KR101432862B1 - Porous support and method for manufacturing the same - Google Patents

Porous support and method for manufacturing the same Download PDF

Info

Publication number
KR101432862B1
KR101432862B1 KR1020100056473A KR20100056473A KR101432862B1 KR 101432862 B1 KR101432862 B1 KR 101432862B1 KR 1020100056473 A KR1020100056473 A KR 1020100056473A KR 20100056473 A KR20100056473 A KR 20100056473A KR 101432862 B1 KR101432862 B1 KR 101432862B1
Authority
KR
South Korea
Prior art keywords
porous support
nanofibers
inorganic particles
nano
nanoweb
Prior art date
Application number
KR1020100056473A
Other languages
Korean (ko)
Other versions
KR20110136448A (en
Inventor
김나영
류재희
신용철
이무석
이정란
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020100056473A priority Critical patent/KR101432862B1/en
Publication of KR20110136448A publication Critical patent/KR20110136448A/en
Application granted granted Critical
Publication of KR101432862B1 publication Critical patent/KR101432862B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Cell Separators (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 나노 섬유로 이루어진 나노웹 구조를 가짐에 따라 박막화 제조 및 다공도 조절이 용이하고, 상기 나노웹 내부에 내열성이 우수한 무기입자가 분포됨에 따라 내열성이 향상될 뿐만 아니라 다공도가 저하되지 않고 탄성률이 증가함으로써 후공정이 용이하여 이차전지의 분리막 또는 연료전지의 전해질막 등에 이용할 수 있는 다공성 지지체 및 그 제조방법에 관한 것이다. 본 발명의 다공성 지지체는, 평균 직경이 0.005 ~ 5 ㎛인 나노 섬유; 및 무기입자를 포함하되, 상기 나노 섬유로 이루어진 나노웹 형태를 갖고 상기 나노웹 내부의 나노 섬유들 사이에 상기 무기입자가 분포되어 있는 것을 특징으로 한다.The present invention provides a nano-web structure comprising nanofibers, which facilitates preparation of thin films and control of porosity, and inorganic particles having excellent heat resistance are distributed in the nano-web to improve heat resistance, Thereby facilitating the post-processing. Thus, the present invention relates to a porous support that can be used as a separation membrane of a secondary battery or an electrolyte membrane of a fuel cell, and a method of manufacturing the same. The porous support of the present invention comprises nanofibers having an average diameter of 0.005 to 5 탆; And inorganic particles, wherein the inorganic particles are distributed between the nanofibers in the nanofiber, the nanofiber having a nanofiber structure comprising the nanofibers.

Description

다공성 지지체 및 그 제조방법{Porous support and method for manufacturing the same}[0001] Porous support and method for manufacturing same [0002]

본 발명은 다공성 지지체 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 이차전지의 분리막 또는 연료전지의 전해질막 등에 사용할 수 있는 다공성 지지체 및 그 제조방법에 관한 것이다.More particularly, the present invention relates to a porous support which can be used as a separation membrane of a secondary battery or an electrolyte membrane of a fuel cell, and a manufacturing method thereof.

다공성 지지체는 표면적이 넓고 다공성이 우수하기 때문에 다양한 용도로 이용할 수 있는데, 예를 들면, 정수용 필터, 공기 정화용 필터, 복합재료, 연료전지용 전해질막 또는 이차전지용 분리막 등에 이용할 수 있다. The porous support can be used for various purposes because of its wide surface area and excellent porosity. For example, it can be used for a water purification filter, an air purification filter, a composite material, an electrolyte membrane for a fuel cell, or a separation membrane for a secondary battery.

이차전지는 크게 애노드(anode), 분리막(separator), 캐소드(cathode) 및 전해질 등으로 구성되어 있다. 여기서 분리막은 이차전지의 음극과 양극을 분리하고 전해질을 통과시키는 역할을 한다. 현재 이차전지용 분리막으로는 통상 폴리에틸렌 또는 폴리프로필렌과 같은 폴리올레핀계 분리막이 사용되고 있다. 그러나, 이러한 폴리올레핀계 분리막은 내열성이 떨어지기 때문에 전지의 온도가 급격하게 상승할 경우 분리막이 파열되어 단락됨으로써 전지가 폭발하는 문제가 있다.The secondary battery is largely composed of an anode, a separator, a cathode, and an electrolyte. Here, the separator separates the cathode and the anode of the secondary battery and serves to pass the electrolyte. At present, a polyolefin-based separator such as polyethylene or polypropylene is generally used as a separator for a secondary battery. However, since the polyolefin-based separator has poor heat resistance, if the temperature of the battery rises sharply, the separator ruptures and is short-circuited to cause the battery to explode.

