KR101823050B1 - Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof - Google Patents

Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof Download PDF

Info

Publication number
KR101823050B1
KR101823050B1 KR1020160023239A KR20160023239A KR101823050B1 KR 101823050 B1 KR101823050 B1 KR 101823050B1 KR 1020160023239 A KR1020160023239 A KR 1020160023239A KR 20160023239 A KR20160023239 A KR 20160023239A KR 101823050 B1 KR101823050 B1 KR 101823050B1
Authority
KR
South Korea
Prior art keywords
ether sulfone
polyarylene ether
membrane
water treatment
porous
Prior art date
Application number
KR1020160023239A
Other languages
Korean (ko)
Other versions
KR20170100851A (en
Inventor
이영무
김지훈
이상민
박상현
문선주
강나래
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020160023239A priority Critical patent/KR101823050B1/en
Priority to PCT/KR2017/001669 priority patent/WO2017146412A1/en
Publication of KR20170100851A publication Critical patent/KR20170100851A/en
Application granted granted Critical
Publication of KR101823050B1 publication Critical patent/KR101823050B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법에 관한 것으로, 가교구조의 술폰화 폴리(아릴렌에테르술폰)공중합체로 다공성 지지체를 형성하고, 상기 다공성 지지체 위에 박막의 활성층을 포함하는 복합막을 제조하여 수처리 분리막으로 응용하는 기술에 관한 것이다.
본 발명에 따라 제조된 얇고 기공률이 높은 가교구조의 술폰화 폴리(아릴렌에테르술폰)공중합체 지지체, 이를 포함하는 초박형 복합막은 열적·화학적 안정성 및 기계적 물성이 우수하여 높은 작동압력에도 견딜 수 있을 뿐만 아니라, 내부농도분극을 최소화하여 높은 수투과도 및 그에 따른 높은 전력밀도를 얻을 수 있으므로 압력지연삼투공정 또는 정삼투공정을 비롯한 수처리 분리막으로 응용이 가능하다.
TECHNICAL FIELD The present invention relates to a porous support for a water treatment separation membrane, an ultra-thin composite membrane including the same, and a method for producing the same, which comprises forming a porous support using a sulfonated poly (arylene ether sulfone) copolymer having a crosslinked structure, The present invention relates to a technique for manufacturing a composite membrane including an active layer and applying it to a water treatment separation membrane.
The sulfonated poly (arylene ether sulfone) copolymer support having a thin and high porosity structure produced according to the present invention and the ultra-thin composite membrane comprising the same have excellent thermal and chemical stability and mechanical properties, However, since the internal concentration polarization can be minimized, a high water permeability and a high power density can be obtained. Therefore, the present invention can be applied to a water treatment membrane including a pressure delay osmosis process or a positive osmosis process.

Figure 112016019097445-pat00018
Figure 112016019097445-pat00018

Description

수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법{Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof}TECHNICAL FIELD [0001] The present invention relates to a porous support for a water treatment separation membrane, an ultra-thin composite membrane including the same, and a method for manufacturing the same.

본 발명은 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법에 관한 것으로, 보다 상세하게는 가교구조의 술폰화 폴리(아릴렌에테르술폰)공중합체로 다공성 지지체를 형성하고, 상기 다공성 지지체 위에 박막의 활성층을 포함하는 복합막을 제조하여 수처리 분리막으로 응용하는 기술에 관한 것이다.
The present invention relates to a porous support for a water treatment separator, an ultra-thin composite membrane comprising the same, and a method of manufacturing the same. More particularly, the present invention relates to a porous support for a water treatment separator, which comprises a porous support formed of a sulfonated poly (arylene ether sulfone) The present invention relates to a technique for preparing a composite membrane including an active layer of a thin film on a support and applying the membrane to a water treatment membrane.

최근 수처리용 분리막으로서 역삼투막을 이용한 해수담수화 공정 등이 산업적으로 에너지 소모가 크다는 한계가 지적되면서 새로운 구동력에 근거하여 전력 또는 물 생산을 위한 수처리용 분리막의 개발이 요구되고 있다. 특히, 전력생산을 목적으로 삼투압을 이용하는 염도차 발전이 주목받고 있으며, 그 중에서 압력지연삼투공정(pressure retarded osmosis process)에 관한 연구가 활발히 진행되고 있다. 압력지연삼투공정은 염도차가 있는 두 용액의 삼투압 차를 구동력으로, 분리막을 통하여 삼투현상의 반대방향으로 삼투압보다 낮은 압력을 가하여 삼투방향의 물 흐름을 지연시킴으로써, 분리막을 투과한 물이 터빈을 돌려 전기를 생산하는 방식이다. 한편, 물 생산을 목적으로 역삼투공정을 대체할 수 있는 정삼투공정도 압력지연삼투공정과 동일하게 삼투현상을 구동력으로 이용하기 때문에 압력지연삼투공정용 분리막의 개발에 맞추어 정삼투공정용 분리막에 대한 연구도 꾸준히 진행되고 있는 실정이다.
Recently, it has been pointed out that the desalination process using a reverse osmosis membrane as a water treatment separator has a high energy consumption industrially. Therefore, it is required to develop a water treatment membrane for power or water production based on a new driving force. Particularly, salinity power generation using osmotic pressure for power production has attracted attention, and studies on pressure retarded osmosis process have been actively carried out. The pressure-delayed osmosis process is a process in which the osmotic pressure difference of two solutions having a difference in salinity is used as a driving force to apply a pressure lower than the osmotic pressure to the opposite direction of the osmotic phenomenon through the separation membrane to delay water flow in the osmotic direction, It is a way to produce electricity. On the other hand, since the osmosis process, which can replace the reverse osmosis process for the purpose of producing water, uses the osmotic phenomenon as the driving force in the same way as the pressure delay osmosis process, the separation membrane for the osmosis process The research on the study is also going on steadily.

상기 압력지연삼투공정용 분리막으로서는 평막 또는 중공사막이 주류를 이루고 있는데, 일반적으로 100~200㎛ 두께의 폴리술폰(PS) 또는 폴리에틸렌테레프탈레이트(PET)계의 다공성 지지체 및 ~100nm 두께의 폴리아미드(PA)계 박막 활성층을 갖는 초박형 복합막(thin-film composite membrane)의 형태가 대부분을 차지하고 있다(특허문헌 1).
As the separation membrane for the pressure delay osmosis process, a flat membrane or a hollow fiber membrane is a mainstream. Generally, a porous support of polysulfone (PS) or polyethylene terephthalate (PET) based on 100 to 200 탆 thickness and a polyamide PA) -based thin-film active layer (Patent Document 1).

그러나 통상의 압력지연삼투공정용 분리막에서는 물이 막을 통해 투과될 때, 유입용액의 염들이 선택적 투과성을 가진 활성층에 막혀 지지체 내부에 쌓이면서 활성층과 지지체 경계면의 염분 농도가 증가하는 현상인 내부농도분극이 발생함에 따라 수투과의 구동력인 농도 차이가 줄어들게 되므로, 궁극적으로는 수투과도가 떨어져 전력밀도가 낮아지는 단점이 있는바, 지지체의 두께가 100~200㎛로 두꺼운 것이 가장 큰 원인으로 인식되고 있으며, 정삼투공정용 분리막에서도 동일한 현상이 자주 발생한다. 아울러 압력지연삼투공정 또는 정삼투공정에 사용되는 분리막은 높은 작동압력을 견딜 수 있어야 하므로 열적·화학적 안정성을 비롯하여 기계적 물성이 우수하여야 한다.
However, in the conventional pressure-delayed osmosis membrane, when the water is permeated through the membrane, the concentration of the salt in the inlet solution is increased by increasing the salinity concentration at the interface between the active layer and the support, As a result, the density difference, which is the driving force of water permeation, is reduced. As a result, the water permeability is lowered and the power density is lowered. Ultimately, the thickness of the support is as large as 100 to 200 탆, The same phenomenon frequently occurs in the membrane for the positive osmosis process. In addition, the separator used in the pressure-delayed osmosis process or the osmosis process should be able to withstand high operating pressures, so that its mechanical properties, including thermal and chemical stability, should be excellent.

