JP2007303031A - Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same - Google Patents

Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same Download PDF

Info

Publication number
JP2007303031A
JP2007303031A JP2006133501A JP2006133501A JP2007303031A JP 2007303031 A JP2007303031 A JP 2007303031A JP 2006133501 A JP2006133501 A JP 2006133501A JP 2006133501 A JP2006133501 A JP 2006133501A JP 2007303031 A JP2007303031 A JP 2007303031A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
electrospinning
solvent solution
resin solvent
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006133501A
Other languages
Japanese (ja)
Inventor
Yukio Kobayashi
幸夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATO TECH KK
Original Assignee
KATO TECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATO TECH KK filed Critical KATO TECH KK
Priority to JP2006133501A priority Critical patent/JP2007303031A/en
Publication of JP2007303031A publication Critical patent/JP2007303031A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle for electrospinning, which provides a fine thermoplastic resin fiber having a uniform diameter by a solution electrospinning method and to provide a method for producing a fine thermoplastic resin fiber using the same. <P>SOLUTION: The nozzle for electrospinning has a constitution that a groove-shaped storage tank of a solution of a thermoplastic resin in a solvent and a lip part reaching from one end part of the storage tank of a solution of a thermoplastic resin in a solvent to one end of a conductive block body are formed on the surface of the conductive block body and the lip part is equipped with a plurality of fine flow channels which reaches from the storage tank of a solution of a thermoplastic resin in a solvent to the one end part of the conductive block body and overflows the solution of the thermoplastic resin in the solvent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エレクトロスピニグ用ノズル及びそれを用いて溶液エレクトロスピニングにより微細熱可塑性樹脂繊維を製造する方法に関する。   The present invention relates to an electrospinning nozzle and a method for producing fine thermoplastic resin fibers by solution electrospinning using the nozzle.

一般に、ナノファイバーと呼ばれる繊維径がナノオーダーの微細繊維は表面積が非常に大きく、電池セパレーター、電磁波シールド材、フィルター、人工皮革、人工血管、細胞培養基材、ICチップ、有機EL、太陽電池等の用途に期待されている。   In general, fine fibers called nanofibers with a nano-order fiber diameter have a very large surface area, such as battery separators, electromagnetic shielding materials, filters, artificial leather, artificial blood vessels, cell culture substrates, IC chips, organic EL, solar cells, etc. Expected to be used for

しかし、ナノファイバーは繊維径がナノオーダーと非常に細いため、普通の繊維を製造する紡糸方法では製造することができないので、最近、エレクトロスピニング法により製造することが盛んに研究されている。   However, since nanofibers are very thin in the order of nanometers, they cannot be produced by a spinning method for producing ordinary fibers. Therefore, production by an electrospinning method has been actively studied recently.

エレクトロスピニング法としては、溶液エレクトロスピニング法が最も一般的であり、図4に示したように、保存タンク10に熱可塑性樹脂を溶媒に溶解した熱可塑性樹脂溶媒溶液を収納し、保存タンク10の底部に設けられたノズル11から、熱可塑性樹脂溶媒溶液14をターゲット12に向けて垂らすと共にノズル11がプラス電極になり、ターゲット12がマイナス電極になるように高電圧発生器13から5〜100kVの高電圧を印加する方法が知られている(例えば、非特許文献1、2参照)。
加工技術 Vol.40,No.2(2005)101〜103 加工技術 Vol.40,No.3(2005)167〜171
As the electrospinning method, the solution electrospinning method is the most common. As shown in FIG. 4, a thermoplastic resin solvent solution obtained by dissolving a thermoplastic resin in a solvent is stored in the storage tank 10. From the nozzle 11 provided at the bottom, the thermoplastic resin solvent solution 14 is hung toward the target 12 and the nozzle 11 becomes a positive electrode, and the target 12 becomes a negative electrode. A method of applying a high voltage is known (for example, see Non-Patent Documents 1 and 2).
Processing technology Vol. 40, no. 2 (2005) 101-103 Processing technology Vol. 40, no. 3 (2005) 167-171

上記溶液エレクトロスピニング法において、ノズルの先端から1本の熱可塑性樹脂溶媒溶液をスプレーするのでは生産性が低いので、ノズル先端に多数の孔を形成し、多数本の熱可塑性樹脂溶媒溶液をスプレーして、一度に多数の微細繊維を製造することも検討されている。   In the solution electrospinning method, spraying a single thermoplastic resin solvent solution from the tip of the nozzle is low in productivity, so a large number of holes are formed at the nozzle tip and a large number of thermoplastic resin solvent solutions are sprayed. Thus, it has been studied to produce a large number of fine fibers at a time.

