KR20110034842A - Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers - Google Patents

Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers Download PDF

Info

Publication number
KR20110034842A
KR20110034842A KR1020090092301A KR20090092301A KR20110034842A KR 20110034842 A KR20110034842 A KR 20110034842A KR 1020090092301 A KR1020090092301 A KR 1020090092301A KR 20090092301 A KR20090092301 A KR 20090092301A KR 20110034842 A KR20110034842 A KR 20110034842A
Authority
KR
South Korea
Prior art keywords
membrane
spaedf
salt
carbon
arylene ether
Prior art date
Application number
KR1020090092301A
Other languages
Korean (ko)
Inventor
이재석
김영제
정명환
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020090092301A priority Critical patent/KR20110034842A/en
Priority to PCT/KR2010/006644 priority patent/WO2011040760A2/en
Publication of KR20110034842A publication Critical patent/KR20110034842A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyethers (AREA)

Abstract

PURPOSE: A polymer desalination membrane produced with a sulfonated poly(arylene ether) copolymer forming a cross-linking structure is provided to secure the high salt removal rate and the excellent dimensional stability for the moisture of the membrane. CONSTITUTION: A polymer desalination membrane contains a cross-linking compound of a sulfonated poly(arylene ether) copolymer marked with chemical formula 1. In the chemical formula 1, SAr1 is a sulfonated aromatic group, and Ar is an un-sulfonated aromatic group. CM is a cross-linkable moiety, and n is a polymerization degree of sulfonated poly(arylene ether) with the value of 10~500.

Description

사슬 내부에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에터) 공중합체로 이루어진 고분자 염제거막{Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers}Polymer desalination membrane comprising sulfonated poly (arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers}

본 발명은 염제거막에 관한 것으로, 보다 상세하게는 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물을 포함하는 고분자 염제거막에 관한 것이다.The present invention relates to a salt removal membrane, and more particularly to a polymer salt removal membrane comprising a crosslinking compound of sulfonated poly (arylene ether) copolymer.

해수로부터 담수를 획득하기 위해서는 해수에 용존되어 있거나 부유하는 성분들을 용수 및 음용수 기준에 적합하도록 제거해야 하며, 현재 상용화된 해수담수화 방식으로는 크게 역삼투법과 증발법을 들 수 있다. 이 중 역삼투법은 삼투현상(osmosis)을 역으로 이용하여 해수 중 이온성 물질은 거의 배제하고 순수한 물만 염제거용 분리막을 통과시켜 담수를 얻는 방법으로 에너지 효율 면에서 상대적으로 우수한 장점이 있어 널리 사용되고 있다. In order to obtain fresh water from seawater, components dissolved or suspended in seawater must be removed to meet the water and drinking water standards. Currently, commercially available seawater desalination methods include reverse osmosis and evaporation. The reverse osmosis method is widely used because it has relatively superior energy efficiency in terms of energy efficiency by using osmosis as a reverse method to almost eliminate ionic substances in seawater and pass pure water through a membrane for removing salt. .

그러나, 현재 가장 널리 사용되는 폴리아마이드 복합체 역삼투막은 계면중합을 통해 제조되기 때문에 표면이 거칠어 높은 파울링 효과(표면에 이물질이 조금씩 천천히 쌓여 물 투과량 과 염제거율 감소시키는 효과)를 받을 수 있다. 또한 바이 오 파울링(원수 속의 박테리아나 미생물이 막 표면에 흡착되어 발생)에 의한 성능감소를 개선하기 위해서는 염소처리(NaOCl 용액처리)가 필요하나, 폴리아마이드 복합 역삼투막의 경우 낮은 농도 (100ppm이하)에서도 쉽게 주 사슬의 결합이 깨져 염제거율이 현저히 감소되는 문제가 있다.However, the most widely used polyamide composite reverse osmosis membrane is manufactured through interfacial polymerization, so the surface is coarse to obtain a high fouling effect (a small amount of foreign matter slowly accumulates on the surface to reduce water permeation and salt removal rate). In addition, chlorine treatment (NaOCl solution treatment) is required to improve the performance degradation caused by bio fouling (generated by adsorption of bacteria or microorganisms on the membrane surface). Even in the main chain bond easily broken there is a problem that the salt removal rate is significantly reduced.

이에, 미국특허 제4,419,486에서 술폰화된 폴리(아릴렌 에터 케톤) 공중합체를 이용하여 염소 안정성이 높은 역삼투막을 개발하였지만 이 경우 염제거율(약 70%)이 낮은 문제가 있다.Thus, in the US Patent No. 4,419,486, a reverse osmosis membrane having high chlorine stability was developed using a sulfonated poly (arylene ether ketone) copolymer, but in this case, there is a problem of low salt removal rate (about 70%).

따라서, 이온성 물질과 순수한 물을 분리시키기 위해 가해지는 삼투압 이상의 높은 압력에 대한 기계적 안정성을 가지는 한편, 높은 화학적 안정성 특히, 염소 안정성을 지니면서 높은 염제거율을 갖는 염제거막에 대한 개발이 필요한 실정이다.Therefore, there is a need for the development of a salt removal membrane having a high chemical stability, particularly a chlorine stability and a high salt removal rate while having mechanical stability against high pressure above the osmotic pressure applied to separate the ionic material and pure water. to be.

본 발명이 해결하고자 하는 기술적 과제는 높은 염제거율을 가지며, 화학적ㆍ기계적 안정성이 우수한 고분자 염제거막을 제공함에 있다.The technical problem to be solved by the present invention is to provide a polymer salt removal membrane having a high salt removal rate, excellent chemical and mechanical stability.

상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 하기 화학식 1로 표시되는 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물을 포함하는 고분자 염제거막을 제공한다.One aspect of the present invention to achieve the above technical problem provides a polymer salt removal film comprising a crosslinking compound of sulfonated poly (arylene ether) copolymer represented by the following formula (1).

[화학식 1] [Formula 1]

Figure 112009059819128-PAT00002
Figure 112009059819128-PAT00002

상기 식에서, SAr1은 술폰화된 방향족(sulfonated aromatic)을 나타내고, Ar은 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며, CM은 가교할 수 있는 부분(crosslinkable moiety)을 나타내고,Wherein SAr1 represents sulfonated aromatic, Ar represents non sulfonated aromatic, CM represents crosslinkable moiety,

b 및 k는 각각 0.001 ~ 1.000의 값를 가지고, d는 1-b 값을 가지며, s는 1-k 값을 가지고,b and k each have a value of 0.001 to 1.000, d has a value of 1-b, s has a value of 1-k,

n은 술폰화된 폴리(아릴렌 에터)의 중합도로서 10 내지 500의 값을 갖는다.n has a value of 10 to 500 as the degree of polymerization of sulfonated poly (arylene ether).

상기 SAr1은SAr1 is

Figure 112009059819128-PAT00003
,
Figure 112009059819128-PAT00004
,
Figure 112009059819128-PAT00005
,
Figure 112009059819128-PAT00006
,
Figure 112009059819128-PAT00007
,
Figure 112009059819128-PAT00008
또는
Figure 112009059819128-PAT00009
일 수 있고,
Figure 112009059819128-PAT00003
,
Figure 112009059819128-PAT00004
,
Figure 112009059819128-PAT00005
,
Figure 112009059819128-PAT00006
,
Figure 112009059819128-PAT00007
,
Figure 112009059819128-PAT00008
or
Figure 112009059819128-PAT00009
Can be,

Z는 벤젠의 탄소와 -SO3 -M+가 직접 연결되어 있는 결합,

Figure 112009059819128-PAT00010
,
Figure 112009059819128-PAT00011
또는
Figure 112009059819128-PAT00012
일 수 있으며,Z is a bond in which benzene carbon and -SO 3 - M + are directly connected to each other,
Figure 112009059819128-PAT00010
,
Figure 112009059819128-PAT00011
or
Figure 112009059819128-PAT00012
Can be,

M+는 양이온 전하를 갖는 짝이온(counterion)으로서, 칼륨 이온(K+), 나트륨 이온(Na+) 또는 알킬암모늄 이온(+NR4)일 수 있다.M + is a counterion with a cationic charge, which may be potassium ions (K + ), sodium ions (Na + ) or alkylammonium ions ( + NR 4 ).

상기 Ar은Ar is

Figure 112009059819128-PAT00013
,
Figure 112009059819128-PAT00014
,
Figure 112009059819128-PAT00015
또는
Figure 112009059819128-PAT00016
일 수 있다.
Figure 112009059819128-PAT00013
,
Figure 112009059819128-PAT00014
,
Figure 112009059819128-PAT00015
or
Figure 112009059819128-PAT00016
Can be.

상기 CM은The CM is

Figure 112009059819128-PAT00017
,
Figure 112009059819128-PAT00018
또는
Figure 112009059819128-PAT00019
일 수 있고,
Figure 112009059819128-PAT00017
,
Figure 112009059819128-PAT00018
or
Figure 112009059819128-PAT00019
Can be,

상기 J는

Figure 112009059819128-PAT00020
(m은 0 또는 1)일 수 있으며,J is
Figure 112009059819128-PAT00020
(m can be 0 or 1),

R은 R1이 치환되어 있는 에타이닐기(R =

Figure 112009059819128-PAT00021
), R1이 치환되어 있는 에틸렌 함유기(R =
Figure 112009059819128-PAT00022
) 또는
Figure 112009059819128-PAT00023
의 가교성 관능기일 수 있고,R is an ethynyl group in which R 1 is substituted (R =
Figure 112009059819128-PAT00021
), The ethylene-containing group in which R 1 is substituted (R =
Figure 112009059819128-PAT00022
) or
Figure 112009059819128-PAT00023
It may be a crosslinkable functional group of,

R1은 H, F, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는

Figure 112009059819128-PAT00024
일 수 있으며,R1 is a C1 to C5 alkyl group substituted with H, F, H or F, or
Figure 112009059819128-PAT00024
Can be,

G는 탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00025
,
Figure 112009059819128-PAT00026
또는
Figure 112009059819128-PAT00027
일 수 있고,G is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00025
,
Figure 112009059819128-PAT00026
or
Figure 112009059819128-PAT00027
Can be,

R2는 H, X(할로겐 원자), 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기일 수 있다.R2 may be H, X (halogen atom), or a C1 to C5 alkyl group substituted with H or F.

상기 SAr1, Ar 및 CM에서의 Y는Y in SAr1, Ar and CM is

탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00028
,
Figure 112009059819128-PAT00029
,
Figure 112009059819128-PAT00030
,
Figure 112009059819128-PAT00031
,
Figure 112009059819128-PAT00032
,
Figure 112009059819128-PAT00033
,
Figure 112009059819128-PAT00034
,
Figure 112009059819128-PAT00035
,
Figure 112009059819128-PAT00036
,
Figure 112009059819128-PAT00037
,
Figure 112009059819128-PAT00038
또는
Figure 112009059819128-PAT00039
일 수 있고,A single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00028
,
Figure 112009059819128-PAT00029
,
Figure 112009059819128-PAT00030
,
Figure 112009059819128-PAT00031
,
Figure 112009059819128-PAT00032
,
Figure 112009059819128-PAT00033
,
Figure 112009059819128-PAT00034
,
Figure 112009059819128-PAT00035
,
Figure 112009059819128-PAT00036
,
Figure 112009059819128-PAT00037
,
Figure 112009059819128-PAT00038
or
Figure 112009059819128-PAT00039
Can be,

A는 탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00040
,
Figure 112009059819128-PAT00041
,
Figure 112009059819128-PAT00042
,
Figure 112009059819128-PAT00043
,
Figure 112009059819128-PAT00044
,
Figure 112009059819128-PAT00045
,
Figure 112009059819128-PAT00046
또는
Figure 112009059819128-PAT00047
일 수 있으며,A is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00040
,
Figure 112009059819128-PAT00041
,
Figure 112009059819128-PAT00042
,
Figure 112009059819128-PAT00043
,
Figure 112009059819128-PAT00044
,
Figure 112009059819128-PAT00045
,
Figure 112009059819128-PAT00046
or
Figure 112009059819128-PAT00047
Can be,

E는 H, CH3, F, CF3, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는

Figure 112009059819128-PAT00048
일 수 있고,E is a C1 to C5 alkyl group substituted with H, CH 3 , F, CF 3 , H or F, or
Figure 112009059819128-PAT00048
Can be,

L은 H, F, 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기일 수 있다.L may be H, F, or a C1 to C5 alkyl group substituted with H or F.

상술한 바와 같이 본 발명에 따르면, 술폰화된 폴리(아릴렌 에터) 공중합체의 가교반응에 의해 형성된 고분자 염제거막은 높은 염제거율을 가지며, 화화적 안 정성, 기계적 안정성 및 수분에 대한 치수안정성 면에서 우수한 효과를 나타낸다.As described above, according to the present invention, the polymer salt removing film formed by the crosslinking reaction of the sulfonated poly (arylene ether) copolymer has a high salt removing rate, and is in terms of chemical stability, mechanical stability, and dimensional stability against moisture. Shows excellent effect.

이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments disclosed herein are provided so that the disclosure can be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Therefore, it is to be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체의 ) Of the copolymer 가교결합Crosslinking 화합물을 포함하는 고분자 염제거막 Polymer salt removal membrane containing a compound

본 발명의 실시예에 따른 고분자 염제거막은 하기 화학식 1로 표시되는 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물을 포함한다.Polymer salt removing membrane according to an embodiment of the present invention includes a crosslinking compound of sulfonated poly (arylene ether) copolymer represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112009059819128-PAT00049
Figure 112009059819128-PAT00049

상기 화학식 1에서, SAr1은 술폰화된 방향족(sulfonated aromatic)을 나타내며, 예를 들어,In Formula 1, SAr1 represents a sulfonated aromatic, for example,

Figure 112009059819128-PAT00050
,
Figure 112009059819128-PAT00051
,
Figure 112009059819128-PAT00052
,
Figure 112009059819128-PAT00053
,
Figure 112009059819128-PAT00054
,
Figure 112009059819128-PAT00055
또는
Figure 112009059819128-PAT00056
일 수 있다.
Figure 112009059819128-PAT00050
,
Figure 112009059819128-PAT00051
,
Figure 112009059819128-PAT00052
,
Figure 112009059819128-PAT00053
,
Figure 112009059819128-PAT00054
,
Figure 112009059819128-PAT00055
or
Figure 112009059819128-PAT00056
Can be.

상기 Z는 벤젠의 탄소와 -SO3 -M+가 직접 연결되어 있는 결합,

Figure 112009059819128-PAT00057
,
Figure 112009059819128-PAT00058
또는
Figure 112009059819128-PAT00059
일 수 있다. 여기서, 일 예로
Figure 112009059819128-PAT00060
는 연결부분이 오르소(ortho), 메타(meta), 파라(para) 위치에 올 수 있는 벤젠구조를 의미한다. 본 발명의 명세서서 전체에 있어서 이러한 형태의 분자 표현은 동일한 의미로 해석된다.Wherein Z is carbon and -SO 3 of benzene are combined with M + is connected directly,
Figure 112009059819128-PAT00057
,
Figure 112009059819128-PAT00058
or
Figure 112009059819128-PAT00059
Can be. Here, as an example
Figure 112009059819128-PAT00060
Refers to a benzene structure in which the linking portion may be at ortho, meta, and para positions. Throughout the specification of the present invention, the molecular expression of this form is interpreted with the same meaning.

상기 M+는 양이온 전하를 갖는 짝이온(counterion)으로서, 예를 들어 칼륨 이온(K+), 나트륨 이온(Na+) 또는 알킬암모늄 이온(+NR4)일 수 있으며, 바람직하게는 칼륨 이온 또는 나트륨 이온이다.M + is a counterion having a cationic charge, and may be, for example, potassium ions (K + ), sodium ions (Na + ) or alkylammonium ions ( + NR 4 ), preferably potassium ions or Sodium ions.