한편, 열적·화학적 안정성 및 기계적 물성이 우수하여 분리막의 소재로 많이 사용하는 폴리아릴렌에테르계 공중합체 물질로서 폴리에테르에테르케톤(PEEK)을 술폰화한 술폰화 폴리에테르에테르케톤 공중합체를 합성하고, 이를 전기방사막 또는 평막의 형태로 제조하는 방법이 공지되어 있으나, 이들은 대부분 연료전지의 고분자 전해질막에 응용되는 것으로 압력지연삼투공정 또는 정삼투공정을 비롯한 수처리용 분리막의 응용에 관해서는 알려진 바 없다(특허문헌 2, 비특허문헌 1).
On the other hand, a sulfonated polyether ether ketone copolymer in which polyether ether ketone (PEEK) is sulfonated as a polyarylene ether-based copolymer material having excellent thermal and chemical stability and mechanical properties is widely used as a material for a separator And a method of manufacturing the same in the form of an electrospray membrane or a flat membrane. However, most of them are applied to a polymer electrolyte membrane of a fuel cell, and application of a water treatment membrane including a pressure delayed osmosis process or a positive osmosis process is known (Patent Document 2, Non-Patent Document 1).

따라서 본 발명자 등은, 열적·화학적 안정성 및 기계적 물성이 우수한 폴리아릴렌에테르계 공중합체 막의 응용분야를 확대하기 위하여 연구를 거듭한 결과, 폴리아릴렌에테르술폰 공중합체를 술폰화한 술폰화 폴리아릴렌에테르술폰 공중합체로부터 가교구조를 갖는 전기방사막 형태의 다공성 지지체를 형성하고, 그 다공성 지지체 위에 박막의 활성층을 형성하여 초박형 복합막을 제조할 수 있으면, 압력지연삼투공정 또는 정삼투공정을 비롯한 광범위한 수처리 공정의 분리막으로 응용될 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
Therefore, the inventors of the present invention have conducted extensive studies to expand the application field of a polyarylene ether copolymer film having excellent thermal and chemical stability and mechanical properties. As a result, they have found that sulfonated polyarylsulfonated polyarylene ether sulfone copolymers When a porous support in the form of an electrodeposition film having a crosslinking structure is formed from a phenylene sulfone copolymer and a thin active layer is formed on the porous support to prepare an ultra-thin composite membrane, a wide range The present invention has been completed based on the fact that it can be applied as a separator of a water treatment process.

특허문헌 1 한국등록특허공보 제10-1391654호Patent Document 1 Korean Patent Publication No. 10-1391654 특허문헌 2 한국등록특허공보 제10-1292214호Patent Document 2: Korean Patent Publication No. 10-1292214

비특허문헌 1 M. Luisa Di Vona et al., J. Phys. Chem. B 113, 7505-7512(2009)Non-Patent Document 1 M. Luisa Di Vona et al., J. Phys. Chem. B 113, 7505-7512 (2009)

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 열적·화학적 안정성 및 기계적 물성이 우수하여 높은 작동압력에도 견딜 수 있을 뿐만 아니라, 내부농도분극을 최소화하여 높은 수투과도 및 그에 따른 높은 전력밀도를 얻을 수 있는, 얇고 기공률이 높은 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법을 제공하고자 하는 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a polymer electrolyte membrane which is excellent in thermal and chemical stability and mechanical properties and can withstand high operating pressure, Thin porous membrane for a water treatment separation membrane having a high porosity, which can obtain a high power density according to the present invention, and a method for manufacturing the same.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 하기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 제공한다.In order to accomplish the above object, the present invention provides a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure for a water treatment separator having a repeating unit represented by the following formula (1).

<화학식 1>&Lt; Formula 1 >

Figure 112016019097445-pat00001
Figure 112016019097445-pat00001

(상기 화학식 1에서, Q는 단일결합이거나, O, S, C(=O), C(=O)NH, Si(CH3)2, (CH2)p (1≤p≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(CH3)(CF3)이고, n은 반복단위 내 구조단위의 몰 비로서 0<n<1 이다) (Wherein Q is a single bond or O, S, C (= O), C (= O) NH, Si (CH 3 ) 2 , (CH 2 ) p CF 2) q (1≤q≤10), C (CH 3) 2, C (CF 3) 2, or C (CH 3) (CF 3 ) , n is 0, as a repeating unit, the molar ratio of structural unit I < n < 1)

상기 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체는 전기방사막인 것을 특징으로 한다.The porous sulfonated polyarylene ether sulfone copolymer support having the crosslinked structure is characterized by being an electrospun film.

상기 전기방사막은 그 두께가 20~50㎛, 기공률이 60~80%인 것을 특징으로 한다.The electrodisplacive film has a thickness of 20 to 50 탆 and a porosity of 60 to 80%.

상기 수처리 분리막은 압력지연삼투공정용 분리막인 것을 특징으로 한다.And the water treatment separation membrane is a separation membrane for a pressure delayed osmosis process.

상기 수처리 분리막은 정삼투공정용 분리막인 것을 특징으로 한다.Wherein the water treatment separation membrane is a separation membrane for a positive osmosis process.

또한, 본 발명은 상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체; 및 상기 다공성 지지체 위에 형성된 박막의 활성층;을 포함하는 수처리용 초박형 복합막을 제공한다.The present invention also relates to a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure having a repeating unit represented by the above formula (1); And an active layer of a thin film formed on the porous support.

상기 박막의 활성층은 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 방향족 폴리아미드인 것을 특징으로 한다.Wherein the active layer of the thin film is an aromatic polyamide having a crosslinked structure having a repeating unit represented by the following formula (2).

<화학식 2>(2)

Figure 112016019097445-pat00002
Figure 112016019097445-pat00002

상기 박막의 활성층은 그 두께가 50~300nm인 것을 특징으로 한다.The active layer of the thin film has a thickness of 50 to 300 nm.

또한, 본 발명은 I) 단량체로서 4,4'-디클로로디페닐술폰 또는 4,4'-디플루오로디페닐술폰, 4,4'-비페놀계 화합물 및 술폰화 4,4'-디클로로디페닐술폰 또는 술폰화 4,4'-디플루오로디페닐술폰을 축중합반응시켜 술폰화 폴리아릴렌에테르술폰 공중합체를 합성하는 단계;In addition, the present invention relates to a process for the production of a photopolymerizable composition, comprising the steps of: I) mixing 4,4'-dichlorodiphenylsulfone or 4,4'-difluorodiphenylsulfone, 4,4'-biphenol compound and sulfonated 4,4'- Sulfone or sulfonated 4,4'-difluorodiphenylsulfone to synthesize a sulfonated polyarylene ether sulfone copolymer;

II) 상기 합성한 술폰화 폴리아릴렌에테르술폰 공중합체를 유기용매에 녹인 고분자용액을 통상의 전기방사법에 의하여 제막하는 단계; 및II) forming a polymer solution by dissolving the synthesized sulfonated polyarylene ether sulfone copolymer in an organic solvent by a conventional electrospinning method; And

III) 상기 II) 단계에서 얻은 막을 열가교하는 단계;를 포함하는 상기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체의 제조방법을 제공한다.III) thermally cross-linking the membrane obtained in the step II), wherein the porous sulfonated polyarylene ether sulfone copolymer support has a repeating unit represented by the general formula (1). do.