しかしながら、ノズルの先端付近に形成した多数の孔から熱可塑性樹脂溶媒溶液をスプレーする場合、孔の形状、大きさが同一であっても、スプレーされた熱可塑性樹脂溶媒溶液の大きさがばらつき、その結果エレクトロスピニングされて得られた微細熱可塑性樹脂繊維の直径のばらつきがあるという欠点があった。   However, when spraying the thermoplastic resin solvent solution from a large number of holes formed near the tip of the nozzle, the size of the sprayed thermoplastic resin solvent solution varies even if the shape and size of the holes are the same, As a result, there has been a drawback in that there is a variation in diameter of the fine thermoplastic resin fibers obtained by electrospinning.

本発明の目的は、上記問題点に鑑み、溶液エレクトロスピニング法によって均一な直径を有する微細熱可塑性樹脂繊維を得ることができるエレクトロスピニグ用ノズル及びそれを用いた微細熱可塑性樹脂繊維の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide an electrospinning nozzle capable of obtaining a fine thermoplastic resin fiber having a uniform diameter by a solution electrospinning method, and a method for producing a fine thermoplastic resin fiber using the same. Is to provide.

本発明のエレクトロスピニグ用ノズルは、導電性ブロック状体の上面に、溝状の熱可塑性樹脂溶媒溶液貯留槽と、該熱可塑性樹脂溶媒溶液貯留槽の一端部から導電性ブロック状体の一端部に至るリップ部が形成され、該リップ部に熱可塑性樹脂溶媒溶液貯留槽から導電性ブロック状体の一端部に至る、熱可塑性樹脂溶媒溶液を溢流させるための微細流路が複数形成されていることを特徴とする。   The nozzle for electrospinning of the present invention has a groove-like thermoplastic resin solvent storage tank on the upper surface of the conductive block, and one end of the conductive block from one end of the thermoplastic resin solvent storage tank. A lip portion is formed, and a plurality of fine channels for overflowing the thermoplastic resin solvent solution from the thermoplastic resin solvent storage tank to one end portion of the conductive block-like body are formed in the lip portion. It is characterized by.

本発明のエレクトロスピニグ用ノズルを図面を参照して説明する。図1は本発明のエレクトロスピニグ用ノズルの一例を示す平面図であり、図2は正面図であり、図3は図1におけるA−A断面図である。   The electrospinning nozzle of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing an example of an electrospinning nozzle according to the present invention, FIG. 2 is a front view, and FIG. 3 is a cross-sectional view taken along line AA in FIG.

図中1は、平面視略長方形(長さ65mm、幅25mm)の導電性ブロック状体であり、その上面に半円状(長さ50mm、幅12mm、深さ6mm)の熱可塑性樹脂溶媒溶液貯留槽2が形成されている。熱可塑性樹脂溶媒溶液貯留槽2より前方向(図1において下側)の導電性ブロック状体1には、熱可塑性樹脂溶媒溶液貯留槽2の前側端部から導電性ブロック状体1の前側端部に至るリップ部(長さ50mm、幅6mm)3が水平に形成されている。   In the figure, 1 is a conductive block-like body having a substantially rectangular shape (length 65 mm, width 25 mm) in plan view, and a thermoplastic resin solvent solution having a semicircular shape (length 50 mm, width 12 mm, depth 6 mm) on the upper surface thereof. A storage tank 2 is formed. The conductive block-like body 1 in the front direction (lower side in FIG. 1) from the thermoplastic resin solvent storage tank 2 has a front end of the conductive block-like body 1 from the front end portion of the thermoplastic resin solvent solution storage tank 2. The lip part (length 50mm, width 6mm) 3 which reaches a part is formed horizontally.

リップ部3には、熱可塑性樹脂溶媒溶液貯留槽2から導電性ブロック状体1の前方端部に至る、熱可塑性樹脂溶媒溶液を溢流させるための、断面半円状(直径1.0mm)の微細流路4、4・・が略5mm間隔に7本形成されている。   The lip portion 3 has a semicircular cross section (diameter: 1.0 mm) for overflowing the thermoplastic resin solvent solution from the thermoplastic resin solvent solution storage tank 2 to the front end of the conductive block-like body 1. Are formed at intervals of approximately 5 mm.