연료전지는 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배가량 높으며, 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 낮은 장점이 있다. 이러한 연료전지는 전극의 활성을 향상시키기 위해 고온에서 운전하기 때문에 연료전지용 전해질막은 높은 내열성이 요구되고 있다. 그러나, 상술한 바와 같은 폴리올레핀계 다공성 지지체를 연료전지용 전해질막에 이용할 경우 내열성이 떨어짐으로써 전지가 폭발하는 문제가 있다.A fuel cell is a power generation type battery that combines hydrogen and oxygen to produce electricity. Unlike conventional chemical cells, such as batteries and accumulators, fuel cells can continue to produce electricity as long as hydrogen and oxygen are supplied. They are twice as efficient as internal combustion engines because they have no heat loss. They convert chemical energy directly into electrical energy It has a low emission of pollutants. Since the fuel cell operates at a high temperature to improve the activity of the electrode, the electrolyte membrane for a fuel cell is required to have high heat resistance. However, when the polyolefin-based porous support as described above is used for an electrolyte membrane for a fuel cell, there is a problem that the battery deteriorates due to poor heat resistance.

상술한 문제점을 해결하고자 필름 형태의 폴리올레핀계 다공성막에 무기입자를 코팅하는 기술이 제안되었다. 그러나, 이 경우는 무기입자가 필름상에 형성된 기공을 막음으로써 전기전도도 등이 저하될 수 있고 무기입자가 표면에 코팅됨에 따라 러프니스(roughness)가 증가되어 후처리가 원활하지 수행되지 않는 문제가 있다. 또한, 필름 형태의 분리막은 기공이 적게 형성되기 때문에 다공도가 떨어지고 박막으로 제조가 용이하지 않으며 기공의 직경인 공경을 용이하게 조절하지 못하는 문제가 있다.In order to solve the above-mentioned problems, there has been proposed a technique of coating inorganic particles on a polyolefin-based porous film in the form of a film. However, in this case, since the inorganic particles block the pores formed on the film, the electric conductivity and the like may be lowered, and the roughness is increased as the inorganic particles are coated on the surface, have. In addition, since the film-like separation membrane has a low porosity, the porosity of the separation membrane is low and the production of the membrane is not easy, and the pore diameter, which is the diameter of the pore, can not be easily controlled.

본 발명은 상기 종래의 문제점을 해결하기 위해 고안된 것으로서, 본 발명은 박막화 및 다공도 조절이 용이하고 내열성이 우수하며 높은 탄성률을 가짐에 따라 후공정이 용이하여 이차전지의 분리막 또는 연료전지의 전해질막 등에 이용할 수 있는 다공성 지지체 및 그 제조방법을 제공하는 것을 목적으로 한다. The present invention has been devised to solve the above-described problems, and it is an object of the present invention to provide a separator of a secondary battery or an electrolyte membrane of a fuel cell, which is easy to control the degree of porosity and the heat resistance, And to provide a porous support which can be used and a production method thereof.

상기 목적을 달성하기 위한 본 발명의 일 측면으로서, 본 발명의 다공성 지지체는, 평균 직경이 0.005 ~ 5 ㎛인 나노 섬유; 및 무기입자를 포함하되, 상기 나노 섬유로 이루어진 나노웹 형태를 갖고 상기 나노웹 내부의 나노 섬유들 사이에 상기 무기입자가 분포되어 있는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a porous support comprising: a nanofiber having an average diameter of 0.005 to 5 탆; And inorganic particles, wherein the inorganic particles are distributed between the nanofibers in the nanofiber, the nanofiber having a nanofiber structure comprising the nanofibers.

상기 목적을 달성하기 위한 본 발명의 다른 측면으로서, 본 발명의 다공성 지지체의 제조방법은, 유기 고분자를 포함하는 방사용액을 제조한 후 상기 방사용액을 전기방사하여 평균 직경이 0.005 ~ 5 ㎛인 나노 섬유를 포함하여 이루어진 나노웹을 제조하는 단계; 및 상기 나노웹에 무기입자를 코팅하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a porous support, comprising: preparing a spinning solution containing an organic polymer; electrospinning the spinning solution to prepare a nanostructure having an average diameter of 0.005 to 5 μm; Fabricating a nanobeb made of fibers; And coating the inorganic particles with the nanoweb.

상기 구성에 따른 본 발명은 다음과 같은 효과가 있다.The present invention according to the above configuration has the following effects.

첫째, 본 발명에 따른 다공성 지지체는 나노 섬유의 집합체인 나노웹으로 이루어져 있기 때문에 박막화 및 다공도의 조절이 용이한 효과가 있다.First, since the porous support according to the present invention is composed of a nanofiber that is an aggregate of nanofibers, it is easy to control the degree of thinning and porosity.

둘째, 본 발명에 따른 다공성 지지체는 내열성이 우수하기 때문에 고온에서 장시간 폭발하지 않고 안전하게 운전할 수 있는 효과가 있다.Second, since the porous support according to the present invention has excellent heat resistance, it can be operated safely without explosion at a high temperature for a long time.

셋째, 본 발명에 따른 다공성 지지체는 무기입자가 나노웹 내부의 나노 섬유들 사이에 분포되어 있기 때문에 나노웹의 다공도가 저하되지 않고 탄성률이 증가함에 따라 후공정이 용이한 효과가 있다.Thirdly, since the inorganic particles are distributed among the nanofibers in the nanofiber, the porosity of the nanofiber does not decrease and the post-process is facilitated as the modulus of elasticity increases.

이와 같은 다공성 지지체는 이차전지용 분리막 또는 연료전지용 전해질막 등에 이용할 수 있다.Such a porous support can be used as a separation membrane for a secondary battery or an electrolyte membrane for a fuel cell.

도 1은 종래기술에 따른 다공성 지지체의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 다공성 지지체의 개략도이다.
1 is a schematic view of a porous support according to the prior art;
2 is a schematic view of a porous support according to an embodiment of the present invention.

이하, 본 발명에 대해서 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail.

도 2는 본 발명의 일 실시예에 따른 다공성 지지체의 개략도이다. 도 2에 나타낸 바와 같이, 본 발명에 따른 다공성 지지체는 평균 직경이 0.005 ~ 5 ㎛인 상기 나노 섬유(10)로 이루어진 나노웹, 및 상기 나노웹 내부의 나노 섬유(10)들 사이에 분포된 무기입자(30)를 포함하여 이루어져 있다.2 is a schematic view of a porous support according to an embodiment of the present invention. As shown in FIG. 2, the porous support according to the present invention comprises nanofibers made of the nanofibers 10 having an average diameter of 0.005 to 5 μm, and inorganic fibers distributed among the nanofibers 10 in the nanofiber Particles 30 as shown in FIG.

상기 다공성 지지체는 3차원적으로 불규칙하고 불연속적으로 연결된 나노 섬유(10)의 집합체로 이루어짐에 따라 균일하게 분포된 다수의 기공(20)을 포함한다. 이렇게 균일하게 분포된 다수의 기공(20)으로 이루어진 상기 다공성 지지체는 우수한 기체 또는 이온 전도도를 가지게 된다. 상기 다공성 지지체에 형성되는 기공(20)의 직경인 공경은 0.05 ~ 30 ㎛의 범위 내로 형성될 수 있는데, 상기 공경이 0.05 ㎛ 미만으로 형성될 경우 분리막의 전도도가 급격히 떨어질 수 있고, 상기 공경이 30 ㎛를 초과할 경우 분리막의 기계적 강도가 떨어질 수 있다. 또한, 상기 다공성 지지체의 기공(20)의 형성 정도를 나타내는 다공성 지지체의 다공도는 50 ~ 80 %의 범위 내로 형성될 수 있다. 상기 다공성 지지체의 다공도가 50 % 미만일 경우는 분리막의 전도도가 떨어질 수 있고 상기 다공성 지지체의 다공도가 80 %를 초과할 경우에는 분리막의 기계적 강도 및 형태안정성이 떨어질 수 있다.The porous support comprises a plurality of uniformly distributed pores 20 as it is composed of a collection of nanofibers 10 that are irregularly and discontinuously connected three-dimensionally. The porous support composed of a plurality of uniformly distributed pores 20 has excellent gas or ionic conductivity. The pore diameter of the pores 20 formed in the porous support may be in the range of 0.05 to 30 탆. If the pore size is less than 0.05 탆, the conductivity of the separation membrane may drop sharply, Mu m, the mechanical strength of the separator may be lowered. The porosity of the porous support, which indicates the degree of formation of the pores 20 of the porous support, may be within a range of 50 to 80%. If the porosity of the porous support is less than 50%, the conductivity of the separation membrane may be lowered. If the porosity of the porous support exceeds 80%, the mechanical strength and shape stability of the separation membrane may be deteriorated.

상기 나노 섬유(10)는 나일론, 폴리이미드, 폴리벤즈옥사졸, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리아릴렌에테르술폰, 폴리에테르에테르케톤, 그들의 공중합체 또는 그들의 혼합물을 들 수 있으나, 반드시 이에 한정되는 것은 아니다.Wherein the nanofibers 10 are selected from the group consisting of nylon, polyimide, polybenzoxazole, polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene, polyarylene ether sulfone, polyetheretherketone, But is not limited thereto.

상술한 바와 같은 높은 다공도와 박막을 제공하기 위해서는, 나노 섬유(10)의 평균 직경은 0.005 ~ 5 ㎛ 범위 내인 것이 바람직할 수 있다. 상기 나노웹을 구성하는 나노 섬유(10)의 평균 직경이 0.005 ㎛ 미만일 경우는 다공성 지지체의 기계적 강도가 저하될 수 있고, 상기 나노웹을 구성하는 나노 섬유(10)의 평균 직경이 5 ㎛를 초과할 경우에는 다공성 지지체의 다공도 및 두께 조절이 용이하지 않을 수 있다.In order to provide a high porosity and a thin film as described above, it is preferable that the average diameter of the nanofibers 10 is within the range of 0.005 to 5 mu m. When the average diameter of the nanofibers 10 constituting the nano-web is less than 0.005 m, the mechanical strength of the porous support may deteriorate and the average diameter of the nanofibers 10 constituting the nano- The porosity and the thickness of the porous support may not be easily adjusted.

상기 다공성 지지체는 나노 섬유(10)로 이루어진 나노웹 구조를 갖고, 상기 나노웹 내부의 나노 섬유(10)들 사이에 무기입자(30)가 고르게 분포되어 있다. 이러한 무기입자(30)는 다공성 지지체의 내열성을 크게 향상시킴에 따라 이차전지용 분리막 또는 연료전지용 전해질막에 사용할 경우 고온에서 막이 파열되는 것을 방지하는 역할을 한다. The porous support has a nano-web structure composed of nanofibers (10), and the inorganic particles (30) are evenly distributed among the nanofibers (10) inside the nanofibers. The inorganic particles 30 greatly improve the heat resistance of the porous support, and thus prevent the membrane from rupturing at a high temperature when used as a separation membrane for a secondary battery or an electrolyte membrane for a fuel cell.