상기 4,4'-비페놀계 화합물은 하기 화학식 II로 표시되는 것을 특징으로 한다.The 4,4'-biphenol compound is characterized by being represented by the following formula (II).

<화학식 II>&Lt;

Figure 112016019097445-pat00003
Figure 112016019097445-pat00003

(상기 화학식 II에서, Q는 상기 화학식 1에서 정의한 바와 같다)(In the above formula (II), Q is the same as defined in the above formula (1)

상기 III) 단계의 열가교는 디메틸술폭시드 증기 분위기로 180~250℃에서 1~12시간 열처리함으로써 수행되는 것을 특징으로 한다.The thermal crosslinking in the step (III) is performed by heat-treating in a steam atmosphere of dimethylsulfoxide at 180 to 250 ° C for 1 to 12 hours.

또한, 본 발명은 상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체 위에 상기 화학식 2로 표시되는 반복단위를 갖는 가교구조의 방향족 폴리아미드 박막의 활성층을 형성하는 단계;를 포함하는 수처리용 초박형 복합막의 제조방법을 제공한다.In addition, the present invention relates to a method for producing an aromatic polyamide thin film having a crosslinked structure having a repeating unit represented by the above formula (2) on a porous sulfonated polyarylene ether sulfone copolymer support having a repeating unit represented by the above formula (1) The present invention also provides a method for producing an ultra-thin composite membrane for water treatment.

상기 가교구조의 방향족 폴리아미드 박막의 활성층은 메타-페닐렌디아민과 트리메조일클로라이드의 계면중합반응에 의하여 형성되는 것을 특징으로 한다.The active layer of the aromatic polyamide thin film having the crosslinked structure is characterized in that it is formed by the interfacial polymerization reaction of meta-phenylenediamine and trimethoyl chloride.

상기 초박형 복합막을 차아염소산나트륨 수용액으로 후처리 하는 단계;를 더욱 포함하는 것을 특징으로 한다.
Treating the ultra-thin composite membrane with an aqueous sodium hypochlorite solution.

본 발명에 따라 제조된 얇고 기공률이 높은 가교구조의 술폰화 폴리(아릴렌에테르술폰)공중합체 지지체, 이를 포함하는 초박형 복합막은 열적·화학적 안정성 및 기계적 물성이 우수하여 높은 작동압력에도 견딜 수 있을 뿐만 아니라, 내부농도분극을 최소화하여 높은 수투과도 및 그에 따른 높은 전력밀도를 얻을 수 있으므로 압력지연삼투공정 또는 정삼투공정을 비롯한 수처리 분리막으로 응용이 가능하다.
The sulfonated poly (arylene ether sulfone) copolymer support having a thin and high porosity structure produced according to the present invention and the ultra-thin composite membrane comprising the same have excellent thermal and chemical stability and mechanical properties, However, since the internal concentration polarization can be minimized, a high water permeability and a high power density can be obtained. Therefore, the present invention can be applied to a water treatment membrane including a pressure delay osmosis process or a positive osmosis process.

도 1은 실시예 1에 따른 가교구조의 술폰화 폴리아릴렌에테르술폰 공중합체전기방사막의 제조공정, 장치 및 제조된 전기방사막의 실물 사진.
도 2는 실시예 1로부터 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막의 디메틸아세트아미드에 대한 용해도 측정 실물 사진[(a) 4시간 경과 후, (b) 12시간 경과 후, (c) 24시간 경과 후].
도 3은 실시예 1에 따라 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막을 제조하되, 열가교반응 시간을 달리하여 제조한 전기방사막의 겔 분율(Gel fraction, %)을 나타낸 그래프.
도 4는 종래 폴리술폰계 비대칭 복합막(가)과 본 발명의 실시예 2에 따라 제조된 초박형 복합막(나)의 주사전자현미경(SEM) 이미지.
도 5는 본 발명의 실시예 2에 따른 초박형 복합막의 수투과량 및 전력밀도를 나타낸 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a photograph of a manufacturing process of a sulfonated polyarylene ether sulfone copolymer electric furnace desiccant having a crosslinked structure according to Example 1, an apparatus, and an electrodeposited film manufactured. FIG.
FIG. 2 is a photograph showing the solubility of dimethylacetamide in a crosslinked porous sulfonated polyarylene ether sulfone copolymer electrospray film prepared from Example 1. FIG. 2 (a) (C) after 24 hours].
3 is a graph showing the gel fraction (%) of an electrospray membrane prepared by preparing a porous sulfonated polyarylene ether sulfone copolymer electrospun membrane having a crosslinking structure according to Example 1, graph.
4 is a scanning electron microscope (SEM) image of a conventional polysulfone-based asymmetric composite membrane (a) and an ultra-thin composite membrane (b) prepared according to Example 2 of the present invention.
5 is a graph showing the water permeation amount and power density of an ultra-thin composite membrane according to Example 2 of the present invention.

본 발명에서는 하기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 제공한다.The present invention provides a crosslinked porous sulfonated polyarylene ether sulfone copolymer support having a repeating unit represented by the following formula (1) for a water treatment separation membrane.

<화학식 1>&Lt; Formula 1 >

Figure 112016019097445-pat00004
Figure 112016019097445-pat00004

(상기 화학식 1에서, Q는 단일결합이거나, O, S, C(=O), C(=O)NH, Si(CH3)2, (CH2)p (1≤p≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(CH3)(CF3)이고, n은 반복단위 내 구조단위의 몰 비로서 0<n<1 이다)(Wherein Q is a single bond or O, S, C (= O), C (= O) NH, Si (CH 3 ) 2 , (CH 2 ) p CF 2) q (1≤q≤10), C (CH 3) 2, C (CF 3) 2, or C (CH 3) (CF 3 ) , n is 0, as a repeating unit, the molar ratio of structural unit I < n < 1)

상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 술폰화 폴리아릴렌에테르술폰 공중합체 지지체는 하기 화학식 I로 표시되는 반복단위를 갖는 술폰화 폴리아릴렌에테르술폰 공중합체 막을 열처리함으로써 고분자 골격의 가교가 진행되어 얻어진다.The sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure having the repeating unit represented by the above formula (1) is obtained by heat-treating a sulfonated polyarylene ether sulfone copolymer film having a repeating unit represented by the following formula (I) .

<화학식 I>(I)

Figure 112016019097445-pat00005
Figure 112016019097445-pat00005

(상기 화학식 I에서, Q 및 n은 상기 화학식 1에서 정의한 바와 같으며, 술폰화도는 10~90% 범위로 조절한다) Wherein Q and n are the same as defined in the above formula (1), and the degree of sulfonation is controlled in the range of 10 to 90%

본 발명에서는 수처리 분리막용 지지체의 소재로서 술폰화기를 갖는 고분자를 사용함으로써 지지체의 친수성을 증대시켜 내부농도분극(internal concentration polarization)의 저하 및 막오염 방지(anti-fouling) 효과를 증가시킬 수 있다. 아울러 술폰화기를 갖는 고분자 골격을 가교시킴으로써 기계적 물성의 향상 및 화학적 안정성을 도모하여 수처리 분야에 응용할 수 있는 것이다. In the present invention, by using a polymer having a sulfonate group as a material for a support for a water treatment separation membrane, the hydrophilic property of the support can be increased, thereby decreasing the internal concentration polarization and increasing the anti-fouling effect. In addition, by crosslinking the polymer skeleton having a sulfonic acid group, improvement in mechanical properties and chemical stability can be achieved, and the present invention can be applied to the water treatment field.

