present invention is to provide a method for producing ultra-fine short fibers that can prevent safety accidents that may occur due to high pressure during solution spinning.

이와 같은 과제들을 달성하기 위한 본 발명의 초극세 단섬유의 제조방법은 고온의 폴리머용액을 고압 하에서 방사노즐(6)을 통해 콜렉터(8) 상에 토출·분사하여 초극세 단섬유를 제조함에 있어서, 전압부여 장치(12)를 사용하여 상기 방사노즐(6)과 콜렉트(8) 각각에 높은 전압을 부여하는 것을 특징으로 한다.The method for producing ultrafine short fibers of the present invention for achieving the above problems in the production of ultrafine short fibers by discharging and spraying a high temperature polymer solution on the collector 8 through a spinning nozzle 6 under high pressure, It is characterized by applying a high voltage to each of the radiation nozzle 6 and the collector 8 by using the imparting device 12.

이하, 첨부된 도면을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 통상의 용액 방사 방식으로 단섬유를 제조 할 때 전압 부여 장치(12)로 방사노즐(6)과 콜렉트(8)에 높은 전압을 부여하므로서 용액 방사 방식과 정전 방사 방식을 유기적으로 결합시키는 것을 특징으로 한다.The present invention provides a high voltage to the spinning nozzle (6) and the collector (8) by the voltage applying device (12) when manufacturing short fibers in a conventional solution spinning method to organically combine the solution spinning method and the electrostatic spinning method It is characterized by.

도 3은 본 발명의 공정 계략도 이다.3 is a process schematic diagram of the present invention.

본 발명은 먼저, 폴리머는 용제에 용해하여 폴리머용액(3)을 제조한 다음 저장탱크(1)에 저장한다. 폴리머로는 폴리비닐알콜, 폴리비닐부틸렌, 폴리아크릴로니트릴, 폴리에틸렌테레프탈레이트, 폴리테트라플루오로에틸렌, 폴리우레탄, 폴리에스테르, 폴리아미드 등이 사용 될 수 있다. 용매는 폴리머에 따라 해당 폴리머를 용해 할 수 있는 용매로 적절하게 선택, 사용한다.In the present invention, the polymer is first dissolved in a solvent to prepare a polymer solution (3), and then stored in a storage tank (1). As the polymer, polyvinyl alcohol, polyvinyl butylene, polyacrylonitrile, polyethylene terephthalate, polytetrafluoroethylene, polyurethane, polyester, polyamide, and the like may be used. The solvent is appropriately selected and used as a solvent capable of dissolving the polymer depending on the polymer.

상기 폴리머용액에는 해당 폴리머와 상용성이 있는 수지, 가소제, 자외선안정제, 가교제, 경화제, 반응개시제 등의 첨가제를 혼합시킬 수도 있다.The polymer solution may be mixed with additives such as resins, plasticizers, ultraviolet stabilizers, crosslinking agents, curing agents, and reaction initiators that are compatible with the polymer.

이와 같이 제조되어 저장탱크(1)에 저장된 폴리머용액을 압력펌퍼(2)를 사용하여 방사구금(5) 내로 이송시킨 다음, 가열 및 가압하여 방사구금(5) 내 폴리머용액이 고온/고압 상태가 되도록 한다. 방사구금(5) 내 중간부분에는 감압오리피스(4)를 설치하여 두는 것이 바람직 하다.The polymer solution prepared as described above and stored in the storage tank 1 is transferred into the spinneret 5 using a pressure pump 2, and then heated and pressurized to obtain a polymer solution in the spinneret 5 at a high temperature / high pressure. Be sure to In the middle portion of the spinneret (5) it is preferable to install a decompression orifice (4).

다음으로, 고온/고압 상태의 폴리머(3)를 방사노즐(6)을 통해 전계(電界) 내로 방사한다. 상기 전계(電界)는 전압이 걸려있는 방사노즐(6)과 콜렉터(8) 사이에 형성된다. 구체적으로 상기 방사노즐(6)과 콜렉터(8)에는 전압 부여 장치(12)를 사용하여 전압을 부여한다. Next, the polymer 3 in a high temperature / high pressure state is spun into the electric field through the spinning nozzle 6. The electric field is formed between the radiating nozzle 6 and the collector 8 in which voltage is applied. Specifically, voltage is applied to the radiation nozzle 6 and the collector 8 by using the voltage applying device 12.

이로인해 이들 사이에는 전계(電界)가 형성되어 진다. 이때 방사노즐(6)에는 + 전극을, 콜렉터(8)에는 - 전극을 부여한다. 방사노즐(6)과 콜렉터(8)에 부여되는 전압을 10~60KV로 조절하는 것이 단섬유의 초극세화에 바람직 하다.As a result, an electric field is formed between them. At this time, the positive electrode is given to the radiation nozzle 6 and the negative electrode is provided to the collector 8. It is preferable to adjust the voltages applied to the spinning nozzle 6 and the collector 8 to 10 to 60 KV for ultrafine short fibers.

또한 방사노즐(6)과 콜렉터(8)에 서로 동일한 전압을 부여 할 수도 있고, 서로 다른 전압을 부여 할 수도 있다.In addition, the radiating nozzle 6 and the collector 8 may be provided with the same voltage, or may have different voltages.

상기 방사구금(5)의 하단부에는 절연재층(11)을 설치, 사용하여 방사노즐(6)에 부여되는 전압이 방사구금(5) 상단부로 전달되는 것을 방지하는 것이 작업안전성 확보에 바람직 하다. 상기 절연재층(11)은 석면등의 절연재료로 이루어지며 두께는 5~10㎝인것이 바람직하다. 상기 콜렉터(8)는 공기를 흡입하는 셕선 기능을 보유하여 방사된 단섬유들을 웹(WEB) 상태로 포집한다. 방사실(Spinning room) 일측에는 용제 회수 장치(10)를 설치하여 방사후 용제를 회수한다.The lower end of the spinneret 5 is provided with an insulating material layer 11 to prevent the voltage applied to the spinneret 6 from being transferred to the top of the spinneret 5. The insulating material layer 11 is made of an insulating material such as asbestos, the thickness is preferably 5 ~ 10cm. The collector 8 has an X-ray function to suck air and collects the spun short fibers into a web state. Spinning room (Spinning room) is installed on one side of the solvent recovery device 10 to recover the solvent after spinning.

본 발명은 고온/고압 상태의 폴리머용액을 전계(電界) 내로 분사하기 때문에 단섬유(7)의 섬도를 50 나노미터 이하 수준으로 가늘게 할 수 있다. 또한 본 발명은 종래의 용액 방사 공정을 대부분 그대로 채택하고 있기 때문에 생산성이 높고 대량생산도 가능하다. 더욱 본 발명은 방사구금(5) 내에 감압 오리피스(4)를 설치하여 안전사고도 효과적으로 예방 할 수 있다.In the present invention, since the polymer solution in a high temperature / high pressure state is injected into an electric field, the fineness of the short fibers 7 can be reduced to a level of 50 nanometers or less. In addition, since the present invention adopts a conventional solution spinning process as it is, the productivity is high and mass production is also possible. In addition, the present invention can effectively prevent safety accidents by installing a pressure reducing orifice (4) in the spinneret (5).

이하, 실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited only to the following examples.

실시예 1Example 1

섬유형성용 폴리비닐부틸렌(독일 헥스트사 B60 T)을 이소프로필알콜에 용해하여 6% 폴리머용액을 제조한다. 상기 폴리머용액을 도 3의 방사구금(5)에 공급하여 열과 압력을 가한 후 + 전극이 가해지는 방사노즐(6)을 통해 - 전극이 가해지는 콜렉터(8)는 방사하여 단섬유를 제조 하였다. 이때 상기 방사구금(5)에는 절연재층(11)을 설치 하였고, 방사실(9)에는 용제회수장치(10)를 설치·사용 하였다. 또한 방사노즐(6)에는 25KV 전압을 콜렉터(8)에는 10KV 전압을 각각 부여 하였다. 제조된 단섬유의 섬도(평균직경)는 10나노미터, 생산효율은 95.5% 이었다.A 6% polymer solution is prepared by dissolving polyvinylbutylene for fiber formation (Hex German B60 T) in isopropyl alcohol. After supplying the polymer solution to the spinneret 5 of FIG. 3, heat and pressure were applied, and the collector 8 to which the electrode was applied was radiated through a spinneret 6 to which the + electrode was applied. In this case, the insulating material layer 11 was installed in the spinneret 5 and the solvent recovery device 10 was installed and used in the spinning chamber 9. In addition, a 25KV voltage was applied to the radiation nozzle 6, and a 10KV voltage was applied to the collector 8, respectively. The fineness (average diameter) of the prepared short fibers was 10 nanometers, and the production efficiency was 95.5%.