又、熱可塑性樹脂溶媒溶液貯留槽2より後方向(図1において上側)の導電性ブロック状体1には、熱可塑性樹脂溶媒溶液貯留槽2の略中央に位置するように熱可塑性樹脂溶媒溶液供給口5が貫通されている。尚、導電性ブロック状体1の後方側壁に突出部51が形成され、導電性ブロック状体1に形成された熱可塑性樹脂溶媒溶液供給口5が連通するように貫通されており、この突出部51に熱可塑性樹脂溶媒溶液を供給するパイプを接続することにより、熱可塑性樹脂溶媒溶液を熱可塑性樹脂溶媒溶液貯留槽2に供給可能になされている。   Further, the thermoplastic resin solvent solution tank 2 is located at the approximate center of the thermoplastic resin solvent solution storage tank 2 in the conductive block-like body 1 in the rearward direction (upper side in FIG. 1) of the thermoplastic resin solvent solution storage tank 2. The supply port 5 is penetrated. In addition, the protrusion part 51 is formed in the back side wall of the electroconductive block-like body 1, and it penetrates so that the thermoplastic resin solvent solution supply port 5 formed in the electroconductive block-like body 1 may communicate, This protrusion part By connecting a pipe for supplying a thermoplastic resin solvent solution to 51, the thermoplastic resin solvent solution can be supplied to the thermoplastic resin solvent storage tank 2.

上記導電性ブロック状体1は、溶液エレクトロスピニング法によって微細熱可塑性樹脂繊維を製造する際にはプラス電極となるように高電圧が印加されるので導電性が優れている材料で形成されるのが好ましく、例えば、銅、鉄、ステンレススチール、金、銀、しんちゅう等が挙げられる。   The conductive block-like body 1 is formed of a material having excellent conductivity because a high voltage is applied so as to be a positive electrode when producing a fine thermoplastic resin fiber by a solution electrospinning method. Are preferable, and examples thereof include copper, iron, stainless steel, gold, silver, and brass.

熱可塑性樹脂溶媒溶液貯留槽2の形状は、溝状であれば特に限定されないが、熱可塑性樹脂溶媒溶液を貯留でき、且つ、熱可塑性樹脂溶媒溶液を各微細流路4、4・・を通って同一速度でリップ部3先端から下方に垂らすことができるのが好ましいので、樋状が好ましく、その前側端部とリップ部3の前側端部は略平行になされているのが好ましい。   The shape of the thermoplastic resin solvent solution storage tank 2 is not particularly limited as long as it is groove-shaped, but the thermoplastic resin solvent solution can be stored and the thermoplastic resin solvent solution can be passed through each of the fine channels 4, 4. It is preferable that the lip portion 3 can be hung downward from the tip of the lip portion 3 at the same speed, so that a hook shape is preferable, and the front end portion of the lip portion 3 and the front end portion of the lip portion 3 are preferably substantially parallel.

微細流路4は熱可塑性樹脂溶媒溶液貯留槽2から溢れた熱可塑性樹脂溶媒溶液をリップ部3の前側端部から溢流させる流路であり、溢れでた熱可塑性樹脂溶媒溶液に高電圧を印加して溶液エレクトロスピニング法によって微細熱可塑性樹脂繊維を製造するのであるから、均一な太さの微細熱可塑性樹脂繊維を得るには各微細流路から溢れる熱可塑性樹脂溶媒溶液の量は同一が好ましい。   The fine flow path 4 is a flow path for overflowing the thermoplastic resin solvent solution overflowing from the thermoplastic resin solvent storage tank 2 from the front end portion of the lip portion 3, and applying a high voltage to the overflowing thermoplastic resin solvent solution. Since the fine thermoplastic resin fibers are produced by applying the solution electrospinning method, the amount of the thermoplastic resin solvent solution overflowing from each fine flow path is the same in order to obtain fine thermoplastic resin fibers having a uniform thickness. preferable.

従って、各微細流路4、4・・の長さ、断面形状及び断面積が略同一であるのが好ましい。微細流路4の断面形状は、特に限定されず、例えば、半円形状、長円形状、三角形状、四角形状、五角形状、六角形状等が挙げられ、半円形状が好ましい。   Therefore, it is preferable that the length, the cross-sectional shape, and the cross-sectional area of each of the fine channels 4, 4,. The cross-sectional shape of the microchannel 4 is not particularly limited, and examples thereof include a semicircular shape, an oval shape, a triangular shape, a quadrangular shape, a pentagonal shape, and a hexagonal shape, and a semicircular shape is preferable.