상기 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체는 평막 형태의 전기방사막인 것이 바람직하다. 일반적으로 전기방사막은 전기방사법(electrospinning)에 의하여 수백 나노 크기의 섬유들을 bottom-up 방식으로 쌓아 얇은 두께 및 연결된 기공 구조(interconnected pore structure)로 높은 기공률을 갖는 다공성 지지체로 제막이 가능하다. 따라서 본 발명에서는 상기 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체가 평막 형태의 전기방사막인 경우, 그 두께가 20~50㎛, 기공률이 60~80%인 것을 바람직하게 사용할 수 있다.The porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure is preferably an electrospun film in the form of a flat membrane. Generally, electrospinning can deposit hundreds of nano-sized fibers in a bottom-up manner by electrospinning to form a porous support with a thin thickness and interconnected pore structure with high porosity. Therefore, in the present invention, when the porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure is a flat membrane type electrodeposition membrane, it is preferable to use a membrane having a thickness of 20 to 50 μm and a porosity of 60 to 80% .

종래 수처리용 분리막으로 응용되는 초박형 복합막의 폴리술폰계 또는 폴리에틸렌테레프탈레이트계 다공성 지지체는 그 두께가 100~200㎛로 두껍기 때문에, 에너지 생산을 위한 압력지연삼투공정용 또는 물 생산을 위한 정삼투공정용 분리막으로 사용할 때, 내부농도분극(internal concentration polarization)이 두꺼운 다공성 지지체 내부에서 발생하여 수투과의 구동력인 농도 차이가 감소하므로, 결과적으로 수투과도가 떨어지고 그에 따라 전력밀도가 낮아지는 문제점이 있었다.Since the polysulfone-based or polyethylene terephthalate-based porous support of the ultra-thin composite membrane used as a conventional water treatment membrane is thick with a thickness of 100 to 200 탆, it can be used for a pressure delayed osmosis process for energy production or a cleansing process When used as a separator, internal concentration polarization is generated inside a thick porous support, and the concentration difference, which is the driving force of water permeability, is reduced. As a result, water permeability is lowered and power density is lowered accordingly.

그러므로 본 발명에서는 평막 형태의 전기방사막으로 얻어지는 다공성 지지체의 두께가 20~50㎛로 매우 얇고, 더불어 기공률이 60~80%로 매우 높은 것을 사용함으로써, 내부농도분극을 최소화하여 높은 수투과도 및 그에 따른 높은 전력밀도를 얻을 수 있어 압력지연삼투공정 또는 정삼투공정에 응용할 수 있는 것이다.Therefore, according to the present invention, the thickness of the porous support obtained from the flat membrane-type electrospray membrane is as thin as 20 to 50 탆, and the porosity is as high as 60 to 80%, thereby minimizing internal concentration polarization, And thus it can be applied to the pressure delay osmosis process or the positive osmosis process.

상기 평막 형태의 전기방사막으로 얻어지는 다공성 지지체의 두께가 20㎛ 미만이면 지지체의 두께가 너무 얇아 기계적 물성이 저하될 수 있고, 그 두께가 50㎛를 초과하면 지지체 내부에서 농도분극이 발생할 수 있다. 아울러 다공성 지지체의 기공률이 60% 미만이면 수투과도가 떨어질 수 있고, 기공률이 80%를 초과하는 것은 제막이 원활하지 않다. If the thickness of the porous support is less than 20 탆, the thickness of the support may be too thin, resulting in deterioration of mechanical properties. If the thickness of the porous support exceeds 50 탆, concentration polarization may occur in the support. If the porosity of the porous support is less than 60%, the water permeability may be lowered. If the porosity exceeds 80%, the film formation is not smooth.

또한, 본 발명은 상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체; 및 상기 다공성 지지체 위에 형성된 박막의 활성층;을 포함하는 수처리용 초박형 복합막을 제공한다.The present invention also relates to a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure having a repeating unit represented by the above formula (1); And an active layer of a thin film formed on the porous support.

이때, 상기 다공성 지지체 위에 형성되는 박막의 활성층은 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 방향족 폴리아미드일 수 있다.At this time, the active layer of the thin film formed on the porous support may be a crosslinked aromatic polyamide having a repeating unit represented by the following formula (2).

<화학식 2>(2)

Figure 112016019097445-pat00006
Figure 112016019097445-pat00006

또한, 상기 박막의 활성층은 그 두께가 50~300nm인 것이 바람직한바, 활성층의 두께가 50nm 미만이면 압력지연삼투공정에 응용할 때 높은 작동압력에 견디기 어렵고, 그 두께가 300nm를 초과하면 수투과에 대한 저항성에 문제가 생길 수 있다.
The active layer of the thin film preferably has a thickness of 50 to 300 nm. When the thickness of the active layer is less than 50 nm, it is difficult to withstand a high operating pressure when applied to a pressure delay osmosis process. When the thickness exceeds 300 nm, There is a problem in resistance.

또한, 본 발명은 하기와 같은 단계를 포함하여 상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 제조한다.The present invention also provides a crosslinked porous sulfonated polyarylene ether sulfone copolymer support having a repeating unit represented by the above formula (1), including the following steps.

즉, 본 발명에서는 I) 단량체로서 4,4'-디클로로디페닐술폰 또는 4,4'-디플루오로디페닐술폰, 4,4'-비페놀계 화합물 및 술폰화 4,4'-디클로로디페닐술폰 또는 술폰화 4,4'-디플루오로디페닐술폰을 축중합반응시켜 술폰화 폴리아릴렌에테르술폰 공중합체를 합성하는 단계;That is, in the present invention, as the I) monomer, 4,4'-dichlorodiphenylsulfone or 4,4'-difluorodiphenylsulfone, 4,4'-biphenol compound and sulfonated 4,4'-dichlorodiphenyl Sulfone or sulfonated 4,4'-difluorodiphenylsulfone to synthesize a sulfonated polyarylene ether sulfone copolymer;

II) 상기 합성한 술폰화 폴리아릴렌에테르술폰 공중합체를 유기용매에 녹인 고분자용액을 통상의 전기방사법에 의하여 제막하는 단계; 및II) forming a polymer solution by dissolving the synthesized sulfonated polyarylene ether sulfone copolymer in an organic solvent by a conventional electrospinning method; And

III) 상기 II) 단계에서 얻은 막을 열가교하는 단계;를 포함하는 상기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 제공한다. And III) thermally crosslinking the membrane obtained in the step II), wherein the porous sulfonated polyarylene ether sulfone copolymer support has a crosslinked structure for a water treatment separator.

먼저, 상기 I) 단계에서는 반응물로서 단량체인 4,4'-디클로로디페닐술폰(DCDPS) 또는 4,4'-디플루오로디페닐술폰(DFDPS), 4,4'-비페놀계 화합물 및 술폰화 4,4'-디클로로디페닐술폰(SDCDPS) 또는 술폰화 4,4'-디플루오로디페닐술폰(SDFDPS)을 탄산칼륨 존재 하의 N-메틸피롤리돈(NMP)과 같은 중합용매를 사용하여 190℃에서 16시간 동안 직접 축중합반응 시킴으로써 술폰화 폴리아릴렌에테르술폰 공중합체를 합성할 수 있는바, 하기와 같은 반응식 1의 일례에 따르며, 그 구체적인 합성방법 및 분석결과는 공지된 문헌에 다수 개시되어 있으므로 본 발명에서는 이에 대한 기재를 생략한다[F Wang et al., J. Membr. Sci., 197(2002), p. 231, F Wang et al., Macromol. Symp., 175(2001), p. 387].In step I), 4,4'-dichlorodiphenyl sulfone (DCDPS) or 4,4'-difluorodiphenyl sulfone (DFDPS), 4,4'-biphenol compound, and sulfonated 4,4'-dichlorodiphenylsulfone (SDCDPS) or sulfonated 4,4'-difluorodiphenylsulfone (SDFDPS) is reacted with a polymeric solvent such as N-methylpyrrolidone (NMP) in the presence of potassium carbonate C for 16 hours to synthesize a sulfonated polyarylene ether sulfone copolymer. The sulfonated polyarylene ether sulfone copolymer can be synthesized according to an example of the following reaction formula 1, and its specific synthesis method and analysis result are disclosed in a number of publications And thus the description thereof is omitted in the present invention (F Wang et al., J. Membr. Sci., 197 (2002), p. 231, F Wang et al., Macromol. Symp., 175 (2001), p. 387].

<반응식 1><Reaction Scheme 1>

Figure 112016019097445-pat00007
Figure 112016019097445-pat00007

또한, 상기 I) 단계에서 술폰화 폴리아릴렌에테르술폰 공중합체를 합성하기 위한 단량체로서 4,4-비페놀계 화합물은 하기 화학식 II로 표시되는 것을 사용할 수 있는바, 비스페놀 A를 더욱 바람직하게 사용한다. The 4,4-biphenol compound represented by the following formula (II) can be used as a monomer for synthesizing the sulfonated polyarylene ether sulfone copolymer in the step (I), and the bisphenol A is more preferably used do.

<화학식 II>&Lt;

Figure 112016019097445-pat00008
Figure 112016019097445-pat00008

(상기 화학식 II에서, Q는 상기 화학식 1에서 정의한 바와 같다)(In the above formula (II), Q is the same as defined in the above formula (1)

다음으로, 상기 I) 단계에서 합성한 술폰화 폴리아릴렌에테르술폰 공중합체를N-메틸피롤리돈(NMP)과 같은 유기용매에 녹인 고분자용액을 통상의 전기방사법(electrospinning)에 의하여 제막함으로써 지지체로서 평막 형태의 전기방사막을 얻는다.Next, a polymer solution in which the sulfonated polyarylene ether sulfone copolymer synthesized in the step I) is dissolved in an organic solvent such as N-methyl pyrrolidone (NMP) is formed by electrospinning, An electrospun film in the form of a flat film is obtained.

이어서, 상기 전기방사막을 열가교함으로써 목적물인 상기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 제조한다. Subsequently, the above-mentioned electrospun film is thermally crosslinked to prepare a porous sulfonated polyarylene ether sulfone copolymer support having a cross-linked structure for water treatment separator having the repeating unit represented by the above formula (1).

이때, 상기 열가교는 디메틸술폭시드(DMSO) 증기 분위기로 180~250℃에서 1~12시간 열처리함으로써 수행된다.
At this time, the thermal crosslinking is performed by heat treatment in a dimethyl sulfoxide (DMSO) steam atmosphere at 180 to 250 ° C for 1 to 12 hours.

또한, 본 발명은 상기 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체 위에 상기 화학식 2로 표시되는 반복단위를 갖는 가교구조의 방향족 폴리아미드 박막의 활성층을 형성하는 단계;를 포함하는 수처리용 초박형 복합막의 제조방법을 제공한다.In addition, the present invention relates to a method for producing an aromatic polyamide thin film having a crosslinked structure having a repeating unit represented by the above formula (2) on a porous sulfonated polyarylene ether sulfone copolymer support having a repeating unit represented by the above formula (1) The present invention also provides a method for producing an ultra-thin composite membrane for water treatment.

이때, 상기 가교구조의 방향족 폴리아미드 박막의 활성층은 하기 반응식 2에 따라 메타-페닐렌디아민(MPD)과 트리메조일클로라이드(TMC)의 계면중합반응에 의하여 형성되는 것이 바람직하다.At this time, it is preferable that the active layer of the aromatic polyamide thin film having the crosslinked structure is formed by the interfacial polymerization reaction of meta-phenylenediamine (MPD) and trimethoyl chloride (TMC) according to the following Reaction Scheme 2.

<반응식 2><Reaction Scheme 2>

Figure 112016019097445-pat00009
Figure 112016019097445-pat00009

또한, 상기 수처리용 초박형 복합막의 제조방법에 있어서, 상기 초박형 복합막을 차아염소산나트륨(NaOCl) 수용액으로 후처리 하는 단계;를 더욱 포함할 수도 있는바, 이러한 후처리 공정에 의하여 다공성 지지체 위에 부분적으로 가교된 구조의 폴리아미드 박막이 아래 반응식 3에 나타낸 바와 같이 폴리아미드의 분해가 일어난다.The method may further include post-treating the ultra-thin composite membrane with an aqueous solution of sodium hypochlorite (NaOCl), and the method may further include a step of partially crosslinking the porous support by the post- The decomposition of the polyamide occurs in the polyamide thin film having the structure shown in the following reaction formula (3).

<반응식 3><Reaction Scheme 3>

Figure 112016019097445-pat00010
Figure 112016019097445-pat00010

이하에서는 본 발명에 따른 실시예를 첨부된 도면과 함께 구체적으로 설명한다.
Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

[합성예] 술폰화 폴리아릴렌에테르술폰 공중합체의 합성[Synthesis Example] Synthesis of sulfonated polyarylene ether sulfone copolymer

250 mL 크기의 둥근 플라스크에 디소디움 3,3'-디술폰화 4,4-디클로로디페닐술폰(SDCDPS) 4.0 mmol, 4,4'-디클로로디페닐술폰(DCDPS) 10.0 mmol, 비스페놀 A 14.0 mmol 및 탄산칼륨 30.0 mmol을 디메틸아세트아미드 10 mL와 톨루엔 5 mL 혼합물에 첨가하고 Dean-Stark 장치를 장착하여 160℃에서 4시간 환류시켜 탈수한 후, 반응물을 190℃로 승온하여 16시간 반응시킴으로써 중합체 용액을 얻었다. 상기 중합체 용액을 이소프로필알코올에 침전시켜 중합체를 석출하고, 그 석출된 중합체를 물로 수회 세척 및 진공건조한 다음, 묽은 황산용액으로 처리하여 술폰화 폴리아릴렌에테르술폰 공중합체를 합성하였으며, 1H-NMR 및 FT-IR로 합성 여부를 확인한 결과, 공지된 문헌에 기재된 데이터와 일치함을 알 수 있었다.
To a 250 mL round bottomed flask was added 4.0 mmol of disodium 3,3'-disulfonated 4,4-dichlorodiphenylsulfone (SDCDPS), 10.0 mmol of 4,4'-dichlorodiphenylsulfone (DCDPS), 14.0 mmol of bisphenol A and 30.0 mmol of potassium carbonate was added to a mixture of 10 mL of dimethylacetamide and 5 mL of toluene and the mixture was refluxed at 160 ° C. for 4 hours with a Dean-Stark apparatus. After dehydration, the reaction was heated to 190 ° C. and reacted for 16 hours, . The polymer solution was precipitated in isopropyl alcohol to precipitate a polymer. The precipitated polymer was washed with water several times and vacuum dried, and then treated with a dilute sulfuric acid solution to synthesize a sulfonated polyarylene ether sulfone copolymer. 1 H- NMR and FT-IR. As a result, it was found that the result was in agreement with the data described in the known literature.