상기 무기입자(30)는 도 2에 나타낸 바와 같이, 나노 섬유(10)들 사이에 분포되어 있기 때문에 다공성 지지체의 전도도를 크게 떨어뜨리지 않는다. 반면, 종래 분리막은 도 1에 나타낸 바와 같이, 다공성 막(100)에 무기입자(30)를 코팅함에 따라 상기 무기입자(30)가 다공성 막의 기공(200)을 막음으로써 다공도가 저하되어 전도도가 크게 떨어지게 된다. 또한, 종래 분리막은 무기입자(30)가 다공성 막(100)의 표면에 코팅되기 때문에 러프니스가 증가하여 후공정이 용이하지 않는데, 즉 다른 소재와의 접착력이 저하되어 내구성이 떨어지는 문제가 발생할 수 있다.As shown in FIG. 2, the inorganic particles 30 are distributed between the nanofibers 10, so that the conductivity of the porous support does not decrease significantly. As shown in FIG. 1, in the conventional separation membrane, the inorganic particles 30 are coated on the porous membrane 100 to block the pores 200 of the porous membrane, thereby decreasing the porosity and increasing the conductivity Fall off. In addition, since the conventional separation membrane is coated with the inorganic particles 30 on the surface of the porous membrane 100, the roughness increases and post-processing is not easy. That is, the adhesion of the inorganic particles 30 to other materials decreases, have.

또한, 상기 무기입자(30)는 나노 섬유(10) 사이에 분포되어 있기 때문에, 다공성 지지체의 탄성률을 증가시키는 역할을 할 수 있다. 높은 다공도를 갖는 다공성 지지체는 탄성률이 낮아 외력에 쉽게 변형됨에 따라 후공정을 진행할 때 공정성이 떨어질 수 있다. 그러나, 본 발명의 다공성 지지체는 나노 섬유(10)들 사이에 무기입자(30)가 분포되어 있기 때문에 상기 무기입자(30)가 보강제 역할을 함으로써 높은 탄성률을 가지게 된다. In addition, since the inorganic particles 30 are distributed between the nanofibers 10, they can increase the elastic modulus of the porous support. The porous support having a high porosity is low in modulus of elasticity and easily deformed by an external force, so that the processability may be deteriorated in a post-process. However, in the porous support of the present invention, since the inorganic particles 30 are distributed between the nanofibers 10, the inorganic particles 30 have a high elastic modulus by acting as a reinforcing agent.

상기 무기입자(30)는, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO2, Al2O3, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiC, 또는 이들의 혼합물일 수 있는데, 반드시 이에 한정되는 것은 아니다.The inorganic particles 30 may be at least one selected from the group consisting of TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3 , CaCO 3 , LiAlO 2 , SiO 2 , Al 2 O 3 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiC, or a mixture thereof.

이러한 무기입자(30)는 입자의 크기를 한정하지는 않으나, 0.01 ~ 10 ㎛의 평균 직경을 갖는 것이 바람직하다. 만일, 상기 평균 직경이 0.01 ㎛ 미만일 경우 분산성이 저하되어 물성이 균일하지 않을 수 있다. 반면 상기 평균 직경이 10 ㎛를 초과할 경우 무기입자(30)가 나노웹 내부에 균일하게 분포되기 어렵고 두께가 증가함에 따라 이로부터 제조된 분리막은 기계적 물성이 저하될 수 있다.The inorganic particles 30 do not limit the size of the particles but preferably have an average diameter of 0.01 to 10 mu m. If the average diameter is less than 0.01 mu m, the dispersibility may deteriorate and the physical properties may not be uniform. On the other hand, when the average diameter exceeds 10 탆, the inorganic particles 30 are not uniformly distributed in the nanoweb, and as the thickness increases, the separation membrane produced therefrom may have deteriorated mechanical properties.

상기 다공성 지지체는 고분자 바인더(binder)를 포함할 수 있다. 이러한 고분자 바인더는 나노 입자와 무기입자(30)를 상호 연결 및 고착시키는 역할을 함으로써, 무기입자(30)가 나노웹으로부터 쉽게 떨어지는 것을 방지할 수 있다. 이러한, 고분자 바인더는 그 종류를 특별히 한정하지 않고 통상의 고분자 바인더일 수 있다.The porous support may comprise a polymeric binder. Such a polymeric binder serves to interconnect and fix the nanoparticles and the inorganic particles 30, thereby preventing the inorganic particles 30 from easily falling off from the nanofibers. The kind of the polymeric binder is not particularly limited, and it may be a conventional polymeric binder.

이와 같은 구성으로 이루어진 다공성 지지체는 80 ~ 150 ㎫의 탄성률을 가짐에 따라 형태안정성이 우수하여 후공정이 용이하게 수행될 수 있다.Since the porous support having such a structure has an elastic modulus of 80 to 150 MPa, the porous support is excellent in shape stability and can be easily post-processed.

또한, 상기 다공성 지지체는 내열성이 우수한 무기입자를 포함하고 있기 때문에 580 ~ 600 ℃의 열분해온도를 가지고, 이에 따라 고온에서 우수한 열안정성이 요구되는 이차전지용 분리막 또는 연료전지의 전해질막 등에 이용될 수 있다.In addition, since the porous support contains inorganic particles having excellent heat resistance, it can be used as a separation membrane for a secondary battery or an electrolyte membrane of a fuel cell, which has a thermal decomposition temperature of 580 to 600 ° C and thus requires excellent thermal stability at a high temperature .

이하, 본 발명의 일 실시예에 따른 다공성 지지체의 제조방법에 대해서 설명하기로 한다.Hereinafter, a method for manufacturing a porous support according to an embodiment of the present invention will be described.

본 발명의 다공성 지지체의 제조방법은, 유기 고분자를 포함하는 방사용액을 제조한 후 상기 방사용액을 전기방사하여 평균 직경이 0.005 ~ 5 ㎛인 나노 섬유(10)를 포함하여 이루어진 나노웹을 제조하는 단계, 및 상기 나노웹에 무기입자(30)를 코팅하는 단계를 포함한다. The method for producing a porous support according to the present invention comprises the steps of preparing a spinning solution containing an organic polymer and electrospunning the spinning solution to prepare a nanoweb comprising nanofibers 10 having an average diameter of 0.005 to 5 μm , And coating the inorganic particles (30) on the nanoweb.

상기 나노웹을 제조하는 단계는, 유기 고분자를 용매에 녹여 방사용액을 제조한 후, 상기 방사용액을 전압이 인가된 방사 노즐(spinneret nozzle)에 공급하고 상기 방사 노즐에 의해 토출시켜 나노 섬유(10)들을 형성하고 상기 나노 섬유(10)들을 집전체에 집전시키는 공정으로 이루어질 수 있다.The step of preparing the nano-web comprises: preparing a spinning liquid by dissolving the organic polymer in a solvent, supplying the spinning solution to a spinneret nozzle to which voltage is applied, and discharging the spinning solution through the spinning nozzle to form nanofibers 10 And collecting the nanofibers 10 in a current collector.

상기 전기방사는 나노 단위의 직경을 갖는 섬유들을 용이하게 제조할 수 있는 이점이 있고, 이러한 나노 섬유(10)들은 거미줄처럼 서로 엉켜 나노웹을 형성한다. 이러한 전기방사는 박막화 및 다공도를 용이하게 조절할 수 있는 나노웹을 제조할 수 있다. 따라서, 이러한 나노웹을 이차전지의 분리막에 적용될 경우 이차전지는 전기전도도가 우수하고 전기저항이 낮음에 따라 우수한 성능을 가질 수 있다.The electrospinning has an advantage that fibers having a diameter of nano unit can be easily produced, and these nanofibers 10 are tangled together to form a nanoweb. Such electrospinning can produce a nanoweb that can easily control the thickness and porosity. Therefore, when such a nanoweb is applied to a separation membrane of a secondary battery, the secondary battery has excellent electric conductivity and low electric resistance, and thus can have excellent performance.

상기 코팅하는 단계는, 바인더를 용매에 녹여 바인더 용액을 제조하는 단계, 상기 바인더 용액에 무기입자(30)를 혼합하여 코팅용액을 제조하는 단계, 및 상기 코팅용액을 나노웹에 도포한 후 건조하는 단계를 포함하여 이루어질 수 있다.The coating step comprises the steps of preparing a binder solution by dissolving the binder in a solvent, preparing a coating solution by mixing the binder solution with the inorganic particles (30), and applying the coating solution to a nanoweb, followed by drying Step < / RTI >

상기 용매는 나노 섬유(10)가 통상의 유기용매에 상온에서 녹지 않는 경우 유기계 용매일 수 있고, 나노 섬유(10)가 통상의 유기용매에 잘 녹는 경우 수계 용매인 것이 바람직하다.The solvent may be an organic solvent if the nanofiber 10 does not dissolve in an ordinary organic solvent at room temperature, and an aqueous solvent if the nanofiber 10 is well soluble in a common organic solvent.

상기 코팅하는 방법은 통상의 방법을 이용할 수 있는데, 딥(dip) 코팅, 다이(die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅, 스프레이 코팅 등을 이용하여 수행할 수 있다.The above coating can be carried out by a conventional method such as dip coating, die coating, roll coating, comma coating, spray coating and the like.

이하에서는 구체적 실시예 및 비교예를 통하여 본 발명의 효과를 보다 구체적으로 살펴보도록 한다. 이들 실시예는 단지 본 발명의 이해를 돕기 위한 것으로서 본 발명의 권리범위를 제한하지는 않는다.Hereinafter, the effects of the present invention will be described in more detail through specific examples and comparative examples. These embodiments are only for the understanding of the present invention and do not limit the scope of the present invention.

실시예Example 1 One

12중량%의 농도를 갖는 폴리아믹애시드/THF 방사용액을 30 ㎸의 전압이 인가된 상태에서 전기방사한 후 폴리아믹애시드 나노웹의 전구체를 형성한 후 150 ℃의 핫프레스를 통해 이미드화 반응을 시켜 두께가 20 ㎛인 폴리이미드 다공성 지지체를 제조하였다.The polyamic acid / THF spinning solution having a concentration of 12 wt% was electrospun with a voltage of 30 kV applied thereto, and a precursor of the polyamic acid nanoweb was formed. The imidization reaction was carried out by hot pressing at 150 ° C To prepare a polyimide porous support having a thickness of 20 탆.

N-메틸-2-피롤리돈에 설폰화 폴리이미드를 용융시켜 10 중량%의 바인더 용액을 제조하였다. 상기 바인더 용액에 이산화티탄늄 무기입자(30)를 혼합하여 10 중량%의 코팅용액을 제조하였다. The sulfonated polyimide was melted in N-methyl-2-pyrrolidone to prepare a binder solution of 10% by weight. Titanium dioxide inorganic particles (30) were mixed with the binder solution to prepare a 10 wt% coating solution.

딥 공정을 이용하여 상기 다공성 지지체를 상기 코팅용액에 침지한 후 패딩롤을 이용하여 무기입자(30)의 함유량을 조절한 후 유기용매를 건조시켜 다공성 지지체를 제조하였다. The porous support was immersed in the coating solution using a dipping process, the content of the inorganic particles (30) was adjusted using a padding roll, and the organic solvent was dried to prepare a porous support.

실시예Example 2 2

전술한 실시예 1에서, 폴리이미드 다공성 나노웹 대신 폴리비닐리덴 플루오라이드 다공성 나노웹을 사용하고 바인더를 포함하는 코팅용액 대신 이산화티탄늄을 물에 녹인 코팅용액을 사용하는 것을 제외하고는 실시예 1과 동일한 방법에 의해 다공성 지지체를 제조하였다.In Example 1 described above, a polyvinylidene fluoride porous nano-web was used in place of the polyimide porous nano-web, and a coating solution in which titanium dioxide was dissolved in water instead of the coating solution containing a binder was used in Example 1 To prepare a porous support.

폴리비닐리덴 플루오라이드 다공성 나노웹은 다음과 같은 공정을 통해 제조하였다. 폴리비닐리덴 플루오라이드(PVdF)를 디메틸포름아마이드(dimethylformamide) 용매에 녹여 농도가 10 %인 방사용액을 제조하였다. 이러한 방사용액을 60 kV의 전압이 인가된 방사노즐에서 토출하여 나노웹을 제조하였다. 이때, 방사노즐과 집전체와의 거리는 60㎝이고 토출량은 홀당 0.5 cc/g이었다. 이렇게 제조된 나노웹을 120 ℃로 가열된 롤(roll)에 투입하여 캘린더링하는 공정을 통해 폴리비닐리덴 플루오라이드 다공성 나노웹을 완성하였다. The polyvinylidene fluoride porous nanoweb was prepared by the following process. Polyvinylidene fluoride (PVdF) was dissolved in a dimethylformamide solvent to prepare a spinning solution having a concentration of 10%. The spinning solution was discharged from a spinning nozzle to which a voltage of 60 kV was applied to produce a nanoweb. At this time, the distance between the spinning nozzle and the current collector was 60 cm and the discharge amount was 0.5 cc / g per hole. The polyvinylidene fluoride porous nano-web was completed through a process of calendering a nano-web prepared as described above by placing it on a roll heated to 120 ° C.

비교예Comparative Example 1 One

전술한 실시예 1에서, 폴리이미드 다공성 나노웹에 이산화티탄늄 무기입자(30)를 코팅하는 공정을 생략한 것을 제외하고는 실시예 1과 동일한 방법에 의해 다공성 지지체를 제조하였다. In Example 1 described above, a porous support was prepared in the same manner as in Example 1, except that the step of coating the titanium dioxide inorganic particles 30 on the polyimide porous nano-web was omitted.

비교예Comparative Example 2 2

전술한 실시예 1에서, 폴리이미드 다공성 나노웹 대신 통상의 필름 형태의 폴리에틸렌 다공성 막(100)을 사용하는 것을 제외하고는 실시예 1과 동일한 방법에 의해 다공성 지지체를 제조하였다. 폴리에틸렌 다공성 막(100)은, 고상 가공 공정(Solid-state Processing)을 통하여 필름을 제조하고, 팽윤 및 세척에 의한 다공화 공정(Swelling & Rolling) 및 건조 공정을 통해 다공성 막(100)을 완성하였다.
In Example 1 described above, a porous support was prepared in the same manner as in Example 1, except that a polyethylene film 100 in the form of a film instead of a polyimide porous nano-web was used. The polyethylene porous membrane 100 is manufactured through solid-state processing, and the porous membrane 100 is completed through a swelling and rolling process by swelling and washing and a drying process .

실시예 및 비교예 들에 의해 제조된 다공성 지지체들의 물성은 다음의 방법으로 측정하여 아래의 표 1에 나타내었다.The physical properties of the porous supports prepared according to Examples and Comparative Examples were measured by the following methods and are shown in Table 1 below.

다공도Porosity (%) 측정(%) Measure

다공성 지지체의 다공도는 다공성 지지체의 질량, 부피 및 밀도를 이용하여 아래의 식과 같이 다공성 지지체의 전체부피 대비 공기부피의 비율에 의하여 계산하였다. The porosity of the porous support was calculated by the ratio of the volume of air to the total volume of the porous support using the mass, volume, and density of the porous support as shown below.

다공도(%) = (공기부피/전체부피)×100Porosity (%) = (air volume / total volume) x 100

열분해 온도(℃) 측정Pyrolysis temperature (℃) measurement

열중량분석기기(PERKIN ELMER, Thermogravimetric Analyzer TGA7)를 이용하여 초기 열분해 시작지점의 온도를 측정하였다. 구체적 측정 조건은, 온도 범위 30 ~ 900 ℃, 승온속도 20 ℃/분, 질소가스 사용, 상기 질소 가스 유량 60 ㎖/분이었다. The temperature at the beginning of the initial pyrolysis was measured using a thermogravimetric analyzer (PERKIN ELMER, Thermogravimetric Analyzer TGA7). Specific measurement conditions were a temperature range of 30 to 900 占 폚, a temperature increase rate of 20 占 폚 / min, a nitrogen gas flow rate, and a nitrogen gas flow rate of 60 ml / min.

탄성률(㎫)Modulus of elasticity (MPa)

ASTM D882 규정에 의해 다공성 지지체의 탄성률(㎫)을 측정하였다.
The elastic modulus (MPa) of the porous support was measured according to ASTM D882.

구분division 다공도(%)Porosity (%) 열분해온도(℃)Pyrolysis temperature (℃) 탄성률(㎫)Modulus of elasticity (MPa) 실시예 1Example 1 7070 594.25594.25 116.15116.15 실시예 2Example 2 5555 595.01595.01 120.22120.22 비교예 1Comparative Example 1 9595 579.58579.58 36.1536.15 비교예 2Comparative Example 2 9090 200.26200.26 55.1655.16

10 : 나노 섬유 20 : 기공
30 : 무기입자
10: nanofiber 20: porosity
30: inorganic particles

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 평균 직경이 0.005 ~ 5 ㎛인 나노 섬유를 포함하여 이루어진 나노웹을 제조하는 단계; 및
상기 나노웹에 무기입자를 코팅하는 단계를 포함하되,
상기 나노웹 제조 단계는,
폴라아믹애시드를 포함하는 방사용액을 제조하는 단계;
상기 방사용액을 전기방사함으로써 폴리아믹애시드 나노웹 전구체를 형성하는 단계; 및
상기 나노웹 전구체를 이미드화시키는 단계를 포함하고,
상기 무기입자 코팅 단계는, 상기 무기입자가 상기 나노웹 내부의 상기 나노 섬유들 사이에만 분포하도록 수행되는 것을 특징으로 하는 다공성 지지체의 제조방법.
Preparing a nanoweb comprising nanofibers having an average diameter of 0.005 to 5 占 퐉; And
Coating an inorganic particle on the nano-web,
The method of claim 1,
Preparing a spinning solution comprising a polar amic acid;
Forming a polyamic acid nano-web precursor by electrospinning the spinning solution; And
Imidizing the nano-web precursor,
Wherein the inorganic particle coating step is performed such that the inorganic particles are distributed only between the nanofibers in the nanoweb.
제8항에 있어서,
상기 무기입자 코팅 단계는,
바인더를 용매에 녹여 바인더 용액을 제조하는 단계;
상기 바인더 용액에 상기 무기입자를 혼합하여 코팅용액을 제조하는 단계; 및
상기 코팅용액을 상기 나노웹에 도포한 후 건조하는 단계를 포함하는 다공성 지지체의 제조방법.
9. The method of claim 8,
Wherein the inorganic particle coating step comprises:
Dissolving the binder in a solvent to prepare a binder solution;
Mixing the inorganic particles with the binder solution to prepare a coating solution; And
Applying the coating solution to the nanoweb, and then drying the coated nanoweb.
제9항에 있어서,
상기 바인더 용액을 제조하는데 사용되는 상기 용매는 유기계 용매 또는 수계 용매인 것을 특징으로 하는 다공성 지지체의 제조방법.
10. The method of claim 9,
Wherein the solvent used for preparing the binder solution is an organic solvent or an aqueous solvent.
KR1020100056473A 2010-06-15 2010-06-15 Porous support and method for manufacturing the same KR101432862B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100056473A KR101432862B1 (en) 2010-06-15 2010-06-15 Porous support and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100056473A KR101432862B1 (en) 2010-06-15 2010-06-15 Porous support and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110136448A KR20110136448A (en) 2011-12-21
KR101432862B1 true KR101432862B1 (en) 2014-08-26

Family

ID=45503089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100056473A KR101432862B1 (en) 2010-06-15 2010-06-15 Porous support and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101432862B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581116B2 (en) 2014-08-26 2020-03-03 Samsung Electronics Co., Ltd. Electrolyte membrane for energy storage device, energy storage device including the same, and method of preparing the electrolyte membrane for energy storage device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601145B1 (en) * 2012-04-25 2016-03-08 주식회사 엘지화학 Separator comprising porous non-woven fabric base film consisting of core-sheath composite fibers, and electrochemical device comprising same
KR101699037B1 (en) 2012-11-12 2017-01-23 주식회사 엘지화학 Manufacturing method of a separator, separator fabricated thereby and electrochemical device including the same
KR101634144B1 (en) * 2013-02-27 2016-06-28 코오롱패션머티리얼(주) Porous support, method for manufacturing the same, separator and battery
JP6073469B2 (en) 2013-04-29 2017-02-01 エルジー・ケム・リミテッド Cable type secondary battery package and cable type secondary battery including the same
KR101465165B1 (en) 2013-05-07 2014-11-25 주식회사 엘지화학 Cable-type secondary battery
WO2014182062A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
WO2014182056A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Cable-type secondary battery and method for manufacturing same
WO2014182063A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery comprising same
EP2822084B1 (en) 2013-05-07 2016-12-14 LG Chem, Ltd. Cable-type secondary battery
WO2014182064A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
CN204441379U (en) 2013-05-07 2015-07-01 株式会社Lg化学 Electrode for secondary battery and comprise its secondary cell and cable Type Rechargeable Battery
KR20150101039A (en) * 2014-02-25 2015-09-03 코오롱패션머티리얼 (주) Porous support, method for manufacturing the same, and reinforced membrane comprising the same
US10290898B2 (en) 2014-08-29 2019-05-14 Samsung Electronics Co., Ltd. Composite, method of preparing the composite, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
KR101823050B1 (en) * 2016-02-26 2018-01-31 한양대학교 산학협력단 Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
KR102626921B1 (en) 2018-08-10 2024-01-19 삼성전자주식회사 Sulfide solid electrolyte for lithium battery, a preparing method thereof, and lithium battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071755A (en) * 2001-12-27 2004-08-12 이 아이 듀폰 디 네모아 앤드 캄파니 Gas diffusion backing for fuel cells
KR100725924B1 (en) 2006-10-30 2007-06-11 전북대학교산학협력단 Nanofiber filament coated with thin membrane of polymer and method of manufacturing the same
KR100766960B1 (en) 2006-11-27 2007-10-15 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
KR20100019169A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040071755A (en) * 2001-12-27 2004-08-12 이 아이 듀폰 디 네모아 앤드 캄파니 Gas diffusion backing for fuel cells
KR100725924B1 (en) 2006-10-30 2007-06-11 전북대학교산학협력단 Nanofiber filament coated with thin membrane of polymer and method of manufacturing the same
KR100766960B1 (en) 2006-11-27 2007-10-15 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
KR20100019169A (en) * 2008-08-08 2010-02-18 코오롱패션머티리얼 (주) Method of manufacturing nanofiber web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581116B2 (en) 2014-08-26 2020-03-03 Samsung Electronics Co., Ltd. Electrolyte membrane for energy storage device, energy storage device including the same, and method of preparing the electrolyte membrane for energy storage device

Also Published As

Publication number Publication date
KR20110136448A (en) 2011-12-21

Similar Documents

Publication Publication Date Title
KR101432862B1 (en) Porous support and method for manufacturing the same
Yang et al. Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress
US8815432B2 (en) Heat resisting ultrafine fibrous separator and secondary battery using the same
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
US20160351876A1 (en) Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
EP2634838B1 (en) Separator for non-aqueous batteries and non-aqueous battery equipped with same, and process for manufacturing separator for non-aqueous batteries
KR101479749B1 (en) Porous Separator for Secondary cell and its manufacturing method with Polyvinylidene fluoride electrospinning on polyolefin substrate and inorganic compound coating
Dai et al. Research progress on high-temperature resistant polymer separators for lithium-ion batteries
RU2012120695A (en) POROUS SEPARATOR FROM ULTRA THIN FIBERS, HIGH RESISTANCE AND HIGH STRENGTH, AND METHOD OF ITS MANUFACTURE, AND ALSO THE BATTERY WITH USING SUCH SEPARATOR
US20170030009A1 (en) Porous support, preparation method therefor, and reinforced membrane containing same
CN109817865B (en) Composite diaphragm and preparation method thereof
KR101447565B1 (en) Porous separating membrane for secondary battery which contains inorganic coating layer method of
CN112127011B (en) Polyacrylonitrile/cellulose composite fiber membrane and preparation method and application thereof
KR101470696B1 (en) Manufacturing method of separator of lithium secondary battery and the separator manufactured thereby and the lithium secondary battery having the separator
WO2019072144A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
CN115428249A (en) Electrochemical device and electronic device comprising same
CN112086611A (en) Composite diaphragm and preparation method and application thereof
CN110600662A (en) Polyvinylidene fluoride-hexafluoropropylene/titanium dioxide composite membrane and preparation method and application thereof
KR101093590B1 (en) Lithium polymer battery comprising multilayer-type polymer membrane and preparation thereof
KR101634144B1 (en) Porous support, method for manufacturing the same, separator and battery
CN115295962B (en) Three-layer asymmetric diaphragm, and preparation method and application thereof
KR20120134236A (en) Electrolyte membrane for fuel cell and method of manufacturing the same
KR101560845B1 (en) Polymer electrolyte nanofiber web
CN109524594A (en) A kind of application in mesoporous silicon oxide modification nonwoven cloth diaphragm and lithium-sulfur cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 6