KR102598051B1 - Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof - Google Patents

Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof Download PDF

Info

Publication number
KR102598051B1
KR102598051B1 KR1020220180029A KR20220180029A KR102598051B1 KR 102598051 B1 KR102598051 B1 KR 102598051B1 KR 1020220180029 A KR1020220180029 A KR 1020220180029A KR 20220180029 A KR20220180029 A KR 20220180029A KR 102598051 B1 KR102598051 B1 KR 102598051B1
Authority
KR
South Korea
Prior art keywords
membrane
organic solvent
polyimide
nanofiltration membrane
cross
Prior art date
Application number
KR1020220180029A
Other languages
Korean (ko)
Inventor
정연석
우승문
Original Assignee
주식회사 퓨어멤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퓨어멤 filed Critical 주식회사 퓨어멤
Priority to KR1020220180029A priority Critical patent/KR102598051B1/en
Application granted granted Critical
Publication of KR102598051B1 publication Critical patent/KR102598051B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리에틸렌이민 및 글루타알데히드에 의해 가교구조를 갖도록 표면개질을 한 후, 디아민계 화합물로 거듭 가교함으로써 막 전체의 내용매성이 크게 향상된 평막 형태의 폴리이미드계 분리막을 제조하고 이를 유기용매 나노여과막으로 응용하는 기술에 관한 것이다.
본 발명에 의하면, 종래 가교구조를 갖지 않는 폴리이미드 나노여과막 및 폴리에틸렌이민과 글루타알데히드에 의해서만 가교되어 표면이 개질된 폴리이미드 나노여과막에 비하여도 에틸알코올의 투과도 및 용액에서 특정 용질(분자량 약 500g/mol)의 제거율이 양호하면서, 동시에 내용매성이 크게 향상된 평막 형태의 가교구조를 갖는 폴리이미드계 유기용매 나노여과막 및 그 제조방법을 제공할 수 있다.
The present invention manufactures a polyimide-based separation membrane in the form of a flat membrane with greatly improved solvent resistance of the entire membrane by surface modification to have a cross-linked structure with polyethyleneimine and glutaraldehyde and then cross-linking with a diamine-based compound. It is about technology applied to filtration membranes.
According to the present invention, compared to a polyimide nanofiltration membrane without a conventional crosslinking structure and a polyimide nanofiltration membrane with a surface modified by crosslinking only by polyethyleneimine and glutaraldehyde, the permeability of ethyl alcohol and the specific solute (molecular weight about 500g) in solution are improved. It is possible to provide a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with a good removal rate (/mol) and greatly improved solvent resistance at the same time, and a method for manufacturing the same.

Description

내용매성이 향상된 가교구조의 폴리이미드계 유기용매 나노여과막 및 그 제조방법{Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof}Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof}

본 발명은 내용매성이 향상된 가교구조의 폴리이미드계 유기용매 나노여과막 및 그 제조방법에 관한 것으로, 보다 상세하게는 폴리에틸렌이민 및 글루타알데히드에 의해 가교구조를 갖도록 표면개질을 한 후, 디아민계 화합물로 거듭 가교함으로써 막 전체의 내용매성이 크게 향상된 평막 형태의 폴리이미드계 분리막을 제조하고 이를 유기용매 나노여과막으로 응용하는 기술에 관한 것이다.The present invention relates to a polyimide-based organic solvent nanofiltration membrane with a cross-linked structure with improved solvent resistance and a method of manufacturing the same. More specifically, it relates to a polyimide-based organic solvent nanofiltration membrane with improved solvent resistance and a method of manufacturing the same. More specifically, it relates to a diamine-based compound after surface modification to have a cross-linked structure with polyethyleneimine and glutaraldehyde. This relates to a technology for manufacturing a flat membrane-type polyimide-based separation membrane with greatly improved solvent resistance of the entire membrane by repeatedly cross-linking and applying it as an organic solvent nanofiltration membrane.

최근 유기용매 나노여과(organic solvent nanofiltration, OSN)는 식품, 제약, 화학, 바이오산업 등 다양한 산업 부분에서 응용 잠재력이 높은 분리기술로서 관심을 받고 있다. 나노여과는 압력에 의해 구동되는 막을 사용하는 분리공정으로 저압 역삼투법으로도 알려져 있는데, 나노여과 막은 보통 1~10 nm의 입자를 가둘 수 있으며 일가 이온보다는 다가 이온을 훨씬 많이 배제(rejection)하는 특징을 갖고 있다.Recently, organic solvent nanofiltration (OSN) has been attracting attention as a separation technology with high application potential in various industries such as food, pharmaceutical, chemical, and bio industries. Nanofiltration is a separation process that uses a membrane driven by pressure, also known as low-pressure reverse osmosis. Nanofiltration membranes can usually trap particles of 1 to 10 nm and have the characteristic of rejecting multivalent ions much more than monovalent ions. I have it.

또한, 나노여과막은 역삼투막에 비하여 큰 유량을 처리할 수 있고 저압에서 작동하기 때문에 운전비용을 절감할 수 있는 장점이 있다. 즉, 나노여과는 역삼투와 유사하게 기능하지만, 일반적으로 2가 이상의 이온을 제거하는 것인바, 나트륨, 칼륨, 염화물과 같은 1가 이온은 나노여과 막을 통과하므로 주로 탈염 공정에 많이 이용되고 있다. 아울러 나노여과는 액체 또는 가스상 배출물로부터 고형 분진, 액적, 설탕, 단백질, 염료, 다가 이온 및 미생물을 분리하는데 적용되며, 수계 및 비수계 유기용매(헥산, 메탄올, 에탄올, 톨루엔 등)의 처리에도 적합하다.In addition, nanofiltration membranes have the advantage of reducing operating costs because they can handle larger flow rates than reverse osmosis membranes and operate at low pressure. In other words, nanofiltration functions similarly to reverse osmosis, but generally removes divalent or higher ions, and monovalent ions such as sodium, potassium, and chloride pass through the nanofiltration membrane, so it is mainly used in the desalting process. In addition, nanofiltration is applied to separate solid dust, droplets, sugar, proteins, dyes, multivalent ions and microorganisms from liquid or gaseous emissions, and is also suitable for the treatment of aqueous and non-aqueous organic solvents (hexane, methanol, ethanol, toluene, etc.) do.