又、微細流路4の幅は、狭くなると垂下される熱可塑性樹脂溶媒溶液が細くなりエレクトロスピニングできなくなったり、生産性が低下し、逆に広くなると熱可塑性樹脂溶媒溶液が太くなり、得られる熱可塑性樹脂繊維の直径が太くなるので、0.2〜2.0mmが好ましい。微細流路4の長さ(リップ部3の幅)は、特に限定されないが、長くなると溶媒が蒸発し熱可塑性樹脂溶媒溶液を均一に溢流させにくくなるので、20mm以下が好ましく、より好ましくは3〜10mmである。   Further, if the width of the fine flow path 4 is narrowed, the drooping thermoplastic resin solvent solution becomes thin and electrospinning cannot be performed, or the productivity decreases, and conversely when the width becomes wide, the thermoplastic resin solvent solution becomes thick and obtained. Since the diameter of a thermoplastic resin fiber becomes thick, 0.2-2.0 mm is preferable. The length of the fine channel 4 (the width of the lip portion 3) is not particularly limited. However, if the length becomes longer, the solvent evaporates and it becomes difficult to uniformly overflow the thermoplastic resin solvent solution. 3 to 10 mm.

熱可塑性樹脂溶媒溶液供給口5は、熱可塑性樹脂溶媒溶液貯留槽2に熱可塑性樹脂溶媒溶液を供給しうる位置に形成されればよいが、高粘度の熱可塑性樹脂溶媒溶液であっても熱可塑性樹脂溶媒溶液貯留槽2に均一高さで熱可塑性樹脂溶媒溶液を供給しうるように、熱可塑性樹脂溶媒溶液貯留槽2の他端部(リップ部3の反対側)略中央に連通されているのが好ましい。   The thermoplastic resin solvent solution supply port 5 only needs to be formed at a position where the thermoplastic resin solvent solution can be supplied to the thermoplastic resin solvent solution storage tank 2, but even if it is a high viscosity thermoplastic resin solvent solution, The other end of the thermoplastic resin solvent storage tank 2 (opposite the lip part 3) is communicated with the approximate center so that the thermoplastic resin solvent storage tank 2 can be supplied with a uniform height to the thermoplastic resin solvent storage tank 2. It is preferable.

本発明の微細熱可塑性樹脂繊維の製造方法は、請求項1〜4のいずれか1項記載のエレクトロスピニグ用ノズルの熱可塑性樹脂溶媒溶液貯留槽に熱可塑性樹脂溶媒溶液を供給し、微細流路から熱可塑性樹脂溶媒溶液を溢流させると共に、上記エレクトロスピニグ用ノズルがプラス電極になり、エレクトロスピニグ用ノズルの下方に設置されたターゲットがマイナス電極になるように高電圧を印加することによりエレクトロスピニングすることを特徴とする。   The manufacturing method of the fine thermoplastic resin fiber of this invention supplies a thermoplastic resin solvent solution to the thermoplastic resin solvent solution storage tank of the electrospinning nozzle of any one of Claims 1-4, Overflow of the thermoplastic resin solvent solution from the path, and applying a high voltage so that the electrospinning nozzle becomes a positive electrode and the target installed below the electrospinning nozzle becomes a negative electrode. And electrospinning.

本発明で使用される熱可塑性樹脂は、溶媒に溶解できる熱可塑性樹脂であれば、特に限定されず、例えば、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂、低密度ポリエチレン樹脂、線状低密度ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−ペンテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−塩化ビニル共重合体、エチレン−プロピレン−ブテン共重合体等のオレフィン系樹脂;ポリビニルアルコール、ポリエチレンオキサイド、ポリ乳酸、ポリ塩化ビニル樹脂、ポリビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリブタジエン等が挙げられ、オレフィン系樹脂が好ましく、より好ましくはポリプロピレン樹脂である。   The thermoplastic resin used in the present invention is not particularly limited as long as it is a thermoplastic resin that can be dissolved in a solvent. For example, high-density polyethylene resin, medium-density polyethylene resin, low-density polyethylene resin, linear low-density polyethylene resin , Polypropylene resin, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-pentene-1 copolymer, ethylene-hexene-1 copolymer, ethylene-octene-1 copolymer, ethylene-acetic acid Olefin resins such as vinyl copolymers, ethylene- (meth) acrylic acid ester copolymers, ethylene-vinyl chloride copolymers, ethylene-propylene-butene copolymers; polyvinyl alcohol, polyethylene oxide, polylactic acid, polychlorinated Vinyl resin, polyvinylidene resin, polyvinylidene fluoride resin, polystyrene Down resins, polyacrylonitrile resins, polyacrylic resins, polyester resins, polyamide resins, polyimide resins, polycarbonate resins, polybutadiene and the like, olefin resins are preferred, more preferably a polypropylene resin.

本発明で使用される溶媒は、上記熱可塑性樹脂を溶解しうる溶媒であれば特に限定されず、例えば、水、メタノール、エタノール、イソプロパノール、ジメチルスルホアミド、テトラヒドロフラン、アセトン、酢酸エチル、N−ビニルピロリドン、クロロホルム、蟻酸等が挙げられる。   The solvent used in the present invention is not particularly limited as long as it is a solvent that can dissolve the thermoplastic resin, and examples thereof include water, methanol, ethanol, isopropanol, dimethylsulfamide, tetrahydrofuran, acetone, ethyl acetate, and N-vinyl. Examples include pyrrolidone, chloroform, formic acid and the like.

熱可塑性樹脂溶媒溶液の濃度は、特に限定されないが、熱可塑性樹脂が溶媒に完全に溶解していないとエレクトロスピニングにより微細熱可塑性樹脂繊維が得られにくくなるので、一般に2〜20重量%であり、好ましくは3〜10重量%である。又、熱可塑性樹脂溶媒溶液の粘度は高くると熱可塑性樹脂溶媒溶液を微細流路から均一に溢流させにくくなるので、その粘度は10〜1000cpsが好ましく、より好ましくは50〜500cpsである。   The concentration of the thermoplastic resin solvent solution is not particularly limited. However, if the thermoplastic resin is not completely dissolved in the solvent, it becomes difficult to obtain fine thermoplastic resin fibers by electrospinning. , Preferably 3 to 10% by weight. Further, when the viscosity of the thermoplastic resin solvent solution is high, it becomes difficult to uniformly overflow the thermoplastic resin solvent solution from the fine flow path. Therefore, the viscosity is preferably 10 to 1000 cps, more preferably 50 to 500 cps.

本発明で使用されるターゲットは、高電圧を印加する際にマイナス電極になり、製造された微細繊維がその表面に堆積されるのであるから、導電性を有する板状体が好ましく、例えば、銅板、鉄板、ステンレススチール板、金板、銀板、しんちゅう板、アルミニウム板、これらの導電性板とアルミニウム箔の積層板等が挙げられる。又、連続的に微細繊維を得るには、上記導電性板をベルト化し、ロールで回転するようにしてもよい。   The target used in the present invention is a negative electrode when a high voltage is applied, and the manufactured fine fibers are deposited on the surface thereof. Therefore, a conductive plate-like body is preferable, for example, a copper plate , Iron plate, stainless steel plate, gold plate, silver plate, brass plate, aluminum plate, laminated plates of these conductive plates and aluminum foil, and the like. In order to obtain fine fibers continuously, the conductive plate may be belted and rotated by a roll.

ターゲットはエレクトロスピニグ用ノズルの下方に設置されるが、ターゲットとエレクトロスピニグ用ノズルの間隔は近すぎると放電が起こり、微細流路4から垂下された熱可塑性樹脂溶媒溶液に電荷を負荷できなくなり、遠すぎると微細化された熱可塑性樹脂繊維がターゲットに付着しなくなるので5〜15cmが好ましい。   The target is placed below the electrospinning nozzle, but if the distance between the target and the electrospinning nozzle is too close, a discharge will occur and charge can be applied to the thermoplastic resin solvent solution suspended from the microchannel 4. If the distance is too far and the thermoplastic resin fibers that have been made finer do not adhere to the target, 5 to 15 cm is preferable.

本発明においては、熱可塑性樹脂溶媒溶液供給口5から熱可塑性樹脂溶媒溶液貯留槽2に熱可塑性樹脂溶媒溶液が微細流路4の底より高くなり、同一高さを維持するように熱可塑性樹脂溶媒溶液を供給する。そうすると、熱可塑性樹脂溶媒溶液は微細流路4を通って微細流路4(リップ部3)の先端部から均一に溢流する。   In the present invention, the thermoplastic resin solvent solution is supplied from the thermoplastic resin solvent solution supply port 5 to the thermoplastic resin solvent solution storage tank 2 so as to be higher than the bottom of the fine channel 4 and to maintain the same height. Supply solvent solution. If it does so, the thermoplastic resin solvent solution will overflow uniformly from the front-end | tip part of the fine flow path 4 (lip | rip part 3) through the fine flow path 4. FIG.

この時、エレクトロスピニグ用ノズルがプラス電極になり、エレクトロスピニグ用ノズルの下方に設置されたターゲットがマイナス電極になるように高電圧を印加することにより、溢流した熱可塑性樹脂溶媒溶液にプラスの高電圧を与えると、熱可塑性樹脂溶媒溶液はエレクトスピニングされ、マイナスに帯電したターゲット表面にスプレーされる過程で微細繊維化する。   At this time, by applying a high voltage so that the electrospinning nozzle becomes a positive electrode and the target installed below the electrospinning nozzle becomes a negative electrode, the overflowed thermoplastic resin solvent solution When a positive high voltage is applied, the thermoplastic resin solvent solution is electrospun and becomes fine fibers in the process of being sprayed on the negatively charged target surface.

印加電圧は、低いと熱可塑性樹脂溶媒溶液が微細繊維化せず、高すぎるとノズルとターゲットの間で放電して熱可塑性樹脂溶媒溶液が微細繊維化しなくなるので5〜100kVが好ましく、より好ましくは10〜50kVである。   When the applied voltage is low, the thermoplastic resin solvent solution does not become fine fibers, and when it is too high, discharge between the nozzle and the target and the thermoplastic resin solvent solution does not become fine fibers, so 5 to 100 kV is preferable, more preferably. 10 to 50 kV.

本発明のエレクトロスピニグ用ノズルの構成は上述の通りであり、熱可塑性樹脂溶媒溶液を自重で複数の微細流路から溢流させるのであるから、各微細流路から溢流した熱可塑性樹脂溶媒溶液の量は同一であり、均一の太さの微細繊維を生産性よく容易に製造することができる。   The configuration of the electrospinning nozzle of the present invention is as described above, and the thermoplastic resin solvent solution overflows from a plurality of fine channels by its own weight. Therefore, the thermoplastic resin solvent overflowed from each fine channel The amount of the solution is the same, and fine fibers having a uniform thickness can be easily produced with high productivity.

次に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

図1〜3に示したエレクトロスピニグ用ノズルを使用した。ステンレススチール板よりなるターゲットをエレクトロスピニグ用ノズルの下方10cmの位置に設置した。エレクトロスピニグ用ノズルの熱可塑性樹脂溶媒溶液貯留槽2に熱可塑性樹脂溶媒溶液供給口5から熱可塑性樹脂溶媒溶液貯留槽2に80℃のポリプロピレンの熱キシレン溶液(濃度8重量%、粘度100cps/80℃)を溶液高さがリップ部3の高さになるように、0.01cm3 /分の速度で供給した。 The electrospinning nozzle shown in FIGS. 1 to 3 was used. A target made of a stainless steel plate was placed 10 cm below the electrospinning nozzle. Thermoplastic xylene solution (concentration: 8 wt%, viscosity: 100 cps / viscosity) at 80 ° C. from the thermoplastic resin solvent solution supply port 5 to the thermoplastic resin solvent solution reservoir 2 of the electrospinning nozzle. 80 ° C.) was supplied at a speed of 0.01 cm 3 / min so that the height of the solution was the height of the lip 3.

ポリプロピレンの熱キシレン溶液が微細流路4から溢流し始めてから高電圧発生器によりエレクトロスピニグ用ノズルがプラス、ターゲットがマイナスになるように13kVの電圧を印加したところターゲット表面上に微細ポリプロピレン繊維が得られた。得られた微細ポリプロピレン繊維を電子顕微鏡で観察したところ、太さは100nm〜10μmであり、長さは3cm以上であった。   After the hot xylene solution of polypropylene starts to overflow from the fine flow path 4, a high voltage generator applies a voltage of 13 kV so that the electrospinning nozzle is positive and the target is negative, and fine polypropylene fibers are formed on the target surface. Obtained. When the obtained fine polypropylene fiber was observed with an electron microscope, the thickness was 100 nm to 10 μm, and the length was 3 cm or more.

本発明のエレクトロスピニグ用ノズルの一例を示す平面図である。It is a top view which shows an example of the nozzle for electrospinning of this invention. 本発明のエレクトロスピニグ用ノズルの一例を示す正面図である。It is a front view which shows an example of the nozzle for electrospinning of this invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 従来の溶液エレクトロスピニグ法の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional solution electrospinning method.