상기 화학식 1에서, Ar은 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며, 예를 들어,In Formula 1, Ar represents non-sulfonated aromatic, for example,

Figure 112009059819128-PAT00061
,
Figure 112009059819128-PAT00062
,
Figure 112009059819128-PAT00063
또는
Figure 112009059819128-PAT00064
일 수 있다.
Figure 112009059819128-PAT00061
,
Figure 112009059819128-PAT00062
,
Figure 112009059819128-PAT00063
or
Figure 112009059819128-PAT00064
Can be.

상기 SAr1 및 Ar에서, 상기 Y는 탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00065
,
Figure 112009059819128-PAT00066
,
Figure 112009059819128-PAT00067
,
Figure 112009059819128-PAT00068
,
Figure 112009059819128-PAT00069
,
Figure 112009059819128-PAT00070
,
Figure 112009059819128-PAT00071
,
Figure 112009059819128-PAT00072
,
Figure 112009059819128-PAT00073
,
Figure 112009059819128-PAT00074
,
Figure 112009059819128-PAT00075
또는
Figure 112009059819128-PAT00076
일 수 있고,In SAr1 and Ar, Y is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00065
,
Figure 112009059819128-PAT00066
,
Figure 112009059819128-PAT00067
,
Figure 112009059819128-PAT00068
,
Figure 112009059819128-PAT00069
,
Figure 112009059819128-PAT00070
,
Figure 112009059819128-PAT00071
,
Figure 112009059819128-PAT00072
,
Figure 112009059819128-PAT00073
,
Figure 112009059819128-PAT00074
,
Figure 112009059819128-PAT00075
or
Figure 112009059819128-PAT00076
Can be,

A는 탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00077
,
Figure 112009059819128-PAT00078
,
Figure 112009059819128-PAT00079
,
Figure 112009059819128-PAT00080
,
Figure 112009059819128-PAT00081
,
Figure 112009059819128-PAT00082
,
Figure 112009059819128-PAT00083
또는
Figure 112009059819128-PAT00084
일 수 있으며,A is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00077
,
Figure 112009059819128-PAT00078
,
Figure 112009059819128-PAT00079
,
Figure 112009059819128-PAT00080
,
Figure 112009059819128-PAT00081
,
Figure 112009059819128-PAT00082
,
Figure 112009059819128-PAT00083
or
Figure 112009059819128-PAT00084
Can be,

E는 H, CH3, F, CF3, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는

Figure 112009059819128-PAT00085
일 수 있고,E is a C1 to C5 alkyl group substituted with H, CH 3 , F, CF 3 , H or F, or
Figure 112009059819128-PAT00085
Can be,

L은 H, F, 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기일 수 있다.L may be H, F, or a C1 to C5 alkyl group substituted with H or F.

여기서, 일 예로

Figure 112009059819128-PAT00086
는 연결부분을 제외하고서는 벤젠고리가 F(불소)로 완전히 치환되어 있는 벤젠구조를 의미한다. 본 발명의 명세서서 전체에 있어서 이러한 형태의 분자 표현은 동일한 의미로 해석된다. 즉,
Figure 112009059819128-PAT00087
라 함은 연결부분이 오르소 (
Figure 112009059819128-PAT00088
), 메타 (
Figure 112009059819128-PAT00089
), 파라 (
Figure 112009059819128-PAT00090
) 위치에 올 수 있는 F로 완전히 치환된 벤젠구조들을 의미한다.Here, as an example
Figure 112009059819128-PAT00086
Denotes a benzene structure in which the benzene ring is completely substituted with F (fluorine) except for the connecting portion. Throughout the specification of the present invention, the molecular expression of this form is interpreted with the same meaning. In other words,
Figure 112009059819128-PAT00087
Means the connection is ortho (
Figure 112009059819128-PAT00088
), Meta (
Figure 112009059819128-PAT00089
), Para (
Figure 112009059819128-PAT00090
Benzene structures completely substituted with F which may be at

상기 화학식 1에서, CM은 가교할 수 있는 부분(crosslinkable moiety)을 나타내며, 예를 들어,In Chemical Formula 1, CM represents a crosslinkable moiety, for example,

Figure 112009059819128-PAT00091
,
Figure 112009059819128-PAT00092
또는
Figure 112009059819128-PAT00093
일 수 있다.
Figure 112009059819128-PAT00091
,
Figure 112009059819128-PAT00092
or
Figure 112009059819128-PAT00093
Can be.

상기 J는

Figure 112009059819128-PAT00094
(m은 0 또는 1)일 수 있으며,J is
Figure 112009059819128-PAT00094
(m can be 0 or 1),

R은 R1이 치환되어 있는 에타이닐기(R =

Figure 112009059819128-PAT00095
), R1이 치환되어 있는 에틸렌 함유기(R =
Figure 112009059819128-PAT00096
) 또는
Figure 112009059819128-PAT00097
등의 가교성 관능기일 수 있고,R is an ethynyl group in which R 1 is substituted (R =
Figure 112009059819128-PAT00095
), The ethylene-containing group in which R 1 is substituted (R =
Figure 112009059819128-PAT00096
) or
Figure 112009059819128-PAT00097
Crosslinkable functional groups such as

R1은 H, F, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는

Figure 112009059819128-PAT00098
일 수 있으며,R1 is a C1 to C5 alkyl group substituted with H, F, H or F, or
Figure 112009059819128-PAT00098
Can be,

G는 탄소와 탄소가 직접 연결되어 있는 단일결합,

Figure 112009059819128-PAT00099
,
Figure 112009059819128-PAT00100
또는
Figure 112009059819128-PAT00101
일 수 있고,G is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00099
,
Figure 112009059819128-PAT00100
or
Figure 112009059819128-PAT00101
Can be,

R2는 H, X(할로겐 원자), 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기일 수 있다.R2 may be H, X (halogen atom), or a C1 to C5 alkyl group substituted with H or F.

상기 CM에서의 Y는 앞서 설명한 Y와 동일하다.Y in the CM is the same as Y described above.

상기 화학식 1에서, b 및 k는 각각 0.001 ~ 1.000의 값를 가지고, d는 1-b 값을 가지며, s는 1-k 값을 가진다. 상기 k, s, b 및 d는 반응에 참여하는 각 단량체의 몰비율에 해당된다.In Formula 1, b and k each have a value of 0.001 to 1.000, d has a 1-b value, and s has a 1-k value. K, s, b and d correspond to the molar ratios of each monomer participating in the reaction.

상기 화학식 1에서, n은 술폰화된 폴리(아릴렌 에터) 공중합체의 중합도로서 10 내지 500의 값을 갖는다.In Chemical Formula 1, n has a value of 10 to 500 as a degree of polymerization of sulfonated poly (arylene ether) copolymer.

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체의 ) Of the copolymer 가교결합Crosslinking 화합물을 포함하는 고분자 염제거막의 제조 Preparation of Polymer Salt-Removing Membrane Containing Compound

먼저, 술폰화된 폴리(아릴렌 에터) 공중합체는 하기 반응식 1에 의해 제조될 수 있다.First, sulfonated poly (arylene ether) copolymer can be prepared by the following Scheme 1.

[반응식 1]Scheme 1

Figure 112009059819128-PAT00102
Figure 112009059819128-PAT00102

[화학식 1][Formula 1]

Figure 112009059819128-PAT00103
Figure 112009059819128-PAT00103

상기 반응식 1은 상기 화학식 1의 고분자 중합체(술폰화된 폴리(아릴렌 에터) 공중합체)를 제조하기 위한 반응 과정을 나타낸다. 상기 화학식 1에 해당하는 고분자 중합체를 제조하는 방법은 축중합 방법으로, 반응에 참여하는 구체적인 단량체는 목적하는 염제거막에 따라 다를 수 있다. Scheme 1 illustrates a reaction process for preparing a polymer of formula 1 (sulfonated poly (arylene ether) copolymer). The method of preparing the polymer according to Chemical Formula 1 is a condensation polymerization method, and specific monomers participating in the reaction may vary depending on the desired salt removing membrane.

상기 반응식 1에서 k는 0.001 ~ 1.000 의 값을 가지며, s = 1 - k 값을 지고, b는 0.001 ~ 1.000 의 값을 가지며, d = 1 - b 값을 가진다. 상기 k, s, b 및 d는 반응에 참여하는 각 단량체의 몰비율에 해당된다.In Reaction Scheme 1, k has a value of 0.001 to 1.000, has a value of s = 1-k, b has a value of 0.001 to 1.000, and has a value of d = 1-b. K, s, b and d correspond to the molar ratios of each monomer participating in the reaction.

상기 반응식 1의 제조 과정에서, 먼저 술폰화된 하이드록시 단량체(HO-SAr1-OH) 및 술폰화되지 않은 하이드록시 단량체(HO-Ar-OH)를 활성화시킨다. 상기 활성화 과정은 하이드록시 단량체가 하기 할라이드 단량체와의 축중합 반응이 용이하도록 활성화시키는 과정이다.In the preparation of Scheme 1, first, the sulfonated hydroxy monomer (HO-SAr1-OH) and the unsulfonated hydroxy monomer (HO-Ar-OH) are activated. The activation process is a process of activating the hydroxy monomer to facilitate the polycondensation reaction with the following halide monomer.

이어서, 가교 가능한 할라이드 단량체(X-CM-X) 및 술폰화되지 않은 할라이드 단량체(X-Ar-X)를 축중합 반응에 도입한다. 다만, 가교 가능한 할라이드 단량체(X-CM-X)와 술폰화되지 않은 할라이드 단량체(X-Ar-X)는 상기 하이드록시 단량체와 동일 단계에서 제조 공정에 투입될 수도 있다.The crosslinkable halide monomer (X-CM-X) and the unsulfonated halide monomer (X-Ar-X) are then introduced into the polycondensation reaction. However, the crosslinkable halide monomer (X-CM-X) and the unsulfonated halide monomer (X-Ar-X) may be added to the manufacturing process in the same step as the hydroxy monomer.

상기 과정에서 염기, 공비용매 및 극성용매를 적절히 사용하고 0℃ ~ 300℃ 온도 범위로 1 내지 100 시간 동안 축중합 반응시켜 상기 화학식 1로 표시되는 공중합체를 제조한다.In the above process, a base, a non-solvent and a polar solvent are appropriately used, and a polycondensation reaction is carried out for 1 to 100 hours in a temperature range of 0 ° C to 300 ° C to prepare a copolymer represented by Chemical Formula 1.

상기 염기로서 알칼리 금속 또는 알칼리 토금속의 수산화물, 또는 탄산염 및 황산염 중에서 선택된 무기염기를 사용하거나, 암모니아를 비롯한 통상의 아민류 중에서 선택된 유기염기를 사용할 수도 있다.As the base, an inorganic base selected from hydroxides of alkali metals or alkaline earth metals, carbonates and sulfates, or organic bases selected from common amines including ammonia may be used.

상기 극성용매 중 비양성자성 극성용매 (aprotic polar solvent)로는 N-메틸피롤리돈(NMP), N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc) 또는 다이메틸설폭사이드 (DMSO) 등이 사용될 수 있으며, 양성자성 극성용매(protic polar solvent)로는 메틸렌클로라이드(CH2Cl2), 클로로포름(CH3Cl) 또 는 테트라하이드로퓨란(THF) 등이 사용될 수 있다. 또한 공비용매로는 벤젠, 톨루엔 또는 자일렌 등이 사용될 수 있다.Among the polar solvents, aprotic polar solvents include N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) or dies. Methyl sulfoxide (DMSO) may be used, and methylene chloride (CH 2 Cl 2 ), chloroform (CH 3 Cl) or tetrahydrofuran (THF) may be used as a protic polar solvent. . In addition, as the non-solvent, benzene, toluene or xylene may be used.

다음, 상기 반응에 의해 제조된 공중합체를 침전 및 건조하는 단계를 거쳐 고체 상태의 생성물로 얻는다. 상기 고체 상태의 공중합체를 다시 적당한 극성 용매에 녹인 후, 지지체에 도포한다. 이어서, 열처리를 통해 용매를 제거하는 한편, 상기 공중합체 내부에 존재하는 가교성 관능기의 가교반응을 유도함으로써 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물을 포함하는 고분자 염제거막을 제조한다.Next, the copolymer prepared by the above reaction is precipitated and dried to obtain a solid product. The solid copolymer is again dissolved in a suitable polar solvent and then applied to a support. Subsequently, a solvent is removed through heat treatment, and a polymer salt removing film including a crosslinking compound of a sulfonated poly (arylene ether) copolymer is prepared by inducing a crosslinking reaction of a crosslinkable functional group present in the copolymer. do.

상기 도포 방법은 스핀 코팅(spin coating), 딥 코팅 (dip coating), 잉크젯 프린팅(ink-jet printing), 스프레이 코팅(spray coating), 스크린 프린팅(screen printing), 캐스팅(casting) 또는 닥터 블레이드(doctor blade)의 방법 중 적절히 선택된 방법에 의해 수행할 수 있다.The coating method may be spin coating, dip coating, ink-jet printing, spray coating, screen printing, casting or doctor blade. blade) can be carried out by an appropriately selected method.

상기 열처리 단계는 상기 가교성 관능기의 완전한 가교반응이 일어날 수 있는 온도에서 수행될 수 있으며, 이러한 온도는 시차열량주사법(DSC)을 통해 측정할 수 있다.The heat treatment step may be performed at a temperature at which a complete crosslinking reaction of the crosslinkable functional group may occur, and this temperature may be measured by differential calorimetry (DSC).

본 발명의 고분자 염제거막에 의한 염제거 메커니즘은 아직 명확히 규명되지 않았으나, 그 원리를 간략히 설명하면 다음과 같다. The salt removal mechanism by the polymer salt removal film of the present invention has not been clearly identified, but the principle thereof is briefly described as follows.

도 1은 본 발명의 고분자 염제거막에 의한 염제거 메커니즘을 나타내는 도식 도이다.1 is a schematic diagram showing a salt removing mechanism by the polymer salt removing film of the present invention.

도 2는 술폰화된 폴리(아릴렌 에터) 공중합체의 내부 가교결합에 의해 형성되는 망상구조를 나타내는 개략도이다.2 is a schematic diagram showing a network structure formed by internal crosslinking of sulfonated poly (arylene ether) copolymer.

도 1에서 나타난 바와 같이, 본 발명의 염제거막은 술폰화된 폴리(아릴렌 에터) 공중합체의 주 사슬로 점유된 소수성 도메인(hydrophobic domains)과 술폰산기로 점유된 친수성 도메인(hydrophilic domains)으로 구성될 수 있다. 이 경우, 술폰화된 친수성기가 공중합체로 존재하기 때문에 염제거막 내에는 친수성의 나노 채널이 형성될 수 있다(이러한 나노 채널은 여러 문헌들에 의해 확인된 바 있다. Journal of Membrnae Science논문, 243호 317쪽 참조).As shown in FIG. 1, the salt removal membrane of the present invention is composed of hydrophobic domains occupied by the main chain of sulfonated poly (arylene ether) copolymer and hydrophilic domains occupied by sulfonic acid group. Can be. In this case, since the sulfonated hydrophilic group is present as a copolymer, hydrophilic nanochannels may be formed in the salt removing layer (these nanochannels have been confirmed by various literatures. Journal of Membrnae Science, 243). See pp. 317).

특히, 물이 존재하는 환경에서 친수성 도메인에는 SO3 - 이온과 Na+ 또는 K+ 등의 짝이온들이 해리되어 존재한다(도면 상에서 짝이온은 생략하였다).In particular, in an environment where water is present, SO 3 ions and paired ions such as Na + or K + are dissociated in the hydrophilic domain (the pair is omitted on the drawing).

염제거막에 의해 NaCl 수용액을 여과하는 과정을 일 예로 들면, NaCl 수용액 속에 존재하는 Na+ 및 Cl- 이온들은 염제거막 내부에 존재하는 다량의 해리된 + 및 - 이온들에 의해 정전기적 반발을 받게 되므로 염제거막을 통과하기가 어렵게 된다. 또한, 염제거막 내에 형성되는 친수성 채널은 나노 크기로 제어되기 때문에 수화된 Na+ 이온이나 Cl- 이온은 상대적으로 염제거막을 통과하기가 더욱 어려워지고 물에 대한 선택성을 높일 수 있게 된다.For example, the NaCl aqueous solution is filtered by the salt removing membrane, and Na + and Cl ions present in the NaCl aqueous solution are prevented from electrostatic repulsion by a large amount of dissociated + and − ions present in the salt removing membrane. It will be difficult to pass through the salt removal membrane. In addition, since the hydrophilic channel formed in the salt removing membrane is controlled to a nano size, hydrated Na + ions or Cl ions are relatively more difficult to pass through the salt removing membrane and the water selectivity can be increased.

더불어, 도 2에 나타난 바와 같이, 염제거막을 이루는 공중합체의 내부 가교결합으로 인한 네트워크 구조는 염제거막 내에 나노 크기의 기공을 갖는 그물망을 형성함으로써, 크기가 작은 물 분자는 통과시키고, 물 분자보다 큰 수화된 Na+ 이온 및 수화된 Cl- 이온은 통과시키지 않는다.In addition, as shown in FIG. 2, the network structure due to internal crosslinking of the copolymer forming the salt removing film forms a network having nano-sized pores in the salt removing film, thereby allowing small water molecules to pass therethrough and water molecules. Larger hydrated Na + ions and hydrated Cl ions do not pass through.

일 예로, 고분자 사슬 내부에 가교성 관능기로 에타이닐기(ethynyl group)을 갖는 술폰화된 폴리(아릴렌 에터) 공중합체를 적당한 온도로 열처리 하는 경우, 고분자 사슬 내부의 에타이닐기가 열에 의해 벤젠 구조로 바뀌며 가교결합을 형성하게 된다. 3개의 에타이닐기의 결합에 의한 가교결합 형성은 이미 발표된 여러 문헌(Chem. Mater논문 8호 4519쪽, Macromolecules 논문 34호 7817쪽)들을 통해 알려진 바 있다.For example, when the sulfonated poly (arylene ether) copolymer having an ethynyl group as a crosslinkable functional group in the polymer chain is heat-treated at an appropriate temperature, the ethynyl group in the polymer chain is converted into a benzene structure by heat. Change and form a crosslink. Crosslinking formation by the binding of three ethynyl groups has been known from several previously published documents (Chem. Mater Paper 8, page 4519, Macromolecules Paper 34, page 7817).

이와 같은 가교결합의 형성은 염제거막 내에 나노 크기의 기공을 만들어 염 수용액의 여과막으로서의 작용을 수행할 수 있다. 또한 공중합체 내에 가교성 관능기의 중합도가 증가할수록 더욱 치밀한 망상구조가 형성되므로 염제거막의 염제거율을 향상시킬 수 있다.The formation of such a crosslink can make nano-sized pores in the salt removing membrane to act as a filtration membrane of the aqueous salt solution. In addition, as the degree of polymerization of the crosslinkable functional group increases in the copolymer, a denser network structure is formed, thereby improving the salt removal rate of the salt removing film.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 이에 의해 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are merely to aid the understanding of the present invention, and the present invention is not limited thereto.

<제조예 1: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)를 이용한 고분자 염제거막(C-SPAEDF-mSXb-100)의 제조>Preparation Example 1 Preparation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-100) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAEDF-mSXb-100)

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXbmSXb -100)의 제조-100)

[반응식 2]Scheme 2

Figure 112009059819128-PAT00104
Figure 112009059819128-PAT00104

교반장치, 질소도입관, 마그네틱 스터바 및 딘-스탁(Dean-Stark; azeotropic distillation) 장치가 장착된 250 ml의 2구 둥근 플라스크에 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt) (20 mmol, k = 1)와 K2CO3 (1.15 당량비) 및 N,N-다이메틸아세트아마이드(DMAc)(60 ml)와 벤젠 (20 ml)을 첨가하였다. Hydroquinonesulfonic acid potassium salt (20 mmol) in a 250 ml two-necked round flask equipped with agitator, nitrogen introduction tube, magnetic stub and Dean-Stark (azeotropic distillation) , k = 1) and K 2 CO 3 (1.15 equiv) and N, N-dimethylacetamide (DMAc) (60 ml) and benzene (20 ml) were added.

활성화 단계(activation step)는 6시간에 걸쳐 온도를 105℃ ~ 110℃ 범위로 올린 후, 6 ~ 8 시간 동안 진행하였다. 반응 중 부산물로 생산된 물은 반응용매 중 하나인 벤젠과의 공비증류(azeotropic distillation) 방법에 의하여 제거하였고, 활성화 단계 종료 후 벤젠은 반응기로부터 제거하였다. 이후에, 1-에타이닐-3,5-다이플루오로벤젠(1-Ethynyl-3,5-difluorobenzene)과 데카플루오로바이페 닐(decafluorobiphenyl)의 몰비를 1 mmol : 19 mmol (b:d = 0.05:0.95)로 하여 반응기에 첨가한 후, 반응온도를 110℃로 유지하고 12 시간 이상 반응시켰다. 반응이 끝난 후, 500 ml의 에탄올에 침전시키고, 물과 에탄올로 여러 번 세척한 후, 60℃에서 3일간 진공 건조시켰다. 최종 생성물을 옅은 갈색의 고체로 얻었으며, 90 % 이상의 수율을 얻었다.Activation step was carried out for 6 to 8 hours after raising the temperature to 105 ℃ to 110 ℃ range over 6 hours. Water produced as a by-product during the reaction was removed by azeotropic distillation with benzene, one of the reaction solvents, and benzene was removed from the reactor after completion of the activation step. Thereafter, the molar ratio of 1-ethynyl-3,5-difluorobenzene and decafluorobiphenyl was 1 mmol: 19 mmol (b: d = 0.05: 0.95), and the reaction temperature was maintained at 110 ° C and reacted for at least 12 hours. After the reaction was completed, precipitated in 500 ml of ethanol, washed several times with water and ethanol, and then vacuum dried at 60 3 days. The final product was obtained as a light brown solid, yielding at least 90%.

상기 최종 생성물을 SPAEDF-mSX5-100이라 명명한다. SX에 뒤따르는 5는 b의 몰비율이 0.05임을 나타내는 것으로 이를 백분율로 환산한 것이다.The final product is named SPAEDF-mSX5-100. 5 followed by SX indicates that the molar ratio of b is 0.05, which is converted into a percentage.

또한, 출발물질인 1-에타이닐-3,5-다이플루오로벤젠(1-Ethynyl-3,5-difluorobenzene)과 데카플루오로바이페닐(decafluorobiphenyl)의 몰비를 2 mmol : 18 mmol (b:d = 0.1:0.9), 3 mmol : 17 mmol (b:d = 0.15:0.85), 4 mmol : 16 mmol (b:d = 0.2:0.8), 5 mmol : 15 mmol (b:d = 0.25:0.75), 6 mmol : 14 mmol (b:d = 0.3:0.7), 7 mmol : 13 mmol (b:d = 0.35:0.65), 8 mmol : 12 mmol (b:d = 0.4:0.6), 9 mmol : 11 mmol (b:d = 0.45:0.55) 및 10 mmol : 10 mmol (b:d = 0.5:0.5)으로 하여 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)를 제조하였다. 상기 출발물질의 몰비의 차이에 따라 형성된 공중합체들은 각각 SPAEDF-mSX10-100, SPAEDF-mSX15-100, SPAEDF-mSX20-100, SPAEDF-mSX25-100, SPAEDF-mSX30-100, SPAEDF-mSX35-100, SPAEDF-mSX40-100, SPAEDF-mSX45-100, SPAEDF-mSX50-100로 명명한다. 각각의 수율은 90 % 이상이었다.In addition, the molar ratio of starting material 1-ethynyl-3,5-difluorobenzene and decafluorobiphenyl was 2 mmol: 18 mmol (b: d = 0.1: 0.9), 3 mmol: 17 mmol (b: d = 0.15: 0.85), 4 mmol: 16 mmol (b: d = 0.2: 0.8), 5 mmol: 15 mmol (b: d = 0.25: 0.75) , 6 mmol: 14 mmol (b: d = 0.3: 0.7), 7 mmol: 13 mmol (b: d = 0.35: 0.65), 8 mmol: 12 mmol (b: d = 0.4: 0.6), 9 mmol: 11 Sulfonated poly (arylene ether) copolymer (SPAEDF-) having a crosslinkable functional group inside the polymer chain with mmol (b: d = 0.45: 0.55) and 10 mmol: 10 mmol (b: d = 0.5: 0.5) mSXb-100) was prepared. Copolymers formed according to the difference in the molar ratio of the starting material are SPAEDF-mSX10-100, SPAEDF-mSX15-100, SPAEDF-mSX20-100, SPAEDF-mSX25-100, SPAEDF-mSX30-100, SPAEDF-mSX35-100, Named SPAEDF-mSX40-100, SPAEDF-mSX45-100, SPAEDF-mSX50-100. Each yield was over 90%.

도 3은 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)의 1H-NMR 스펙트럼을 나타낸 것이다. 도 3을 참조하면, 단량체의 하이드록시기(hydroxyl group)의 피크가 없음을 확인할 수 있으며, 이는 축중합 반응에 의해 하이드록시기의 수소가 치환되었음을 의미한다. 술폰화된 벤젠 수소의 피크는 7.51, 7.32, 7.18 ppm에서 나타났으며, 에타이닐기를 갖는 벤젠 수소의 피크 및 에타이닐 수소의 피크는 각각 6.81, 6.3 및 4.3 ppm에서 나타났다. 또한, 1-에타이닐-3,5-다이플루오로벤젠의 비율이 10%, 15%, 25%로 증가됨에 따라 각 해당 피크가 조금 증가함을 알 수 있으며, 이는 술폰화된 폴리(아릴렌 에터) 공중합체에서 가교성 관능기의 중합도가 증가됨을 의미한다.3 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSXb-100). Referring to Figure 3, it can be seen that there is no peak of the hydroxyl group (hydroxyl group) of the monomer, which means that the hydrogen of the hydroxyl group by the condensation polymerization reaction. Peaks of sulfonated benzene hydrogens were found at 7.51, 7.32, 7.18 ppm, peaks of benzene hydrogen with ethynyl group and peaks of ethynyl hydrogen were found at 6.81, 6.3 and 4.3 ppm, respectively. In addition, it can be seen that as the ratio of 1-ethynyl-3,5-difluorobenzene is increased to 10%, 15%, and 25%, each corresponding peak increases slightly, which is a sulfonated poly (arylene). Ether) means that the degree of polymerization of the crosslinkable functional groups in the copolymer is increased.

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXbmSXb -100)를 이용한 고분자 염제거막(C-Polymer salt removal membrane using -100 SPAEDF-mSXb-100)의SPAEDF-mSXb-100) 제조 Produce

상기에서 제조된 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)를 용매에 녹인 후, 0.45 ㎛ ~ 1 ㎛의 PTFE 멤브레인 필터를 이용하여 여과하였다. 이 때, 사용 가능한 용매로는 이중극성 용매(dipolar solvent)로 구체적으로는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), 다이메틸술폭사이드(DMSO) 또는 N-메틸피롤리돈(NMP)을 사용할 수 있다. 그 후, 깨끗한 유리판 지지체에 고분자 용액를 주물(casting) 방법으로 부은 후, 40℃ 오븐에 24 시간 동안 방치하였다. 다시 70℃ 진공 오븐에 24시간 이상 동안 방치시켜 용매를 완전히 제 거하였다.The sulfonated poly (arylene ether) copolymer (SPAEDF-mSXb-100) prepared above was dissolved in a solvent and then filtered using a PTFE membrane filter of 0.45 μm to 1 μm. At this time, as a solvent which can be used, it is a dipolar solvent specifically N, N- dimethylformamide (DMF), N, N- dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) Or N-methylpyrrolidone (NMP) can be used. Thereafter, the polymer solution was poured into a clean glass plate support by a casting method, and then left in a 40 ° C. oven for 24 hours. The solvent was then completely removed by standing in a 70 ° C. vacuum oven for at least 24 hours.

계속해서 고분자 사슬 내부의 가교를 위해 80℃ ~ 350℃의 온도에서 30분 이상, 바람직하게는 240℃ ~ 260℃에서 2시간 이상 열처리를 수행하였다. 그러나, 상기 열처리 온도는 가교성 관능기의 종류에 따라 적절한 범위로 선택할 수 있다.Subsequently, heat treatment was performed for at least 30 minutes at a temperature of 80 ° C to 350 ° C, preferably at 240 ° C to 260 ° C, for at least 2 hours for crosslinking in the polymer chain. However, the heat treatment temperature may be selected in an appropriate range depending on the type of the crosslinkable functional group.

여기서, 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)를 이용하여 고분자 염게저막을 제조한 경우, 그 고분자 염제거막의 명칭은 C-SPAEDF-mSXb-100로 명명한다.Here, when the polymer salt-base film is prepared using a sulfonated poly (arylene ether) copolymer (SPAEDF-mSXb-100), the polymer salt-removal film is named C-SPAEDF-mSXb-100.

<제조예 2: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-6FK)를 이용한 고분자 염제거막(C-SPAEDF-mSXb-6FK)의 제조>Preparation Example 2 Preparation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-6FK) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAEDF-mSXb-6FK)

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXbmSXb -6-6 FKFK )의 제조Manufacturing

[반응식 3]Scheme 3

Figure 112009059819128-PAT00105
Figure 112009059819128-PAT00105

교반장치, 질소도입관, 마그네틱 스터바 및 딘-스탁(Dean-Stark; azeotropic distillation) 장치가 장착된 250 ml의 2구 둥근 플라스크에 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 4,4'-(헥사플루오로아이소프로필리덴)다이페놀(4,4'-(hexafluoroisopropylidene)diphenol)의 몰비 를 14 mmol : 6 mmol (k:s = 0.70:0.30)로 하여 첨가하고, K2CO3(1.15 당량비) 및 N,N-다이메틸아세트아마이드(DMAc)(60 ml)와 벤젠(20 ml)을 첨가하였다. In a 250 ml two-necked round flask equipped with agitator, nitrogen introduction tube, magnetic stub and Dean-Stark (azeotropic distillation), hydroquinonesulfonic acid potassium salt and 4, The molar ratio of 4 '-(hexafluoroisopropylidene) diphenol (4,4'-(hexafluoroisopropylidene) diphenol) was added as 14 mmol: 6 mmol (k: s = 0.70: 0.30), followed by K 2 CO 3 (1.15 equiv. Ratio) and N, N-dimethylacetamide (DMAc) (60 ml) and benzene (20 ml) were added.

활성화 단계(activation step)는 6시간에 걸쳐 온도를 105℃ ~ 110℃ 범위로 올린 후, 6 ~ 8 시간 동안 진행하였다. 반응 중 부산물로 생산된 물은 반응용매 중 하나인 벤젠과의 공비증류(azeotropic distillation) 방법에 의하여 제거하였고, 활성화 단계 종료 후 벤젠은 반응기로부터 제거하였다. 이후에, 1-에타이닐-3,5-다이플루오로벤젠(1-Ethynyl-3,5-difluorobenzene)과 데카플루오로바이페닐(decafluorobiphenyl)의 몰비를 1 mmol : 19 mmol (b:d = 0.05:0.95)로 하여 반응기에 첨가한 후, 반응온도를 110℃로 유지하고 12 시간 이상 반응시켰다. 반응이 끝난 후, 500 ml의 에탄올에 침전시키고, 물과 에탄올로 여러 번 세척한 후, 60℃에서 3일간 진공 건조시켰다. 최종 생성물을 옅은 갈색의 고체로 얻었으며, 90 % 이상의 수율을 얻었다.Activation step was carried out for 6 to 8 hours after raising the temperature to 105 ℃ to 110 ℃ range over 6 hours. Water produced as a by-product during the reaction was removed by azeotropic distillation with benzene, one of the reaction solvents, and benzene was removed from the reactor after completion of the activation step. Thereafter, the molar ratio of 1-ethynyl-3,5-difluorobenzene and decafluorobiphenyl is 1 mmol: 19 mmol (b: d = 0.05 : 0.95), and added to the reactor, the reaction temperature was maintained at 110 ℃ and reacted for more than 12 hours. After the reaction was completed, precipitated in 500 ml of ethanol, washed several times with water and ethanol, and then vacuum dried at 60 3 days. The final product was obtained as a light brown solid, yielding at least 90%.

상기 최종 생성물을 SPAEDF-mSX5-6F70이라 명명한다. SX에 뒤따르는 5는 b의 몰비율이 0.05임을 나타내는 것이며, 6F에 뒤따르는 70은 k의 몰비율이 0.70임을 나타낸다. 즉, 생성물의 명칭에서 b 및 k는 각각 1-에타이닐-3,5-다이플루오로벤젠 및 하이드로퀴논술폰닉 에시드 포타슘 쏠트의 몰비를 백분율로 환산한 것이다.The final product is named SPAEDF-mSX5-6F70. 5 following SX indicates that the molar ratio of b is 0.05, and 70 following 6F indicates that the molar ratio of k is 0.70. That is, b and k in the name of the product are the molar ratios of 1-ethynyl-3,5-difluorobenzene and hydroquinonesulfonic acid potassium salt in terms of percentage, respectively.

또한, 출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt), 4,4'-(헥사플루오로아이소프로필 리덴)다이페놀(4,4'-hexafluoroisopropylidene)diphenol), 1-에타이닐-3,5-다이플루오로벤젠(1-ethynyl-3,5-difluorobenzene) 및 데카플루오로바이페닐(decafluorobiphenyl)의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체 (SPAEDF-mSXb-6Fk)를 제조하였다.In addition, starting materials hydroquinonesulfonic acid potassium salt (hydroquinonesulfonic acid potassium salt), 4,4'- (hexafluoroisopropylidene) diphenol (4,4'-hexafluoroisopropylidene) diphenol, 1- ethynyl- Crosslinking within the polymer chain with varying molar ratios (k: s: b: d) of 1, ethynyl-3,5-difluorobenzene and decafluorobiphenyl Sulfonated poly (arylene ether) copolymers (SPAEDF-mSXb-6Fk) with functional groups were prepared.

도 4는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX10-6F80)의 1H-NMR 스펙트럼을 나타낸 것이다.4 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSX10-6F80).

도 4를 참조하면, 단량체의 하이드록시기(hydroxyl group)의 피크가 없음을 확인할 수 있으며, 이는 축중합 반응에 의해 하이드록시기의 수소가 치환되었음을 의미한다. 또한, 각 벤젠 수소 및 에타이닐 수소에 대응되는 화학적 이동(chemical shift)에서 피크가 나타남을 확인할 수 있다.Referring to Figure 4, it can be seen that there is no peak of the hydroxyl group (hydroxyl group) of the monomer, which means that the hydrogen of the hydroxyl group is substituted by the polycondensation reaction. In addition, it can be seen that the peak appears in the chemical shift (chemical shift) corresponding to each of benzene hydrogen and ethynyl hydrogen.

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXbmSXb -6-6 FkFk )를 이용한 고분자 염제거막(C-Polymer salt removal membrane (C-) SPAEDF-mSXb-6Fk)의SPAEDF-mSXb-6Fk) 제조 Produce

상기 공중합체(SPAEDF-mSXb-6Fk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEDF-mSXb-6Fk)을 제조하였다.A polymer salt removing film (C-SPAEDF-mSXb-6Fk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEDF-mSXb-6Fk).

<제조예 3: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-BPk)를 이용 한 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 제조>Preparation Example 3: Preparation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-BPk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAEDF-mSXb-BPk)

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXmSX -- BPkBPk )의 제조Manufacturing

[반응식 4]Scheme 4

Figure 112009059819128-PAT00106
Figure 112009059819128-PAT00106

출발물질로 4,4'-(헥사플루오로아이소프로필리덴)다이페놀(4,4'-(hexafluoroisopropylidene)diphenol) 대신에 4,4'-바이페놀(4,4'-biphenol)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX-BPk)를 제조하였다. 각각의 수율은 90% 이상이었다.Except for using 4,4'-biphenol instead of 4,4 '-(hexafluoroisopropylidene) diphenol as starting material Then, the same method as described in Preparation Example 2 was performed, and sulfonated poly having a crosslinkable functional group in the polymer chain while varying the molar ratio (k: s: b: d) of the starting materials in various ways ( Arylene ether) copolymer (SPAEDF-mSX-BPk) was prepared. Each yield was at least 90%.

상기 공중합체(SPAEDF-mSX-BPk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEDF-mSX-BPk)을 제조하였다A polymer salt removing film (C-SPAEDF-mSX-BPk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEDF-mSX-BPk).

도 5는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX10-BP80)의 1H-NMR 스펙트럼을 나타낸 것이다.5 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSX10-BP80).

도 5를 참조하면, 단량체의 하이드록시기(hydroxyl group)의 피크가 없음을 확인할 수 있으며, 이는 축중합 반응에 의해 하이드록시기의 수소가 치환되었음을 의미한다. 또한, 각 벤젠 수소 및 에타이닐 수소에 대응되는 화학적 이동(chemical shift)에서 피크가 나타남을 확인할 수 있다.Referring to Figure 5, it can be seen that there is no peak of the hydroxyl group (hydroxyl group) of the monomer, which means that the hydrogen of the hydroxyl group is substituted by the polycondensation reaction. In addition, it can be seen that the peak appears in the chemical shift (chemical shift) corresponding to each of benzene hydrogen and ethynyl hydrogen.

술폰화된Sulfonated 폴리Poly (( 아릴렌Arylene 에터Ether ) 공중합체() Copolymer ( SPAEDFSPAEDF -- mSXbmSXb -- BPkBPk )를 이용한 고분자 염제거막(Polymer salt removal membrane using C-SPAEDF-mSXb-BPk)의C-SPAEDF-mSXb-BPk) 제조 Produce

상기 공중합체(SPAEDF-mSXb-BPk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEDF-mSXb-BPk)을 제조하였다.A polymer salt removing film (C-SPAEDF-mSXb-BPk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEDF-mSXb-BPk).

<제조예 4: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-100)를 이용한 고분자 염제거막(C-SPAES-mSXb-100)의 제조>Preparation Example 4 Preparation of Polymer Salt-Removing Membrane (C-SPAES-mSXb-100) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAES-mSXb-100)

[반응식 5] Scheme 5

Figure 112009059819128-PAT00107
Figure 112009059819128-PAT00107

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용한 것을 제외하고는, 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질인 1-에타 이닐-3,5-다이플루오로벤젠(1-Ethynyl-3,5-difluorobenzene)과 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)의 몰비(b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-100)를 제조하였다. 각각의 수율은 90% 이상이었다.Except for using 4,4'-difluorodiphenyl sulfone (4,4'-difluorodiphenyl sulfone) instead of decafluorobiphenyl as the starting material, the same method as in Preparation Example 1 The process was carried out, starting materials 1-ethynyl-3,5-difluorobenzene and 4,4'-difluorodiphenylsulfone (4,4'- A sulfonated poly (arylene ether) copolymer (SPAES-mSXb-100) having a crosslinkable functional group in the polymer chain was prepared while varying the molar ratio (b: d) of difluorodiphenyl sulfone). Each yield was at least 90%.

상기 공중합체(SPAES-mSXb-100)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAES-mSXb-100)을 제조하였다.A polymer salt removing film (C-SPAES-mSXb-100) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAES-mSXb-100).

<제조예 5: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-6Fk)를 이용한 고분자 염제거막(C-SPAES-mSXb-6Fk)의 제조>Preparation Example 5 Preparation of Polymer Salt-Removing Membrane (C-SPAES-mSXb-6Fk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAES-mSXb-6Fk)

[반응식 6] Scheme 6

Figure 112009059819128-PAT00108
Figure 112009059819128-PAT00108

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-6Fk)를 제조하였다. 각각의 수율은 90% 이상이었다.4,4'-difluorodiphenyl sulfone was used instead of decafluorobiphenyl as a starting material, except that 4,4'-difluorodiphenyl sulfone was used. The method was carried out, and sulfonated poly (arylene ether) copolymers having crosslinkable functional groups inside the polymer chain while varying the molar ratio (k: s: b: d) of the starting materials (SPAES-mSXb-6Fk) Was prepared. Each yield was at least 90%.

상기 공중합체(SPAES-mSXb-6Fk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAES-mSXb-6Fk)을 제조하였다.A polymer salt removing film (C-SPAES-mSXb-6Fk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAES-mSXb-6Fk).

<제조예 6: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-BPk)를 이용한 고분자 염제거막(C-SPAES-mSXb-BPk)의 제조>Preparation Example 6 Preparation of Polymer Salt-Removing Membrane (C-SPAES-mSXb-BPk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAES-mSXb-BPk)

[반응식 7] Scheme 7

Figure 112009059819128-PAT00109
Figure 112009059819128-PAT00109

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하고, 4,4'-(헥사플루오로아이소프로필리덴)다이페놀((4,4'-hexafluoroisopropylidene)diphenol) 대신에 4,4'-바이페놀(4,4'-biphenol)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-BPk)를 제조하였다. 각각의 수율은 90% 이상이었다.4,4'-difluorodiphenyl sulfone was used instead of decafluorobiphenyl as a starting material, and 4,4 '-(hexafluoroisopropylidene) was used. Except for using 4,4'-biphenol (4,4'-biphenol) instead of diphenol ((4,4'-hexafluoroisopropylidene) diphenol), the same method as in Preparation Example 2 was carried out In addition, sulfonated poly (arylene ether) copolymer (SPAES-mSXb-BPk) having a crosslinkable functional group in the polymer chain was prepared while varying the molar ratio (k: s: b: d) of the starting materials. . Each yield was at least 90%.

상기 공중합체(SPAES-mSXb-BPk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAES-mSXb-BPk)을 제조하였다.A polymer salt removing film (C-SPAES-mSXb-BPk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAES-mSXb-BPk).

<제조예 7: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-HQk)를 이용한 고분자 염제거막(C-SPAES-mSXb-HQk)의 제조>Preparation Example 7 Preparation of Polymer Salt-Removing Membrane (C-SPAES-mSXb-HQk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAES-mSXb-HQk)

[반응식 8] Scheme 8

Figure 112009059819128-PAT00110
Figure 112009059819128-PAT00110

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하고, 4,4'-(헥사플루오로아이소프로필리덴)다이페놀((4,4'-hexafluoroisopropylidene)diphenol) 대신에 하이드로퀴논(hydroquinone)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAES-mSXb-HQk)를 제조하였다. 각각의 수율은 90% 이상이었다.4,4'-difluorodiphenyl sulfone was used instead of decafluorobiphenyl as a starting material, and 4,4 '-(hexafluoroisopropylidene) was used. Except for using hydroquinone (hydroquinone) instead of diphenol ((4,4'-hexafluoroisopropylidene) diphenol), the same method as described in Preparation Example 2 was carried out, the molar ratio of the starting materials (k: s A sulfonated poly (arylene ether) copolymer (SPAES-mSXb-HQk) was prepared having various crosslinking functional groups inside the polymer chain with various changes of: b: d). Each yield was at least 90%.

상기 공중합체(SPAES-mSXb-HQk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAES-mSXb-HQk)을 제조하였다.A polymer salt removing film (C-SPAES-mSXb-HQk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAES-mSXb-HQk).

<제조예 8: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-6Fk)를 이용한 고분자 염제거막(C-SPAEK-mSXb-6Fk)의 제조>Preparation Example 8 Preparation of Polymer Salt-Removing Membrane (C-SPAEK-mSXb-6Fk) Using Sulfonated Poly (arylene Ether) Copolymer (SPAEK-mSXb-6Fk)

[반응식 9] Scheme 9

Figure 112009059819128-PAT00111
Figure 112009059819128-PAT00111

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로벤조페논(4,4'-difluorobenzophenone)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-6Fk)를 제조하였다. 각각의 수율은 90% 이상이었다.The same method as in Preparation Example 2 was performed except that 4,4'-difluorobenzophenone was used instead of decafluorobiphenyl as a starting material. A sulfonated poly (arylene ether) copolymer (SPAEK-mSXb-6Fk) having a crosslinkable functional group inside the polymer chain was prepared while varying the molar ratio (k: s: b: d) of the starting materials. It was. Each yield was at least 90%.

상기 공중합체(SPAEK-mSXb-6Fk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEK-mSXb-6Fk)을 제조하였다.A polymer salt removing film (C-SPAEK-mSXb-6Fk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEK-mSXb-6Fk).

<제조예 9: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-BPk)를 이용한 고분자 염제거막(C-SPAEK-mSXb-BPk)의 제조>Preparation Example 9 Preparation of Polymer Salt-Removing Membrane (C-SPAEK-mSXb-BPk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAEK-mSXb-BPk)

[반응식 10] Scheme 10

Figure 112009059819128-PAT00112
Figure 112009059819128-PAT00112

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로벤조페논(4,4'-difluorobenzophenone)을 사용하고, 4,4'-(헥사플루오로아이소프로필리덴)다이페놀((4,4'-hexafluoroisopropylidene)diphenol) 대신에 4,4'-바이페놀(4,4'-biphenol)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-BPk)를 제조하였다. 각각의 수율은 90% 이상이었다.4,4'-difluorobenzophenone was used instead of decafluorobiphenyl as a starting material, and 4,4 '-(hexafluoroisopropylidene) diphenol was used. Except that 4,4'-biphenol (4,4'-biphenol) was used instead of ((4,4'-hexafluoroisopropylidene) diphenol), the same method as in Preparation Example 2 was carried out. A sulfonated poly (arylene ether) copolymer (SPAEK-mSXb-BPk) having a crosslinkable functional group inside the polymer chain was prepared while varying the molar ratio (k: s: b: d) of the starting materials. Each yield was at least 90%.

상기 공중합체(SPAEK-mSXb-BPk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEK-mSXb-BPk)을 제조하였다.A polymer salt removing film (C-SPAEK-mSXb-BPk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEK-mSXb-BPk).

<제조예 10: 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-HQk)를 이용한 고분자 염제거막(C-SPAEK-mSXb-HQk)의 제조>Preparation Example 10 Preparation of Polymer Salt-Removing Membrane (C-SPAEK-mSXb-HQk) Using Sulfonated Poly (Arylene Ether) Copolymer (SPAEK-mSXb-HQk)

[반응식 11] Scheme 11

Figure 112009059819128-PAT00113
Figure 112009059819128-PAT00113

출발물질로 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로벤조페논(4,4'-difluorobenzophenone)을 사용하고, 4,4'-(헥사플루오로아이소프로필리덴)다이페놀((4,4'-hexafluoroisopropylidene)diphenol) 대신에 하이드로퀴논(hydroquinone)을 사용한 것을 제외하고는, 상기 제조예 2에서 수행한 방법과 동일한 방법을 수행하였으며, 출발물질들의 몰비(k:s:b:d)를 다양하게 변화시키면서 고분자 사슬 내부에 가교성 관능기를 갖는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEK-mSXb-HQk)를 제조하였다. 각각의 수율은 90% 이상이었다.4,4'-difluorobenzophenone was used instead of decafluorobiphenyl as a starting material, and 4,4 '-(hexafluoroisopropylidene) diphenol was used. Except for using hydroquinone (hydroquinone) instead of ((4,4'-hexafluoroisopropylidene) diphenol), the same method as described in Preparation Example 2 was carried out, the molar ratio of the starting materials (k: s: b A sulfonated poly (arylene ether) copolymer (SPAEK-mSXb-HQk) having a crosslinkable functional group inside the polymer chain was prepared with various changes of: d). Each yield was at least 90%.

상기 공중합체(SPAEK-mSXb-HQk)로 상기 제조예 1에서 수행한 방법과 동일한 방법을 수행하여 고분자 염제거막(C-SPAEK-mSXb-HQk)을 제조하였다.A polymer salt removing film (C-SPAEK-mSXb-HQk) was prepared by the same method as described in Preparation Example 1 with the copolymer (SPAEK-mSXb-HQk).

<실험예 1: 고분자 염제거막(C-SPAEDF-mSXb-100)의 성능 평가>Experimental Example 1 Performance Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-100)

상기 제조예 1에서 제조된 고분자 염제거막(C-SPAEDF-mSXb-100)의 기본적인 성능을 평가하였다.Basic performance of the polymer salt removing membrane (C-SPAEDF-mSXb-100) prepared in Preparation Example 1 was evaluated.

도 6은 고분자 염제거막의 성능평가를 위한 크로스-플로우 셀(cross-flow cell(Osmonics)) 장치의 개략도이다.6 is a schematic diagram of a cross-flow cell (Osmonics) device for the performance evaluation of the polymer salt removal membrane.

염제거막의 성능은 주입 용액의 농도에 영향을 받으므로 정확한 성능 평가를 위해서는 상기 장치를 이용하여 주입 용액의 농도를 일정하게 유지시킬 필요가 있다.Since the performance of the salt removing membrane is affected by the concentration of the injection solution, it is necessary to keep the concentration of the injection solution constant using the apparatus for accurate performance evaluation.

도 6을 참조하면, 염제거막 셀(cell)에 2000ppm(이 농도의 선택은 여러 논문(Polymer논문, 49호 2243쪽, Angew.Chem.Int.Ed.논문 47호 6019쪽)등에서 사용되는 농도임)의 일정한 농도로 NaCl용액을 주입하기 위해, 염제거막을 투과하고 난 후의 용액(투과된 용액)과 염제거막에 의해 배제된 고농도의 NaCl 농축수를 분리한다. 다음, 투과된 용액의 농도를 측정한 후, 투과된 용액과 NaCl 농축수를 다시 주입 용액으로 보내고 적당량의 증류수와 혼합하여 일정한 농도(2000ppm NaCl)로 유지(2000ppm NaCl)시키며 순환 사이클이 반복되도록 한다. 이때 용액을 주입하는 동력은 펌프를 이용하였고, 각각의 라인은 밸브(레귤레이터)에 의해 주입 용액의 압력을 400psi로 일정하게 유지하였다. 상기 셀의 면적은 19㎠이다. Referring to FIG. 6, the concentration of 2000 ppm in the salt removing membrane cell (the selection of this concentration is used in various papers (Polymer Paper, 49, 2243, Angew. Chem. Int. Ed, Paper 47, 6019), etc.). In order to inject NaCl solution at a constant concentration, the solution after passing through the salt removing membrane (permeated solution) and the concentrated NaCl concentrated water excluded by the salt removing membrane are separated. Next, after measuring the concentration of the permeate solution, the permeate solution and NaCl concentrated water is sent back to the injection solution, mixed with an appropriate amount of distilled water to maintain a constant concentration (2000ppm NaCl) (2000ppm NaCl) and the circulation cycle is repeated . At this time, the power to inject the solution was a pump, and each line was maintained at a constant pressure of 400psi by the valve (regulator). The area of the cell is 19 cm 2.

NaClNaCl 제거율 측정 Removal rate measurement

염제거막을 통과한 용액의 농도와 처음 주입하는 NaCl용액의 농도를 비교하여, 아래의 식으로부터 NaCl 제거율(NaCl rejection)을 계산하였다.The NaCl rejection was calculated from the following equation by comparing the concentration of the solution that passed through the salt removal membrane with the concentration of NaCl solution to be injected first.

제거율(%) = (1-Cp/Cf)×100% Removal = (1-Cp / Cf) × 100

(Cp(주입농도): NaCl 2000ppm, Cf: 투과농도, 압력: 1000psi, 온도: 25℃, 농도는 디지털전도도 측정기(Oakton con110, Cole Parmer)로 측정)(C p (injection concentration): NaCl 2000ppm, C f : permeation concentration, pressure: 1000psi, temperature: 25 ℃, concentration is measured by a digital conductivity meter (Oakton con110, Cole Parmer))

이때 사용되는 주입 용액은 NaCl 용액으로 한정되는 것은 아니며, MgSO4 용액, MgCl2 용액, KCl용액 등 염이 녹아 있는 모든 용액들을 사용할 수 있다.At this time, the injection solution used is not limited to NaCl solution, any solution in which salt is dissolved, such as MgSO 4 solution, MgCl 2 solution, KCl solution can be used.

물 투과량 측정Water permeation measurement

고분자 염제거막을 투과한 물의 양과 투과하는데 걸린 시간을 측정하여, 아래의 식으로부터 물 투과량(water permeability)을 계산하였다.The amount of water permeated through the polymer salt removal membrane and the time taken to permeate were measured, and water permeability was calculated from the following equation.

물 투과량 = (V×l)/(A×t×△p) Water Permeation Rate = (V × l) / (A × t × △ p)

(V: 투과된 물의 부피, l: 막의 두께, A: 막의 면적, t: 투과하는데 걸린 시간, △p: 압력차)(V: volume of water permeated, l: membrane thickness, A: area of membrane, t: time taken to permeate, Δp: pressure difference)

팽창율Expansion rate 측정 Measure

고분자 염제거막의 물에 대한 치수안정성을 물에 대한 막의 면적 팽창율(%) (swelling ratio)로 나타내었다.The dimensional stability of the polymer salt removal membrane in water is expressed by the area swelling ratio of the membrane in water.

24시간 동안 염제거막을 물에 함침시키고, 건조한 상태의 막의 면적과 함침 후 막의 면적을 비교하여 아래의 식으로부터 팽창율을 계산하였다. The salt removal membrane was impregnated with water for 24 hours, and the expansion ratio was calculated from the following equation by comparing the area of the membrane after drying with the area of the membrane after impregnation.

팽창율(%) = (A wet - A dry)×100 / A dry,% Expansion = (A wet-A dry) × 100 / A dry,

(A wet: 젖은 상태의 막의 면적, A dry: 마른 상태의 막의 면적)(A wet: the area of the membrane in the wet state, A dry: the area of the membrane in the dry state)

도 7은 고분자 염제거막(C-SPAEDF-mSXb-100)의 가교성 관능기(SX)의 비율에 따른 NaCl 제거율(NaCl rejection)과 물 투과량(water permeability)을 나타낸 그래프이다.FIG. 7 is a graph showing NaCl rejection and water permeability according to the ratio of the crosslinkable functional group (SX) of the polymer salt removing membrane (C-SPAEDF-mSXb-100).

도 7을 참조하면, 가교성 관능기인 1-에타이닐-3,5-다이플루오로벤젠의 비율을 5%에서 40%로 증가시킬 경우, NaCl 제거율은 증가된 반면, 물 투과량은 감소됨을 알 수 있다.Referring to FIG. 7, it can be seen that when the ratio of 1-ethynyl-3,5-difluorobenzene, which is a crosslinkable functional group, is increased from 5% to 40%, NaCl removal rate is increased while water permeation amount is decreased. have.

도 8은 고분자 염제거막(C-SPAEDF-mSXb-100)의 가교성 관능기(SX)의 비율에 따른 가교도(gel fraction)와 팽창율(swelling ratio)을 나타낸 그래프이다.FIG. 8 is a graph showing the gel fraction and the swelling ratio according to the ratio of the crosslinkable functional group (SX) of the polymer salt removing membrane (C-SPAEDF-mSXb-100).

도 8을 참조하면, 가교성 관능기로 1-에타이닐-3,5-다이플루오로벤젠을 사용하고 그 비율을 5%에서 40%로 증가시킬 경우, 가교도는 증가된 반면, 팽창율은 감소됨을 알 수 있다.Referring to FIG. 8, when using 1-ethynyl-3,5-difluorobenzene as the crosslinkable functional group and increasing the ratio from 5% to 40%, the degree of crosslinking was increased while the expansion rate was decreased. Can be.

하기 표 1은 고분자 염제거막(C-SPAEDF-mSXb-100)의 가교도, NaCl 제거율, 물 투과량 및 팽창율과 폴리아마이드 염제거막의 NaCl 제거율 및 물 투과량을 정리한 것이다.Table 1 summarizes the degree of crosslinking, NaCl removal rate, water permeation rate and expansion rate and NaCl removal rate and water permeation rate of the polyamide salt removing membrane (C-SPAEDF-mSXb-100).

[표 1]TABLE 1

염제거막Desalination film 가교도
(%)a
Degree of crosslinking
(%) a
NaCl 제거율
(%)b
NaCl removal rate
(%) b
물 투과량
(L·㎛/m2·h·bar)c
Water flux
(L · μm / m 2 · h · bar) c
팽창율
(%)d
Expansion rate
(%) d
C-SPAEDF-mSX5-100C-SPAEDF-mSX5-100 65.265.2 70.270.2 2.82.8 32.332.3 C-SPAEDF-mSX10-100C-SPAEDF-mSX10-100 72.372.3 72.372.3 2.12.1 25.325.3 C-SPAEDF-mSX20-100C-SPAEDF-mSX20-100 83.083.0 78.678.6 1.91.9 21.121.1 C-SPAEDF-mSX30-100C-SPAEDF-mSX30-100 92.292.2 85.385.3 1.761.76 15.515.5 C-SPAEDF-mSX40-100C-SPAEDF-mSX40-100 98.398.3 89.089.0 1.411.41 9.29.2 폴리아마이드
염제거막e
Polyamide
Desalination film e
-- 99.799.7 0.61f 0.61 f --
a: 가교도는 용매 추출 방법으로 DMSO(dimethyl suloxide)를 사용하고 속슬렛(Soxhlet) 추출기를 사용하여 24시간 동안 실험하였고, 용매를 제거한 후 아래의 식으로부터 가교도를 계산하였다
가교도(%) = W2/W1×100
(W1: 추출 전 무게, W2: 추출 후 무게)
b: 제거율(%) = (1-Cp/Cf)×100
(Cp(주입농도): NaCl 2000ppm, Cf: 투과농도, 압력: 1000psi, 온도: 25℃ (농도는 디지털전도도 측정기(Oakton con110, Cole Parmer)로 측정)
c: 물 투과량 = (V×l)/(A×t×△p)
(V: 투과된 물의 부피, l: 막의 두께, A: 막의 면적, t: 투과 시간, △p: 압력차)
d: 팽창율(%) = (A wet - A dry)×100 / A dry
(A wet: 젖은 상태의 막의 면적 A dry: 마른 상태의 막의 면적)
e: SW30HR-380(다우케미컬)
f: 단위두께당 물 투과량 (L/m2·h·bar)
a: The crosslinking degree was tested for 24 hours using DMSO (dimethyl suloxide) as a solvent extraction method and a Soxhlet extractor, and the crosslinking degree was calculated from the following equation after removing the solvent.
% Crosslinking = W 2 / W 1 × 100
(W 1 : weight before extraction, W 2 : weight after extraction)
b:% removal = (1-C p / C f ) × 100
(C p (injection concentration): NaCl 2000ppm, C f : Permeation concentration, pressure: 1000 psi, temperature: 25 ° C (concentration measured by digital conductivity meter (Oakton con110, Cole Parmer))
c: water permeation amount = (V × l) / (A × t × Δp)
(V: volume of water permeated, l: thickness of membrane, A: area of membrane, t: permeation time, Δp: pressure difference)
d:% expansion = (A wet-A dry) × 100 / A dry
(A wet: area of membrane in wet state A dry: area of membrane in dry state)
e: SW30HR-380 (Dow Chemical)
f: the water permeability per unit thickness (L / m 2 · h · bar)

상기 표 1을 참조하면, 상기 제조예 1에 따라 제조된 고분자 염제거막(C-SPAEDF-mSXb-100)의 경우, 출발 물질인 1-에타이닐-3,5-다이플루오로벤젠의 비율이 증가할수록 가교도 및 NaCl 제거율은 증가되며, 물에 대한 팽창율은 낮아지므로 염제거막으로서의 성능이 증가됨을 알 수 있다. 염제거막의 물에 대한 팽창율이 중요한 이유는 염제거막은 물이 존재하는 환경에서 가동되기 때문에, 염제거막의 물에 대한 팽창율이 클수록 치수안정성이 떨어지게 되어 결과적으로 염제거율 저하를 초래하기 때문이다. 반면 물 투과량은 가교도의 증가에 따라 약간 감소되었으나, 그럼에도 불구하고 상용화된 폴리아미아드 염제거막에 비해 월등히 향상된 물 투과량을 가짐을 알 수 있다. Referring to Table 1, in the case of the polymer salt removal membrane (C-SPAEDF-mSXb-100) prepared according to Preparation Example 1, the ratio of 1-ethynyl-3,5-difluorobenzene as a starting material was As it increases, the degree of crosslinking and NaCl removal increases, and the expansion rate to water decreases. The reason why the expansion ratio of the salt removal membrane with respect to water is important is that since the salt removal membrane is operated in an environment in which water is present, the larger the expansion ratio of the salt removal membrane with water, the lower the dimensional stability is, resulting in a lower salt removal rate. On the other hand, the amount of water permeation decreased slightly as the degree of crosslinking increased. Nevertheless, it was found that the water permeation rate was significantly improved compared to the commercialized polyamid salt removing membrane.

<실험예 2: 고분자 염제거막(C-SPAEDF-mSXb-6Fk)의 성능 평가>Experimental Example 2: Performance Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-6Fk)

상기 실험예 1에서 수행한 방법과 동일한 방법을 수행하여, 상기 제조예 2에 따라 제조된 고분자 염제거막(C-SPAEDF-mSXb-6Fk)의 기본적인 성능을 평가하였다.By performing the same method as in Experimental Example 1, the basic performance of the polymer salt removing membrane (C-SPAEDF-mSXb-6Fk) prepared according to Preparation Example 2 was evaluated.

하기 표 2는 고분자 염제거막(C-SPAEDF-mSXb-6Fk)의 가교도, NaCl 제거율, 물 투과량 및 팽창율과 폴리아마이드 염제거막의 NaCl 제거율 및 물 투과량을 정리한 것이다.Table 2 summarizes the crosslinking degree, NaCl removal rate, water permeation rate and expansion rate, and NaCl removal rate and water permeation rate of the polyamide salt removing membrane (C-SPAEDF-mSXb-6Fk).

[표 2]TABLE 2

염제거막Desalination film 가교도
(%)a
Degree of crosslinking
(%) a
NaCl 제거율
(%)b
NaCl removal rate
(%) b
물 투과량
(L·㎛/m2·h·bar)c
Water flux
(L · μm / m 2 · h · bar) c
팽창율
(%)d
Expansion rate
(%) d
C-SPAEDF-mSX5-6F70C-SPAEDF-mSX5-6F70 74.374.3 86.386.3 2.42.4 30.330.3 C-SPAEDF-mSX10-6F70C-SPAEDF-mSX10-6F70 79.679.6 88.388.3 1.91.9 23.323.3 C-SPAEDF-mSX20-6F70C-SPAEDF-mSX20-6F70 85.685.6 92.792.7 1.751.75 20.120.1 C-SPAEDF-mSX30-6F70C-SPAEDF-mSX30-6F70 94.194.1 96.896.8 1.61.6 13.513.5 C-SPAEDF-mSX40-6F70C-SPAEDF-mSX40-6F70 98.698.6 98.698.6 1.31.3 7.27.2 폴리아마이드
염제거막e
Polyamide
Desalination film e
-- 99.799.7 0.61f 0.61 f --
a: 가교도는 용매 추출 방법으로 DMSO(dimethyl suloxide)를 사용하고 속슬렛(Soxhlet) 추출기를 사용하여 24시간 동안 실험하였고, 용매를 제거한 후 아래의 식으로부터 가교도를 계산하였다
가교도(%) = W2/W1×100
(W1: 추출 전 무게, W2: 추출 후 무게)
b: 제거율(%) = (1-Cp/Cf)×100
(Cp(주입농도): NaCl 2000ppm, Cf: 투과농도, 압력: 1000psi, 온도: 25℃ (농도는 디지털전도도 측정기(Oakton con110, Cole Parmer)로 측정)
c: 물 투과량 = (V×l)/(A×t×△p)
(V: 투과된 물의 부피, l: 막의 두께, A: 막의 면적, t: 투과 시간, △p: 압력차)
d: 팽창율(%) = (A wet - A dry)×100 / A dry
(A wet: 젖은 상태의 막의 면적 A dry: 마른 상태의 막의 면적)
e: SW30HR-380(다우케미컬)
f: 단위두께당 물 투과량 (L/m2·h·bar)
a: The crosslinking degree was tested for 24 hours using DMSO (dimethyl suloxide) as a solvent extraction method and a Soxhlet extractor, and the crosslinking degree was calculated from the following equation after removing the solvent.
% Crosslinking = W 2 / W 1 × 100
(W 1 : weight before extraction, W 2 : weight after extraction)
b:% removal = (1-C p / C f ) × 100
(C p (injection concentration): NaCl 2000ppm, C f : Permeation concentration, pressure: 1000 psi, temperature: 25 ° C (concentration measured by digital conductivity meter (Oakton con110, Cole Parmer))
c: water permeation amount = (V × l) / (A × t × Δp)
(V: volume of water permeated, l: thickness of membrane, A: area of membrane, t: permeation time, Δp: pressure difference)
d:% expansion = (A wet-A dry) × 100 / A dry
(A wet: area of membrane in wet state A dry: area of membrane in dry state)
e: SW30HR-380 (Dow Chemical)
f: the water permeability per unit thickness (L / m 2 · h · bar)

상기 표 2를 참조하면, 상기 제조예 2에 따라 제조된 고분자 염제거막(C-SPAEDF-mSXb-6Fk)은 k가 70%인 경우, 출발 물질인 1-에타이닐-3,5-다이플루오로벤젠의 비율이 증가할수록 가교도 및 NaCl 제거율은 증가되며, 물에 대한 팽창율은 낮아지므로 염제거막으로서의 성능이 증가됨을 알 수 있다. 반면 물 투과량은 가교도의 증가에 따라 약간 감소되었으나, 그럼에도 불구하고 상용화된 폴리아미아드 염제거막에 비해 월등히 향상된 물 투과량을 가짐을 알 수 있다. Referring to Table 2, the polymer salt removing membrane (C-SPAEDF-mSXb-6Fk) prepared according to Preparation Example 2, when k is 70%, the starting material 1-ethynyl-3,5-difluoro As the ratio of robenzene increases, the degree of crosslinking and NaCl removal increases, and the expansion ratio to water decreases, so that the performance as a salt removing membrane increases. On the other hand, the amount of water permeation decreased slightly as the degree of crosslinking increased. Nevertheless, it was found that the water permeation rate was significantly improved compared to the commercialized polyamid salt removing membrane.

<실험예 3: 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 성능 평가>Experimental Example 3: Performance Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-BPk)

상기 실험예 1에서 수행한 방법과 동일한 방법을 수행하여, 상기 제조예 3에 따라 제조된 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 기본적인 성능을 평가하였다.By performing the same method as in Experimental Example 1, the basic performance of the polymer salt removing membrane (C-SPAEDF-mSXb-BPk) prepared according to Preparation Example 3 was evaluated.

하기 표 3은 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 가교도, NaCl 제거율, 물 투과량 및 팽창율과 폴리아마이드 염제거막의 NaCl 제거율 및 물 투과량을 정리한 것이다.Table 3 summarizes the crosslinking degree, NaCl removal rate, water permeation rate and expansion rate, and NaCl removal rate and water permeation rate of the polyamide salt removing membrane (C-SPAEDF-mSXb-BPk).

[표 3][Table 3]

염제거막Desalination film 가교도
(%)a
Degree of crosslinking
(%) a
NaCl 제거율
(%)b
NaCl removal rate
(%) b
물 투과량
(L·㎛/m2·h·bar)c
Water flux
(L · μm / m 2 · h · bar) c
팽창율
(%)d
Expansion rate
(%) d
C-SPAEDF-mSX5-BP70C-SPAEDF-mSX5-BP70 75.675.6 87.287.2 2.22.2 29.129.1 C-SPAEDF-mSX10-BP70C-SPAEDF-mSX10-BP70 81.581.5 89.489.4 1.751.75 21.321.3 C-SPAEDF-mSX20-BP70C-SPAEDF-mSX20-BP70 86.786.7 94.194.1 1.611.61 18.618.6 C-SPAEDF-mSX30-BP70C-SPAEDF-mSX30-BP70 95.695.6 97.697.6 1.521.52 12.712.7 C-SPAEDF-mSX40-BP70C-SPAEDF-mSX40-BP70 99.099.0 99.299.2 1.131.13 6.96.9 폴리아마이드
염제거막e
Polyamide
Desalination film e
-- 99.799.7 0.61f 0.61 f --
a: 가교도는 용매 추출 방법으로 DMSO(dimethyl suloxide)를 사용하고 속슬렛(Soxhlet) 추출기를 사용하여 24시간 동안 실험하였고, 용매를 제거한 후 아래의 식으로부터 가교도를 계산하였다
가교도(%) = W2/W1×100
(W1: 추출 전 무게, W2: 추출 후 무게)
b: 제거율(%) = (1-Cp/Cf)×100
(Cp(주입농도): NaCl 2000ppm, Cf: 투과농도, 압력: 1000psi, 온도: 25℃ (농도는 디지털전도도 측정기(Oakton con110, Cole Parmer)로 측정)
c: 물 투과량 = (V×l)/(A×t×△p)
(V: 투과된 물의 부피, l: 막의 두께, A: 막의 면적, t: 투과 시간, △p: 압력차)
d: 팽창율(%) = (A wet - A dry)×100 / A dry
(A wet: 젖은 상태의 막의 면적 A dry: 마른 상태의 막의 면적)
e: SW30HR-380(다우케미컬)
f: 단위두께당 물 투과량 (L/m2·h·bar)
a: The crosslinking degree was tested for 24 hours using DMSO (dimethyl suloxide) as a solvent extraction method and a Soxhlet extractor, and the crosslinking degree was calculated from the following equation after removing the solvent.
% Crosslinking = W 2 / W 1 × 100
(W 1 : weight before extraction, W 2 : weight after extraction)
b:% removal = (1-C p / C f ) × 100
(C p (injection concentration): NaCl 2000ppm, C f : Permeation concentration, pressure: 1000 psi, temperature: 25 ° C (concentration measured by digital conductivity meter (Oakton con110, Cole Parmer))
c: water permeation amount = (V × l) / (A × t × Δp)
(V: volume of water permeated, l: thickness of membrane, A: area of membrane, t: permeation time, Δp: pressure difference)
d:% expansion = (A wet-A dry) × 100 / A dry
(A wet: area of membrane in wet state A dry: area of membrane in dry state)
e: SW30HR-380 (Dow Chemical)
f: the water permeability per unit thickness (L / m 2 · h · bar)

상기 표 3을 참조하면, 상기 제조예 3에 따라 제조된 고분자 염제거막(C- SPAEDF-mSXb-BPk)은 k가 70%인 경우, 출발 물질인 1-에타이닐-3,5-다이플루오로벤젠의 비율이 증가할수록 가교도 및 NaCl 제거율은 증가되며, 물에 대한 팽창율은 낮아지므로 염제거막으로서의 성능이 증가됨을 알 수 있다. 반면 물 투과량은 가교도의 증가에 따라 약간 감소되었으나, 그럼에도 불구하고 상용화된 폴리아미아드 염제거막에 비해 월등히 향상된 물 투과량을 가짐을 알 수 있다. Referring to Table 3, the polymer salt removal membrane (C-SPAEDF-mSXb-BPk) prepared according to Preparation Example 3, when k is 70%, 1-ethynyl-3,5-difluoro as a starting material As the ratio of robenzene increases, the degree of crosslinking and NaCl removal increases, and the expansion ratio to water decreases, so that the performance as a salt removing membrane increases. On the other hand, the amount of water permeation decreased slightly as the degree of crosslinking increased. Nevertheless, it was found that the water permeation rate was significantly improved compared to the commercialized polyamid salt removing membrane.

<실험예 4: 술폰화된 방향족 화합물의 조성비 변화에 따른 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 성능 평가>Experimental Example 4: Performance Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-BPk) According to Composition Ratio of Sulfonated Aromatic Compounds>

상기 실험예 1에서 수행한 방법과 동일한 방법을 수행하여 상기 제조예 3에 따라 제조된 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 기본적인 성능을 평가하되, 가교성 관능기(1-에타이닐-3,5-다이플루오로벤젠)의 조성비는 40%로 고정시키고, 술폰화된 방향족 화합물(하이드로퀴논술폰닉 에시드 포타슘 쏠트)의 조성비를 변화시켰다.To evaluate the basic performance of the polymer salt removal membrane (C-SPAEDF-mSXb-BPk) prepared according to Preparation Example 3 by performing the same method as in Experimental Example 1, the crosslinkable functional group (1-ethynyl The composition ratio of -3,5-difluorobenzene) was fixed at 40%, and the composition ratio of the sulfonated aromatic compound (hydroquinone sulfonic acid potassium salt) was changed.

도 9a, 9b 및 9c는 각각 하이드로퀴논술폰닉 에시드 포타슘 쏠트의 조성비 변화에 따른 고분자 염제거막(C-SPAEDF-mSX40-BPk)의 물 투과량, NaCl 제거율 및 물에 대한 팽창율을 나타내는 그래프이다.9A, 9B, and 9C are graphs illustrating water permeation rate, NaCl removal rate, and expansion ratio with respect to water of the polymer salt removing membrane (C-SPAEDF-mSX40-BPk) according to the composition ratio of the hydroquinone sulfonic acid potassium salt.

도 9a을 참조하면, 술폰화도가 감소함에 따라 물 투과량이 감소함을 알 수 있으며, 이는 염제거막을 이루는 공중합체의 분자 구조상에서 친수성기인 술폰산기(-SO3-)의 비율이 줄어들기 때문이다.Referring to FIG. 9A, it can be seen that the water permeation rate decreases as the degree of sulfonation decreases, because the ratio of the sulfonic acid group (-SO 3 ), which is a hydrophilic group, decreases in the molecular structure of the copolymer forming the salt removing membrane.

한편, 도 9b를 참조하면, 술폰화도가 감소할수록 NaCl 제거율은 86.1%에서 98.6%까지 증가함을 알 수 있다. 이는 상용화된 폴리아마이드 염제거막(NaCl 제거율 99.7%)과 비교하여 본 발명의 고분자 염제거막이 견줄만한 염제거 성능을 지니고 있음을 보여준다.On the other hand, referring to Figure 9b, it can be seen that the NaCl removal rate increases from 86.1% to 98.6% as the degree of sulfonation decreases. This shows that the polymer salt removing film of the present invention has comparable salt removing performance as compared to the commercially available polyamide salt removing film (NaCl removal rate of 99.7%).

도 9c를 참조하면, 술폰화도가 감소함에 따라 팽창율이 감소함을 알 수 있다. 이는 염제거막을 이루는 공중합체의 분자 구조상에서 친수성기인 술폰산기(-SO3 -)의 비율이 감소됨에 따라, 염제거막이 물을 함유하는 능력 역시 감소되기 때문 이다. Referring to Figure 9c, it can be seen that the expansion rate decreases as the degree of sulfonation decreases. This is a sulfonic acid group (-SO 3 -) a hydrophilic group in the molecular structure of the copolymer forms a film removing salt is because the ability to also reduce in accordance with this reduced ratio, remove salt film containing water.

하기 표 4는 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 술폰화도, NaCl 제거율, 물 투과량 및 물에 대한 팽창율과 폴리아마이드 염제거막의 NaCl 제거율 및 물 투과량을 정리한 것이다.Table 4 summarizes the sulfonation degree, NaCl removal rate, water permeation rate, and water expansion rate and NaCl removal rate and water permeation rate of the polyamide salt removal membrane of the polymer salt removal membrane (C-SPAEDF-mSXb-BPk).

[표 4][Table 4]

염제거막Desalination film 술폰화도
(%)
Sulfonated
(%)
NaCl 제거율
(%)a
NaCl removal rate
(%) a
물 투과량
(L·㎛/m2·h·bar)b
Water flux
(L · μm / m 2 · h · bar) b
팽창율
(%)c
Expansion rate
(%) c
C-SPAEDF-mSX40-BP90C-SPAEDF-mSX40-BP90 9090 86.186.1 2.392.39 37.237.2 C-SPAEDF-mSX40-BP80C-SPAEDF-mSX40-BP80 8080 88.488.4 1.791.79 24.324.3 C-SPAEDF-mSX40-BP70C-SPAEDF-mSX40-BP70 7070 97.197.1 1.521.52 20.620.6 C-SPAEDF-mSX40-BP60C-SPAEDF-mSX40-BP60 6060 98.698.6 1.401.40 9.79.7 폴리아마이드
염제거막d
Polyamide
Desalination film d
-- 99.799.7 0.61e 0.61 e --
a: 제거율(%) = (1-Cp/Cf)×100
(Cp(주입농도): NaCl 2000ppm, Cf: 투과농도, 압력: 1000psi, 온도: 25℃ (농도는 디지털전도도 측정기(Oakton con110, Cole Parmer)로 측정)
b: 물 투과량 = (V×l)/(A×t×△p)
(V: 투과된 물의 부피, l: 막의 두께, A: 막의 면적, t: 투과 시간, △p: 압력차)
c: 팽창율(%) = (A wet - A dry)×100 / A dry
(A wet: 젖은 상태의 막의 면적 A dry: 마른 상태의 막의 면적)
d: SW30HR-380(다우케미컬)
e: 단위두께당 물 투과량 (L/m2·h·bar)
a:% removal rate = (1-C p / C f ) × 100
(C p (injection concentration): NaCl 2000ppm, C f : Permeation concentration, pressure: 1000 psi, temperature: 25 ° C (concentration measured by digital conductivity meter (Oakton con110, Cole Parmer))
b: water permeation amount = (V × l) / (A × t × Δp)
(V: volume of water permeated, l: thickness of membrane, A: area of membrane, t: permeation time, Δp: pressure difference)
c: Expansion rate (%) = (A wet-A dry) × 100 / A dry
(A wet: area of membrane in wet state A dry: area of membrane in dry state)
d: SW30HR-380 (Dow Chemical)
e: Water permeation rate per unit thickness (L / m 2 · h · bar)

<실험예 5: 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 화학적 안정성 평가_1>Experimental Example 5: Chemical Stability Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-BPk) _1>

상기 제조예 3에서 제조된 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX40-BP70)를 이용하여 염제거막을 만들되, 열처리 온도를 달리함으로써 가교반응이 일어나지 않은 염제거막(NC-SPAEDF-mSX40-BP70, 이하 '가교 전 염제거막'이라 함)과 가교반응이 일어난 염제거막(C-SPAEDF-mSX40-BP70, 이하 '가교 후 염제거막' 이라 함)을 각각 제조하였다.Using the sulfonated poly (arylene ether) copolymer prepared in Preparation Example 3 (SPAEDF-mSX40-BP70) to make a salt removal film, the salt removal film (NC-SPAEDF that does not occur cross-linking reaction by varying the heat treatment temperature -mSX40-BP70, hereinafter referred to as 'pre-crosslinking desalination membrane' and a cross-linking salt-removing membrane (C-SPAEDF-mSX40-BP70, hereinafter referred to as 'crosslinking desalination membrane') were prepared, respectively.

상기 가교 전 염제거막과 상기 가교 후 염제거막을 5000ppm NaOCl용액(pH4 조건)에서 10일 동안 함침시킨 후, ATR-IR 스펙트럼 변화를 측정하였다.After the cross-linking salt removing film and the cross-linking salt removing film was impregnated in 5000 ppm NaOCl solution (pH 4 conditions) for 10 days, the ATR-IR spectrum change was measured.

여기서, pH4 조건을 택한 이유는 반응 용액의 HClO 농도를 높임으로써, 염소화 반응이 일어날 수 있는 조건을 부여하기 위함이다.Here, the reason why the pH 4 condition is selected is to give a condition under which the chlorination reaction can occur by increasing the HClO concentration of the reaction solution.

도 10은 가교 전 염제거막(NC-SPAEDF-mSX40-BP70)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.FIG. 10 is a graph measuring the change in ATR-IR spectrum by impregnating a salt removal film (NC-SPAEDF-mSX40-BP70) before crosslinking in a 5000 ppm NaOCl solution (pH 4 condition).

도 11은 가교 후 염제거막(C-SPAEDF-mSX40-BP70)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.FIG. 11 is a graph measuring the change in ATR-IR spectrum by impregnating a salt removal film (C-SPAEDF-mSX40-BP70) after crosslinking in a 5000 ppm NaOCl solution (pH 4 condition).

도 10을 참조하면, 가교 전 염제거막(NC-SPAEDF-mSX40-BP70)의 경우, 파수(wave number) 1650cm-1 과 1405cm-1에서 스펙트럼의 변화가 없으며, 이는 고분자 주사슬의 아로마틱(aromatic) C=C 결합 구조에는 아무런 변화가 없음을 의미한다. 또한 890cm-1과 815cm-1에서 C-H 결합을 나타내는 스펙트럼 또한 10일 동안 아무런 변화를 보이지 않았다. 하지만 1233cm-1 과 1023cm-1에서는 2일이 지난 후부터 두 개의 피크의 세기가 줄어들기 시작하며, 6일이 지난 후에는 피크가 거의 사라진 것을 볼 수 있다. 이는 술폰산기(-SO3 -) 결합이 점차 깨지기 시작함을 의미하며, 결과적으로 가교 전 염제거막(NC-SPAEDF-mSX40-BP70)의 경우 5000ppm NaOCl용액(pH4 조건)에서 술폰산기(-SO3 -)가 분해됨을 확인할 수 있다.Referring to FIG. 10, in the case of the salt-removing membrane before crosslinking (NC-SPAEDF-mSX40-BP70), there is no change in spectrum at wave numbers 1650 cm -1 and 1405 cm -1 , which is the aromatic of the polymer main chain. ) It means no change in C = C bond structure. In addition, the spectrum represents a CH bond at 890cm -1 and 815cm -1 also did not show any changes for 10 days. However, at 1233cm -1 and 1023cm -1 , the intensity of the two peaks begins to decrease after 2 days, and after 6 days, the peak almost disappears. This is a sulfonic acid group (-SO 3 -) means that the bond is gradually start to break, and if as a result of cross-linking before salt removal film (NC-SPAEDF-mSX40-BP70 ) 5000ppm NaOCl solution (pH4 criteria) sulfonic acid group (-SO in 3) can check decomposed.

도 11을 참조하면, 가교 후 염제거막(C-SPAEDF-mSX40-BP70)의 경우, 아로마틱(aromatic) C=C 결합을 나타내는 1650cm-1과 1405cm-1 및 C-H 결합을 나타내는 890cm-1과 815cm-1에서 스펙트럼 변화가 없음을 물론, 술폰산기(-SO3 -)를 나타내는 1233cm-1 과 1023cm-1에서도 스펙트럼의 변화를 보이지 않음을 알 수 있다. 이는 가교 후 염제거막(C-SPAEDF-mSX40-BP70)의 경우 염제거막을 이루는 공중합체의 가교결합 형성에 의해 막 내부의 고분자 사슬을 염소의 공격으로부터 보호할 수 있기 때문이다. 따라서, 본 발명의 고분자 염제거막의 경우 공중합체의 가교 효과로 인해 주 사슬의 염소 안정성을 향상시킬 수 있으므로 염제거막으로써 우수한 성능을 나타낼 수 있다. Referring to Figure 11, in the case of removal after cross-linking salt film (C-SPAEDF-mSX40-BP70 ), aromatic (aromatic) C = C bond 1650cm -1 and 1405cm -1 and 890cm -1 and 815cm CH bond representing representing spectra no change from -1 course, a sulfonic acid group (-SO 3 -) at 1233cm -1 and 1023cm -1 indicating it can be seen that not show a change in the spectrum. This is because, in the case of the salt removing film (C-SPAEDF-mSX40-BP70) after crosslinking, the polymer chain inside the film can be protected from attack by chlorine by crosslinking formation of the copolymer constituting the salt removing film. Therefore, the polymer salt removing film of the present invention can improve the chlorine stability of the main chain due to the cross-linking effect of the copolymer can exhibit excellent performance as a salt removing film.

도 12는 폴리아마이드 염제거막(SW30HR-380, 다우케미컬)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.12 is a graph measuring the change in ATR-IR spectrum by impregnating a polyamide salt removing film (SW30HR-380, Dow Chemical) in a 5000 ppm NaOCl solution (pH 4 condition).

도 12를 참조하면, 함침 1시간 후부터 1610cm-1에서 C=O 과 N-H 의 수소결합 스펙트럼이 없어지기 시작하고, 또한 1540cm-1에서 C=O 스트레칭 스펙트럼이 없어지기 시작하며, 24시간이 지난 후에는 위의 두 스펙트럼이 완전히 사라짐을 확인할 수 있다. 이는 폴리아마이드 염제거막의 아마이드 결합에서 분해가 일어남을 의미한다. 따라서, 폴리아마이드 염제거막의 경우 염소 처리 시 주 사슬의 분해로 인해 막의 성능 저하가 일어남을 알 수 있다.12, after impregnation 1 time starts, it eliminates the hydrogen bond spectrum of C = O and NH at 1610cm -1, and also begins to C = O stretching spectrum is not at 1540cm -1, and after 24 hours, We can see that both spectra disappear completely. This means that decomposition occurs at the amide bond of the polyamide salt removing film. Therefore, in the case of the polyamide salt removal membrane, it can be seen that the degradation of the membrane occurs due to decomposition of the main chain during chlorine treatment.

<실험예 6: 고분자 염제거막(C-SPAEDF-mSXb-BPk)의 화학적 안정성 평가_2>Experimental Example 6: Chemical Stability Evaluation of Polymer Salt-Removing Membrane (C-SPAEDF-mSXb-BPk) _2>

2000ppm NaCl 용액과 5000ppm NaOCl(pH4 조건)인 용액을 주입 용액으로 선택하고, 상기 실험예 1의 도 6에서 제시한 장치를 사용하여, 가교 후 염제거막 (C-SPAEDF-mSX30-BP70)과 폴리아마이드 염제거막의 시간에 따른 NaCl 제거율과 물 투과량을 비교하였다. A solution containing 2000 ppm NaCl solution and 5000 ppm NaOCl (pH 4 condition) was selected as an injection solution, and the salt removal membrane (C-SPAEDF-mSX30-BP70) and poly-crosslinked polylinked solution was prepared using the apparatus shown in FIG. 6 of Experimental Example 1 above. The removal rate of NaCl and the water permeation rate of the amide salt removing membrane were compared.

도 13a는 상기 실험예 6에 의해 측정된 가교 후 염제거막 (C-SPAEDF-mSX30-BP70)과 폴리아마이드 염제거막의 시간에 따른 NaCl 제거율 변화를 나타낸 그래프이다. Figure 13a is a graph showing the NaCl removal rate change with time of the salt-removing membrane (C-SPAEDF-mSX30-BP70) and the polyamide salt-removing membrane after crosslinking measured by Experimental Example 6.

도 13b는 상기 실험예 6에 의해 측정된 가교 후 염제거막 (C-SPAEDF-mSX30-BP70)과 폴리아마이드 염제거막의 시간에 따른 물 투과량 변화를 나타낸 그래프이다.FIG. 13B is a graph showing changes in water permeation rate of the salt removing membrane (C-SPAEDF-mSX30-BP70) and the polyamide salt removing membrane after crosslinking measured in Experimental Example 6.

도 13a 및 13b를 참조하면, 폴리아마이드 염제거막의 경우, 처음에는 99.7%의 NaCl 제거율을 나타내지만 1시간 만에 NaCl 제거율이 약 50%로 감소하고 6시간 후에는 약 20%로 감소하였다. 또한 처음에는 0.61(L/m2·h·bar)의 물 투과량을 나타내지만 약 1시간 만에 물 투과량이 2배 이상 증가하고 6시간 후에는 4배 이상 증가하였다. 그 이유는 상기 도 12의 ATR-IR 스펙트럼에 나타난 바와 같이, 5000ppm NaOCl 용액(pH4 조건)에 의해 아마이드 결합의 분해가 일어나 폴리아마이드 염제거막이 손상되기 때문이다. 따라서 수화된 Na+ 이온이나 Cl- 이온들이 쉽게 염제거막을 통과하게 되므로 NaCl 제거율은 감소하며, 물 투과량은 증가하게 된다.Referring to FIGS. 13A and 13B, in the case of the polyamide salt removal membrane, NaCl removal rate of 99.7% was initially shown, but NaCl removal rate decreased to about 50% after 1 hour and to about 20% after 6 hours. At first, the water permeation amount was 0.61 (L / m 2 · h · bar), but the water permeation amount increased more than 2 times in about 1 hour and more than 4 times after 6 hours. This is because, as shown in the ATR-IR spectrum of FIG. 12, the decomposition of the amide bond occurs by the 5000 ppm NaOCl solution (pH 4 condition), thereby damaging the polyamide salt removing membrane. Therefore, the hydrated Na + ions or Cl - ions easily pass through the salt removal membrane, thus reducing the NaCl removal rate and increasing the water permeation rate.

이에 반해, 가교 후 염제거막(C-SPAEDF-mSX30-BP70)의 경우, 분자구조의 분해가 일어나지 않으므로(상기 도 11 참조) 염제거막이 손상되지 않으며, NaCl 제거율의 감소 및 물 투과량의 증가가 생기지 않음을 알 수 있다.On the other hand, in the case of the salt removal membrane (C-SPAEDF-mSX30-BP70) after crosslinking, since the decomposition of the molecular structure does not occur (see FIG. 11 above), the salt removal membrane is not damaged, and the decrease of NaCl removal rate and the increase of water permeation rate are increased. It can be seen that it does not occur.

즉, 가교 후 염제거막(C-SPAEDF-mSX30-BP70)의 경우 폴리아마이드 염제거막과 비교하여 NaOCl 조건에서 월등히 우수한 화학적 안정성을 나타낸다. In other words, the cross-linked salt removing film (C-SPAEDF-mSX30-BP70) exhibits superior chemical stability under NaOCl conditions compared to the polyamide salt removing film.

상술한 바와 같이, 본 발명의 고분자 염제거막의 경우, 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물로 이루어지므로 높은 염제거율을 보유하는 한편, 높은 화학적 안정성 특히, 염소 안정성을 가짐을 알 수 있다. 그리고, 염제거막으로서 중요한 성능인 물 투과량 및 치수안정성 면에서도 우수한 성능을 갖는 장점이 있다.As described above, the polymer salt removing membrane of the present invention is composed of a crosslinked compound of a sulfonated poly (arylene ether) copolymer and thus has a high salt removal rate and high chemical stability, in particular, chlorine stability. Able to know. In addition, there is an advantage of having excellent performance in terms of water permeation amount and dimensional stability, which are important performances as the salt removing membrane.

또한, 본 발명의 실험예에서는 나타내지 않았으나, 상용화된 폴리아마이드 염제거막의 경우 고압상태에서 염제거막이 손상되는 것을 방지하기 위해 보통 225psi의 압력에서 많이 사용하지만, 본 발명의 고분자 염제거막의 경우 고압(1000psi)에서도 염제거막의 손상이 없는, 우수한 기계적 안정성을 지니고 있다.In addition, although not shown in the experimental example of the present invention, in the case of commercialized polyamide salt removing film is usually used at a pressure of 225 psi to prevent damage of the salt removing film in a high pressure state, in the case of the polymer salt removing film of the present invention 1000 psi) has excellent mechanical stability without damaging the salt removal membrane.

이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. You can change it.

도 1은 본 발명의 고분자 염제거막에 의한 염제거 메커니즘을 나타내는 도식도이다.1 is a schematic diagram showing a salt removal mechanism by the polymer salt removal membrane of the present invention.

도 2는 술폰화된 폴리(아릴렌 에터) 공중합체의 내부 가교결합에 의해 형성되는 망상구조를 나타내는 개략도이다.2 is a schematic diagram showing a network structure formed by internal crosslinking of sulfonated poly (arylene ether) copolymer.

도 3은 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSXb-100)의 1H-NMR 스펙트럼을 나타낸 것이다.3 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSXb-100).

도 4는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX10-6F80)의 1H-NMR 스펙트럼을 나타낸 것이다.4 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSX10-6F80).

도 5는 술폰화된 폴리(아릴렌 에터) 공중합체(SPAEDF-mSX10-BP80)의 1H-NMR 스펙트럼을 나타낸 것이다.5 shows the 1 H-NMR spectrum of a sulfonated poly (arylene ether) copolymer (SPAEDF-mSX10-BP80).

도 6은 고분자 염제거막의 성능평가를 위한 크로스-플로우 셀(cross-flow cell(Osmonics)) 장치의 개략도이다.6 is a schematic diagram of a cross-flow cell (Osmonics) device for the performance evaluation of the polymer salt removal membrane.

도 7은 고분자 염제거막(C-SPAEDF-mSXb-100)의 가교성 관능기(SX)의 비율에 따른 NaCl 제거율(NaCl rejection)과 물 투과량(water permeability)을 나타낸 그래프이다.FIG. 7 is a graph showing NaCl rejection and water permeability according to the ratio of the crosslinkable functional group (SX) of the polymer salt removing membrane (C-SPAEDF-mSXb-100).

도 8은 고분자 염제거막(C-SPAEDF-mSXb-100)의 가교성 관능기(SX)의 비율에 따른 가교도(gel fraction)와 팽창율(swelling ratio)을 나타낸 그래프이다.FIG. 8 is a graph showing the gel fraction and the swelling ratio according to the ratio of the crosslinkable functional group (SX) of the polymer salt removing membrane (C-SPAEDF-mSXb-100).

도 9a, 9b 및 9c는 각각 하이드로퀴논술폰닉 에시드 포타슘 쏠트의 조성비 변화에 따른 고분자 염제거막(C-SPAEDF-mSX40-BPk)의 물 투과량, NaCl 제거율 및 물에 대한 팽창율을 나타내는 그래프이다.9A, 9B, and 9C are graphs illustrating water permeation rate, NaCl removal rate, and expansion ratio with respect to water of the polymer salt removing membrane (C-SPAEDF-mSX40-BPk) according to the composition ratio of the hydroquinone sulfonic acid potassium salt.

도 10은 가교 전 염제거막(NC-SPAEDF-mSX40-BP70)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.FIG. 10 is a graph measuring the change in ATR-IR spectrum by impregnating a salt removal film (NC-SPAEDF-mSX40-BP70) before crosslinking in a 5000 ppm NaOCl solution (pH 4 condition).

도 11은 가교 후 염제거막(C-SPAEDF-mSX40-BP70)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.FIG. 11 is a graph measuring the change in ATR-IR spectrum by impregnating a salt removal film (C-SPAEDF-mSX40-BP70) after crosslinking in a 5000 ppm NaOCl solution (pH 4 condition).

도 12는 폴리아마이드 염제거막(SW30HR-380, 다우케미컬)을 5000ppm NaOCl용액(pH4 조건)에 함침시켜, ATR-IR 스펙트럼 변화를 측정한 그래프이다.12 is a graph measuring the change in ATR-IR spectrum by impregnating a polyamide salt removing film (SW30HR-380, Dow Chemical) in a 5000 ppm NaOCl solution (pH 4 condition).

도 13a는 실험예 6에 의해 측정된 가교 후 염제거막 (C-SPAEDF-mSX30-BP70)과 폴리아마이드 염제거막의 시간에 따른 NaCl 제거율 변화를 나타낸 그래프이다.Figure 13a is a graph showing the change in NaCl removal rate with time of the salt-removing membrane (C-SPAEDF-mSX30-BP70) and the polyamide salt-removing membrane after crosslinking measured by Experimental Example 6.

도 13b는 실험예 6에 의해 측정된 가교 후 염제거막 (C-SPAEDF-mSX30-BP70)과 폴리아마이드 염제거막의 시간에 따른 물 투과량 변화를 나타낸 그래프이다.Figure 13b is a graph showing the water permeation change with time of the salt removal membrane (C-SPAEDF-mSX30-BP70) and the polyamide salt removal membrane after crosslinking measured by Experimental Example 6.

Claims (5)

하기 화학식 1로 표시되는 술폰화된 폴리(아릴렌 에터) 공중합체의 가교결합 화합물을 포함하는 고분자 염제거막:A polymer salt removing film comprising a crosslinking compound of a sulfonated poly (arylene ether) copolymer represented by Formula 1 below: [화학식 1][Formula 1]
Figure 112009059819128-PAT00114
Figure 112009059819128-PAT00114
상기 식에서, SAr1은 술폰화된 방향족(sulfonated aromatic)을 나타내고, Ar은 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며, CM은 가교할 수 있는 부분(crosslinkable moiety)을 나타내고,Wherein SAr1 represents sulfonated aromatic, Ar represents non sulfonated aromatic, CM represents crosslinkable moiety, b 및 k는 각각 0.001 ~ 1.000의 값를 가지고, d는 1-b 값을 가지며, s는 1-k 값을 가지고,b and k each have a value of 0.001 to 1.000, d has a value of 1-b, s has a value of 1-k, n은 술폰화된 폴리(아릴렌 에터)의 중합도로서 10 내지 500의 값을 갖는다.n has a value of 10 to 500 as the degree of polymerization of sulfonated poly (arylene ether).
제1항에 있어서, 상기 SAr1은The method of claim 1, wherein SAr1 is
Figure 112009059819128-PAT00115
,
Figure 112009059819128-PAT00116
,
Figure 112009059819128-PAT00117
,
Figure 112009059819128-PAT00118
,
Figure 112009059819128-PAT00119
,
Figure 112009059819128-PAT00120
또는
Figure 112009059819128-PAT00121
이고,
Figure 112009059819128-PAT00115
,
Figure 112009059819128-PAT00116
,
Figure 112009059819128-PAT00117
,
Figure 112009059819128-PAT00118
,
Figure 112009059819128-PAT00119
,
Figure 112009059819128-PAT00120
or
Figure 112009059819128-PAT00121
ego,
Z는 벤젠의 탄소와 -SO3 -M+가 직접 연결되어 있는 결합,
Figure 112009059819128-PAT00122
,
Figure 112009059819128-PAT00123
또는
Figure 112009059819128-PAT00124
이며,
Z is a bond in which benzene carbon and -SO 3 - M + are directly connected to each other,
Figure 112009059819128-PAT00122
,
Figure 112009059819128-PAT00123
or
Figure 112009059819128-PAT00124
,
Y는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00125
,
Figure 112009059819128-PAT00126
,
Figure 112009059819128-PAT00127
,
Figure 112009059819128-PAT00128
,
Figure 112009059819128-PAT00129
,
Figure 112009059819128-PAT00130
,
Figure 112009059819128-PAT00131
,
Figure 112009059819128-PAT00132
,
Figure 112009059819128-PAT00133
,
Figure 112009059819128-PAT00134
,
Figure 112009059819128-PAT00135
또는
Figure 112009059819128-PAT00136
이고,
Y is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00125
,
Figure 112009059819128-PAT00126
,
Figure 112009059819128-PAT00127
,
Figure 112009059819128-PAT00128
,
Figure 112009059819128-PAT00129
,
Figure 112009059819128-PAT00130
,
Figure 112009059819128-PAT00131
,
Figure 112009059819128-PAT00132
,
Figure 112009059819128-PAT00133
,
Figure 112009059819128-PAT00134
,
Figure 112009059819128-PAT00135
or
Figure 112009059819128-PAT00136
ego,
A는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00137
,
Figure 112009059819128-PAT00138
,
Figure 112009059819128-PAT00139
,
Figure 112009059819128-PAT00140
,
Figure 112009059819128-PAT00141
,
Figure 112009059819128-PAT00142
,
Figure 112009059819128-PAT00143
또는
Figure 112009059819128-PAT00144
이며,
A is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00137
,
Figure 112009059819128-PAT00138
,
Figure 112009059819128-PAT00139
,
Figure 112009059819128-PAT00140
,
Figure 112009059819128-PAT00141
,
Figure 112009059819128-PAT00142
,
Figure 112009059819128-PAT00143
or
Figure 112009059819128-PAT00144
,
E는 H, CH3, F, CF3, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는
Figure 112009059819128-PAT00145
이고,
E is a C1 to C5 alkyl group substituted with H, CH 3 , F, CF 3 , H or F, or
Figure 112009059819128-PAT00145
ego,
L은 H, F, 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기며,L is H, F, or C1 to C5 alkyl substituted with H or F, M+는 양이온 전하를 갖는 짝이온(counterion)인 것인 고분자 염제거막.M + is a polymer salt removal membrane that is a counterion (counterion) having a cation charge.
제2항에 있어서, 상기 양이온 전하를 갖는 짝이온은The counterion of claim 2, wherein the counterion having a cationic charge is 칼륨 이온, 나트륨 이온 또는 알킬암모늄 이온인 것인 고분자 염제거막.Polymer salt removal membrane which is potassium ion, sodium ion, or alkylammonium ion. 제1항에 있어서, 상기 Ar은The method of claim 1, wherein Ar is
Figure 112009059819128-PAT00146
,
Figure 112009059819128-PAT00147
,
Figure 112009059819128-PAT00148
또는
Figure 112009059819128-PAT00149
이고,
Figure 112009059819128-PAT00146
,
Figure 112009059819128-PAT00147
,
Figure 112009059819128-PAT00148
or
Figure 112009059819128-PAT00149
ego,
Y는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00150
,
Figure 112009059819128-PAT00151
,
Figure 112009059819128-PAT00152
,
Figure 112009059819128-PAT00153
,
Figure 112009059819128-PAT00154
,
Figure 112009059819128-PAT00155
,
Figure 112009059819128-PAT00156
,
Figure 112009059819128-PAT00157
,
Figure 112009059819128-PAT00158
,
Figure 112009059819128-PAT00159
,
Figure 112009059819128-PAT00160
또는
Figure 112009059819128-PAT00161
이며,
Y is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00150
,
Figure 112009059819128-PAT00151
,
Figure 112009059819128-PAT00152
,
Figure 112009059819128-PAT00153
,
Figure 112009059819128-PAT00154
,
Figure 112009059819128-PAT00155
,
Figure 112009059819128-PAT00156
,
Figure 112009059819128-PAT00157
,
Figure 112009059819128-PAT00158
,
Figure 112009059819128-PAT00159
,
Figure 112009059819128-PAT00160
or
Figure 112009059819128-PAT00161
,
A는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00162
,
Figure 112009059819128-PAT00163
,
Figure 112009059819128-PAT00164
,
Figure 112009059819128-PAT00165
,
Figure 112009059819128-PAT00166
,
Figure 112009059819128-PAT00167
,
Figure 112009059819128-PAT00168
또는
Figure 112009059819128-PAT00169
이고,
A is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00162
,
Figure 112009059819128-PAT00163
,
Figure 112009059819128-PAT00164
,
Figure 112009059819128-PAT00165
,
Figure 112009059819128-PAT00166
,
Figure 112009059819128-PAT00167
,
Figure 112009059819128-PAT00168
or
Figure 112009059819128-PAT00169
ego,
E는 H, CH3, F, CF3, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는
Figure 112009059819128-PAT00170
이며,
E is a C1 to C5 alkyl group substituted with H, CH 3 , F, CF 3 , H or F, or
Figure 112009059819128-PAT00170
,
L은 H, F, 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기인 것인 고분자 염제거막.L is H, F, or a polymer salt removal membrane that is a C1 to C5 alkyl group substituted with H or F.
제1항에 있어서, 상기 CM은The method of claim 1, wherein the CM
Figure 112009059819128-PAT00171
,
Figure 112009059819128-PAT00172
또는
Figure 112009059819128-PAT00173
이고,
Figure 112009059819128-PAT00171
,
Figure 112009059819128-PAT00172
or
Figure 112009059819128-PAT00173
ego,
J는
Figure 112009059819128-PAT00174
(m은 0 또는 1)이며,
J is
Figure 112009059819128-PAT00174
(m is 0 or 1),
R은 R1이 치환되어 있는 에타이닐기(R =
Figure 112009059819128-PAT00175
), R1이 치환되어 있는 에틸렌 함유기(R =
Figure 112009059819128-PAT00176
) 또는
Figure 112009059819128-PAT00177
이고,
R is an ethynyl group in which R 1 is substituted (R =
Figure 112009059819128-PAT00175
), The ethylene-containing group in which R 1 is substituted (R =
Figure 112009059819128-PAT00176
) or
Figure 112009059819128-PAT00177
ego,
R1은 H, F, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는
Figure 112009059819128-PAT00178
이며
R1 is a C1 to C5 alkyl group substituted with H, F, H or F, or
Figure 112009059819128-PAT00178
And
G는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00179
,
Figure 112009059819128-PAT00180
또는
Figure 112009059819128-PAT00181
이고,
G is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00179
,
Figure 112009059819128-PAT00180
or
Figure 112009059819128-PAT00181
ego,
R2는 H, X(할로겐 원자), 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기이며,R2 is an alkyl group of C1 to C5 substituted with H, X (halogen atom), or H or F, Y는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00182
,
Figure 112009059819128-PAT00183
,
Figure 112009059819128-PAT00184
,
Figure 112009059819128-PAT00185
,
Figure 112009059819128-PAT00186
,
Figure 112009059819128-PAT00187
,
Figure 112009059819128-PAT00188
,
Figure 112009059819128-PAT00189
,
Figure 112009059819128-PAT00190
,
Figure 112009059819128-PAT00191
,
Figure 112009059819128-PAT00192
또는
Figure 112009059819128-PAT00193
이며,
Y is a single bond where carbon and carbon are directly connected,
Figure 112009059819128-PAT00182
,
Figure 112009059819128-PAT00183
,
Figure 112009059819128-PAT00184
,
Figure 112009059819128-PAT00185
,
Figure 112009059819128-PAT00186
,
Figure 112009059819128-PAT00187
,
Figure 112009059819128-PAT00188
,
Figure 112009059819128-PAT00189
,
Figure 112009059819128-PAT00190
,
Figure 112009059819128-PAT00191
,
Figure 112009059819128-PAT00192
or
Figure 112009059819128-PAT00193
,
A는 탄소와 탄소가 직접 연결되어 있는 단일결합,
Figure 112009059819128-PAT00194
,
Figure 112009059819128-PAT00195
,
Figure 112009059819128-PAT00196
,
Figure 112009059819128-PAT00197
,
Figure 112009059819128-PAT00198
,
Figure 112009059819128-PAT00199
,
Figure 112009059819128-PAT00200
또는
Figure 112009059819128-PAT00201
이며,
A is a single bond in which carbon and carbon are directly connected,
Figure 112009059819128-PAT00194
,
Figure 112009059819128-PAT00195
,
Figure 112009059819128-PAT00196
,
Figure 112009059819128-PAT00197
,
Figure 112009059819128-PAT00198
,
Figure 112009059819128-PAT00199
,
Figure 112009059819128-PAT00200
or
Figure 112009059819128-PAT00201
,
E는 H, CH3, F, CF3, H 혹은 F로 치환된 C1 ~ C5의 알킬기, 또는
Figure 112009059819128-PAT00202
이고,
E is a C1 to C5 alkyl group substituted with H, CH 3 , F, CF 3 , H or F, or
Figure 112009059819128-PAT00202
ego,
L은 H, F, 또는 H 혹은 F로 치환된 C1 ~ C5의 알킬기인 것인 고분자 염제거막.L is H, F, or a polymer salt removal membrane that is a C1 to C5 alkyl group substituted with H or F.
KR1020090092301A 2009-09-29 2009-09-29 Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers KR20110034842A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090092301A KR20110034842A (en) 2009-09-29 2009-09-29 Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers
PCT/KR2010/006644 WO2011040760A2 (en) 2009-09-29 2010-09-29 High polymer desalination membrane comprising a sulfonated poly(arylene ether) copolymer having a cross-linked structure in a chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090092301A KR20110034842A (en) 2009-09-29 2009-09-29 Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers

Publications (1)

Publication Number Publication Date
KR20110034842A true KR20110034842A (en) 2011-04-06

Family

ID=43826788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090092301A KR20110034842A (en) 2009-09-29 2009-09-29 Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers

Country Status (2)

Country Link
KR (1) KR20110034842A (en)
WO (1) WO2011040760A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102084359B1 (en) * 2019-08-29 2020-03-03 박성률 Resin composition for membrane to purify or diagnose biological products and method of preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308824B (en) * 2017-08-25 2020-06-16 南开大学 Preparation method of sulfonic acid type cation exchange membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440895B1 (en) * 2002-05-11 2004-07-19 정보통신연구진흥원 Method for preparing sulphonated polysulphone polymer for cationic exchange membrane
KR100934529B1 (en) * 2007-10-11 2009-12-29 광주과학기술원 Sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain, sulfonated poly (arylene ether) copolymer having a crosslinked structure inside and at the end of the polymer chain, and a polymer electrolyte membrane using the same
KR100934535B1 (en) * 2007-10-11 2009-12-29 광주과학기술원 Sulfonated poly (arylene ether) copolymer having a crosslinked structure and a polymer electrolyte membrane crosslinked using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102084359B1 (en) * 2019-08-29 2020-03-03 박성률 Resin composition for membrane to purify or diagnose biological products and method of preparing the same

Also Published As

Publication number Publication date
WO2011040760A3 (en) 2011-09-09
WO2011040760A2 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US8710109B2 (en) Chemically resistant membranes, coatings and films and methods for their preparation
JP5342019B2 (en) Polyamide membrane with fluoroalcohol functionality
US20120178834A1 (en) Membranes, Coatings and Films and Methods for Their Preparation
Mondal et al. Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal
Zhang et al. Preparation of sulfonated poly (phthalazinone ether sulfone ketone) composite nanofiltration membrane
EP2443172A1 (en) Aromatic polyethersulfone block copolymers
Zhang et al. Highly chlorine-resistant multilayer reverse osmosis membranes based on sulfonated poly (arylene ether sulfone) and poly (vinyl alcohol)
DE102016007815A1 (en) Crosslinked highly stable anion exchange blend membranes with polyethylene glycols as the hydrophilic membrane phase
CN112770831B (en) Sulfonated poly (arylene ether) films having high removal rates for monovalent salts even in the presence of mixed salt feeds comprising multivalent salts
KR100819332B1 (en) Sulfonated poly(arylene ether) containing crosslinkable moity at end group, method of manufacturing the same, and polymer electrolyte membrane using the sulfonated poly(arylene ether) and the method
WO2006107115A1 (en) Crosslinked polymer electrolyte and method for producing same
Wang et al. Evaluation of quaternary phosphonium-based polymer membranes for desalination application
JP6312148B2 (en) High performance positively charged composite membranes and their use in nanofiltration processes
Malakhov et al. Modification of polymer membranes for use in organic solvents
KR20170100851A (en) Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
KR20110034842A (en) Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers
KR20110095511A (en) Method for fabricating desalination membrane utilizing electrospinning based on poly(arylene ether) and desalination membrane fabricated thereby
Shin et al. Solvent-resistant crosslinked polybenzimidazole membrane for use in enhanced molecular separation
KR101187372B1 (en) Composite membrane for fuel cell electrolyte and its preparation method
Hoshi et al. Synthesis and properties of sulfonated poly (arylene ether) block copolymers as proton conductive membranes
KR20100095725A (en) Desalination membrane based on sulfonated poly(arylene ether) containing crosslinking at end group
KR101418063B1 (en) Polymer additive for preparing of microfilter membrane or ultrafilter membrane and preparation method of the same
Khodami et al. Improving the performance of novel polysulfone‐based membrane via sulfonation method: application to water desalination
WO2015076539A1 (en) Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor
KR20140141551A (en) Polymer resin for for preparing active skin layer of nanofiltration or reverse osmosis membrane and preparation method of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application