특히, 유기용매 나노여과막(OSN membrane)의 경우에는 기공의 크기도 중요하지만 용매 또는 용질과 분리막의 상호작용이 분리막의 성능에 영향을 미치므로 유기용매에 대한 안정성이 뛰어난 소재의 개발이 시급하다. 아울러 종래 비대칭막 형태로 제조된 폴리이미드, 가교화된 폴리벤즈이미다졸, 폴리에테르에테르케톤 막 등은 유기용매에 안정하다고 해도 우수한 투과도를 얻기 어려운 경우가 많기 때문에 한정된 유기용매 및 온도 범위에 사용되고 있어 다양한 종류의 분리막 재질, 형태 및 향상된 분리성능이 요구되고 있다.In particular, in the case of organic solvent nanofiltration membranes (OSN membranes), the size of the pores is important, but the interaction between the solvent or solute and the separation membrane affects the performance of the separation membrane, so the development of materials with excellent stability against organic solvents is urgently needed. In addition, polyimide, crosslinked polybenzimidazole, and polyetheretherketone membranes manufactured in the form of conventional asymmetric membranes are often difficult to obtain excellent permeability even if they are stable in organic solvents, so they are used in limited organic solvents and temperature ranges. Various types of separator materials, shapes, and improved separation performance are required.

따라서 본 발명자 등은, 열적·화학적 안정성 및 기계적 물성이 우수한 폴리이미드의 응용분야를 확대하기 위하여 연구를 거듭한 결과, 다양한 디아민계 화합물을 이용하여 가교구조를 갖는 평막 형태의 폴리이미드 막을 제조하여 특허출원한 바 있으며, 본 발명에서는 폴리에틸렌이민과 글루타알데히드에 가교구조를 갖도록 폴리이미드계 막의 표면을 개질한 후, 디아민계 화합물로 거듭 가교하면 막 전체의 내용매성이 크게 향상된 유기용매 나노여과막으로 응용할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.Therefore, the present inventors conducted repeated research to expand the application fields of polyimide, which has excellent thermal and chemical stability and mechanical properties, and as a result, manufactured a flat polyimide membrane with a crosslinked structure using various diamine-based compounds and obtained a patent. In the present invention, the surface of a polyimide-based membrane is modified to have a cross-linked structure of polyethyleneimine and glutaraldehyde, and then cross-linked with a diamine-based compound to apply it as an organic solvent nanofiltration membrane with greatly improved solvent resistance of the entire membrane. Focusing on this possibility, the present invention was completed.

특허문헌 1. 한국공개특허 제10-2014-0111893호Patent Document 1. Korean Patent Publication No. 10-2014-0111893 특허문헌 2. 한국공개특허 제10-2015-0084503호Patent Document 2. Korean Patent Publication No. 10-2015-0084503 특허문헌 3. 한국특허출원 제10-2021-0160960호Patent Document 3. Korean Patent Application No. 10-2021-0160960

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 종래 가교구조를 갖지 않는 폴리이미드 나노여과막 및 폴리에틸렌이민과 글루타알데히드에 의해서만 가교되어 표면이 개질된 폴리이미드 나노여과막에 비하여도 에틸알코올의 투과도 및 용액에서 특정 용질(분자량 약 500g/mol)의 제거율이 양호하면서, 동시에 내용매성이 크게 향상된 평막 형태의 가교구조를 갖는 폴리이미드계 유기용매 나노여과막 및 그 제조방법을 제공하고자 하는 것이다.The present invention was developed in consideration of the above problems, and the purpose of the present invention is to improve the performance of the polyimide nanofiltration membrane by comparing it to the conventional polyimide nanofiltration membrane without a crosslinked structure and the polyimide nanofiltration membrane whose surface is modified by crosslinking only by polyethyleneimine and glutaraldehyde. To provide a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with good ethyl alcohol permeability and removal rate of a specific solute (molecular weight about 500 g/mol) from the solution, and at the same time greatly improved solvent resistance, and a method of manufacturing the same. It is done.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 폴리에틸렌이민 및 글루타알데히드에 의해 표면이 가교구조를 갖도록 개질되고, 디아민계 화합물에 의하여 가교구조를 갖는 내용매성이 향상된 평막 형태의 폴리이미드계 유기용매 나노여과막을 제공한다.The present invention for achieving the above-mentioned object is a polyimide-based organic flat membrane in the form of a flat membrane whose surface is modified to have a cross-linked structure by polyethyleneimine and glutaraldehyde and whose solvent resistance is improved by a diamine-based compound. A solvent nanofiltration membrane is provided.

또한, 본 발명은 (I) 폴리에테르이미드를 유기용매에 용해시켜 도프용액을 얻는 단계; (II) 상기 도프용액을 부직포 위에 캐스팅한 후, 물에 함침하여 상전이 시킴으로써 비대칭 구조의 분리막을 형성하는 단계; (III) 상기 분리막을 물로 세척, 및 잔존하는 유기용매를 완전히 제거한 후, 폴리에틸렌이민 용액 및 글루타알데히드 용액에서 순차적으로 표면개질 하는 단계; 및 (IV) 상기 표면개질된 막을 디아민계 화합물로 거듭 가교반응 시키는 단계;를 포함하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법을 제공한다.In addition, the present invention includes the steps of (I) dissolving polyetherimide in an organic solvent to obtain a dope solution; (II) forming a separator with an asymmetric structure by casting the dope solution on a non-woven fabric and then impregnating it with water to cause a phase transition; (III) washing the membrane with water, completely removing the remaining organic solvent, and then sequentially modifying the surface in a polyethyleneimine solution and a glutaraldehyde solution; and (IV) repeatedly cross-linking the surface-modified membrane with a diamine-based compound. A method for producing a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with improved solvent resistance is provided.

상기 유기용매는 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸설폭시드(DMSO)로 이루어진 군으로부터 선택된 1종 이상의 것과 테트라히드로퓨란의 혼합물인 것을 특징으로 한다.The organic solvent is a mixture of at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), and dimethyl sulfoxide (DMSO) and tetrahydrofuran. It is characterized by

상기 (III) 단계의 잔존하는 유기용매는 이소프로필알코올(IPA)에 5~10시간 동안 함침시켜 제거하는 것을 특징으로 한다.The remaining organic solvent from step (III) is removed by impregnating the solution in isopropyl alcohol (IPA) for 5 to 10 hours.

상기 폴리에틸렌이민 용액 및 글루타알데히드 용액은 증류수에 용해된 것을 특징으로 한다.The polyethyleneimine solution and glutaraldehyde solution are characterized in that they are dissolved in distilled water.