符号の説明Explanation of symbols

1 導電性ブロック状体
2 熱可塑性樹脂溶媒溶液貯留槽
3 リップ部
4 微細流路
5 熱可塑性樹脂溶媒溶液供給口
DESCRIPTION OF SYMBOLS 1 Conductive block-like body 2 Thermoplastic resin solvent solution storage tank 3 Lip part 4 Fine flow path 5 Thermoplastic resin solvent solution supply port

Claims (7)

導電性ブロック状体の上面に、溝状の熱可塑性樹脂溶媒溶液貯留槽と、該熱可塑性樹脂溶媒溶液貯留槽の一端部から導電性ブロック状体の一端部に至るリップ部が形成され、該リップ部に熱可塑性樹脂溶媒溶液貯留槽から導電性ブロック状体の一端部に至る、熱可塑性樹脂溶媒溶液を溢流させるための微細流路が複数形成されていることを特徴とするエレクトロスピニグ用ノズル。   On the upper surface of the conductive block-like body, a groove-shaped thermoplastic resin solvent storage tank, and a lip portion from one end of the thermoplastic resin solvent solution storage tank to one end of the conductive block-like body are formed, An electrospinning characterized in that a plurality of fine channels for overflowing a thermoplastic resin solvent solution are formed in the lip portion from the thermoplastic resin solvent solution storage tank to one end of the conductive block-like body. Nozzle. 複数の微細流路の長さ、断面形状及び断面積が略同一であることを特徴とする請求項1記載のエレクトロスピニグ用ノズル。   2. The electrospinning nozzle according to claim 1, wherein the plurality of fine flow paths have substantially the same length, cross-sectional shape, and cross-sectional area. 微細流路の断面形状が半円形であり、その直径が0.2〜2.0mmあることを特徴とする請求項1又は2記載のエレクトロスピニグ用ノズル。   The electrospinning nozzle according to claim 1 or 2, wherein the cross-sectional shape of the fine channel is semicircular and the diameter thereof is 0.2 to 2.0 mm. 熱可塑性樹脂溶媒溶液貯留槽の他端部略中央に熱可塑性樹脂溶媒溶液供給口が連通されていることを特徴とする請求項1〜3のいずれか1項記載のエレクトロスピニグ用ノズル。   The nozzle for electrospinning according to any one of claims 1 to 3, wherein a thermoplastic resin solvent solution supply port is communicated with substantially the other end of the thermoplastic resin solvent storage tank. 請求項1〜4のいずれか1項記載のエレクトロスピニグ用ノズルの熱可塑性樹脂溶媒溶液貯留槽に熱可塑性樹脂溶媒溶液を供給し、微細流路から熱可塑性樹脂溶媒溶液を溢流させると共に、上記エレクトロスピニグ用ノズルがプラス電極になり、エレクトロスピニグ用ノズルの下方に設置されたターゲットがマイナス電極になるように高電圧を印加することによりエレクトロスピニングすることを特徴とする微細熱可塑性樹脂繊維の製造方法。   A thermoplastic resin solvent solution is supplied to the thermoplastic resin solvent solution storage tank of the electrospinning nozzle according to any one of claims 1 to 4, and the thermoplastic resin solvent solution is allowed to overflow from the fine channel, A fine thermoplastic resin characterized in that electrospinning is performed by applying a high voltage so that the electrospinning nozzle becomes a positive electrode and the target installed below the electrospinning nozzle becomes a negative electrode. A method for producing fibers. 印加電圧が5〜100kVであることを特徴とする請求項5記載の微細熱可塑性樹脂繊維の製造方法。   6. The method for producing fine thermoplastic resin fibers according to claim 5, wherein the applied voltage is 5 to 100 kV. 熱可塑性樹脂溶媒溶液の粘度が10〜1000cpsであることを特徴とする請求項5又は6記載の微細熱可塑性樹脂繊維の製造方法。   The method for producing fine thermoplastic resin fibers according to claim 5 or 6, wherein the viscosity of the thermoplastic resin solvent solution is 10 to 1000 cps.
JP2006133501A 2006-05-12 2006-05-12 Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same Withdrawn JP2007303031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133501A JP2007303031A (en) 2006-05-12 2006-05-12 Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133501A JP2007303031A (en) 2006-05-12 2006-05-12 Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Publications (1)

Publication Number Publication Date
JP2007303031A true JP2007303031A (en) 2007-11-22

Family

ID=38837201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133501A Withdrawn JP2007303031A (en) 2006-05-12 2006-05-12 Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same

Country Status (1)

Country Link
JP (1) JP2007303031A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106396A (en) * 2008-10-30 2010-05-13 Japan Vilene Co Ltd Device for producing nonwoven fabric
KR101118081B1 (en) * 2008-08-08 2012-03-09 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR101118079B1 (en) * 2008-08-08 2012-03-09 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR101118080B1 (en) * 2008-08-08 2012-03-12 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
WO2016021503A1 (en) * 2014-08-05 2016-02-11 Jnc株式会社 Spinneret for electrostatic spinning
WO2017175680A1 (en) 2016-04-04 2017-10-12 信越化学工業株式会社 Silicone-modified polyurethane fiber and method for manufacturing same
WO2019047768A1 (en) * 2017-09-05 2019-03-14 4C Air, Inc. Nozzle plate for fiber formation
JP2020125580A (en) * 2014-08-05 2020-08-20 Jnc株式会社 Spinneret for electrostatic spinning
WO2021090904A1 (en) 2019-11-07 2021-05-14 信越化学工業株式会社 Fibers, fiber multilayer structure, spinning solution for electrospinning, and method for producing fibers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118081B1 (en) * 2008-08-08 2012-03-09 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR101118079B1 (en) * 2008-08-08 2012-03-09 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
KR101118080B1 (en) * 2008-08-08 2012-03-12 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web
JP2010106396A (en) * 2008-10-30 2010-05-13 Japan Vilene Co Ltd Device for producing nonwoven fabric
WO2016021503A1 (en) * 2014-08-05 2016-02-11 Jnc株式会社 Spinneret for electrostatic spinning
JP2016037694A (en) * 2014-08-05 2016-03-22 Jnc株式会社 Electrostatic spinning spinneret
US10662553B2 (en) 2014-08-05 2020-05-26 Jnc Corporation Spinneret for electrostatic spinning
JP2020125580A (en) * 2014-08-05 2020-08-20 Jnc株式会社 Spinneret for electrostatic spinning
WO2017175680A1 (en) 2016-04-04 2017-10-12 信越化学工業株式会社 Silicone-modified polyurethane fiber and method for manufacturing same
WO2019047768A1 (en) * 2017-09-05 2019-03-14 4C Air, Inc. Nozzle plate for fiber formation
US11274380B2 (en) 2017-09-05 2022-03-15 4C Air, Inc. Nozzle plate for fiber formation
WO2021090904A1 (en) 2019-11-07 2021-05-14 信越化学工業株式会社 Fibers, fiber multilayer structure, spinning solution for electrospinning, and method for producing fibers

Similar Documents

Publication Publication Date Title
JP2007303031A (en) Nozzle for electrospinning and method for producing fine thermoplastic resin fiber using the same
US9177729B2 (en) Separator and method for manufacturing separator
KR101198490B1 (en) Electrostatic spray apparatus and method of electrostatic spray
CN102691175B (en) Composite fibre membrane with unidirectional water permeable performance and preparation method thereof
Kang et al. Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication
US10259007B2 (en) Method and apparatus for aligning nanowires deposited by an electrospinning process
CN110730760B (en) Apparatus and method for providing a plurality of nanowires
CN103846171B (en) A kind of electrostatic atomizer
JPWO2012014501A1 (en) Non-woven fabric, manufacturing method and manufacturing apparatus thereof
CN100557868C (en) Collector electrode, battery electrode substrate and production method thereof
WO2018133053A1 (en) Graphene film and direct method for transfering graphene film onto flexible and transparent substrates
JP6315685B2 (en) Electrospinning apparatus and nanofiber manufacturing apparatus having the same
CN109417174A (en) Gas diffusion electrode substrate and its manufacturing method and gas-diffusion electrode, membrane-electrode assembly and polymer electrolyte fuel cell
KR101721989B1 (en) An appliance for making maskpack having temperature controller
JP2009133039A (en) Ultrafine conjugate fiber, method for producing the same and fiber structure
CN207852801U (en) Electrodes of lithium-ion batteries system of processing
JP2012052209A (en) Device and method for continuously manufacturing nanoscale conductive particles
TW200405446A (en) Substrate drying method and its apparatus
US10370777B2 (en) Nanofiber manufacturing device and nanofiber manufacturing method
KR20180001520A (en) System for manufacturing lithium secondary battery anode
JP2008248422A (en) Electrospinning apparatus
CN108570701B (en) Electroplating wetting device
JP7010689B2 (en) Electric field spinning equipment
KR101466288B1 (en) Apparatus for manufacturing of nano fiber
KR101713282B1 (en) Porous nanocomposite fiber electrode for supercapacitor and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804