실시예 2Example 2

섬유형성용 폴리비닐알콜을 이소프로필알콜에 용해하여 6% 폴리머용액을 제조한다. 상기 폴리머용액을 도 3의 방사구금(5)에 공급하여 열과 압력을 가한 후 + 전극이 가해지는 방사노즐(6)을 통해 - 전극이 가해지는 콜렉터(8)는 방사하여 단섬유를 제조 하였다. 이때 상기 방사구금(5)에는 절연재층(11)을 설치 하였고, 방사실(9)에는 용제회수장치(10)를 설치·사용 하였다. 또한 방사노즐(6)에는 25KV 전압을 콜렉터(8)에는 10KV 전압을 각각 부여 하였다. 제조된 단섬유의 섬도(평균직경)는 8나노미터, 생산효율은 96.7% 이었다.6% polymer solution was prepared by dissolving polyvinyl alcohol for fiber formation in isopropyl alcohol. After supplying the polymer solution to the spinneret 5 of FIG. 3, heat and pressure were applied, and the collector 8 to which the electrode was applied was radiated through a spinneret 6 to which the + electrode was applied. In this case, the insulating material layer 11 was installed in the spinneret 5 and the solvent recovery device 10 was installed and used in the spinning chamber 9. In addition, a 25KV voltage was applied to the radiation nozzle 6, and a 10KV voltage was applied to the collector 8, respectively. The fineness (average diameter) of the prepared short fibers was 8 nanometers, and the production efficiency was 96.7%.

실시예 3Example 3

섬유형성용 폴리우레탄을 디메틸포름아미드/메틸에틸케톤 혼합 용매에 용해하여 6% 폴리머용액을 제조한다. 상기 폴리머용액을 도 3의 방사구금(5)에 공급하여 열과 압력을 가한 후 + 전극이 가해지는 방사노즐(6)을 통해 - 전극이 가해지는 콜렉터(8)는 방사하여 단섬유를 제조 하였다. 이때 상기 방사구금(5)에는 절연재층(11)을 설치 하였고, 방사실(9)에는 용제회수장치(10)를 설치·사용 하였다. 또한 방사노즐(6)에는 25KV 전압을 콜렉터(8)에는 10KV 전압을 각각 부여 하였다. 제조된 단섬유의 섬도(평균직경)는 5나노미터, 생산효율은 97.2% 이었다.A 6% polymer solution was prepared by dissolving the fiber-forming polyurethane in a dimethylformamide / methylethylketone mixed solvent. After supplying the polymer solution to the spinneret 5 of FIG. 3, heat and pressure were applied, and the collector 8 to which the electrode was applied was radiated through a spinneret 6 to which the + electrode was applied. In this case, the insulating material layer 11 was installed in the spinneret 5 and the solvent recovery device 10 was installed and used in the spinning chamber 9. In addition, a 25KV voltage was applied to the radiation nozzle 6, and a 10KV voltage was applied to the collector 8, respectively. The fineness (average diameter) of the prepared short fibers was 5 nanometers, and the production efficiency was 97.2%.

본 발명은 단섬유의 섬도를 수십 나노미터 이하 수준으로 극세화 시킬 수 있으며, 높은 생산성으로 상기 초극세 단섬유를 대량 생산 할 수 있으며, 고압으로 인한 안전사고도 예방 할 수 있다.The present invention can reduce the fineness of the short fibers to the level of several tens of nanometers or less, can produce a large amount of the ultra-fine short fibers with high productivity, and can prevent safety accidents due to high pressure.

도 1은 종래 정전방사(Electrostatic spinning) 공정 개략도1 is a schematic diagram of a conventional electrostatic spinning process

도 2는 종래 용액방사(Flash spinning)공정 개략도Figure 2 is a schematic view of a conventional spinning solution (Flash spinning) process

도 3은 본 발명의 방사공정 개략도.3 is a schematic view of the spinning process of the present invention.

※ 도면중 주요분에 대한 부호설명※ Code explanation for main part in drawing

1 : 폴리머용액 저장탱크 2 : 압력펌퍼 3 : 폴리머용액1 Polymer solution storage tank 2 Pressure pump 3 Polymer solution

4 : 감압오리피스 5 : 방사구금 6 : 방사노즐4: decompression orifice 5: spinneret 6: spinning nozzle

7 : 단섬유 8 : 콜렉터(collector) 9 : 방사실(spinning room)7: short fiber 8: collector 9: spinning room

10 : 용제회수장치 11 : 절연재층 12 : 전압부여장치10: solvent recovery device 11: insulation layer 12: voltage applying device

Claims (4)

고온의 폴리머용액을 고압 하에서 방사노즐(6)을 통해 콜렉터(8) 상에 토출·분사하여 초극세 단섬유를 제조함에 있어서, 전압부여 장치(12)를 사용하여 상기 방사노즐(6)과 콜렉트(8) 각각에 높은 전압을 부여하고, 방사구금(5)하단부에 절연재층(11)을 설치, 사용하는 것을 특징으로 하는 초극세 단섬유의 제조방법.In the manufacture of ultra-fine short fibers by discharging and spraying a high temperature polymer solution on the collector 8 through the spinning nozzle 6 under a high pressure, the spinning nozzle 6 and the collector (using the voltage applying device 12) are used. 8) A method for producing ultrafine short fibers, wherein a high voltage is applied to each of them, and an insulating material layer 11 is provided and used at the lower end of the spinneret 5. 삭제delete 1항에 있어서, 방사노즐(6)과 콜렉터(8)에 부여되는 전압이 10~60KV인 것을 특징으로 하는 초극세 단섬유의 제조방법.The method for producing ultrafine short fibers according to claim 1, wherein the voltage applied to the spinning nozzle (6) and the collector (8) is 10 to 60 KV. 1항에 있어서, 방사노즐(6)에는 + 전극을 부여하고 콜렉터(8)에는 - 전극을 부여하는 것을 특징으로 하는 초극세 단섬유의 제조방법.The method of claim 1, wherein the radiation nozzle (6) is provided with the + electrode and the collector (8) with the-electrode.
KR10-2001-0031586A 2001-06-07 2001-06-07 A process of preparing for the ultra fine staple fiber KR100514572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031586A KR100514572B1 (en) 2001-06-07 2001-06-07 A process of preparing for the ultra fine staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031586A KR100514572B1 (en) 2001-06-07 2001-06-07 A process of preparing for the ultra fine staple fiber

Publications (2)

Publication Number Publication Date
KR20020093178A KR20020093178A (en) 2002-12-16
KR100514572B1 true KR100514572B1 (en) 2005-09-14

Family

ID=27708008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0031586A KR100514572B1 (en) 2001-06-07 2001-06-07 A process of preparing for the ultra fine staple fiber

Country Status (1)

Country Link
KR (1) KR100514572B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549140B1 (en) * 2002-03-26 2006-02-03 이 아이 듀폰 디 네모아 앤드 캄파니 A electro-blown spinning process of preparing for the nanofiber web
KR100458946B1 (en) 2002-08-16 2004-12-03 (주)삼신크리에이션 Electrospinning apparatus for producing nanofiber and electrospinning nozzle pack for the same
KR100476461B1 (en) * 2002-08-26 2005-03-17 김학용 A process of preparing for non-woven fabric composed nano fiber
KR100476462B1 (en) * 2002-09-13 2005-03-17 김학용 A non-woven fabric composed of nano fiber with biomimetic like structure, and a process of preparing for the same
DE60329922D1 (en) 2002-09-17 2009-12-17 Du Pont EXTREMELY LIQUID, UNIQUE FABRIC
KR100491228B1 (en) * 2003-02-24 2005-05-24 김학용 A process of preparing continuous filament composed of nano fiber
US7887311B2 (en) * 2004-09-09 2011-02-15 The Research Foundation Of State University Of New York Apparatus and method for electro-blowing or blowing-assisted electro-spinning technology
CN114808162B (en) * 2022-04-28 2023-05-26 上海迅江科技有限公司 Flash spinning/electrostatic spinning composite superfine nanofiber material and preparation method thereof
KR20240036958A (en) * 2022-09-14 2024-03-21 (주)씨앤투스 Flash―Spun Apparatus with Ionizer
KR20240036957A (en) * 2022-09-14 2024-03-21 (주)씨앤투스 Flash―Spun Apparatus using Upper Cover

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689186A (en) * 1978-10-10 1987-08-25 Imperial Chemical Industries Plc Production of electrostatically spun products
KR910005019A (en) * 1989-08-21 1991-03-29 월터 이. 파블리크 Donut Oil Cooler with Filter
JPH03161502A (en) * 1989-11-20 1991-07-11 I C I Japan Kk Production of electrostatic spun yarn
US5643524A (en) * 1994-12-30 1997-07-01 E. I. Du Pont De Nemours And Company Corona charging of flash spun plexifilamentary film-fibril webs in poor charging environments
KR100241667B1 (en) * 1993-03-26 2000-04-01 미리암디메코너헤이 Process for improving electrostatic charging of plexifilaments
US6110590A (en) * 1998-04-15 2000-08-29 The University Of Akron Synthetically spun silk nanofibers and a process for making the same
KR20020051066A (en) * 2000-12-22 2002-06-28 박호군 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689186A (en) * 1978-10-10 1987-08-25 Imperial Chemical Industries Plc Production of electrostatically spun products
KR910005019A (en) * 1989-08-21 1991-03-29 월터 이. 파블리크 Donut Oil Cooler with Filter
JPH03161502A (en) * 1989-11-20 1991-07-11 I C I Japan Kk Production of electrostatic spun yarn
KR100241667B1 (en) * 1993-03-26 2000-04-01 미리암디메코너헤이 Process for improving electrostatic charging of plexifilaments
US5643524A (en) * 1994-12-30 1997-07-01 E. I. Du Pont De Nemours And Company Corona charging of flash spun plexifilamentary film-fibril webs in poor charging environments
US6110590A (en) * 1998-04-15 2000-08-29 The University Of Akron Synthetically spun silk nanofibers and a process for making the same
KR20020051066A (en) * 2000-12-22 2002-06-28 박호군 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor

Also Published As

Publication number Publication date
KR20020093178A (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US9279203B2 (en) Manufacturing device and the method of preparing for the nanofibers via electro blown spinning process
KR101260529B1 (en) Improved electroblowing web formation process
KR100780346B1 (en) An electro-centrifugal spinning apparatus and a method for mass production of nano-fibers using the same
KR101260528B1 (en) Electroblowing web formation process
KR100514572B1 (en) A process of preparing for the ultra fine staple fiber
US20060012084A1 (en) Electroblowing web formation process
KR101816733B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
KR20110087031A (en) The method for preparation of uniformly separated nanofilament or microfiber
KR20110077915A (en) Method for controlling electrospinning conditions of a electrospinning device
US20050048274A1 (en) Production of nanowebs by an electrostatic spinning apparatus and method
KR101118081B1 (en) Method of manufacturing nanofiber web
EP2963161A1 (en) Spinning nozzle, process for producing fibrous mass, fibrous mass, and paper
KR100453670B1 (en) A process of preparing for the ultra fine staple fiber
KR100864526B1 (en) A manufacturing device and the method of preparing forthe nanofibers
KR20200108128A (en) Spinning device for multi-components composited nanofibers and method of manufacturing multi-components composited nanofibers thereby
KR101816735B1 (en) Method of manufacturing high transparent polyester nanofibers sheet
KR20100019171A (en) Method of manufacturing nanofiber web
KR20120077244A (en) Nozzle block for electrospinning
KR20110035056A (en) Nozzle block for electrospining and electrospinning device comprising the same
Tuhmaz et al. Study the Effect of Electrospinning Device Room Temperature on Electro-spun PVA Nano-fibers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
N231 Notification of change of applicant
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20040517

Effective date: 20050728

Free format text: TRIAL NUMBER: 2004101002117; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20040517

Effective date: 20050728

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130819

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140826

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 14