상기 (III) 단계의 표면개질은 분리막을 폴리에틸렌이민 용액에 침지하여 50~60℃에서 2~3시간, 및 글루타알데히드 용액에 침지하여 상온에서 1~2시간 동안 순차적으로 교반함으로써 수행되는 것을 특징으로 한다.The surface modification in step (III) is performed by sequentially immersing the separator in a polyethyleneimine solution and stirring it at 50-60°C for 2-3 hours, and then in a glutaraldehyde solution for 1-2 hours at room temperature. Do it as

상기 (IV) 단계의 디아민계 화합물은 에틸렌디아민, 헥사메틸렌디아민, 파라-페닐렌디아민, 메타-페닐렌디아민 및 파라-자일릴렌디아민으로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The diamine-based compound of step (IV) is characterized by at least one selected from the group consisting of ethylenediamine, hexamethylenediamine, para-phenylenediamine, meta-phenylenediamine, and para-xylylenediamine.

상기 디아민계 화합물은 10 중량% 농도로 이소프로필알코올(IPA)에 용해된 용액상인 것을 특징으로 한다.The diamine-based compound is characterized in that it is in the form of a solution dissolved in isopropyl alcohol (IPA) at a concentration of 10% by weight.

상기 (IV) 단계의 가교반응은 24시간 동안 수행하는 것을 특징으로 한다.The crosslinking reaction in step (IV) is characterized in that it is carried out for 24 hours.

본 발명에 의하면, 종래 가교구조를 갖지 않는 폴리이미드 나노여과막 및 폴리에틸렌이민과 글루타알데히드에 의해서만 가교되어 표면이 개질된 폴리이미드 나노여과막에 비하여도 에틸알코올의 투과도 및 용액에서 특정 용질(분자량 약 500g/mol)의 제거율이 양호하면서, 동시에 내용매성이 크게 향상된 평막 형태의 가교구조를 갖는 폴리이미드계 유기용매 나노여과막 및 그 제조방법을 제공할 수 있다.According to the present invention, compared to a polyimide nanofiltration membrane without a conventional crosslinking structure and a polyimide nanofiltration membrane with a surface modified by crosslinking only by polyethyleneimine and glutaraldehyde, the permeability of ethyl alcohol and the specific solute (molecular weight about 500g) in solution are improved. It is possible to provide a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with a good removal rate (/mol) and greatly improved solvent resistance at the same time, and a method for manufacturing the same.

도 1은 본 발명에 따른 유기용매 나노여과막의 에틸알코올 투과도 측정 장치를 나타낸 개략도. 1 is a schematic diagram showing a device for measuring the ethyl alcohol permeability of an organic solvent nanofiltration membrane according to the present invention.

이하에서는 본 발명에 따른 내용매성이 향상된 평막 형태의 가교구조를 갖는 폴리이미드계 유기용매 나노여과막 및 그 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, the polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with improved solvent resistance according to the present invention and its manufacturing method will be described in detail with the accompanying drawings.

일반적으로 폴리이미드계 소재는 열적·화학적 안정성 및 기계적 물성이 우수하므로 알코올, 톨루엔, 케톤, 탄화수소 등의 유기용매 존재 하에서도 높은 안정성을 나타내고, 400℃ 이상의 고온에서도 높은 열적 안정성을 갖는다. 또한, 폴리이미드 공중합체 또는 가교구조의 폴리이미드는 보다 향상된 물성을 나타낼 수 있기 때문에 석유, 제약, 생의약 산업 부문에서 응용 가능성이 매우 높다.In general, polyimide-based materials have excellent thermal and chemical stability and mechanical properties, so they exhibit high stability even in the presence of organic solvents such as alcohol, toluene, ketone, and hydrocarbons, and have high thermal stability even at high temperatures of 400°C or higher. In addition, polyimide copolymers or cross-linked polyimides can exhibit improved physical properties, so they have high applicability in the petroleum, pharmaceutical, and biomedical industries.

본 발명에서는 종래 가교구조를 갖지 않는 통상적인 폴리이미드계 소재의 분리막, 및 디아민계 화합물을 이용하여 가교구조를 갖는 평막 형태의 유기용매 나노여과막과는 달리, 폴리에틸렌이민과 글루타알데히드에 가교구조를 갖도록 폴리이미드계 막의 표면을 개질한 후, 디아민계 화합물로 거듭 가교함으로써 막 전체의 내용매성이 크게 향상된 것이 핵심적인 기술적 특징이다.In the present invention, unlike conventional separation membranes made of polyimide-based materials that do not have a cross-linked structure and flat membrane-type organic solvent nanofiltration membranes that have a cross-linked structure using a diamine-based compound, a cross-linked structure of polyethyleneimine and glutaraldehyde is used. A key technical feature is that the solvent resistance of the entire film is greatly improved by modifying the surface of the polyimide-based film and then cross-linking it with a diamine-based compound.

통상 폴리이미드는 다양한 디아민 단량체와 디언하이드라이드 단량체의 축합반응에 의해 생성된 폴리아믹산을 탈수반응하여 제조되는 것으로, 단량체로 사용되는 디아민과 디언하이드라드에 의하여 폴리이미드의 반복단위가 결정되며, 현재 다양한 구조를 갖는 상용화 제품이 있어 상업적으로 입수가 용이하다.Typically, polyimide is manufactured by dehydrating polyamic acid produced by the condensation reaction of various diamine monomers and dianhydride monomers. The repeating unit of polyimide is determined by the diamine and dianhydride used as monomers, and currently There are commercialized products with various structures, making them easy to obtain commercially.

본 발명에서는 상기 다양한 폴리이미드 상용화 제품 중 ULTEMTM 1000으로 널리 알려진 하기 구조식으로 표현되는 폴리에테르이미드를 바람직하게 사용하였다.In the present invention, among the various commercialized polyimide products, polyetherimide represented by the following structural formula, widely known as ULTEM TM 1000, was preferably used.

또한, 본 발명은 (I) 폴리에테르이미드를 유기용매에 용해시켜 도프용액을 얻는 단계; (II) 상기 도프용액을 부직포 위에 캐스팅한 후, 물에 함침하여 상전이 시킴으로써 비대칭 구조의 분리막을 형성하는 단계; (III) 상기 분리막을 물로 세척, 및 잔존하는 유기용매를 완전히 제거한 후, 폴리에틸렌이민 용액 및 글루타알데히드 용액에서 순차적으로 표면개질 하는 단계; 및 (IV) 상기 표면개질된 막을 디아민계 화합물로 거듭 가교반응 시키는 단계;를 포함하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법을 제공한다.In addition, the present invention includes the steps of (I) dissolving polyetherimide in an organic solvent to obtain a dope solution; (II) forming a separator with an asymmetric structure by casting the dope solution on a non-woven fabric and then impregnating it with water to cause a phase transition; (III) washing the membrane with water, completely removing the remaining organic solvent, and then sequentially modifying the surface in a polyethyleneimine solution and a glutaraldehyde solution; and (IV) repeatedly cross-linking the surface-modified membrane with a diamine-based compound. A method for producing a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with improved solvent resistance is provided.

상기 유기용매는 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸설폭시드(DMSO)로 이루어진 군으로부터 선택된 1종 이상의 것과 테트라히드로퓨란의 혼합물인 것일 수 있으며, 디메틸포름아미드(DMF)와 테트라히드로퓨란의 혼합물을 더욱 바람직하게 사용한다.The organic solvent is a mixture of at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), and dimethyl sulfoxide (DMSO) and tetrahydrofuran. It is possible, and a mixture of dimethylformamide (DMF) and tetrahydrofuran is more preferably used.

상기 (I) 단계에서는 폴리에테르이미드를 유기용매에 40~50℃에서 12~24시간 동안 교반하여 용해시키고 상온으로 냉각하여 도프용액을 얻는다.In step (I), polyetherimide is dissolved in an organic solvent by stirring at 40-50°C for 12-24 hours and cooled to room temperature to obtain a dope solution.

상기 (II) 단계에서는 도프용액을 150~200㎛ 두께의 부직포 위에 적정량 도포하되, 200~250㎛ 두께로 조절된 캐스팅 나이프를 이용하여 일정한 두께로 캐스팅한 후, 응고액인 물에 함침시켜 유기용매와 비용매의 치환에 의한 상전이 방법으로 비대칭 구조의 분리막을 형성한다. 이때, 캐스팅 속도는 5~7m/min, 캐스팅 나이프와 응고액 간의 거리는 30~40cm, 응고액의 온도는 25~30℃, 주변 온도는 15~20℃, 습도는 30~40%로 유지하는 것이 바람직하다.In step (II), the dope solution is applied in an appropriate amount on a non-woven fabric with a thickness of 150-200㎛, casted to a certain thickness using a casting knife adjusted to a thickness of 200-250㎛, and then impregnated with water as a coagulating liquid and dissolved in an organic solvent. A separation membrane with an asymmetric structure is formed through a phase transfer method by substitution of a non-solvent. At this time, the casting speed is 5~7m/min, the distance between the casting knife and the coagulating liquid is 30~40cm, the temperature of the coagulating liquid is maintained at 25~30℃, the surrounding temperature is maintained at 15~20℃, and the humidity is maintained at 30~40%. desirable.

이어서, 상기 (III) 단계에서는 분리막을 물로 세척, 및 잔존하는 유기용매를 완전히 제거하는데, 그 잔존하는 유기용매는 이소프로필알코올(IPA)에 5~10시간 동안 함침시켜 제거할 수 있다.Subsequently, in step (III), the separator is washed with water and the remaining organic solvent is completely removed. The remaining organic solvent can be removed by impregnating the membrane with isopropyl alcohol (IPA) for 5 to 10 hours.

또한, 상기 폴리에틸렌이민 용액 및 글루타알데히드 용액은 증류수에 용해된 것을 사용한다.Additionally, the polyethyleneimine solution and glutaraldehyde solution dissolved in distilled water are used.

또한, 상기 (III) 단계의 표면개질은 분리막을 폴리에틸렌이민 용액에 침지하여 50~60℃에서 2~3시간, 및 글루타알데히드 용액에 침지하여 상온에서 1~2시간 동안 순차적으로 교반하는 것이 바람직하다. 표면개질을 위한 반응 온도 및 시간이 상기 조건을 벗어나면 가교반응이 원하는 정도로 진행되지 않거나, 또는 지나친 반응시간으로 인하여 분리막 제조의 전체 공정으로 볼 때 상용화 측면에서 바람직하지 않을 수 있다.In addition, for the surface modification in step (III), it is preferable to sequentially immerse the separator in a polyethyleneimine solution at 50-60°C for 2-3 hours, and then immerse it in a glutaraldehyde solution and stir it at room temperature for 1-2 hours. do. If the reaction temperature and time for surface modification are outside the above conditions, the crosslinking reaction may not proceed to the desired extent, or may be undesirable in terms of commercialization in terms of the overall process of manufacturing a separator due to excessive reaction time.

또한, 상기 (IV) 단계의 디아민계 화합물은 에틸렌디아민, 헥사메틸렌디아민, 파라-페닐렌디아민, 메타-페닐렌디아민 및 파라-자일릴렌디아민으로 이루어진 군으로부터 선택된 1종 이상의 것일 수 있다.Additionally, the diamine-based compound in step (IV) may be one or more selected from the group consisting of ethylenediamine, hexamethylenediamine, para-phenylenediamine, meta-phenylenediamine, and para-xylylenediamine.

이때, 상기 디아민계 화합물은 10 중량% 농도로 이소프로필알코올(IPA)에 용해된 용액상인 것을 바람직하게 사용하는바, 디아민계 화합물의 농도가 10 중량% 미만이거나 10 중량%를 초과하면 가교도가 너무 낮거나 높아서 원하는 물성을 기대할 수 없는 경우가 있다.At this time, the diamine-based compound is preferably used in the form of a solution dissolved in isopropyl alcohol (IPA) at a concentration of 10% by weight. If the concentration of the diamine-based compound is less than 10% by weight or exceeds 10% by weight, the degree of crosslinking is too high. There are cases where the desired physical properties cannot be expected because it is too low or too high.

또한, 상기 (IV) 단계의 가교반응은 24시간 동안 수행하는 것이 바람직한바, 가교반응 시간이 24시간 미만이거나 24시간을 초과하면 가교반응이 원하는 정도로 진행되지 않거나, 또는 지나친 반응시간으로 인하여 분리막 제조의 전체 공정으로 볼 때 상용화 측면에서 바람직하지 않을 수 있다.In addition, the cross-linking reaction in step (IV) is preferably performed for 24 hours. If the cross-linking reaction time is less than 24 hours or exceeds 24 hours, the cross-linking reaction may not proceed to the desired degree, or the excessive reaction time may result in the separation membrane preparation. Considering the overall process, it may be undesirable from a commercialization perspective.

이하 구체적인 실시예 및 비교예를 서술한다.Specific examples and comparative examples are described below.

(실시예 1) PEI 및 GA로 표면개질 후 디아민계 화합물로 가교된 유기용매 나노여과막의 제조(Example 1) Preparation of an organic solvent nanofiltration membrane cross-linked with a diamine-based compound after surface modification with PEI and GA

폴리에테르이미드 690g을 디메틸포름아미드(DMF) 1,710g 및 테트라히드로퓨란 600g과 함께 45℃에서 24시간 동안 교반하여 용해시킨 후, 상온으로 냉각시켜 도프용액을 얻었다. 상기 얻어진 도프용액을 180㎛ 두께의 부직포 위에 캐스팅 나이프를 위치시킨 후, 두께 180㎛로 설정하여 캐스팅을 진행한 다음, 물에 함침하여 상전이 시킴으로써 비대칭 구조의 분리막을 형성하였다. 이때, 캐스팅 속도는 6m/min, 캐스팅 나이프와 응고액(물) 간의 거리는 40cm, 응고액의 온도는 25℃, 주변 온도는 20℃, 습도는 40%로 조절하였다. 690 g of polyetherimide was dissolved by stirring with 1,710 g of dimethylformamide (DMF) and 600 g of tetrahydrofuran at 45°C for 24 hours, and then cooled to room temperature to obtain a dope solution. After placing the obtained dope solution on a nonwoven fabric with a thickness of 180㎛ with a casting knife, casting was performed by setting the thickness to 180㎛, and then impregnated with water to cause a phase transition to form a separator with an asymmetric structure. At this time, the casting speed was 6 m/min, the distance between the casting knife and the coagulating liquid (water) was 40 cm, the temperature of the coagulating liquid was adjusted to 25°C, the ambient temperature was 20°C, and the humidity was adjusted to 40%.

그 후, 상기 분리막을 물에 하루 동안 세척, 및 이소프로필알코올(IPA)에 8시간 동안 함침하여 잔존하는 유기용매를 완전히 제거하였다.Afterwards, the membrane was washed in water for one day and impregnated in isopropyl alcohol (IPA) for 8 hours to completely remove the remaining organic solvent.

다음으로, 상기 분리막을 폴리에틸렌이민(PEI) 용액(폴리에틸렌이민 70KDa 36.7g/증류수 513.3g)에 침지하여 60℃에서 2시간 동안 교반한 후 꺼내어 증류수로 1시간 동안 세척한 다음, 글루타알데히드(GA) 용액(글루타알데히드 22g/증류수 528g)에 다시 침지하여 상온에서 1시간 동안 교반하여 순차적으로 가교반응시킨 후 꺼내어 증류수로 24시간 동안 세척 및 건조함으로써 표면개질된 폴리이미드계 막을 얻었다.Next, the membrane was immersed in a polyethyleneimine (PEI) solution (polyethyleneimine 70KDa 36.7g/distilled water 513.3g), stirred at 60°C for 2 hours, taken out, washed with distilled water for 1 hour, and then washed with glutaraldehyde (GA). ) solution (glutaraldehyde 22g/distilled water 528g) and stirred at room temperature for 1 hour to sequentially cross-link. Then, it was taken out, washed with distilled water for 24 hours, and dried to obtain a surface-modified polyimide-based membrane.

마지막으로, 상기 표면개질된 폴리이미드계 막을 에틸렌디아민 10 중량% 농도의 이소프로필알코올(IPA) 용액에 24시간 동안 함침하여 가교반응을 진행함으로써 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막을 제조하였다.Finally, the surface-modified polyimide-based membrane was immersed in an isopropyl alcohol (IPA) solution containing 10% by weight of ethylenediamine for 24 hours to perform a crosslinking reaction, thereby producing a polyimide-based organic solvent nanofiltration membrane with a crosslinked structure in the form of a flat membrane. Manufactured.

(비교예 1) 가교구조를 갖지 않는 유기용매 나노여과막의 제조(Comparative Example 1) Preparation of an organic solvent nanofiltration membrane without a cross-linked structure

폴리에테르이미드 690g을 디메틸포름아미드(DMF) 1,710g 및 테트라히드로퓨란 600g과 함께 45℃에서 24시간 동안 교반하여 용해시킨 후, 상온으로 냉각시켜 도프용액을 얻었다. 상기 얻어진 도프용액을 180㎛ 두께의 부직포 위에 캐스팅 나이프를 위치시킨 후, 두께 180㎛로 설정하여 캐스팅을 진행한 다음, 물에 함침하여 상전이 시킴으로써 비대칭 구조의 분리막을 형성하였다. 이때, 캐스팅 속도는 6m/min, 캐스팅 나이프와 응고액(물) 간의 거리는 40cm, 응고액의 온도는 25℃, 주변 온도는 20℃, 습도는 40%로 조절하였다. 690 g of polyetherimide was dissolved by stirring with 1,710 g of dimethylformamide (DMF) and 600 g of tetrahydrofuran at 45°C for 24 hours, and then cooled to room temperature to obtain a dope solution. After placing the obtained dope solution on a nonwoven fabric with a thickness of 180㎛ with a casting knife, casting was performed by setting the thickness to 180㎛, and then impregnated with water to cause a phase transition to form a separator with an asymmetric structure. At this time, the casting speed was 6 m/min, the distance between the casting knife and the coagulating liquid (water) was 40 cm, the temperature of the coagulating liquid was adjusted to 25°C, the ambient temperature was 20°C, and the humidity was adjusted to 40%.

그 후, 상기 분리막을 물에 하루 동안 세척, 및 이소프로필알코올(IPA)에 8시간 동안 함침하여 잔존하는 유기용매를 완전히 제거함으로써 가교구조를 갖지 않는 평막 형태의 폴리이미드계 유기용매 나노여과막을 제조하였다.Thereafter, the membrane was washed in water for one day and impregnated in isopropyl alcohol (IPA) for 8 hours to completely remove the remaining organic solvent, thereby producing a polyimide-based organic solvent nanofiltration membrane in the form of a flat membrane without a crosslinked structure. did.

(비교예 2) 디아민 화합물로 가교된 유기용매 나노여과막의 제조(Comparative Example 2) Preparation of organic solvent nanofiltration membrane crosslinked with diamine compound

비교예 1로부터 제조한 폴리이미드계 유기용매 나노여과막을 에틸렌디아민 용액(10 중량% 농도로 이소프로필알코올에 용해)에 24시간 동안 침지하여 가교반응을 진행함으로써 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막을 제조하였다.The polyimide-based organic solvent nanofiltration membrane prepared in Comparative Example 1 was immersed in an ethylenediamine solution (dissolved in isopropyl alcohol at a concentration of 10% by weight) for 24 hours to carry out a crosslinking reaction, thereby forming a polyimide-based organic solvent with a crosslinked structure in the form of a flat membrane. A solvent nanofiltration membrane was prepared.

(비교예 3) 디아민 화합물로 가교된 막을 PEI 및 GA로 표면개질 한 유기용매 나노여과막의 제조(Comparative Example 3) Preparation of an organic solvent nanofiltration membrane using a membrane cross-linked with a diamine compound and surface modified with PEI and GA.

비교예 2로부터 제조한 폴리이미드계 유기용매 나노여과막을 폴리에틸렌이민(PEI) 용액(폴리에틸렌이민 70KDa 36.7g/증류수 513.3g)에 침지하여 60℃에서 2시간 동안 교반한 후 꺼내어 증류수로 1시간 동안 세척한 다음, 글루타알데히드(GA) 용액(글루타알데히드 22g/증류수 528g)에 다시 침지하여 상온에서 1시간 동안 교반하여 순차적으로 가교반응시킨 후 꺼내어 증류수로 24시간 동안 세척 및 건조함으로써 표면개질된 폴리이미드계 막을 제조하였다.The polyimide organic solvent nanofiltration membrane prepared in Comparative Example 2 was immersed in a polyethyleneimine (PEI) solution (polyethyleneimine 70KDa 36.7g/distilled water 513.3g) and stirred at 60°C for 2 hours, then taken out and washed with distilled water for 1 hour. Then, it was immersed again in a glutaraldehyde (GA) solution (22 g of glutaraldehyde/528 g of distilled water) and stirred at room temperature for 1 hour to sequentially cross-link. Then, it was taken out, washed with distilled water for 24 hours, and dried to produce a surface-modified polyE. A Mead-based membrane was prepared.

(비교예 4) 가교구조를 갖지 않는 막을 PEI 및 GA로만 가교시켜 표면개질 한 유기용매 나노여과막의 제조(Comparative Example 4) Preparation of an organic solvent nanofiltration membrane surface-modified by cross-linking a membrane without a cross-linking structure only with PEI and GA.

비교예 1로부터 제조한 가교구조를 갖지 않는 폴리이미드계 유기용매 나노여과막을 폴리에틸렌이민(PEI) 용액(폴리에틸렌이민 70KDa 36.7g/증류수 513.3g)에 침지하여 60℃에서 2시간 동안 교반한 후 꺼내어 증류수로 1시간 동안 세척한 다음, 글루타알데히드(GA) 용액(글루타알데히드 22g/증류수 528g)에 다시 침지하여 상온에서 1시간 동안 교반하여 순차적으로 가교반응시킨 후 꺼내어 증류수로 24시간 동안 세척 및 건조함으로써 표면개질된 폴리이미드계 막을 제조하였다.The polyimide-based organic solvent nanofiltration membrane without a crosslinking structure prepared in Comparative Example 1 was immersed in a polyethyleneimine (PEI) solution (polyethyleneimine 70KDa 36.7g/distilled water 513.3g) and stirred at 60°C for 2 hours, then taken out and diluted with distilled water. Washed for 1 hour, then immersed again in glutaraldehyde (GA) solution (glutaraldehyde 22g/distilled water 528g) and stirred at room temperature for 1 hour to sequentially crosslink reaction, then taken out, washed with distilled water for 24 hours and dried. By doing so, a surface-modified polyimide-based membrane was prepared.

(비교예 5) 디아민 화합물로 가교된 막을 PEI 및 GA로 표면개질 한 유기용매 나노여과막의 제조(Comparative Example 5) Preparation of an organic solvent nanofiltration membrane using a membrane cross-linked with a diamine compound and surface modified with PEI and GA.

폴리에틸렌이민(PEI) 용액(폴리에틸렌이민 0.8KDa 11g/증류수 539g)을 사용한 것을 제외하고는 비교예 3과 동일한 방법으로 표면개질된 폴리이미드계 막을 제조하였다.A surface-modified polyimide-based membrane was prepared in the same manner as Comparative Example 3, except that a polyethyleneimine (PEI) solution (polyethyleneimine 0.8 KDa 11 g/distilled water 539 g) was used.

(비교예 6) 가교구조를 갖지 않는 막을 PEI 및 GA로만 가교시켜 표면개질 한 유기용매 나노여과막의 제조(Comparative Example 6) Preparation of an organic solvent nanofiltration membrane surface-modified by cross-linking a membrane without a cross-linking structure only with PEI and GA.

폴리에틸렌이민(PEI) 용액(폴리에틸렌이민 0.8KDa 11g/증류수 539g)을 사용한 것을 제외하고는 비교예 4와 동일한 방법으로 표면개질된 폴리이미드계 막을 제조하였다.A surface-modified polyimide-based membrane was prepared in the same manner as Comparative Example 4, except that a polyethyleneimine (PEI) solution (polyethyleneimine 0.8 KDa 11 g/distilled water 539 g) was used.

(실시예 2) PEI 및 GA로 표면개질 후 디아민계 화합물로 가교된 유기용매 나노여과막의 제조(Example 2) Preparation of an organic solvent nanofiltration membrane cross-linked with a diamine-based compound after surface modification with PEI and GA

비교예 6으로부터 제조한 표면개질된 폴리이미드계 막을 에틸렌디아민 10 중량% 농도의 이소프로필알코올(IPA) 용액에 24시간 동안 함침하여 가교반응을 진행함으로써 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막을 제조하였다.The surface-modified polyimide-based membrane prepared in Comparative Example 6 was immersed in an isopropyl alcohol (IPA) solution with a concentration of 10% by weight of ethylenediamine for 24 hours to undergo a crosslinking reaction, thereby forming a polyimide-based organic solvent nano having a crosslinked structure in the form of a flat membrane. A filtration membrane was prepared.

[에틸알코올(EtOH) 투과도 및 용질(mordnat blue9) 배제율 평가][Ethyl alcohol (EtOH) permeability and solute (mordnat blue9) rejection rate evaluation]

도 1에 나타낸 투과도 측정 장치를 이용하여 본 발명의 실시예 1, 2및 비교예 1 내지 6으로부터 제조한 유기용매 나노여과막의 에틸알코올 투과도를 측정하였고 아래 식 (1)에 의하여 계산하였다.The ethyl alcohol permeability of the organic solvent nanofiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 to 6 of the present invention was measured using the permeability measuring device shown in Figure 1 and calculated according to equation (1) below.

Figure 112022137616619-pat00002
(1)
Figure 112022137616619-pat00002
(One)

[상기 식 (1)에서 Q는 시간 당 투과되는 부피(L/h), A는 분리막의 유효면적(m2), △P는 분리막에 가해지는 압력(bar)을 의미하며, 단위는 LMH(L/m2h bar)][In equation (1) above, Q is the volume permeated per hour (L/h), A is the effective area of the separator (m2), and △P is the pressure applied to the separator (bar), and the unit is LMH (L /m 2 h bar)]

또한, 용액에서 특정 분자량(약 500g/mol)을 갖는 용질의 제거율(%)을 평가하기 위하여 도 1의 투과도 측정 장치를 이용하였다. 분자량이 502.81g/mol인 하기 구조식으로 나타낸 염료 mordant blue9을 투입하여 100 ppm의 농도로 피드용액을 제조한 다음,In addition, the permeability measuring device of Figure 1 was used to evaluate the removal rate (%) of a solute with a specific molecular weight (about 500 g/mol) from the solution. A feed solution was prepared at a concentration of 100 ppm by adding the dye mordant blue9, which has a molecular weight of 502.81 g/mol and has the structural formula below,

분리막에서 투과된 용액과 피드용액을 자외선-가시광 분석기(UV-visible spectroscopy)로 측정하여 각각의 농도를 확인하였으며, 아래 식 (2)를 통하여 계산하였다. The solution and feed solution transmitted from the separation membrane were measured using an ultraviolet-visible spectroscopy to confirm the respective concentrations, and were calculated using equation (2) below.

Figure 112022137616619-pat00004
(2)
Figure 112022137616619-pat00004
(2)

또한, 내용매성에 대한 평가는 가교도 테스트에 의하여 수행하였는바, 가교된 나노여과막의 가교도(crosslinking contents %)를 확인하기 위해서 건조된 분리막을 디메틸포름아미드에 24시간 동안 침전시킨 후 용해되지 않은 부분을 건조하여 측정하였으며, 아래 식 (3)을 통하여 계산하였다.In addition, the evaluation of solvent resistance was performed by a crosslinking degree test. To check the crosslinking content % of the crosslinked nanofiltration membrane, the dried membrane was precipitated in dimethylformamide for 24 hours and then the undissolved membrane was precipitated in dimethylformamide for 24 hours. The part was dried and measured, and calculated using equation (3) below.

Crosslinking contents(%) = (Wc/Wa) x 100 (3)Crosslinking contents(%) = (Wc/Wa) x 100 (3)

[상기 식에서, Wa는 디메틸포름아미드에 침지시키지 전의 분리막 무게, Wc는 디메틸포름아미드에 침지시킨 후 건조된 분리막의 무게] [In the above formula, Wa is the weight of the membrane before immersion in dimethylformamide, and Wc is the weight of the dried membrane after immersion in dimethylformamide]

상기 식 (1) 내지 (3)에 의하여 본 발명의 실시예 1, 2 및 비교예 1 내지 6으로부터 제조한 유기용매 나노여과막의 에틸알코올 투과도, 용질의 제거율 및 가교도를 각각 평가한 결과를 아래 표 1에 나타내었다.The results of evaluating the ethyl alcohol permeability, solute removal rate, and degree of crosslinking of the organic solvent nanofiltration membranes prepared in Examples 1 and 2 and Comparative Examples 1 to 6 of the present invention according to the above formulas (1) to (3) are shown in the table below. It is shown in 1.

샘플Sample EtOH 투과도(LMH bar)EtOH permeability (LMH bar) mordant blue 9 배제율(%)mordant blue 9 exclusion rate (%) 가교도(%)Crosslinking degree (%) 실시예 1Example 1 1.251.25 98.7998.79 100100 실시예 2Example 2 4.074.07 59.7759.77 100100 비교예 1Comparative Example 1 6.466.46 4.164.16 00 비교예 2Comparative Example 2 5.105.10 12.9712.97 100100 비교예 3Comparative Example 3 2.872.87 64.5864.58 100100 비교예 4Comparative Example 4 2.332.33 93.8093.80 24.524.5 비교예 5Comparative Example 5 10.2510.25 15.2715.27 100100 비교예 6Comparative Example 6 4.724.72 39.0339.03 25.425.4

상기 표 1에서 보는 바와 같이, 본 발명의 실시예 1, 2로부터 제조한 PEI 및 GA로 표면개질 후 다아민계 화합물로 가교된 유기용매 나노여과막은 비교예 1로부터 제조한 가교구조를 갖지 않는 유기용매 나노여과막, 및 비교예 4, 6으로부터 제조한 가교구조를 갖지 않는 막을 PEI 및 GA로만 가교시켜 표면개질 한 유기용매 나노여과막에 비하여 가교도에서 크게 차이가 있어 내용매성이 매우 우수한 것을 알 수 있다.As shown in Table 1, the organic solvent nanofiltration membrane cross-linked with a polyamine-based compound after surface modification with PEI and GA prepared in Examples 1 and 2 of the present invention is an organic solvent without a cross-linked structure prepared in Comparative Example 1. It can be seen that the solvent nanofiltration membrane and the membrane without a crosslinking structure prepared in Comparative Examples 4 and 6 are significantly different in the degree of crosslinking compared to the organic solvent nanofiltration membrane surface-modified by crosslinking only with PEI and GA, showing that the solvent resistance is very excellent.

또한, 본 발명의 실시예 1로부터 제조한 PEI 및 GA로 표면개질 후 다아민계 화합물로 가교된 유기용매 나노여과막은 비교예 2로부터 제조한 디아민계 화합물로만 가교된 유기용매 나노여과막, 비교예 3 및 5로부터 제조한 디아민계 화합물로 가교한 후 PEI 및 GA로 표면개질 한 유기용매 나노여과막과 대비하여 가교도가 같으면서도 mordnat blue 9의 배제율이 매우 높아 유기용매 나노여과막으로서의 성능이 우수함을 확인할 수 있다.In addition, the organic solvent nanofiltration membrane crosslinked with a diamine-based compound after surface modification with PEI and GA prepared in Example 1 of the present invention is an organic solvent nanofiltration membrane crosslinked only with a diamine-based compound prepared in Comparative Example 2, Comparative Example 3 Compared to the organic solvent nanofiltration membrane crosslinked with diamine-based compounds prepared from 5 and 5 and then surface modified with PEI and GA, the crosslinking degree was the same and the exclusion rate of mordnat blue 9 was very high, confirming that the performance as an organic solvent nanofiltration membrane was excellent. there is.

그러므로 본 발명에 따르면, 종래 가교구조를 갖지 않는 폴리이미드 나노여과막 및 폴리에틸렌이민과 글루타알데히드에 의해서만 가교되어 표면이 개질된 폴리이미드 나노여과막에 비하여도 에틸알코올의 투과도 및 용액에서 특정 용질(분자량 약 500g/mol)의 제거율이 양호하면서, 동시에 내용매성이 크게 향상된 평막 형태의 가교구조를 갖는 폴리이미드계 유기용매 나노여과막 및 그 제조방법을 제공할 수 있다.Therefore, according to the present invention, compared to a polyimide nanofiltration membrane without a conventional crosslinking structure and a polyimide nanofiltration membrane whose surface is modified by crosslinking only by polyethyleneimine and glutaraldehyde, the permeability of ethyl alcohol and the specific solute (molecular weight approx. It is possible to provide a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with a good removal rate (500 g/mol) and greatly improved solvent resistance at the same time, and a method for manufacturing the same.

Claims (9)

삭제delete (I) 하기 구조식으로 표현되는 폴리에테르이미드를 유기용매에 용해시켜 도프용액을 얻는 단계;

(II) 상기 도프용액을 부직포 위에 캐스팅한 후, 물에 함침하여 상전이 시킴으로써 비대칭 구조의 분리막을 형성하는 단계;
(III) 상기 분리막을 물로 세척, 및 잔존하는 유기용매를 완전히 제거한 후, 6.67 중량% 폴리에틸렌이민 수용액에 침지하여 50~60℃에서 2~3시간, 및 4 중량% 글루타알데히드 수용액에 침지하여 상온에서 1~2시간 동안 순차적으로 교반함으로써 표면개질 하는 단계; 및
(IV) 상기 표면개질된 막을 에틸렌디아민으로 거듭 가교반응 시키는 단계;를 포함하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법.
(I) obtaining a dope solution by dissolving polyetherimide represented by the following structural formula in an organic solvent;

(II) forming a separator with an asymmetric structure by casting the dope solution on a non-woven fabric and then impregnating it with water to cause a phase transition;
(III) After washing the membrane with water and completely removing the remaining organic solvent, it was immersed in a 6.67% by weight polyethyleneimine aqueous solution at 50-60°C for 2-3 hours, and then immersed in a 4% by weight glutaraldehyde aqueous solution at room temperature. Surface modification by sequentially stirring for 1 to 2 hours; and
(IV) repeatedly cross-linking the surface-modified membrane with ethylenediamine; a method for producing a polyimide-based organic solvent nanofiltration membrane having a cross-linked structure in the form of a flat membrane with improved solvent resistance.
제2항에 있어서, 상기 유기용매는 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸설폭시드(DMSO)로 이루어진 군으로부터 선택된 1종 이상의 것과 테트라히드로퓨란의 혼합물인 것을 특징으로 하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법.The method of claim 2, wherein the organic solvent is one or more selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), and dimethyl sulfoxide (DMSO), and tetra A method of manufacturing a polyimide-based organic solvent nanofiltration membrane with a cross-linked structure in the form of a flat membrane with improved solvent resistance, characterized in that it is a mixture of hydrofuran. 제2항에 있어서, 상기 (III) 단계의 잔존하는 유기용매는 이소프로필알코올(IPA)에 5~10시간 동안 함침시켜 제거하는 것을 특징으로 하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법.The polyimide-based polyimide-based crosslinked structure in the form of a flat membrane with improved solvent resistance according to claim 2, wherein the remaining organic solvent from step (III) is removed by impregnating it with isopropyl alcohol (IPA) for 5 to 10 hours. Method for manufacturing organic solvent nanofiltration membrane. 삭제delete 삭제delete 삭제delete 제2항에 있어서, 상기 에틸렌디아민은 10 중량% 농도로 이소프로필알코올(IPA)에 용해된 용액상인 것을 특징으로 하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법.The method of claim 2, wherein the ethylenediamine is in the form of a solution dissolved in isopropyl alcohol (IPA) at a concentration of 10% by weight. . 제2항에 있어서, 상기 (IV) 단계의 가교반응은 24시간 동안 수행하는 것을 특징으로 하는 내용매성이 향상된 평막 형태의 가교구조의 폴리이미드계 유기용매 나노여과막의 제조방법.












The method of claim 2, wherein the crosslinking reaction in step (IV) is performed for 24 hours.












KR1020220180029A 2022-12-21 2022-12-21 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof KR102598051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220180029A KR102598051B1 (en) 2022-12-21 2022-12-21 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220180029A KR102598051B1 (en) 2022-12-21 2022-12-21 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof

Publications (1)

Publication Number Publication Date
KR102598051B1 true KR102598051B1 (en) 2023-11-06

Family

ID=88748184

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220180029A KR102598051B1 (en) 2022-12-21 2022-12-21 Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102598051B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140111893A (en) 2013-03-12 2014-09-22 계명대학교 산학협력단 Manufacturing method of fouling-resistant nanofiber membrane and fouling-resistant nanofiber membrane thereof
KR20150084503A (en) 2014-01-14 2015-07-22 주식회사 효성 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140111893A (en) 2013-03-12 2014-09-22 계명대학교 산학협력단 Manufacturing method of fouling-resistant nanofiber membrane and fouling-resistant nanofiber membrane thereof
KR20150084503A (en) 2014-01-14 2015-07-22 주식회사 효성 Method for Manufacturing Organic Solvent Resistant Nano Membrane and Nano Membrane Manufactured Thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Xu et al., Separation and Purification Technology, 241, 2020, 116751 *
Y. Zhang et al., The performance of integrally skinned polyetherimide asymmetric nanofiltration membranes with organic solvents. Journal of Membrane Science, 544, 2017, 119~125* *

Similar Documents

Publication Publication Date Title
US4964990A (en) Filtration membranes and method of making the same
US6660062B2 (en) Chemical modification of polyimides
Yanagishita et al. Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process
CN111514768B (en) Solvent-resistant polymer nanofiltration membrane as well as preparation method and application thereof
JP2010526919A (en) Cross-linked polyimide film
Luo et al. Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation
EP0456143A2 (en) Asymmetric polyimide mebranes
Tsai et al. Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow‐fiber membranes
CN112516814A (en) Preparation method of high-desalting solvent-resistant polyamide composite nanofiltration membrane
Wei et al. One-step fabrication of recyclable polyimide nanofiltration membranes with high selectivity and performance stability by a phase inversion-based process
KR101823050B1 (en) Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
Alibakhshian et al. Thin film composite membranes with desirable support layer for MeOH/MTBE pervaporation
Wang et al. The influence of polyamic acid molecular weight on the membrane structure and performance of polyimide solvent‐resistant nanofiltration
Mashhadikhan et al. Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment
KR102598051B1 (en) Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof
JP7146080B2 (en) Polymer layered hollow fiber membranes based on poly(2,5-benzimidazole), copolymers, and substituted polybenzimidazoles
KR102598050B1 (en) Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof
KR102626221B1 (en) Crosslinked polyimide organic solvent nanofiltration membrane and preparation method thereof
JP2984716B2 (en) Aromatic separation membrane
Kononova et al. New composite materials based on polyvinylpyrrolidone and poly (diphenyl oxide amido-N-phenylphthalimide)
CN115260494B (en) Polyimide and thin-layer composite film thereof and preparation method
JPH05184887A (en) Production of high performance asymmetrical membrane
KR20160057672A (en) Polyamide thin-film composite membrane with dicarboxylic acid, and manufacturing method thereof
CA2081260A1 (en) Semipermeable, porous, asymmetric polyether amide membranes
WO2020127456A1 (en) Porous membranes for high pressure filtration

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant