KR20100019169A - Method of manufacturing nanofiber web - Google Patents

Method of manufacturing nanofiber web Download PDF

Info

Publication number
KR20100019169A
KR20100019169A KR1020080078060A KR20080078060A KR20100019169A KR 20100019169 A KR20100019169 A KR 20100019169A KR 1020080078060 A KR1020080078060 A KR 1020080078060A KR 20080078060 A KR20080078060 A KR 20080078060A KR 20100019169 A KR20100019169 A KR 20100019169A
Authority
KR
South Korea
Prior art keywords
resin
polymer solution
collector
nanofiber web
porous plate
Prior art date
Application number
KR1020080078060A
Other languages
Korean (ko)
Inventor
흥 렬 오
Original Assignee
코오롱패션머티리얼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱패션머티리얼 (주) filed Critical 코오롱패션머티리얼 (주)
Priority to KR1020080078060A priority Critical patent/KR20100019169A/en
Publication of KR20100019169A publication Critical patent/KR20100019169A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: A manufacturing method of nanofiber web is provided to reduce manufacturing costs while easily managing manufacturing processes, and to conveniently and easily repair and manage a facility of the nanofiber web. CONSTITUTION: A manufacturing method of nanofiber web includes a step for volatilizing nanofiber(70) by electropinning a polymer solution storing in a polymer solution tank through a minute hole(41) perforated on a perforated board(40) and a step for laminating the volatilized nanofiber on a collector. A perforated board is contacted with the polymer spinning liquid, and is installed on a polymer liquid bath. The collector is located on the top of the perforated board. The diameter of the perforated minute holes is 0.2~1.0 mm.

Description

나노섬유 웹의 제조방법{Method of manufacturing nanofiber web}Method of manufacturing nanofiber web {Method of manufacturing nanofiber web}

본 발명은 전기방사방식을 이용한 나노섬유 웹의 제조방법에 관한 것으로서, 보다 구체적으로는 종래의 노즐 대신에 다공판에 천공된 미세구멍들을 통하여 고분자 용액을 전기방사함으로서 제조비용이 절감되고, 제조 공정의 관리가 용이하고, 설비의 유지 보수도 간편하게 되는 나노섬유 웹의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a nanofiber web using an electrospinning method, and more specifically, manufacturing cost is reduced by electrospinning a polymer solution through micropores perforated in a porous plate instead of a conventional nozzle, and a manufacturing process The present invention relates to a method for producing a nanofiber web, which can be easily managed and maintenance of a facility is also simple.

전기방사는 직경이 수십 내지 수백 ㎚인 초극세 섬유(이하"나노섬유"라고 한다.)를 제조할 수 있는 비교적 간단한 방법으로 이미 1930년대에 독일에서 첫 선을 보였다. 그러나, 당시의 기술로는 이를 상품화하는 데에 한계가 있어 관심을 받지 못하다가 1970년대에 이르러서야 연구가 다시 시작되었다가 2000년대 이후에서야 본격적인 연구가 시작되었다.Electrospinning was first introduced in Germany in the 1930s as a relatively simple way to produce ultrafine fibers (hereinafter referred to as "nano fibers") with diameters of tens to hundreds of nm. However, the technology of the time was limited to commercialization of this technology, so it was not received attention, and research began again until the 1970s, and full-scale research began only after the 2000s.

전기방사는 고분자용액에 수천 내지 수만 볼트의 높은 전압을 가하여 고분자 용액으로부터 용매의 표면장력을 넘는 접선벡터의 힘이 가해져서 고분자용액으로부터 미세한 폴리머 제트가 형성되어 고분자용액에 가해진 전하와 반대의 전하를 띠는 물체를 향해 빠른 속도로 진행하게 된다. 분사된 고분자 제트는 이어 수많은 미세 섬유로 다시 분산되어 뿌려지게 되는데 이때의 미세 섬유의 직경은 수십내지 수 백 나노미터의 굵기를 가진다.Electrospinning applied a high voltage of several thousand to tens of thousands of volts to the polymer solution, and the force of the tangential vector exceeding the surface tension of the solvent was applied from the polymer solution to form a fine polymer jet from the polymer solution. The band advances rapidly toward the object. The jets of polymer jets are then dispersed and scattered back into a number of fine fibers, which have a diameter of tens to hundreds of nanometers.

전기방사를 이용하면 고분자용액으로부터 수십 내지 수백 나노미터의 굵기를 가지는 나노섬유로 이루어진 도 3과 같은 나노섬유 웹을 제조할 수 있으며, 이를 이용하여 고기능성 의류, 초정밀 필터, 세포배양용 소재(scaffold) 등의 고성능 제품을 얻을 수 있다.Electrospinning can be used to produce nanofiber webs as shown in Figure 3 consisting of nanofibers having a thickness of several tens to hundreds of nanometers from a polymer solution, using them for high functional clothing, ultra-precision filters, cell culture materials (scaffold). High performance products, such as) can be obtained.

도 3은 나노섬유 웹의 전자현미경사진이다.3 is an electron micrograph of a nanofiber web.

상업적으로 나노섬유 웹을 제조하기 위해서 한국등록특허 제0412241호, 한국등록특허 제0422459호 및 한국공개특허 제2005-15610호 고분자 용액을 다수의 노즐을 통해 전기방사하는 방법을 제안하고 있다.In order to commercially manufacture a nanofiber web, Korean Patent No. 0412241, Korean Patent No. 0422459 and Korean Patent Application No. 2005-15610 propose a method of electrospinning a plurality of nozzles through a plurality of nozzles.

구체적으로, 상기의 종래 방법은 도 2에 도시된 바와 같이 고분자 용액을 계량펌프(2)를 통해 고전압이 걸려있는 다수의 노즐(3)에 공급한 다음, 이를 노즐과 반대 전하를 띠는 고전압이 걸려있는 컬렉터(4)상에 위치하는 섬유기재상에 전기방사하여 나노섬유 웹을 제조하였다.Specifically, according to the conventional method, as shown in FIG. 2, the polymer solution is supplied to the plurality of nozzles 3 under high voltage through the metering pump 2, and then a high voltage having opposite charge to the nozzle is applied. Nanofiber web was prepared by electrospinning on a fiber substrate placed on the hanging collector (4).

도 2는 종래 전기방사 공정 개략도이다.2 is a schematic diagram of a conventional electrospinning process.

상기의 종래 방법은 하나의 노즐을 사용하는 것에 비하여 생산성이 매우 우수하고 균일성이 우수하여졌다. 그러나, 상기 종래 기술은 다수의 노즐을 사용함에 따라 노즐에서의 막힘 등으로 인한 결점 발생의 가능성이 매우 높고, 노즐을 수시로 탈거하여 일일이 세정하여야하는 번거로움이 따른다. 또, 노즐마다 수천 내지 수만볼트의 고전압을 가하게 되므로 각 노즐에서의 전기장에 의해 노즐에서 발생하는 고분자 제트의 방향에 상호 영향을 미쳐 균일한 나노섬유 웹을 얻기가 어렵다.The conventional method described above has excellent productivity and excellent uniformity compared to using one nozzle. However, the prior art has a very high possibility of defects due to clogging in the nozzle, and the need for removing the nozzles from time to time causes a hassle. In addition, since a high voltage of thousands to tens of thousands of volts is applied to each nozzle, it is difficult to obtain a uniform nanofiber web because the electric field in each nozzle affects the direction of the polymer jet generated in the nozzle.

게다가 고분자의 종류, 고분자의 분자량, 용매의 점도, 온도 등에 따라서 노즐 끝에서의 고분자 용액 방울의 형성이 모두 상이하므로 고분자 종류 변경, 고분자 용액의 변경, 생산속도의 변경 시 안정적인 방사성을 얻기 위해서 노즐의 규격을 그에 맞도록 변경하여야하는 번거로움이 따른다. 노즐의 규격을 최적화하기 위해서는 별도의 시험을 통해 적합한 노즐의 내경, 길이 등을 조사하고 이에 맞는 노즐을 준비하여 설치해야 하므로 다양한 품종의 나노섬유 웹을 생산하는 데에 있어 준비기간이 매우 길어지게 된다.In addition, the formation of polymer solution droplets at the nozzle tip is different depending on the type of polymer, molecular weight of polymer, viscosity of solvent, temperature, etc. This is a hassle to change the specification to conform. In order to optimize the size of the nozzle, it is necessary to investigate the inner diameter and length of a suitable nozzle through separate tests, and to prepare and install a nozzle suitable for the nozzle. Therefore, the preparation period for producing various kinds of nanofiber webs becomes very long. .

이를 해결하기 위해 실제 상업적 형태의 전기방사 설비에 있어서는 노즐을 기재의 대각선 방향으로 배열하거나 혹은 여러 개의 층으로 나누어 배열하되 서로 교호의 위치가 되도록 배열하는 등의 기술이 적용되고 있으나 다수의 노즐을 일일이 세정해야하며 노즐에서의 전기장에 의한 고분자 제트의 상호 영향의 문제를 근본적으로 해결하기 어렵다.In order to solve this problem, in actual commercial-type electrospinning equipment, a technique of arranging nozzles in a diagonal direction of the substrate or dividing into several layers and arranging them alternately with each other has been applied. It must be cleaned and it is difficult to fundamentally solve the problem of the mutual influence of the polymer jets by the electric field in the nozzle.

또한, 종래방법은 제조비용이 상승되고 설비가 복잡한 문제도 있었다.In addition, the conventional method has a problem that the manufacturing cost is increased and the equipment is complicated.

본 발명의 목적은 이와 같은 종래 문제점을 해결함으로써 나노섬유 웹의 균일성을 크게 향상시키기 위한 것이다.An object of the present invention is to significantly improve the uniformity of the nanofiber web by solving such a conventional problem.

본 발명의 또다른 목적은 나노섬유 웹 제조시 제조원가를 절감하고 공정관리가 용이하며 설비의 보수 및 유지도 용이하게 하기 위한 것이다.Another object of the present invention is to reduce the manufacturing cost, easy process management and easy maintenance and maintenance of the manufacturing process of the nanofiber web.

이와 같은 과제를 달성하기 위한 본 발명에 따른 나노섬유 웹의 제조방법은, 고분자 용액 욕조(30) 내에 담겨져 있는 고분자 용액을 고전압이 걸려있는 상태로 상기 고분자 용액 욕조(30) 상에 설치되어 하단 일부분이 고분자 용액 욕조(30)내의 고분자 방사 용액과 접촉하고 있는 다공판(40)에 천공된 미세구멍(41) 들을 통해 고전압이 걸려 있는 상태로 상기 다공판(40)의 상부에 위치하는 컬렉터(50)를 향해 전기방사시켜 나노섬유(70)를 휘산시킨 다음, 휘산되는 나노섬유(70)를 상기 컬렉터(50) 상에 적층하는 것을 특징으로 한다.The method of manufacturing a nanofiber web according to the present invention for achieving the above object, the polymer solution contained in the polymer solution bath 30 is installed on the polymer solution bath 30 in a state where the high voltage is applied to the lower portion The collector 50 located above the porous plate 40 in a state where a high voltage is applied through the micropores 41 drilled in the porous plate 40 in contact with the polymer spinning solution in the polymer solution bath 30. After electrospinning toward) to volatilize the nanofibers 70, the volatilized nanofibers 70 are laminated on the collector 50.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명은 도 1에 도시된 바와 같이 고분자 용액 주탱크내(10)에 보관중인 고분자 용액을 고분자 용액 공급 펌프(20)를 통해 고분자 용액 욕조(30)로 공급하여 저장한다.First, the present invention stores and stores the polymer solution stored in the polymer solution main tank 10 as shown in FIG. 1 through the polymer solution supply pump 20 to the polymer solution bath 30.

다음으로는, 고분자 용액 욕조(30) 내에 저장된 고분자 방사용액을 상기 고분자 용액 욕조(30) 상에 설치된 다공판(40)의 미세구멍(41)들을 통해 다공판(40)의 상부에 위치하는 컬렉터(50)를 향해 전기방사시켜 나노섬유(70)를 휘산시킨 다음, 휘산되는 나노섬유(70)를 상기 컬렉터(50) 상에 적층하여 나노섬유 웹을 제조한다.Next, a collector located in the upper portion of the porous plate 40 through the micropores 41 of the porous plate 40 installed on the polymer solution bath 30 to the polymer spinning solution stored in the polymer solution bath 30 Electrospun toward 50 to volatilize the nanofibers 70, and then the volatilized nanofibers 70 are laminated on the collector 50 to produce a nanofiber web.

도 1은 본 발명의 공정 개략도이다.1 is a process schematic diagram of the present invention.

상기 다공판(40)과 컬렉터(50) 각각에는 전기방사를 위해 서로 다른 전하를 띄는 고전압이 걸려진다.Each of the porous plate 40 and the collector 50 is subjected to a high voltage with a different charge for electrospinning.

상기 다공판(40)은 하단 일부분이 고분자 용액 욕조(30) 내에 저장된 고분자 용액과 접촉하고 있으며, 미세구멍(41)들이 균일하게 천공된 구조를 갖는다.The lower portion of the porous plate 40 is in contact with the polymer solution stored in the polymer solution bath 30, and has a structure in which the micro holes 41 are uniformly perforated.

다공판(40)에 천공된 미세구멍(41)의 직경은 0.2~1.0㎜인 것이 바람직하다.It is preferable that the diameter of the microhole 41 perforated in the porous plate 40 is 0.2-1.0 mm.

상기 미세구멍(41)의 직경이 0.2㎜ 보다 작으면 고분자 용액으로 인해 미세구멍(41)이 쉽게 막히는 현상이 자주 일어날 수 있고, 10㎜보다 크면 전기방사성이 떨어지고 제조되는 나노섬유의 직경이 원하는 수준보다 굵어지는 문제 등이 발생될 수 있다.If the diameter of the micropore 41 is smaller than 0.2mm, the phenomenon that the micropore 41 is easily clogged due to the polymer solution may occur frequently. If the diameter of the micropore 41 is larger than 10mm, the electrospunness is inferior and the diameter of the nanofibers manufactured is desired. Thicker problems may occur.

고분자 용액 욕조(30) 내에 저장된 고분자 용액은 다공판(40)에 기해지는 고전압에 의해 발생되는 전기력 또는 모세관 현상에 의해 다공판(40)에 천공된 미세구멍(41) 위로 올라오게 되고, 상기와 같이 다공판(40)에 천공된 미세구멍(41) 위로 올라온 고분자 용액은 다공판(40)과 컬렉터(50)에 걸려있는 고전압에 의해 고분자 용액의 표면장력보다 법선벡터 방향으로 응력이 커져서 고분자 제트(Jet)를 형성하게 된다.The polymer solution stored in the polymer solution bath 30 is raised above the microholes 41 drilled in the porous plate 40 by an electric force or capillary phenomenon generated by the high voltage applied to the porous plate 40. The polymer solution raised above the microholes 41 perforated in the porous plate 40 has a greater stress in the direction of the normal vector than the surface tension of the polymer solution due to the high voltage applied to the porous plate 40 and the collector 50. (Jet) is formed.

상기 고분자 제트는 반대 전하를 띄는 컬렉터(50)를 향하게 되며, 다공판(40)으로부터 일정구간까지는 제트(Jet) 상태를 유지하다가 그 이후에는 나노섬유(70)로 변하면서 휘산되어 컬렉터(50) 상에 집적된다.The polymer jet is directed toward the collector 50 having the opposite charge, and maintains a jet state from the porous plate 40 to a predetermined period, and then volatilizes to change to the nanofiber 70 to collect the collector 50. Is integrated into the phase.

상기 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스, 폴리비닐아세테이트, 폴리비닐클로라이드, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 또는 폴리비닐리덴 플루오라이드 수지 등과 같이 용해 가능한 모든 섬유형성능 고분자를 사용할 수 있다.The polymer solution may be polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose, polyvinylacetate, polyvinylchloride, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile resin, polymethylmethacrylate resin All soluble fiber-forming polymers such as polystyrene resin, polyacrylic acid resin, polyolefin resin, wholly aromatic polyamide resin or polyvinylidene fluoride resin can be used.

또, 고분자 물질을 용해하기 위한 용매의 종류에도 제한이 없다. 용매는 고분자에 따라 한정이 되는 것이며 나노섬유 웹을 제조하는 데에 사용되는 고분자에 따라 용매를 자유로이 할 수 있다. 또, 고분자 용액의 제조방법에 대해서도 제한이 없다. Moreover, there is no restriction | limiting also in the kind of solvent for melt | dissolving a high molecular substance. The solvent is limited depending on the polymer, and the solvent can be freely determined depending on the polymer used to prepare the nanofiber web. Moreover, there is no restriction also about the manufacturing method of a polymer solution.

고분자 용액의 농도는 1% 이하의 낮은 농도부터 50% 이하의 높은 농도에 까지 이른다.The concentration of the polymer solution can range from as low as 1% or less to as high as 50% or less.

또한, 두 종류 이상의 고분자를 동시에 사용할 수 있다. 두 종류 이상의 상이한 고분자를 용매에 녹여 사용하는 것도 가능하며, 동종의 고분자에 있어 분자량 등의 특성이 상이한 고분자를 용매에 녹여 사용하는 것도 가능하다.In addition, two or more kinds of polymers may be used simultaneously. It is also possible to dissolve two or more kinds of different polymers in a solvent, or to dissolve and use polymers having different properties such as molecular weight in solvents.

컬렉터(50) 위에는 섬유기재 또는 필름이 위치할 수도 있다.The fibrous substrate or film may be positioned on the collector 50.

상기 컬렉터(50)는 다공판(40)의 상부에 위치하고, 일정한 선속도로 운동한다.The collector 50 is positioned above the porous plate 40 and moves at a constant linear velocity.

다공판(40)과 컬렉터(50) 각각의 표면은 금, 은, 텅스텐, 구리, 스테인레스 강 또는 이들의 합금 등이고, 보다 바람직 하기로는 스테인레스 강에 백금이 코팅된 것이 좋다.The surface of each of the porous plate 40 and the collector 50 is gold, silver, tungsten, copper, stainless steel or alloys thereof, and more preferably, platinum is coated on stainless steel.

이와 같이 본 발명에서는 다수의 노즐을 사용하는 대신에 다공판(40)을 사용함으로써, 다수의 노즐을 일일이 세정하고 관리하여야 하는 번거로움이 없으며 다수의 노즐의 배열에 따라 나노섬유 웹의 균일성이 좌우되는 단점이 없다. 또, 고분자의 종류, 점도 등에 따라 노즐의 내경, 길이 등을 변경하여 설치하여야 하는 번거로움이 없어 품종의 교체 등이 매우 용이하며 노즐을 사용함에 따른 노즐간의 정전기적 반발력으로 인한 나노섬유 웹의 불균일성이 없는 장점이 있다. 또, 하향식 노즐을 사용하는 종래의 전기방사 장치에 비하여서는 미용해 고분자 등의 결점이 기재 상에 분산되지 않으므로 결점이 거의 없는 나노섬유 웹을 얻을 수 있다.Thus, in the present invention, by using the porous plate 40 instead of using a plurality of nozzles, there is no hassle to clean and manage a plurality of nozzles one by one, and uniformity of the nanofiber web according to the arrangement of the plurality of nozzles. There is no disadvantage that depends. In addition, there is no hassle to change the inner diameter and length of the nozzle according to the type and viscosity of the polymer, so it is very easy to change the varieties. There is no advantage to this. In addition, compared with the conventional electrospinning apparatus using a top-down nozzle, defects such as undissolved polymers and the like are not dispersed on the substrate, so that a nanofiber web with few defects can be obtained.

본 발명은 제조비용이 저렴하고, 나노섬유 웹의 균일성을 크게 향상시키고 품종 변경 및 공정관리가 용이하다The present invention is low in manufacturing cost, greatly improves the uniformity of the nanofiber web, easy to change the variety and process management

아울러, 본 발명은 설비의 보수 및 유지가 용이하고 설비도 간소화할 수 있다.In addition, the present invention is easy to repair and maintain the equipment and can simplify the equipment.

그 결과 본 발명으로 제조된 나노섬유 웹은 고성능 필터, 광학소재 등으로 유용하다.As a result, the nanofiber web produced by the present invention is useful as a high performance filter, optical material and the like.

이하 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to the following examples.

실시예Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 1에 도시된 공정에 따라 고분자 용액 주탱크(10)내에 저장된 폴리아미드 용액을 펌프(20)를 통해 고분자 용액 욕조(30)로 공급, 저장한 다음, 상기 고분자 용액 욕조(30) 상에 음극의 고전압이 걸려 있는 상태로 하단 일부분이 고분자 용액 욕조(30) 내에 저장된 폴리아미드 용액과 접촉하도록 설치된 다공판(40)에 천공되어 있는 미세구멍(41)들을 통해 상기의 폴리아미드 용액을 양극의 고전압이 걸려있는 상태로 다공판(40)의 상부에 위치하는 컬렉터(50)를 향해 분사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유(70)를 컬렉터(50) 위에 적층하여 폴리아미드 나노섬유 웹을 제조하였다.According to the process shown in FIG. 1, the polyamide solution stored in the polymer solution main tank 10 is supplied to and stored in the polymer solution bath 30 through the pump 20, and then the negative electrode is placed on the polymer solution bath 30. The high voltage of the positive electrode through the fine holes 41 perforated in the porous plate 40 is installed in the bottom portion is in contact with the polyamide solution stored in the polymer solution bath 30 while the high voltage of The nanofibers are volatilized by spraying toward the collector 50 located in the upper portion of the porous plate 40 in the suspended state, and the volatilized nanofibers 70 are laminated on the collector 50 to form a polyamide nanofiber web. Was prepared.

이때, 다공판(40)과 컬렉터(50)에는 220볼트, 60Hz의 교류전원이 연결된 전압 발생장치(60)를 이용하여 55,000볼트의 전압을 걸었다.At this time, a voltage of 55,000 volts was applied to the porous plate 40 and the collector 50 by using the voltage generator 60 connected to an AC power source of 220 volts and 60 Hz.

상기 다공판(40)과 컬렉터(50) 각각의 표면은 스테인레스 백금이 코팅된 재질로 구성되며, 다공판(40)에 천공된 미세구멍(41)의 직경은 0.5㎜로 하였다.The surface of each of the porous plate 40 and the collector 50 is made of a material coated with stainless platinum, the diameter of the fine hole 41 perforated in the porous plate 40 was 0.5mm.

또한 다공판(40)과 컬렉터(50)의 간격은 30㎝로 설정하였다.In addition, the space | interval of the porous board 40 and the collector 50 was set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예Example 2 ∼  2- 실시예Example 6 6

고분자 용액을 구성하는 고분자 및 용매 종류, 다공판내 미세구멍의 직경, 컬렉터 및 다공판에 가해지는 전압 및 다공판과 컬렉터간의 간격을 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.The same conditions as in Example 1 except for changing the type of polymer and solvent constituting the polymer solution, the diameter of the micropores in the porous plate, the voltage applied to the collector and the porous plate and the distance between the porous plate and the collector as shown in Table 1 A nanofiber web was prepared.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

실시예 1~ 실시예 6의 제조조건Manufacturing conditions of Example 1 to Example 6 구분division 전기방사 장치Electrospinning device 고분자 종류Polymer type 용매menstruum 전압 (볼트)Voltage (volts) 다공판-컬렉터 간격 (㎝)Perforated plate-collector spacing (cm) 다공판 미세구멍 직경 (㎜)Perforated Plate Micropore Diameter (mm) 실시예 1Example 1 다공판Perforated Plate 폴리아미드Polyamide 개미산Formic acid 55,00055,000 3030 0.50.5 실시예 2Example 2 다공판Perforated Plate 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 3030 0.70.7 실시예 3Example 3 다공판Perforated Plate 폴리아미드Polyamide 개미산Formic acid 70,00070,000 4545 0.90.9 실시예 4Example 4 다공판Perforated Plate 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 4545 0.30.3 실시예 5Example 5 다공판Perforated Plate 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 3030 0.20.2 실시예 6Example 6 다공판Perforated Plate 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 4545 1.01.0

비교실시예Comparative Example 1 One

폴리아미드를 개미산에 농도가 8%가 되도록 용해하여 25℃의 폴리아미드 용액을 제조하여 고분자 용액으로 사용하였다.Polyamide was dissolved in formic acid at a concentration of 8% to prepare a polyamide solution at 25 ° C. and used as a polymer solution.

도 2에 도시된 공정에 따라 고분자 용액 주탱크(1)내에 저장된 폴리아미드 용액을 계량펌프(2)를 통해 양극의 고전압이 걸려있는 다수의 노즐(3)에 공급한 다음, 이를 음극의 고전압이 걸려 있는 금속판의 컬렉터(4)를 향해 분사시켜 나노섬유를 휘산시킨 다음, 휘산되는 나노섬유를 컬렉터 상에 적층하여 나노섬유 웹을 제조하였다.According to the process shown in FIG. 2, the polyamide solution stored in the polymer solution main tank 1 is supplied to the plurality of nozzles 3 in which the high voltage of the positive electrode is applied through the metering pump 2, and then the high voltage of the negative electrode is reduced. The nanofibers were volatilized by spraying toward the collector 4 of the hanging metal plate, and then the volatilized nanofibers were laminated on the collector to prepare a nanofiber web.

이때, 다수의 노즐(3)과 컬렉터(4)에는 220볼트, 60Hz의 교류전원이 연결된 전압발생기(6)를 이용하여 55,000 볼트의 전압을 걸어 주었고, 노즐 토출량은 0.5ml/분으로 하였다.At this time, a voltage of 55,000 volts was applied to the plurality of nozzles 3 and the collector 4 by using a voltage generator 6 connected to an AC power source of 220 volts and 60 Hz, and the nozzle discharge amount was 0.5 ml / min.

또한 노즐(3)과 컬렉터(4)의 간격은 30㎝로 설정하였다.In addition, the space | interval of the nozzle 3 and the collector 4 was set to 30 cm.

제조된 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예Comparative Example 2 ∼ 2- 비교실시예Comparative Example 6 6

고분자 용액을 구성하는 고분자 및 용매종류, 컬렉터 및 노즐들에 가해지는 전압, 노즐의 토출량 및 노즐과 컬렉터간의 간격을 표 2와 같이 변경한 것을 제외하고는 비교실시예 1과 동일한 조건으로 나노섬유 웹을 제조하였다.Nanofiber web under the same conditions as in Comparative Example 1 except for changing the polymer and solvent constituting the polymer solution, the voltage applied to the collector and the nozzles, the discharge amount of the nozzle and the interval between the nozzle and the collector as shown in Table 2 Was prepared.

제조한 나노섬유 웹의 각종 물성을 평가한 결과는 표 3과 같다.The results of evaluating various physical properties of the prepared nanofiber webs are shown in Table 3.

비교실시예 1 ∼ 비교실시예 6의 제조조건Preparation conditions of Comparative Example 1 to Comparative Example 6 구분division 전기방사 장치Electrospinning device 고분자종류Polymer Type 용매menstruum 전압 (볼트)Voltage (volts) 노즐 토출량 (ml/min)Nozzle Discharge Rate (ml / min) 노즐-컬렉터 간격 (㎝)Nozzle-collector spacing (cm) 비교실시예 1Comparative Example 1 노즐Nozzle 폴리아미드Polyamide 개미산Formic acid 55,00055,000 0.50.5 3030 비교실시예 2Comparative Example 2 노즐Nozzle 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 35,00035,000 0.60.6 3030 비교실시예 3Comparative Example 3 노즐Nozzle 폴리아미드Polyamide 개미산Formic acid 70,00070,000 0.70.7 4545 비교실시예 4Comparative Example 4 노즐Nozzle 폴리우레탄Polyurethane 디메틸포름아미드Dimethylformamide 50,00050,000 0.80.8 4545 비교실시예 5Comparative Example 5 노즐Nozzle 폴리프로필렌Polypropylene 톨루엔toluene 40,00040,000 0.50.5 3030 비교실시예 6Comparative Example 6 노즐Nozzle 폴리프로필렌Polypropylene 톨루엔toluene 60,00060,000 0.80.8 4545

물성평가 결과Property evaluation result 구분division 투습도평균 (g/㎡/day)Moisture permeability average (g / ㎡ / day) 투습도표준편차 (g/㎡/day)Water vapor permeability standard deviation (g / ㎡ / day) 결점 (개)Defects (dog) 실시예1Example 1 14,00014,000 250250 00 실시예2Example 2 15,00015,000 300300 00 실시예3Example 3 17,00017,000 320320 00 실시예4Example 4 16,00016,000 300300 00 실시예5Example 5 14,00014,000 260260 00 실시예6Example 6 17,00017,000 280280 00 비교실시예1Comparative Example 1 18,00018,000 2,5002,500 1111 비교실시예2Comparative Example 2 18,00018,000 1,8001,800 1212 비교실시예3Comparative Example 3 15,00015,000 1,9001,900 66 비교실시예4Comparative Example 4 18,00018,000 1,5001,500 1010 비교실시예5Comparative Example 5 19,00019,000 2,2002,200 1212 비교실시예6Comparative Example 6 20,00020,000 2,0002,000 99

상기의 평가 결과에서 보는 바와 같이 실시예 1 내지 실시예 6으로 제조된 나노섬유 웹의 투습도 표준편차는 500g/㎡/day 이하로 매우 균일하다. 또, 나노 섬유 웹 상의 결점도 없는 매우 우수한 품질의 나노섬유 웹을 얻을 수 있었다.As can be seen from the above evaluation results, the standard deviation of the water vapor transmission rate of the nanofiber webs prepared in Examples 1 to 6 is very uniform, not more than 500 g / m 2 / day. In addition, a very good quality nanofiber web without defects on the nanofiber web was obtained.

그러나, 비교실시예 1 내지 비교실시예 6으로 제조된 나노섬유 웹은 실시예 1 내지 실시예 6과 거의 동일한 투습도를 나타내는 가운데 표준편차가 2,000g/㎡/day 이상으로 매우 높게 나타났다. 또, 결점도 6개 내지 12개 수준으로 실시예 1 내지 실시예 6으로 제조한 나노섬유 웹에 비교하여 매우 많다. 결점은 대부분 노즐에서 떨어진 고분자용액이며 품종 교체에 따른 노즐의 막힘의 영향도 발생하였다.However, the nanofiber webs prepared in Comparative Examples 1 to 6 exhibited almost the same moisture permeability as Examples 1 to 6, but showed a very high standard deviation of 2,000 g / m 2 / day or more. In addition, there are also many defects compared to the nanofiber web prepared in Examples 1 to 6 at the level of 6 to 12. The defects are mostly polymer solutions away from the nozzles, and the clogging of nozzles has also been affected by varieties.

표 3의 물성들은 아래와 같은 방법으로 평가하였다.Properties of Table 3 were evaluated by the following method.

·나노섬유 웹의 Of nanofiber web 투습도Breathable

나노섬유 웹의 투습도를 측정 부위를 달리하여 각 10회 평가하고 그 평균 값과 표준편차를 구하였다. 투습도 평가 방법은 원단에 일정한 압력으로 습기를 가하고 24시간 경과 후 통과한 수분의 g 수를 평가하는 것으로 한국공업규격 KS K 0594를 따른다.The water vapor permeability of the nanofiber web was evaluated 10 times with different measurement sites, and the average value and standard deviation were calculated. The method of evaluating moisture permeability is to evaluate the number of grams of moisture passed after 24 hours of application of moisture to a fabric under a certain pressure, according to Korean Industrial Standard KS K 0594.

·나노섬유 웹의 결점Drawbacks of Nanofiber Web

나노섬유 웹에 대해 폭 45cm, 길이 5m 내에서의 결점의 수를 육안검사를 통해 파악한다. 결점은 고분자 용액이 낙하한 지점의 수와 나노섬유가 도포되지 않은 지점의 수로 평가하였다.The number of defects within 45 cm wide and 5 m long for the nanofiber web is visually determined. The defects were evaluated by the number of points where the polymer solution fell and the number of points where no nanofibers were applied.

도 1은 본 발명의 공정 개략도.1 is a process schematic diagram of the present invention.

도 2는 종래 전기방사 공정 개략도.Figure 2 is a schematic diagram of a conventional electrospinning process.

도 3은 나노섬유 웹의 전자현미경 사진.3 is an electron micrograph of the nanofiber web.

* 도면 중 주요 부분 설명* Description of the main parts of the drawings

1, 10 : 고분자 용액 주탱크 2, 20 : 고분자 용액 공급펌프1, 10: polymer solution main tank 2, 20: polymer solution supply pump

30 : 고분자 용액 욕조 40 : 다공판30: polymer solution bath 40: porous plate

41 : 다공판에 천공된 미세구멍 4, 50 : 컬렉터41: micropores perforated in the perforated plate 4, 50: collector

6, 60 : 전압발생장치 70 : 나노섬유6, 60: voltage generator 70: nanofibers

3 : 노즐블록 5 : 전압전달로드.3: nozzle block 5: voltage transfer rod.

Claims (6)

고분자 용액 욕조(30) 내에 담겨져 있는 고분자 용액을 고전압이 걸려있는 상태로 상기 고분자 용액 욕조(30) 상에 설치되어 하단 일부분이 고분자 용액 욕조(30)내의 고분자 방사 용액과 접촉하고 있는 다공판(40)에 천공된 미세구멍(41) 들을 통해 고전압이 걸려 있는 상태로 상기 다공판(40)의 상부에 위치하는 컬렉터(50)를 향해 전기방사시켜 나노섬유(70)를 휘산시킨 다음, 휘산되는 나노섬유(70)를 상기 컬렉터(50) 상에 적층하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The porous plate 40 is installed on the polymer solution bath 30 in a state where a high voltage is applied to the polymer solution contained in the polymer solution bath 30 so that a lower portion thereof contacts the polymer spinning solution in the polymer solution bath 30. In the state in which a high voltage is applied through the micro holes 41 perforated) to electrospin toward the collector 50 located on the upper portion of the porous plate 40 to volatilize the nanofibers 70, and then volatilized nano Method for producing a nanofiber web, characterized in that the fiber (70) is laminated on the collector (50). 제1항에 있어서, 다공판에 천공된 미세구멍(41)의 직경은 0.2~1.0㎜인 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, wherein the diameter of the micropores (41) perforated in the porous plate is 0.2 to 1.0 mm. 제1항에 있어서, 고분자 용액은 폴리아미드 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리스티렌 수지, 셀룰로오스, 폴리비닐아세테이트, 폴리비닐클로라이드, 폴리비닐알코올 수지, 폴리설폰 수지, 폴리아크릴로니트릴 수지, 폴리메틸메타 아크릴에이트 수지, 폴리스티렌 수지, 폴리아크릴산 수지, 폴리올레핀 수지, 전방향족폴리아미드 수지 및 폴리비닐리덴 플루오라이드 수지로 이루어진 그룹 중에서 선택된 1종인 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of claim 1, wherein the polymer solution is polyamide resin, polyurethane resin, polyester resin, polystyrene resin, cellulose, polyvinylacetate, polyvinyl chloride, polyvinyl alcohol resin, polysulfone resin, polyacrylonitrile resin, poly A method for producing a nanofiber web, characterized in that it is one selected from the group consisting of methyl methacrylate resin, polystyrene resin, polyacrylic acid resin, polyolefin resin, wholly aromatic polyamide resin, and polyvinylidene fluoride resin. 1항에 있어서, 컬렉터(50)가 일정한 선속도로 운동하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of claim 1, wherein the collector (50) moves at a constant linear velocity. 1항에 있어서, 다공판(40) 및 컬렉터(50) 각각의 표면은 금, 은, 텅스텐, 구리, 스테인레스 강 및 이들의 합금들 중에서 선택된 1종의 재질로 이루어져 있는 것을 특징으로 하는 나노섬유 웹의 제조방법.The nanofiber web according to claim 1, wherein the surface of each of the porous plate 40 and the collector 50 is made of one material selected from gold, silver, tungsten, copper, stainless steel and alloys thereof. Manufacturing method. 1항에 있어서, 컬렉터(50)위에 섬유기재 또는 필름이 위치하는 것을 특징으로 하는 나노섬유 웹의 제조방법.The method of manufacturing a nanofiber web according to claim 1, wherein a fibrous base or a film is positioned on the collector (50).
KR1020080078060A 2008-08-08 2008-08-08 Method of manufacturing nanofiber web KR20100019169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080078060A KR20100019169A (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080078060A KR20100019169A (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Publications (1)

Publication Number Publication Date
KR20100019169A true KR20100019169A (en) 2010-02-18

Family

ID=42089674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080078060A KR20100019169A (en) 2008-08-08 2008-08-08 Method of manufacturing nanofiber web

Country Status (1)

Country Link
KR (1) KR20100019169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087025A2 (en) * 2010-12-22 2012-06-28 전북대학교산학협력단 Electrospinning apparatus comprising a spinning tube having a plurality of spounting holes
KR101432862B1 (en) * 2010-06-15 2014-08-26 코오롱인더스트리 주식회사 Porous support and method for manufacturing the same
CN105543984A (en) * 2015-12-15 2016-05-04 佛山轻子精密测控技术有限公司 Melting electrostatic spinning nozzle with pore adjustable
CN105926055A (en) * 2016-06-23 2016-09-07 浙江大学 Electrostatic spinning method capable of realizing in-situ control of micro/nano fiber surface shape
CN106222762A (en) * 2016-04-14 2016-12-14 浙江海洋学院 Nano fiber electrostatic spinning equipment and using method thereof
CN106435779A (en) * 2016-12-02 2017-02-22 苏州大学 Preparing device for nanometer fibers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432862B1 (en) * 2010-06-15 2014-08-26 코오롱인더스트리 주식회사 Porous support and method for manufacturing the same
WO2012087025A2 (en) * 2010-12-22 2012-06-28 전북대학교산학협력단 Electrospinning apparatus comprising a spinning tube having a plurality of spounting holes
WO2012087025A3 (en) * 2010-12-22 2012-10-18 전북대학교산학협력단 Electrospinning apparatus comprising a spinning tube having a plurality of spounting holes
CN105543984A (en) * 2015-12-15 2016-05-04 佛山轻子精密测控技术有限公司 Melting electrostatic spinning nozzle with pore adjustable
CN106222762A (en) * 2016-04-14 2016-12-14 浙江海洋学院 Nano fiber electrostatic spinning equipment and using method thereof
CN105926055A (en) * 2016-06-23 2016-09-07 浙江大学 Electrostatic spinning method capable of realizing in-situ control of micro/nano fiber surface shape
CN106435779A (en) * 2016-12-02 2017-02-22 苏州大学 Preparing device for nanometer fibers

Similar Documents

Publication Publication Date Title
KR101147726B1 (en) Method of manufacturing nanofiber web
Persano et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review
Teo et al. A review on electrospinning design and nanofibre assemblies
Zhou et al. Manufacturing technologies of polymeric nanofibres and nanofibre yarns
US20100001438A1 (en) Process for producing microfiber assembly
KR101072183B1 (en) Method for Preparing Nanoweb Filter and Nanoweb Filter Prepared by the same
KR20100019169A (en) Method of manufacturing nanofiber web
KR101118081B1 (en) Method of manufacturing nanofiber web
US11142847B2 (en) Spinning nozzle, process for producing fibrous mass, fibrous mass, and paper
KR20100035208A (en) Filter media and method of manufacturing the same
KR101118079B1 (en) Method of manufacturing nanofiber web
KR100696292B1 (en) Filtration media and method of manufacturing the same
KR101452251B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
Ravandi et al. Wicking phenomenon in nanofiber-coated filament yarns
KR20100019172A (en) Method of manufacturing nanofiber web
KR101118080B1 (en) Method of manufacturing nanofiber web
KR20140106874A (en) Porous support, method for manufacturing the same and membrane for gas or liquid filter comprising the same
KR101406264B1 (en) Hybrid nanofiber filter media
KR101386424B1 (en) Filter for removing a white corpuscle and method of manufacturing the same
Nayak Production methods of nanofibers for smart textiles
WO2014089458A1 (en) Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications
KR20100078811A (en) Electrospinning device
KR20100023150A (en) Filter for removing a white corpuscle and method of manufacturing the same
KR20100067535A (en) Centrifugal spinning solutions supply device for electrospinning apparatus
KR20120077244A (en) Nozzle block for electrospinning

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application