[실시예 1] 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체(전기방사막)의 제조[Example 1] Preparation of a porous sulfonated polyarylene ether sulfone copolymer support (electrospray membrane) having a crosslinked structure

상기 합성예로부터 얻어진 술폰화 폴리아릴렌에테르술폰 공중합체를 디메틸아세트아미드(DMAc)에 녹여 10 중량%의 용액을 준비하였다. 23G 니들을 장착한 10 ml 실린지에 고분자용액 6 ml를 충전한 후, 전기방사 장치(ES-robot, NanoNC, 한국)의 실린지 펌프에 장착하고 통상의 전기방사 조건에 따라 방사하여 전기방사막을 얻었다. 상기 얻어진 전기방사막을 디메틸술폭시드(DMSO) 증기 분위기로 180℃에서 5시간 열처리함으로써 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막을 제조하였으며, 도 1에 나타낸 제조공정 및 장치로부터 결함 없는 전기방사막이 안정적으로 제조되었음을 확인할 수 있다.
The sulfonated polyarylene ether sulfone copolymer obtained from the above Synthesis Example was dissolved in dimethylacetamide (DMAc) to prepare a 10 wt% solution. 6 ml of a polymer solution was filled in a 10 ml syringe equipped with a 23 G needle and then mounted on a syringe pump of an electrospinning device (ES-robot, NanoNC, Korea) and irradiated according to ordinary electrospinning conditions to obtain an electrospun film . The resulting electrospun film was heat-treated at 180 캜 for 5 hours in a dimethyl sulfoxide (DMSO) steam atmosphere to prepare a porous sulfonated polyarylene ether sulfone copolymer electrospun film having a crosslinked structure. It is possible to confirm that the electrospray film without any defects is stably manufactured.

[실시예 2] 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체를 포함하는 초박형 복합막의 제조[Example 2] Preparation of an ultra-thin composite membrane comprising a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure

상기 실시예 1로부터 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막을 3.5 중량%의 메타-페닐렌디아민(MPD) 수용액에 침지하고, 과량의 용액을 제거한 후 지지체의 표면에 0.15 중량%의 트리메조일클로라이드 헥산 용액을 부어 계면중합반응을 수행한 다음, 헥산을 세척하고 공기 중에 방치 및 90℃ 오븐에서 경화시켜 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체 위에 가교구조의 폴리아미드 박막(150 nm) 활성층이 형성된 초박형 복합막을 제조하였다.
The porous sulfonated polyarylene ether sulfone copolymer electrospun film of crosslinked structure prepared in Example 1 was immersed in an aqueous solution of meta-phenylenediamine (MPD) of 3.5% by weight, and the excess solution was removed. 0.15 wt% of a trimesoyl chloride hexane solution was poured to perform interfacial polymerization, and then hexane was washed and allowed to stand in the air and cured in an oven at 90 ° C to crosslink the crosslinked porous sulfonated polyarylene ether sulfone copolymer support Thin film (150 nm) active layer was fabricated.

하기 표 1에는 실시예 1로부터 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체(전기방사막)의 다양한 두께에 따른 기계적 물성, 평균기공입경 및 기공률을 나타내었다.
Table 1 shows mechanical properties, average pore size, and porosity of the crosslinked porous sulfonated polyarylene ether sulfone copolymer support (electrorec- tric membrane) prepared from Example 1 according to various thicknesses.

두께(㎛)Thickness (㎛) 기계적 물성Mechanical properties 평균기공입경(㎛)Average pore size (占 퐉) 기공률(%)Porosity (%) 인장강도(Mpa)Tensile Strength (Mpa) 신장률(%)Elongation (%) 2424 16.3116.31 15.2615.26 0.260.26 68.5568.55 2828 21.2121.21 48.2448.24 0.280.28 70.470.4 3232 12.8012.80 37.1037.10 0.390.39 76.976.9 3737 11.0611.06 24.2824.28 0.430.43 76.8576.85

상기 표 1로부터 본 발명에 따라 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체는 종래 수처리용 분리막으로 응용되는 다공성 지지체의 두께(100~200㎛)보다 매우 얇으면서도 기계적 물성이 우수함을 확인할 수 있고, 기공률도 매우 높아 그에 따른 수투과도가 크게 향상될 수 있음을 알 수 있다. From Table 1, it can be seen that the crosslinked porous sulfonated polyarylene ether sulfone copolymer support prepared according to the present invention is much thinner than the thickness (100 to 200 탆) of the porous support used as a separator for water treatment in the prior art, And the porosity is also very high, so that the resulting water permeability can be greatly improved.

또한, 도 2에는 실시예 1로부터 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막의 디메틸아세트아미드에 대한 안정성을 나타내었는바, 24시간이 경과한 후에도 유기용매인 디메틸아세트아미드에 용해되지 않은 것을 알 수 있으며, 아울러 디메틸아세트아미드 이외에 여타의 유기용매에도 여전히 용해되지 않음을 확인함으로써 본 발명에 다라 제조된 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막은 유기용매에 대해서도 매우 안정함을 알 수 있었다.
Fig. 2 shows the stability of the porous sulfonated polyarylene ether sulfone copolymer electrodeposition coating of the crosslinked structure prepared in Example 1 against dimethylacetamide. As a result, even after 24 hours, the organic solvent dimethylacetate Amide, and it was confirmed that it was not dissolved in other organic solvents other than dimethylacetamide. Thus, the crosslinked porous sulfonated polyarylene ether sulfone copolymer electrodeposition film prepared according to the present invention had a It was also found that the organic solvent was very stable.

도 3에는 실시예 1에 따라 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 전기방사막을 제조하되, 열가교반응 시간을 달리하여 제조한 전기방사막의 겔 분율(Gel fraction, %)을 Soxhlet method[참고문헌 : Polymer testing 22(2003), p. 647]에 따라 측정하여 계산한 값을 그래프로 나타내었는바[겔 분율(%)=(W/W0) X 100, W : 건조한 불용성 부분의 무게, W0 : 샘플의 초기 무게], 열가교반응 시간이 5시간을 경과하면 때 겔 분율이 90%를 상회하고, 10시간이 되면 겔 분율이 98% 이상에 도달하여, 가교반응이 안정적으로 수행됨으로써 통상의 유기용매에 용해되지 않음을 확인할 수 있었다.FIG. 3 is a graph showing the gel fraction (%) of an electrospinning film prepared by varying the crosslinking time of a porous sulfonated polyarylene ether sulfone copolymer according to Example 1, using Soxhlet method [Reference: Polymer testing 22 (2003), p. (W / W 0 ) X 100, W: weight of dry insoluble portion, W 0 : initial weight of sample], thermal crosslinking When the reaction time exceeds 5 hours, the gel fraction exceeds 90%. When the reaction time reaches 10 hours, the gel fraction reaches 98% or more, and the crosslinking reaction is stably performed. Thus, it is confirmed that the gel fraction is insoluble in ordinary organic solvents there was.

도 4에는 종래 폴리술폰계 비대칭 복합막(가)과 본 발명의 실시예 2에 따라 제조된 초박형 복합막(나)의 주사전자현미경(SEM) 이미지를 나타내었다. 본 발명의 실시예 2에 따라 폴리아미드 박막층이 잘 형성된 초박형 복합막을 관찰할 수 있으며, 상기 형성된 폴리아미드 박막층의 두께가 약 100 ㎚ 정도로 종래 폴리술폰계 비대칭 복합막의 박막층에 비하여 약 2배 이상 얇게 형성된 것을 알 수 있었다. 또한, 막의 전체 두께도 종래 폴리술폰계 비대칭 복합막보다 약 3배 정도의 얇은 두께를 갖는 것을 확인하였는바, 물질전달저항 및 내부농도분극을 낮추는데 기여하는 것을 알 수 있었다. 4 shows a scanning electron microscope (SEM) image of a conventional polysulfone-based asymmetric composite membrane (a) and an ultra-thin composite membrane (b) produced according to Example 2 of the present invention. According to Example 2 of the present invention, an ultra-thin composite membrane having a polyamide thin film layer formed thereon can be observed. The thickness of the formed polyamide thin film layer is about 100 nm, which is about two times thinner than a conventional thin film layer of a polysulfone asymmetric composite membrane . Further, it was confirmed that the total thickness of the membrane was about three times thinner than that of the conventional polysulfone-based asymmetric composite membrane, and it was found that it contributes to lowering the mass transfer resistance and the internal concentration polarization.

또한, 도 5에는 본 발명의 실시예 2에 따른 초박형 복합막의 수투과량(water flux) 및 전력밀도(power density)를 그래프로 나타내었다[Hydration Technology Innovations사의 상용 폴리술폰계 초박형 복합막(HTI), 본 발명에 따라 제조된 초박형 복합막 DS20(술폰화도 20%), DS40(술폰화도 40%), DS40500ppm(2m)(술폰화도 40%, NaOCl 500 ppm에서 2분 동안 처리한 것]. 도 5에서 보는 것처럼 종래 HTI의 경우 5 W/m2의 낮은 전력밀도를 보이는 반면, 본 발명에서 제조된 초박형 복합막 DS20과 DS40은 약 11 W/m2로 약 2배 이상의 전력밀도를 얻을 수 있었다. 또한, DS40500ppm(2m)은 전력밀도가 17 W/m2로 종래 HTI에 비해 약 3배 이상의 값을 얻을 수 있었는데, 이는 NaOCl 처리를 통한 초박막층의 식각 효과로 인하여 수투과도가 크게 향상된 탓으로 해석된다.
FIG. 5 is a graph showing the water flux and power density of the ultra-thin composite membrane according to Example 2 of the present invention (HTI, a commercial polysulfone-based composite membrane manufactured by Hydration Technology Innovations) DS40 (degree of sulfonation 40%), DS40 500 ppm (2m) (40% sulfonation degree, treated with NaOCl 500 ppm for 2 minutes) manufactured by the present invention. Fig. 5 The conventional HTI has a low power density of 5 W / m 2 , whereas the ultra-thin composite membranes DS20 and DS40 manufactured by the present invention have a power density of about 2 times or more as about 11 W / m 2 . In addition, DS40 500 ppm (2 m) had a power density of 17 W / m 2 , which was about 3 times higher than that of the conventional HTI. This is because the water permeability was greatly improved due to the etching effect of the ultra thin layer through NaOCl treatment Is interpreted.

상술한 바와 같이 본 발명에 따라 제조된 얇고 기공률이 높은 가교구조의 술폰화 폴리(아릴렌에테르술폰)공중합체 지지체, 이를 포함하는 초박형 복합막은 열적·화학적 안정성 및 기계적 물성이 우수하여 높은 작동압력에도 견딜 수 있을 뿐만 아니라, 내부농도분극을 최소화하여 높은 수투과도 및 그에 따른 높은 전력밀도를 얻을 수 있으므로 압력지연삼투공정 또는 정삼투공정을 비롯한 수처리 분리막으로 응용이 가능하다.As described above, the sulfonated poly (arylene ether sulfone) copolymer support having a thin and high porosity structure produced according to the present invention and the ultra-thin composite membrane comprising the same have excellent thermal and chemical stability and mechanical properties, In addition, it can be used as a water treatment separator including a pressure delay osmosis process or a positive osmosis process because it can minimize the internal concentration polarization and thereby obtain a high water permeability and a high power density.

Claims (14)

하기 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체.
<화학식 1>
Figure 112016019097445-pat00011

(상기 화학식 1에서, Q는 단일결합이거나, O, S, C(=O), C(=O)NH, Si(CH3)2, (CH2)p (1≤p≤10), (CF2)q (1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(CH3)(CF3)이고, n은 반복단위 내 구조단위의 몰 비로서 0<n<1 이다)
A porous sulfonated polyarylene ether sulfone copolymer support having a crosslinking structure for a water treatment separator having a repeating unit represented by the following formula (1).
&Lt; Formula 1 >
Figure 112016019097445-pat00011

(Wherein Q is a single bond or O, S, C (= O), C (= O) NH, Si (CH 3 ) 2 , (CH 2 ) p CF 2) q (1≤q≤10), C (CH 3) 2, C (CF 3) 2, or C (CH 3) (CF 3 ) , n is 0, as a repeating unit, the molar ratio of structural unit I < n < 1)
제1항에 있어서, 상기 지지체는 전기방사막인 것을 특징으로 하는 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체.The porous sulfonated polyarylene ether sulfone copolymer support of claim 1, wherein the support is an electrospun film. 제2항에 있어서, 상기 전기방사막은 그 두께가 20~50㎛, 기공률이 60~80%인 것을 특징으로 하는 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체.The porous sulfonated polyarylene ether sulfone copolymer support according to claim 2, wherein the thickness of the electrodisplacive membrane is 20 to 50 μm and the porosity is 60 to 80%. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 수처리 분리막은 압력지연삼투공정용 분리막인 것을 특징으로 하는 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체.The porous sulfonated polyarylene ether sulfone copolymer support according to any one of claims 1 to 3, wherein the water treatment separation membrane is a separation membrane for a pressure delayed osmosis process. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 수처리 분리막은 정삼투공정용 분리막인 것을 특징으로 하는 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체.The porous sulfonated polyarylene ether sulfone copolymer support according to any one of claims 1 to 3, wherein the water treatment separation membrane is a separation membrane for a positive osmosis process. 제1항 기재의 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체; 및 상기 다공성 지지체 위에 형성된 박막의 활성층;을 포함하는 수처리용 초박형 복합막.A porous sulfonated polyarylene ether sulfone copolymer support having a crosslinking structure having a repeating unit represented by the general formula (1) of claim 1; And an active layer of a thin film formed on the porous support. 제6항에 있어서, 상기 박막의 활성층은 하기 화학식 2로 표시되는 반복단위를 갖는, 가교구조의 방향족 폴리아미드인 것을 특징으로 하는 수처리용 초박형 복합막.
<화학식 2>
Figure 112016019097445-pat00012
The ultra-thin composite membrane for water treatment according to claim 6, wherein the active layer of the thin film is a cross-linked aromatic polyamide having a repeating unit represented by the following formula (2).
(2)
Figure 112016019097445-pat00012
제7항에 있어서, 상기 박막의 활성층은 그 두께가 50~300nm인 것을 특징으로 하는 수처리용 초박형 복합막.The ultra-thin composite membrane for water treatment according to claim 7, wherein the active layer of the thin film has a thickness of 50 to 300 nm. I) 단량체로서 4,4'-디클로로디페닐술폰 또는 4,4'-디플루오로디페닐술폰, 4,4'-비페놀계 화합물 및 술폰화 4,4'-디클로로디페닐술폰 또는 술폰화 4,4'-디플루오로디페닐술폰을 축중합반응시켜 술폰화 폴리아릴렌에테르술폰 공중합체를 합성하는 단계;
II) 상기 합성한 술폰화 폴리아릴렌에테르술폰 공중합체를 유기용매에 녹인 고분자용액을 통상의 전기방사법에 의하여 제막하는 단계; 및
III) 상기 II) 단계에서 얻은 막을 디메틸술폭시드 증기 분위기로 180~250℃에서 1~12시간 열처리함으로써 열가교하는 단계;를 포함하는 제1항 기재의 화학식 1로 표시되는 반복단위를 갖는, 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체의 제조방법.
I) As the monomer, 4,4'-dichlorodiphenyl sulfone or 4,4'-difluorodiphenyl sulfone, 4,4'-biphenol compound and sulfonated 4,4'-dichlorodiphenyl sulfone or sulfonated 4 , 4'-difluorodiphenyl sulfone to synthesize a sulfonated polyarylene ether sulfone copolymer;
II) forming a polymer solution by dissolving the synthesized sulfonated polyarylene ether sulfone copolymer in an organic solvent by a conventional electrospinning method; And
III) heat-crosslinking the membrane obtained in the step II) in a steam atmosphere of dimethylsulfoxide at a temperature of 180 to 250 ° C for 1 to 12 hours to form a water-repellent layer having a repeating unit represented by the general formula (1) A process for preparing a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure for a membrane.
제9항에 있어서, 상기 4,4'-비페놀계 화합물은 하기 화학식 II로 표시되는 것을 특징으로 하는 수처리 분리막용 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체의 제조방법.
<화학식 II>
Figure 112016019097445-pat00013

(상기 화학식 II에서 Q는 제1항의 화학식 1에서 정의한 바와 같다)
The process for producing a porous sulfonated polyarylene ether sulfone copolymer support according to claim 9, wherein the 4,4'-biphenol compound is represented by the following formula (II).
&Lt;
Figure 112016019097445-pat00013

(Q in the formula (II) is the same as defined in the formula (1)
삭제delete 제1항 기재의 화학식 1로 표시되는 반복단위를 갖는 가교구조의 다공성 술폰화 폴리아릴렌에테르술폰 공중합체 지지체 위에 제7항 기재의 화학식 2로 표시되는 반복단위를 갖는 가교구조의 방향족 폴리아미드 박막의 활성층을 형성하는 단계;를 포함하는 수처리용 초박형 복합막의 제조방법으로서,
상기 초박형 복합막을 차아염소산나트륨 수용액으로 후처리 하는 단계;를 더욱 포함하는 것을 특징으로 하는 수처리용 초박형 복합막의 제조방법.
A cross-linked aromatic polyamide thin film having a repeating unit represented by the general formula (2) of claim 7 on a porous sulfonated polyarylene ether sulfone copolymer support having a crosslinked structure having a repeating unit represented by the general formula (1) And forming an active layer of an ultra-thin composite membrane for water treatment,
Further comprising the step of post-treating the ultra-thin composite membrane with an aqueous sodium hypochlorite solution.
제12항에 있어서, 상기 가교구조의 방향족 폴리아미드 박막의 활성층은 메타-페닐렌디아민과 트리메조일클로라이드의 계면중합반응에 의하여 형성되는 것을 특징으로 하는 수처리용 초박형 복합막의 제조방법.13. The method according to claim 12, wherein the active layer of the aromatic polyamide thin film having a crosslinked structure is formed by interfacial polymerization between meta-phenylenediamine and trimethoyl chloride. 삭제delete
KR1020160023239A 2016-02-26 2016-02-26 Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof KR101823050B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160023239A KR101823050B1 (en) 2016-02-26 2016-02-26 Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
PCT/KR2017/001669 WO2017146412A1 (en) 2016-02-26 2017-02-15 Porous support for water treatment separation membrane, ultra-thin composite membrane comprising same, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160023239A KR101823050B1 (en) 2016-02-26 2016-02-26 Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20170100851A KR20170100851A (en) 2017-09-05
KR101823050B1 true KR101823050B1 (en) 2018-01-31

Family

ID=59685523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160023239A KR101823050B1 (en) 2016-02-26 2016-02-26 Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101823050B1 (en)
WO (1) WO2017146412A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517861B2 (en) 2018-07-09 2022-12-06 Lg Chem, Ltd. Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
CN109603587A (en) * 2018-11-16 2019-04-12 蓝星(杭州)膜工业有限公司 A kind of preparation method of anti-oxidant non-discolouring complex reverse osmosis membrane
KR102238906B1 (en) * 2019-03-05 2021-04-13 광주과학기술원 Freestanding robust electrospun nanofiber supported outstanding permeable thin-film nanocomposite forward osmosis membranes
KR102326776B1 (en) 2020-02-11 2021-11-16 한국화학연구원 Method of manufacturing a pervaporation composite membrane and a pervaporation composite membrane prepared thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509224A (en) * 2000-09-20 2004-03-25 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Ion conductive sulfonated polymer materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110095511A (en) * 2010-02-19 2011-08-25 광주과학기술원 Method for fabricating desalination membrane utilizing electrospinning based on poly(arylene ether) and desalination membrane fabricated thereby
KR101432862B1 (en) * 2010-06-15 2014-08-26 코오롱인더스트리 주식회사 Porous support and method for manufacturing the same
KR101235167B1 (en) * 2010-07-15 2013-02-20 광주과학기술원 Sulfonated poly(arylene ether) copolymer comprising crosslink structure and polymer electrolyte membrane comprising the same
KR101391654B1 (en) * 2012-06-29 2014-05-07 도레이케미칼 주식회사 Pressure retarded osmosis membrane and manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509224A (en) * 2000-09-20 2004-03-25 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Ion conductive sulfonated polymer materials

Also Published As

Publication number Publication date
WO2017146412A1 (en) 2017-08-31
KR20170100851A (en) 2017-09-05

Similar Documents

Publication Publication Date Title
Li et al. Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents
Zhang et al. In situ assembly of a covalent organic framework composite membrane for dye separation
KR101823050B1 (en) Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
US9120062B2 (en) High performance positively charged composite membranes and their use in nanofiltration processes
US9533264B2 (en) Composite membrane, method of manufacturing the same, separation membrane including the composite membrane, and water treatment device using the separation membrane
DK154004B (en) PROCEDURE FOR MANUFACTURING SEMIPERMEABLE MEMBRANES BASED ON POLYSULPHONES AND THE HETEROGEN MEMBRANE AND ITS USE
JP2012530166A (en) Aromatic polyethersulfone block copolymer
Moon et al. A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26 W· m− 2 at 21 bar
WO2013156598A1 (en) Ultrafiltration membranes fabricated from sulfonated polyphenylenesulfones
US20120225960A1 (en) Sulfonated poly(aryl ether) membrane including blend with phenol compound
JP6312148B2 (en) High performance positively charged composite membranes and their use in nanofiltration processes
US7407609B2 (en) Membranes and their manufacture
Mashhadikhan et al. Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment
KR101956169B1 (en) Self-humidifying ion-exchange composite membrane and preparation method thereof
US8752714B2 (en) Sulfonated poly (aryl ether) membrane including blend with phenyl amine compound
KR101514688B1 (en) A novel preparation method of hydrophilic membrane having excellent water permeability, size exclusion selectivity, and anti-fouling using the blend solution of PVDF and partially sulfonated polyarylene-based polymers
KR101979685B1 (en) Thin-film composite membrane for organic solvent nanofiltration and preparation method thereof
KR20110095511A (en) Method for fabricating desalination membrane utilizing electrospinning based on poly(arylene ether) and desalination membrane fabricated thereby
KR101582024B1 (en) Polyolefinketone with pendent sulfonation groups, water-treatment membranes prepared therewith and polymer electrolyte membrane for fuel cell prepared therewith
KR101418063B1 (en) Polymer additive for preparing of microfilter membrane or ultrafilter membrane and preparation method of the same
CN111686595A (en) Method for preparing high-performance hydrophilic modified polyacrylonitrile membrane by combining in-situ modification with phase separation technology
KR102598050B1 (en) Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof
KR102598051B1 (en) Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof
KR20110034842A (en) Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers
KR101929992B1 (en) Porous support for pressure retarded osmosis process, thin-film composite membrane containing the same and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant