KR101019952B1 - Stroke early diagnosing chip and screening analysis thereof - Google Patents

Stroke early diagnosing chip and screening analysis thereof Download PDF

Info

Publication number
KR101019952B1
KR101019952B1 KR1020080049087A KR20080049087A KR101019952B1 KR 101019952 B1 KR101019952 B1 KR 101019952B1 KR 1020080049087 A KR1020080049087 A KR 1020080049087A KR 20080049087 A KR20080049087 A KR 20080049087A KR 101019952 B1 KR101019952 B1 KR 101019952B1
Authority
KR
South Korea
Prior art keywords
stroke
probe
chip
analysis
snp
Prior art date
Application number
KR1020080049087A
Other languages
Korean (ko)
Other versions
KR20090123149A (en
Inventor
박민구
이지원
Original Assignee
박민구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박민구 filed Critical 박민구
Priority to KR1020080049087A priority Critical patent/KR101019952B1/en
Publication of KR20090123149A publication Critical patent/KR20090123149A/en
Application granted granted Critical
Publication of KR101019952B1 publication Critical patent/KR101019952B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2871Cerebrovascular disorders, e.g. stroke, cerebral infarct, cerebral haemorrhage, transient ischemic event

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

뇌졸중은 국내외에 걸쳐 단일질환으로 사망원인 수위를 다투고 있는 질환으로 적극적인 대처가 요구되고 있으나 현재의 진단법은 급성기 뇌졸중의 치료방향 선택을 위한 병인감별 진단의 범주내에 머물러 있는 실정이다. Stroke is a disease confronting the cause of death due to a single disease at home and abroad, and active treatment is required, but the current diagnosis method remains within the scope of etiological diagnosis for selecting a treatment direction for acute stroke.

이에 본 발명은 소량의 채혈을 통한 비침습적 진단, 뇌졸중 발현 예측 유전자 표지자 SNP 분석 및 생화학 표지자 분석을 통한 뇌졸중 발현 가능성 조기진단이 가능한 고-처리량 분석방법을 제공한다.Accordingly, the present invention provides a high-throughput analysis method capable of early diagnosis of stroke expression potential through non-invasive diagnosis, stroke expression prediction gene marker SNP analysis and biochemical marker analysis through a small amount of blood collection.

단일 염기 연장법(sinle base extension, SBE)을 주축으로 한 종래의 SNP 분석은 일부 염기 변환의 경우 변별력 감소가 보고된 바 있으며, 칩 방식에 비해서 비교적 저-처리량, 긴 분석시간의 단점 등이 존재한다. 이에 본 발명은 타겟 유전자와 상보적인 SNP 염기를 프로브의 중앙(central)에 위치시키고, 그 좌우로 5 - 6개의 비교적 짧은 염기가 위치하게끔 프로브를 고안하여 염기 치환, 삽입, 결실에 대한 검출 변별력과 특이도를 향상시킨 분석방법을 제공한다. Conventional SNP analysis based on single base extension (SBE) has been reported to reduce discrimination in some base conversions, and has the disadvantage of relatively low throughput and long analysis time compared to the chip method. do. Accordingly, the present invention is designed to position the SNP base complementary to the target gene in the central (central) of the probe, and to design the probe so that 5 to 6 relatively short bases to the left and right, and the detection discrimination ability for base substitution, insertion, deletion Provides an assay with improved specificity.

뇌졸중(Stroke), DNA 칩, PNA 칩, 조기진단(early diagnosis), 단일염기다형성(SNP), 유전자 표지자(gene marker), 프로브(probe), 대립유전자(allele). Stroke, DNA chip, PNA chip, early diagnosis, single nucleotide polymorphism (SNP), gene markers, probes, alleles.

Description

뇌졸중 조기진단 칩 그리고 이를 이용한 뇌졸중 스크리닝 검사{Stroke early diagnosing chip and screening analysis thereof}Stroke early diagnosing chip and screening analysis

본 발명은 뇌졸중 조기진단용 칩(chip)에 관한 것으로서, 보다 상세하게는 급성 허혈성 및 출혈성 뇌졸중 질환 발현 예측 분석용 유전자들의 단일염기 다형성(single nucleotide polymorphism, SNP) 유무를 대립유전자-특이적 프로브들을 사용하여 고-처리량 방식으로 판별하는 방법 및 칩에 관한 것이다. The present invention relates to a chip for early diagnosis of stroke, and more specifically, using allele-specific probes for the presence or absence of single nucleotide polymorphism (SNP) of genes for predictive analysis of acute ischemic and hemorrhagic stroke disease expression. And a method for discriminating in a high-throughput manner.

뇌졸중(stroke)은 뇌로 혈액을 공급하는 중추신경계 혈관 폐색으로 인한 허혈성 뇌졸중(ischaemic stroke, cerebral infarction)과 혈관 파열에 의한 출혈성 뇌졸중(haemorrhagic stroke)으로 크게 구분된다. 전체 뇌졸중 환자 중 뇌경색(허혈성 뇌졸중)이 가장 많으며 그 다음으로 뇌출혈, 지주막하출혈 순서인 것으로 알려져 있다. 동맥경화증이나 혈전(thrombus)에 의하여 혈관이 막히는 허혈성 뇌졸중은 막힌 혈관을 뚫어주기 위해 혈전용해제를 투여해야 사망률과 후유장애 강도를 감소시킬 수 있으며, 뇌혈관의 파열로 인한 출혈성 뇌졸중은 파열된 부위를 막아주면서 혈종(hematoma)을 제거해야 뇌 조직의 괴사를 방지할 수 있다. 뇌졸중의 임상소견은 반신마비, 감각, 언어 및 시력장애, 치매 등 심각한 후유증을 동반한다. 최 근까지 급성 뇌허혈에 대한 치료 기술이 많은 발전을 보여왔으며, 경정맥 혈전 용해제인 rt-PA(recombinant tissue plasminogen activator)가 발병 3시간 이내의 급성 뇌허혈에 대한 치료제로 미국 FDA의 승인을 받은 바 있다. 또한 두개외 경동맥(extracranial carotid artery) 협착 환자에서 경동맥 내막절제술(CEA, carotid endarterectomy)의 뇌경색 재발 방지효과가 입증된 바 있다. Stroke is largely divided into ischemic stroke (cerebral infarction) due to central nervous system vascular occlusion that supplies blood to the brain and hemorrhagic stroke due to vascular rupture. Cerebral infarction (ischemic stroke) is the most common among stroke patients, followed by cerebral hemorrhage and subarachnoid hemorrhage. Ischemic strokes in which blood vessels are blocked by arteriosclerosis or thrombus require thrombolytics to penetrate the blocked blood vessels, which can reduce mortality and sequelae intensity. Hematoma should be removed while preventing the necrosis of brain tissue. The clinical findings of stroke are accompanied by severe sequelae such as paraplegia, sensory, speech and vision disorders and dementia. In recent years, the treatment technology for acute cerebral ischemia has developed a lot. Recombinant tissue plasminogen activator (rt-PA), a jugular vein thrombolytic agent, has been approved by the US FDA as a treatment for acute cerebral ischemia within 3 hours of onset. In addition, carotid endarterectomy (CEA) has been proven to prevent recurrence of cerebral infarction in patients with extracranial carotid artery.

세계보건기구(World Health Organization)가 2002년에 보고한 전세계 심혈관계 질환으로 인한 사망자 수는 1670만명 이었으며, 그 중에 관상동맥 질환과 뇌졸중이 주요 원인으로 각각 720만명, 550만명이 사망한것으로 보고되어 심혈관계 질환 전체 사망자의 76%에 해당했다(http://www.who.int/cardiovascular_diseases/Reported by the World Health Organization in 2002, the number of deaths from cardiovascular disease worldwide was 16.7 million, with coronary artery disease and stroke accounting for 7.2 million and 5.5 million deaths, respectively. 76% of all deaths were related to disease (http://www.who.int/cardiovascular_diseases/)

resources/atlas/en/). 또한 미국의 경우 450만명의 뇌졸중 환자가 보고되어 있으며, 매년 60만명의 환자가 발생하며 77만명이 사망하는 것으로 보고되었으며 연간 500억 달러의 의료비용이 소요되고 있는 실정이다. 국내의 경우에도 2000년도 통계청의 자료에 따르면 뇌졸중은 암에 이은 사망원인 수위를 다투고 있으며, 환자수는 약 100만명으로 추산되고 있다. resources / atlas / en /). In the United States, 4.5 million stroke patients are reported, 600,000 patients die each year, 770,000 deaths are reported, and medical expenses of $ 50 billion are required annually. In Korea, according to the 2000 statistics, stroke is competing for the death level following cancer, and the number of patients is estimated to be about 1 million.

전술한 바와 같이 허혈성 뇌졸중과 출혈성 뇌졸중의 지극히 상반된 치료 기전으로 인해 뇌졸중 발생 초기에 출혈성인지 경색성인지로 이분되는 병인론적인 진단을 위해서 뇌 전산화 단층촬영(CT, computer aided tomography) 또는 자기공명촬영(MRI, magnetic resonance imaging)을 수행하며, 이외에도, 방사성동위원소 또는 초음파을 이용한 뇌혈류 측정법, 뇌혈관 촬영 등이 가능하다. 허혈성 뇌졸중과 출혈성 뇌졸중의 감별진단에는 CT가 가장 도움이 되며 급성기의 허혈성 뇌졸중 정도 와 혈관 상태 파악을 위해서는 MRI가 우수하다는 평가를 받고 있다. 그러나 고가 장비의 사용으로 인한 고 비용 및 진단 장소의 제한 등 단점이 있다. 그리고 병변이 대뇌피질등을 포함한 정확히 어느 부위에 위치하는지를 파악하는 국소적 진단도 치료와 예후 평가에 중요하다.As described above, CT and computer aided tomography (MRI) or magnetic resonance imaging (MRI) for the pathological diagnosis of dichotomous hemorrhagic or infarct due to extremely contradictory treatment mechanisms of ischemic stroke and hemorrhagic stroke. magnetic resonance imaging), and in addition, the measurement of cerebrovascular flow using radioisotopes or ultrasound, cerebrovascular imaging, and the like are possible. CT is most helpful for the differential diagnosis between ischemic stroke and hemorrhagic stroke, and MRI has been evaluated to be excellent for determining ischemic stroke and vascular status in acute stage. However, there are disadvantages such as high cost and limitation of diagnosis site due to the use of expensive equipment. In addition, local diagnosis to determine exactly where the lesion is located, including the cerebral cortex, is also important for treatment and prognostic evaluation.

뇌 조직은 한 번 손상되면 재생되지 않고 일단 발생하면 후유증이 심각하기에, 상기와 같은 발병 이후의 치료법 결정을 위한 진단과 대별되는 뇌졸중 예방을 위한 조기 진단(early diagnosis)의 중요성이 사회 경제적 손실비용 감소 측면 외에도 사망률 감소 및 국가 질병관리 측면에서 그 순기능적 가치가 매우 높다 하겠다. 뇌졸중 발병 이전에 발생 가능성을 분석하고 그에 따른 위험인자 통제할 수 있는 뇌졸중 조기 진단 기술의 개발 및 위험인자 의료관리체계의 확립을 통해 선제적으로 예방하는 것이 무엇보다 시급한 실정이다. Brain tissues do not regenerate once damaged and the sequelae is severe once they occur, so the importance of early diagnosis for stroke prevention, as opposed to the diagnosis for treatment decisions after such an outbreak, is socioeconomic In addition to the reduction, the net functional value is very high in terms of mortality reduction and national disease management. It is urgently needed to prevent proactive prevention through the development of early diagnosis technology for stroke and the establishment of a risk factor medical management system that analyzes the possibility of stroke and controls risk factors accordingly.

이에 본 발명은 뇌졸중 발현 가능성을 조기진단할 수 있는 분석방법을 제공하고자 한다. 상세하게, 본 발명은 현상학적 질환 소인 분석을 위한 생화학 표지자 4종과 유전 소인 분석을 위한 유전자 표지자 11종의 종합 분석결과에 따른 뇌졸중 조기진단의 목적을 실현할 수 있는 검사법을 제공하고자 한다. 본 발명의 목적을 실현하기 위하여, 유전자 표지자 11종의 대립유전자-특이적 혼성화 반응결과를 통한 뇌졸중 조기 진단 판별을 1회 반응으로 용이하게 분석할 수 있는 DNA 또는 PNA 칩(chip)을 제공하고자 한다.Therefore, the present invention is to provide an analysis method for early diagnosis of the possibility of stroke expression. In detail, the present invention is to provide a test method that can realize the purpose of the early diagnosis of stroke according to the comprehensive analysis results of four biochemical markers for phenotypic disease predisposition analysis and 11 genetic markers for genetic predisposition analysis. In order to realize the object of the present invention, to provide a DNA or PNA chip that can easily analyze the early diagnosis of stroke through the allele-specific hybridization reaction results of 11 gene markers in one response. .

뇌졸중은 단일 질환 중 사망률 1위의 질환이지만 현재의 진단법은 뇌졸중 병인이 허혈성인지 출혈성인지에 대한 감별진단으로서 질환 발병 이후의 치료방향을 선택하기위한 진단의 성격을 갖는다. 본 발명은 소량의 혈액으로 생화학 표지자 4종 및 뇌졸중 발현 예측 유전자 11종의 SNP 유무를 분석함으로써 뇌졸중 조기 진단을 통해 발병율과 사망률 감소 및 후유장애 완화에 기여하고자 한다.Although stroke is the number one mortality disease among the single diseases, the current diagnostic method is a differential diagnosis of whether the stroke etiology is ischemic or hemorrhagic and has the characteristics of diagnosis to select a treatment direction after the onset of the disease. The present invention aims to contribute to the reduction of incidence, mortality, and alleviation of sequelae disorders through early diagnosis of stroke by analyzing the presence or absence of SNPs of four biochemical markers and 11 stroke expression predictive genes in a small amount of blood.

심혈관계, 뇌혈관계 혈관 내부에서 일어나고 있는 뇌졸중 관련 병태생리학적 events를 4종의 생화학 표지자 측정을 통해 분석하고, 뇌졸중 발현과 관련된 유전 소인(disposition)을 11종의 발현 예측 분석용 유전자들의 SNP 분석을 통해 평가하고 통합함으로써 뇌졸중 조기진단이 가능한 분석방법 및 칩을 제공하고자 한다.The pathophysiological events related to the cardiovascular and cerebrovascular vessels were analyzed by measuring four biochemical markers, and the SNP analysis of the 11 genes for predictive analysis of the genetic disposition related to stroke expression was analyzed. We will provide analytical methods and chips that enable early diagnosis of stroke by evaluating and integrating them.

단일 염기 연장법(sinle base extension, SBE)을 주축으로 한 종래의 SNP 분석은 일부 염기 변환(예를 들어, A>G 치환)의 경우 변별력이 저하되며, 칩 방식에 비해서는 비교적 저-처리량, 긴 분석시간의 단점 등이 존재한다. 이에 본 발명은 타겟 유전자와 상보적인 SNP 염기를 프로브의 중앙(central)에 위치시키고, 그 좌우로 5 - 6개의 비교적 짧은 염기가 위치하게끔 대립유전자-특이적 프로브를 고안하여 SNP 변별력과 특이도를 향상시키고자 한다. Conventional SNP analysis, based on single base extension (SBE), reduces discrimination for some base conversions (eg, A> G substitution), and provides relatively low throughput, There are disadvantages of long analysis time. Therefore, the present invention is to design an allele-specific probe to position the SNP base complementary to the target gene in the central (central) of the probe, and 5-6 relatively short bases to the left and right to determine the SNP discrimination and specificity I want to improve.

전기 본 발명의 목적을 달성하기 위해, 뇌졸중 발현 예측 유전자 표지자들의 단일염기 다형성(SNP) 고-처리량 분석 및 생화학 표지자 분석을 통해 뇌졸중을 조 기진단할 수 있는 분석방법을 제공한다.In order to achieve the object of the present invention, there is provided an analytical method capable of early diagnosis of stroke through single-nucleotide polymorphism (SNP) high-throughput analysis and biochemical marker analysis of stroke expression predictive gene markers.

그리고 자세하게 상기 분석방법에 있어서, 5'- 또는 3'-말단에 아미노 모디파이어(amino modifier) 또는 티올 모디파이어(thiol modifier)가 수식된 프로브가 스팟팅(spotting)된 칩(chip)을 제작하는 단계;In detail, the analysis method comprising the steps of: fabricating a chip (spot) spotted with a probe modified with an amino modifier or thiol modifier at the 5'- or 3'-end;

혈액으로부터 게노믹(genomic) DNA를 분리하는 단계; Isolating genomic DNA from blood;

뇌졸중 발현 예측 표지 유전자들의 프로브 타겟 부위를 멀티플렉스 PCR(polymerase chain reaction)을 통해 증폭하면서 형광색소(fluorescent dye)가 포함되도록 타겟(target) DNA 증폭산물을 준비하는 단계;Preparing a target DNA amplification product to include fluorescent dyes while amplifying probe target sites of stroke expression predictive marker genes through multiplex polymerase chain reaction (PCR);

상기 멀티플렉스 PCR 반응산물과 칩 표면에 고정화된 프로브간 혼성화(hybridization) 반응을 수행하고 세척(washing)하는 단계;Performing a hybridization reaction between the multiplex PCR reaction product and a probe immobilized on a chip surface and washing the hybridization reaction;

형광색소에 특이적인 파장의 레이저(laser)로 칩을 스캐닝(scanning)하고 혼성화 반응 결과에 따른 형광강도를 측정함으로써 뇌졸중 발현 예측 유전자 표지자들의 SNP 결과를 분석하는 단계;Analyzing SNP results of stroke expression predictive markers by scanning a chip with a laser of a wavelength specific to fluorescent dyes and measuring fluorescence intensity according to the hybridization reaction result;

상기 뇌졸중 발현 예측 표지 유전자들의 SNP 결과 및 생화학 표지자 시험결과를 분석하고 통합하여 질환 발현 소인을 도출하는 단계; 그리고Analyzing and integrating SNP results and biochemical marker test results of the stroke expression predictive marker genes to derive a disease expression predisposition; And

상기 분석단계 전부를 포함하는 뇌졸중 조기진단 분석방법을 제공한다.It provides a method for the early diagnosis of stroke comprising the entire analysis step.

또한, 상기 분석방법에 있어서, 뇌졸중 발현 예측 유전자 표지자 및 이들의 뇌졸중 발생기전과 관련된 단일염기 다형성(SNP)으로,In addition, in the above analysis method, a single nucleotide polymorphism (SNP) associated with stroke expression predictive gene markers and their stroke generation mechanism,

MTHFR(5,10-methylenetetrahydrofolate reductase) C677T;MTHFR (5,10-methylenetetrahydrofolate reductase) C677T;

AGT(Angiotensinogen) Met235Thr; Angiotensinogen Met235Thr;

APOE(Apolipoprotein E) ε2, ε3, ε4; Apolipoprotein E (APOE) ε2, ε3, ε4;

F5(Coagulation factor V Leiden) Arg506Gln; Coagulation factor V Leiden (F5) Arg506Gln;

F2(Coagulation factor II prothrombin) G20210A; Coagulation factor II prothrombin (F2) G20210A;

FGB(Fibrinogen) G(-455)A; Fibrinogen G (-455) A;

GP1BA(Glycoprotein Ib, platelet alpha polypeptide) T(-5)C; Glycoprotein Ib (platelet alpha polypeptide) T (-5) C;

FABP2(Fatty acid-binding protein 2) Ala54Thr; Fatty acid-binding protein 2 (FABP2) Ala54Thr;

PAI-1(Plasminogen activator inhibitor-1) 5G/4G; Plasminogen activator inhibitor-1 (PAI-1) 5G / 4G;

IL-6(Interleukin-6) G(-174)C; IL-6 (Interleukin-6) G (-174) C;

NOS3(Nitric oxide synthase 3) Glu298Asp; 중 선택된 하나 이상을 포함하고; 그리고 Nitric oxide synthase 3 (NOS3) Glu298Asp; One or more selected from; And

내부 대조군으로 인간 베타-글로빈 유전자를 포함하는 뇌졸중 조기진단 분석방법을 제공한다.An internal control provides a method for the early diagnosis of stroke comprising a human beta-globin gene.

또한 상기 분석방법에 있어서, 본 발명의 목적을 바람직하게 실현하기 위해 서열목록번호 1 내지 49의 염기서열을 갖는 올리고뉴클레오티드(oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 DNA 또는 PNA 프로브(probe)를 포함하는 뇌졸중 조기진단용 칩을 제공한다.In the above analysis method, at least one DNA or PNA probe selected from the group consisting of oligonucleotides having a nucleotide sequence of SEQ ID NO: 1 to 49 in order to realize the object of the present invention preferably Provides a chip for early diagnosis of stroke.

본 발명은 소량의 채혈을 통한 비침습적 검체채취, 고-처리량 분석을 통한 총 11종 뇌졸중 발현 예측 유전자 표지자 SNP 분석 및 4종 생화학 표지자 분석을 통해 뇌졸중 발현 가능성 조기진단이 가능하다.The present invention enables early diagnosis of stroke expression potential through a non-invasive sample collection through a small amount of blood collection, a total of 11 types of stroke expression prediction gene marker SNP analysis and 4 types of biochemical marker analysis through high-throughput analysis.

뇌졸중 관련한 기존의 진단은 질환 발현이후의 치료방향을 선택하기위한 병인에 대한 감별진단 성격을 갖지만, 본 발명은 생화학 표지자 및 유전 소인 분석을 통한 예방적 조기진단이 가능한 분석방법 및 칩을 제공한다. 대형 고가 장비의 사용에 따른 진단 장소 및 시간에 구애받지 않으며 저 비용의 진단이 가능하다.Conventional diagnosis related to stroke has a differential diagnosis of the etiology for selecting a treatment direction after disease expression, but the present invention provides an analysis method and chip capable of prophylactic early diagnosis through biochemical markers and genetic predisposition analysis. Diagnosis is possible regardless of the place and time of diagnosis due to the use of large expensive equipment, and low-cost diagnosis is possible.

이하 도면 및 표를 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 명세서에 기재된 도면, 표 및 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings and tables. Configurations shown in the drawings, tables and examples described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be substituted for them at the time of the present application It should be understood that there may be equivalents and variations.

또한 본 발명이 청구하는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며 이러한 변형은 본 발명의 범위에 속한다. Also, within the scope of the present invention, various modifications may be made by those skilled in the art to which the present invention pertains, and such modifications are within the scope of the present invention.

<< 실시예Example 1> 뇌졸중 임상진단을 위한 생화학 표지자 분석 1> Analysis of biochemical markers for clinical diagnosis of stroke

본 발명의 바람직한 일 양태에 따른 급성 뇌허혈 임상진단을 위해 포함하는 생화학 표지자는 바탕질 금속단백분해효소-9(matrix metalloproteinase-9, MMP-9), 금속단백분해효소 조직 억제제-1(tissue inhibitor of metalloproteinase-1, TIMP-1), 고감도 C반응성 단백질(high-sensitivity C-reactive protein, hs-CRP), 호모시스테인(homocysteine)이다. MMP-9은 뇌혈관 주위의 바닥판(basal lamina)을 구성하는 주요 성분인 제 4형 콜라겐(type IV collagen), 라미닌(laminin), 피브로 넥틴(fibronectin)을 분해하는 펩티드내부분해효소(endopeptidase)이고, TIMP-1은 MMP들과 complex를 형성함으로써 이들을 억제하는 역조절자(counter-regulator) 역할을 통해 뇌와 말초신경(peripheral nerve)의 손상과 복구에 관여하며, MMPs와 TIMPs는 급성 허혈성 뇌졸중의 병태생리와 관련있다는 연구보고가 있다(Horstmann S et al . Stroke (2003) 34:2165-70, Orbe J et al . Atherosclerosis (2003) 170:269-276). hs-CRP는 염증 표지자로서 모든 단계의 죽상동맥경화증과 심혈관계 병태생리의 독립적인 예측인자(predictor)로 알려져 있다. 고농도의 혈중 호모시스테인은 뇌졸중, 알츠하이머 질환과 관련이 있는 것으로 또한 알려져 있다.Biochemical markers for the clinical diagnosis of acute cerebral ischemia according to an embodiment of the present invention are matrix metalloproteinase-9 (MMP-9), metalloproteinase tissue inhibitor-1 (tissue inhibitor of metalloproteinase-1, TIMP-1), high-sensitivity C-reactive protein (hs-CRP), and homocysteine. MMP-9 is an endopeptidase that breaks down type IV collagen, laminin and fibronectin, which are the major components of the basal lamina around the cerebrovascular vessels. TIMP-1 is involved in the damage and repair of the brain and peripheral nerves by acting as a counter-regulator that inhibits them by forming complexes with MMPs. MMPs and TIMPs are acute ischemic. There is a study that linked the pathophysiology of stroke (Horstmann S et. al . Stroke (2003) 34: 2165-70, Orbe J et al . Atherosclerosis (2003) 170: 269-276). hs-CRP is an inflammatory marker and is known as an independent predictor of atherosclerosis and cardiovascular pathophysiology at all levels. High concentrations of homocysteine in blood are also known to be associated with stroke, Alzheimer's disease.

MRI로 급성 허혈성 뇌졸중 진단받은 환자 30명, 출혈성 뇌졸중 환자 17명, 뇌질환 병력이 없는 건강한 성인 12명으로부터 말초혈액을 채취하여 생화학 표지자 검사를 수행하였다. 인간 MMP-9 면역형광법(Cat. No. DMP900, R&D systems Inc. Minneapolis, MN, USA) 검사는 다음과 같이 제조사의 프로토콜에 따라 수행하였다. 분석 희석액 RD1-34 100 uL를 마이크로플레이트의 해당하는 웰(well)로 분주하였다. 반응 스탠다드, 대조군과 희석한 검체시료 각 100 uL를 해당 웰로 첨가하고 수평 회전 마이크로플레이트 진탕기에서 500 rpm 회전하에 2시간 실온 반응하였다. 반응액을 회수하여 제거하고 세척 완충용액 400 uL를 첨가하여 세척한 후 완충용액을 제거하였다. 세척과정을 총 4회 반복하였고 최종 세척단계에서는 완충용액을 제거한후 마이크로플레이트를 페이퍼 타월위로 뒤집어 용액을 완전히 제거하였다. MMP-9 컨쥬게이트 200 uL를 해당 웰에 첨가하고 접착 스트립으로 각 반응웰을 덮은 뒤, 상기와 동일 조건으로 진탕기에서 1시간 실온 반응하였다. 이후 역 시 상기와 동일한 조건으로 총 4회 세척과정을 거쳤다. 각 웰에 기질 용액 200 uL를 첨가하고 빛을 차폐하는 조건에서 실온 30분간 반응시켰다. 반응 후 각 웰에 반응정지 용액 50 uL를 첨가하고 30분 이내에 루미넥스 또는 바이오래드 분석기를 통해 450nm 흡광도를 측정하여 MMP-9 농도를 측정하였으며 그 값은 540 또는 570nm 파장 측정치로 보정하였다. 인간 TIMP-1 생화학 표지자 검사는 인간 TIMP 멀티플렉스 키트(Cat. No. LKT003, R&D systems Inc. Minneapolis, MN, USA)를 제조사의 프로토콜에 따라 수행하였다. Hs-CRP는 자동화 화학 분석장비 히타치 7600(Hitachi, Tokyo, Japan)을 이용하여 측정하였고, 호모시스테인은 자동면역장비 IMx (Abott Diagnostics, Abbott Park,IL, USA)를 이용하여 측정하였다. 경쟁적 형광 편광 면역분석법(FPIA, fluorescence polarized immunoassay)을 통해 비결합형, 결합형, 산화형 및 환원형을 포함한 총 호모시스테인을 측정하였다.Peripheral blood samples were collected from 30 patients diagnosed with MRI, 17 patients with hemorrhagic stroke, and 12 healthy adults without a history of brain disease. Human MMP-9 immunofluorescence (Cat. No. DMP900, R & D systems Inc. Minneapolis, MN, USA) test was performed according to the manufacturer's protocol as follows. 100 uL of assay dilution RD1-34 was dispensed into the corresponding wells of the microplate. 100 uL of each of the standard, control and diluted specimens was added to the wells and allowed to react at room temperature for 2 hours at 500 rpm rotation in a horizontal rotating microplate shaker. The reaction solution was collected and removed, washed with the addition of 400 uL of wash buffer, and then the buffer was removed. The washing process was repeated four times. In the final washing step, after removing the buffer solution, the microplate was inverted onto a paper towel to completely remove the solution. 200 uL of MMP-9 conjugate was added to the wells, and each reaction well was covered with an adhesive strip, followed by 1 hour room temperature reaction on a shaker under the same conditions as above. Since then, a total of four washes were performed under the same conditions. 200 uL of substrate solution was added to each well and allowed to react for 30 minutes at room temperature under light shielding conditions. After the reaction, 50 uL of the reaction stop solution was added to each well, and within 30 minutes, the MMP-9 concentration was measured by measuring the absorbance at 450 nm through a Luminex or Biorad analyzer, and the value was corrected by a 540 or 570 nm wavelength measurement. Human TIMP-1 biochemical marker testing was performed using a human TIMP multiplex kit (Cat. No. LKT003, R & D systems Inc. Minneapolis, MN, USA) according to the manufacturer's protocol. Hs-CRP was measured using an automated chemistry analyzer Hitachi 7600 (Hitachi, Tokyo, Japan), and homocysteine was measured using an automated immunoassay device IMx (Abott Diagnostics, Abbott Park, IL, USA). Total homocysteine was determined by competitive fluorescence polarized immunoassay (FPIA), including unbound, bound, oxidized and reduced.

뇌졸중 생화학 표지자 4종의 그룹별 측정값 비교Comparison of Four Groups of Stroke Biochemical Markers

허혈성
뇌졸중 그룹
(n=30)
Ischemic
Stroke group
(n = 30)

P value

P value
출혈성
뇌졸중 그룹
(n=17)
Hemorrhagic
Stroke group
(n = 17)

P value

P value
정상 대조군
그룹
(n=12)
Normal control
group
(n = 12)

P value

P value
MMP-9
(ng/mL)
MMP-9
(ng / mL)

115.2(±132.2)

115.2 (± 132.2)

0.05

0.05

112.5(±125.4)

112.5 (± 125.4)

0.07

0.07

105.3(±102.3)

105.3 (± 102.3)

0.06

0.06
TIMP-1
(ng/mL)
TIMP-1
(ng / mL)

132.5(±83.4)

132.5 (± 83.4)

0.35

0.35

127.2(±82.2)

127.2 (± 82.2)

0.15

0.15

128.4(±83.4)

128.4 (± 83.4)

0.08

0.08
hs-CRP
(mg/dL)
hs-CRP
(mg / dL)

0.39(±0.68)

0.39 (± 0.68)

0.15

0.15

0.35(±0.64)

0.35 (± 0.64)

0.22

0.22

0.32(±0.42)

0.32 (± 0.42)

0.17

0.17
homocysteine
(μmol/L)
homocysteine
(μmol / L)

9.8(±5.2)

9.8 (± 5.2)

0.37

0.37

9.3(±5.6)

9.3 (± 5.6)

0.46

0.46

8.7(±3.7)

8.7 (± 3.7)

0.4

0.4

<< 실시예Example 2> 임상검체로부터  2> From clinical specimen 게노믹Genomic DNADNA 분리 detach

말초혈액 검체로부터 마그네틱 비드(magnetic bead) 방식으로 게노믹 DNA를 추출하였다. 0.03 - 0.05 mL 부피의 말초혈액을 96-웰 또는 384-웰 플레이트(well plate)에 검체 수만큼 첨가하여 자동화 핵산추출 장비에 위치시켰다. 이후 8-채널 피펫팅 헤드(pipetting head)가 피펫 팁 랙(tip rack)의 피펫을 장착한 후 시료를 분해하는 완충용액 믹스(mix) 500 uL를 흡인하여 상기 라이시스(lysis) 플레이트의 각 웰에 첨가하여 10분간 반응시켰다. 반응 도중 반응액을 피펫으로 오르내리는 과정을 15회 반복하면서 혼합하여 반응을 촉진하였다. 이후 마그네틱 비드가 포함된 반응액 70 uL를 첨가하고 피펫으로 혼합한 뒤 1분간 실온에서 정치한 후 마그네틱 분리기(separator)가 작동되고 추가로 2분간 반응하였다. 비드를 제외한 상층액을 폐액 저장기(waste reservoir)로 용출하여 제거하고 마그네틱 분리기의 작동을 중단하였다. 이후 단백분해효소 K가 포함되지 않은 라이시스(lysis) 완충용액 500 uL를 첨가하고 마그네틱 비드가 균일하게 퍼지도록 피펫으로 혼합하였다. 그리고 정제 완충용액 50 uL를 첨가하고 피펫으로 혼합한 뒤 1분간 실온에서 정치한 후 마그네틱 분리기(separator)가 작동되고 추가로 2분간 반응하였다. 상기와 마찬가지로 비드를 제외한 상층액을 폐액 저장기(waste reservoir)로 용출하여 제거하고 마그네틱 분리기의 작동을 중단하였다. 이후 세척 완충용액 500 uL를 첨가하고 마그네틱 분리기가 작동되어 불순물을 제거하는 과정을 2회 반복하였다. 최종 과정으로 DNA를 회수하기 위해 용출 완충용액 100 uL를 로딩하고 피펫으로 오르내리는 과정을 50회를 반복하면서 실온에서 5분 처리하고 순수 DNA를 포함하는 상층액을 회수하여 멀티플렉스 PCR 반응 전까지 보관하였다. Genomic DNA was extracted from the peripheral blood sample by magnetic bead method. Peripheral blood of 0.03-0.05 mL was added to 96-well or 384-well plates by number of samples and placed in automated nucleic acid extraction equipment. An 8-channel pipetting head is then fitted with a pipette of a pipette tip rack and then aspirates 500 uL of a buffer mix to dissolve the sample, so that each well of the lysis plate It was added to and reacted for 10 minutes. The reaction was promoted by mixing the reaction solution up and down the pipette 15 times during the reaction. Thereafter, 70 uL of the reaction solution containing the magnetic beads was added, mixed with a pipette, and allowed to stand at room temperature for 1 minute, and then a magnetic separator was operated and reacted for an additional 2 minutes. The supernatant except the beads was eluted with a waste reservoir and the magnetic separator was shut down. Thereafter, 500 uL of lysis buffer containing no protease K was added and mixed with a pipette to uniformly spread the magnetic beads. After adding 50 uL of the purification buffer and mixing with a pipette, the mixture was allowed to stand at room temperature for 1 minute, and then a magnetic separator was operated and reacted for another 2 minutes. As above, the supernatant except the beads was eluted with a waste reservoir and the magnetic separator was stopped. Thereafter, 500 uL of washing buffer was added and the magnetic separator was operated twice to remove impurities. In order to recover the DNA as a final procedure, 100 uL of the elution buffer was loaded and pipetted up and down for 5 minutes at room temperature with 50 repetitions, and the supernatant containing pure DNA was recovered and stored until multiplex PCR reaction. .

<< 실시예Example 3> 멀티플렉스  3> multiplex PCRPCR 을 통한 뇌졸중 조기진단용 칩(Early diagnosis chip through stroke ( chipchip )의 )of 타겟target 유전자 증폭 Gene amplification

고-처리량 칩(chip) 분석에 앞서, 검체로부터 분리한 게노믹 DNA를 주형으로 11종 타겟 유전자를 멀티플렉스 PCR 반응을 통해 증폭하였다. 이후, 증폭된 반응산물들을 칩(chip) 위에 미리 고정화시켜둔 선택적 프로브들과 혼성화(hybridization ) 반응을 실시함으로써 뇌졸중 유무를 조기판별할 수 있는 유전 소인 데이터를 제공하게 된다. 안지오텐시노겐(angiotensinogen)을 비롯한 11종의 유전자를 동일한 PCR 튜브(single tube)내에서 1회 반응만으로 특이적으로 증폭시킬 수 있는 멀티플렉스 PCR을 수행하였다. 멀티플렉스 앰플리콘들은 칩(chip)표면의 DNA 또는 PNA 프로브들과 듀플렉스(duplex)를 형성함으로써 해당 유전자들의 SNP 유전자형을 판별하기에 60 - 200 염기쌍 이내의 짧은 길이를 갖도록 고안하였다. 전기 멀티플렉스 PCR은 내부 대조군으로 인간 베타-글로빈(β-globin) 유전자를 포함한다. 본 실시예에 기술하는 11종 유전자 멀티플렉스 PCR의 프리메이드(pre-made) PCR 마스터믹스(PCR mastermix)의 구성 조성 및 PCR 반응조건은 하기 표 2와 같다. Prior to high-throughput chip analysis, 11 target genes were amplified by multiplex PCR reactions with genomic DNA isolated from the sample as a template. Thereafter, hybridization reactions are performed with selective probes immobilized on the chip, thereby providing genetic predisposition data for early detection of stroke. Multiplex PCR was performed in which 11 genes including angiotensinogen were specifically amplified in a single reaction in the same PCR tube. Multiplexed amplicons were designed to have a short length within 60-200 base pairs to determine the SNP genotype of the genes by forming a duplex with DNA or PNA probes on the chip surface. Electric multiplex PCR includes a human beta-globin gene as an internal control. The compositional composition and PCR reaction conditions of the pre-made PCR mastermix of the 11 gene multiplex PCR described in this Example are shown in Table 2 below.

뇌졸중 조기진단용 11종 멀티플렉스 PCR 마스터믹스 조성 및 PCR 조건11 Multiplex PCR Mastermix Composition and PCR Conditions for Early Diagnosis of Stroke
PCR 반응액 조성

PCR reaction solution composition

부피(uL)

Volume (uL)

PCR 반응 조건

PCR reaction conditions

탈이온 3차 멸균 증류수

Deionized Tertiary Sterilized Distilled Water

4.2

4.2

초기변성
(Initial denaturation)

Initial denaturation
(Initial denaturation)

95℃, 15분

95 ° C., 15 minutes

1회

1 time

11종 프라이머
프리믹스(primer premix)

11 kinds of primers
Prime premix


5.8


5.8


변성
(Denaturation)


denaturalization
(Denaturation)


95℃, 40초


95 ° C, 40 seconds





37회








Episode 37




2X 멀티플렉스 PCR 프리믹스

2X Multiplex PCR Premix

15

15

결합
(Annealing)

Combination
(Annealing)

57℃, 40초

57 ° C, 40 seconds

주형 DNA(50 ng 이상)

Template DNA (more than 50 ng)

5

5

연장
(Extension)

extension
(Extension)

72℃, 40초

72 ° C., 40 seconds

최종 부피

Final volume

30

30

최종연장
(Extension)

Last extension
(Extension)

72℃, 7분

72 ° C., 7 minutes

1회

1 time

멀티플렉스 PCR 반응액 혼합물에 포함되는 PCR 완충용액의 최종농도는 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2이며, 2.5 unit의 Taq 중합효소, 300 uM dNTPs(Boehringer Mannheim, Mannheim, Germany), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함한다. 뇌졸중 조기진단용 11종 프라이머 프리믹스에 포함되는 개별 유전자들의 정방향(sense) 프라이머는 5'- 또는 3'-말단에 Cy3 또는 Cy5 형광색소를 표지시켜 합성하거나, 또는 양 말단의 변형(modification)없이 nascent 올리고뉴클레오티드로 합성하였다(Integrated DNA Technologies, Inc., Coralville, IA, USA). Final concentration of PCR buffer in the multiplex PCR reaction mixture is 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, 2.5 unit Taq polymerase, 300 uM dNTPs (Boehringer Mannheim, Mannheim, Germany), 10 mg / mL Bovine serum albumin. Sense primers of the individual genes included in the 11 primer premixes for early diagnosis of stroke are synthesized by labeling Cy3 or Cy5 fluorescent dyes at the 5'- or 3'-end, or without modification at both ends. Synthesized with nucleotides (Integrated DNA Technologies, Inc., Coralville, IA, USA).

본 발명의 또한 바람직한 일 양태에 따른 말단에 형광색소 변형이 없는 프라이머를 포함하는 멀티플렉스 PCR 키트는 PCR 과정중에 Cy3 형광색소가 표지된 디옥시사이토신 트리포스페이트(Cy3-dCTP)가 증폭산물을 구성하는 뉴클레오티드로 첨가되도록 하여 반응의 민감도와 특이도를 향상시킬 수 있었다. Cy3-dCTP를 사용하는 11종 멀티플렉스 PCR 반응에 사용하는 PCR 완충용액은 최종농도 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2 이였으며, 2.5 unit의 Taq 중합효소, 300 uM dATP, 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP(FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 첨가하여 타겟 유전자들을 특이적으로 증폭하였다. In a multiplex PCR kit including a primer having no fluorescent dye modification at the terminal according to a preferred embodiment of the present invention, Cy3 fluorescent dye-labeled deoxycytosine triphosphate (Cy3-dCTP) constitutes an amplification product during PCR. By adding to the nucleotides to improve the sensitivity and specificity of the reaction. The PCR buffer used for 11 multiplex PCR reactions using Cy3-dCTP had a final concentration of 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, 2.5 units of Taq polymerase, 300 uM dATP , 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP (FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 10 mg / mL Bovine serum albumin Target genes were specifically amplified.

<< 실시예Example 4> 뇌졸중 조기진단용 칩( 4> Early diagnosis chip for stroke chipchip )을 구성하는 Make up) 프로브Probe (( probeprobe ) 디자인 및 합성A) design and synthesis

본 발명의 바람직한 실현을 위한 뇌졸중 조기진단용 칩(chip)을 제공하기 위하여, 11종 유전자들의 단일 염기 다형성(single nucleotide polymorphism, SNP)을 대립유전자(allele) 특이적으로 판별할 수 있는 프로브들을 디자인하였다. In order to provide a chip for early diagnosis of stroke for realizing the present invention, probes capable of discriminating allele-specific single nucleotide polymorphism (SNP) of 11 genes were designed. .

상세하게는, 본 발명의 바람직한 양태에 따른 뇌졸중 조기진단용 DNA 또는 PNA 칩(chip)이 포함하는 프로브들은, 안지오텐시노겐을 비롯한 총 11종의 유전자들의 단일 염기 다형성(SNP)을 대립유전자(allele) 특이적으로 판별하기 위하여, SNP 해당 염기가 프로브 서열의 중앙(central)에 위치하도록 하여 해당 대립유전자의 SNP 염기와 정확히 매치(matched)되는 PCR 증폭산물과 프로브간의 듀플렉스(duplexes)로부터 형광 시그널을 검출함으로써 SNP 변별력(discriminating power)를 확보하였다. 프로브의 해당 SNP 염기가 PCR 앰플리콘 내에 존재하는 이와 상보적인 대립유전자의 SNP 염기와 불일치(mismatched)하는 경우에는 듀플렉스 2차구조가 불안정해져서 칩 반응 이후 세척과정에서 제거됨으로써 높은 변별력을 가지게 된다. 프로브의 변별력을 향상시키기 위하여 추가로 고려할 수 있는 인자들은 프로브의 길이, 칩 세척과정의 스트린전시(stringency), 칩 혼성화 반응 온도 등이 있다. 위양성과 위음성 결과를 방지하기 위해 가장 중요한 인자는 프로브의 길이였으며 9 - 15 염기쌍 길이 범위에서 우수한 변별력을 확인하였다(도 6 참조).Specifically, the probes included in the pre-stroke DNA or PNA chip according to a preferred embodiment of the present invention, alleles of a single base polymorphism (SNP) of a total of 11 genes including angiotensinogen In order to discriminate specifically, the fluorescent signal from the duplexes between the PCR amplification product and the probe that exactly matches the SNP base of the allele is located by allowing the SNP corresponding base to be located centrally in the probe sequence. SNP discrimining power was secured by detecting. When the SNP base of the probe is mismatched with the SNP base of the allele complementary to that present in the PCR amplicon, the duplex secondary structure becomes unstable and is removed in the washing process after the chip reaction, thereby having high discrimination ability. Additional factors that can be considered to improve the discrimination ability of the probe include the length of the probe, the stringency of the chip cleaning process, and the chip hybridization reaction temperature. The most important factor to prevent false positive and false negative results was the length of the probe and good discrimination in the 9-15 base pair length range (see FIG. 6).

안지오텐시노겐(angiotensinogen)을 비롯한 총 11종 유전자들의 SNP 분석을 위해 수행하는 멀티플렉스 PCR의 앰플리콘(amplicon) 내에 특이적인(specific) 프로브 타겟 부위를 선별하기 위하여, 프라이머 프리미어(Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), 디엔에이시스 맥스 (DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA), 또는 올리고어레이(OligoArray 2.0, http://cbr-rbc.nrc-cnrc.gc.ca) 프로그램을 응용하여 디자인하였고 그 세부정보는 표 3과 같다. 목적하는 DNA 또는 PNA 프로브 염기서열의 5'말단 또는 3'말단에 아민(amine) 또는 티올(thiol) 그룹이 위치하도록 변형(modification)된 프로브를 합성하였다(MWG-Biotech AG, Ebersberg, Germany). 프로브의 5'말단에 아미노 모디파이어를 수식할 경우 탄소 6 - 9개 또는 티민(thymine) 염기 12 - 15개의 스페이서(spacer)를 첨가하여 반응 효율을 촉진하였다. 프로브의 3'말단에 아미노 모디파이어를 수식할 경우에는 스페이서를 사용하지 않았다. 프로브의 아민기는 1차 아민기의 성질을 지니며, 알데히드-활성화된 또는 카르복실(carboxyl)-활성화된 칩(chip) 표면에 부착하였다. 프로브의 농도는 260nm에서 흡광도 수치를 통해 환산하였고 몰디-토프(MALDI-TOF, Matrix Assisted Laser Desorption/Ionization Time-of-Flight)를 통해 불순물 함유 여부를 확인하고 고성능 액체 크로마토그래피(HPLC, High-performance liquid chromatography)를 통해 순수 정제한 후 멸균 3차 증류수에 최종농도가 100-250 pM 되도록 제조하였다.Primer premier version 5 to select specific probe target sites in the amplicon of multiplex PCR performed for SNP analysis of a total of 11 genes including angiotensinogen , Premier Biosoft International, Palo Alto, CA, USA, DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA, or OligoArray 2.0, http: //cbr-rbc.nrc -cnrc.gc.ca) is designed by applying the program and the details are shown in Table 3. Probes modified to place amine or thiol groups at the 5 'or 3' end of the DNA or PNA probe sequence of interest were synthesized (MWG-Biotech AG, Ebersberg, Germany). When modifying the amino modifier at the 5 'end of the probe, spacers of 6 to 9 carbons or 12 to 15 thymine bases were added to promote the reaction efficiency. No spacer was used when modifying the amino modifier at the 3 'end of the probe. The amine groups of the probe have the properties of primary amine groups and are attached to the aldehyde-activated or carboxyl-activated chip surface. The concentration of the probe was converted to absorbance values at 260 nm, and it was checked for impurities by Maldi-TOF (MALDI-TOF, Matrix Assisted Laser Desorption / Ionization Time-of-Flight), and high performance liquid chromatography (HPLC) After pure purification through liquid chromatography) was prepared so that the final concentration in sterile tertiary distilled water 100-250 pM.

뇌졸중 조기진단용 칩(chip)을 구성하는 프로브(probe) 조합Probe combinations that make up the chip for early diagnosis of stroke 서열
목록
번호
order
List
number
타겟 유전자 symbol 명,
타겟 유전자 위치,
SNP 대립유전자 명
Target gene symbol name,
Target gene location,
SNP allele name
프로브의 대립유전자 타겟 SNP 염기,
프로브 방향,
프로브 염기서열(5'-3')
Allele target SNP base of the probe,
Probe direction,
Probe sequence (5'-3 ')
프로브
길이
(mer)
Probe
Length
(mer)
1One MTHFR, exon4, C677TMTHFR, exon4, C677T 677C, 정방향, CGGGAGCCGATTT677C, forward, CGGGAGCCGATTT 1313 22 MTHFR, exon4, C677TMTHFR, exon4, C677T 677T, 정방향, CGGGAGTCGATTT677T, forward, CGGGAGTCGATTT 1313 33 MTHFR, exon4, C677TMTHFR, exon4, C677T 677A, 정방향, CGGGAGACGATTT677A, forward, CGGGAGACGATTT 1313 44 MTHFR, exon4, C677TMTHFR, exon4, C677T 677G, 정방향, CGGGAGGCGATTT677G, forward, CGGGAGGCGATTT 1313 55 AGT, exon2, Met235ThrAGT, exon2, Met235Thr 704T, 정방향, TGTCCATGGTG704T, forward, TGTCCATGGTG 1111 66 AGT, exon2, Met235ThrAGT, exon2, Met235Thr 704C, 정방향, TGTCCACGGTG704C, forward, TGTCCACGGTG 1111 77 AGT, exon2, Met235ThrAGT, exon2, Met235Thr 704A, 정방향, TGTCCAAGGTG704A, forward, TGTCCAAGGTG 1111 88 AGT, exon2, Met235ThrAGT, exon2, Met235Thr 704G, 정방향, TGTCCAGGGTG704G, forward, TGTCCAGGGTG 1111 99 APOE, exon3, Cys112ArgAPOE, exon3, Cys112Arg 336T, 역방향, GCCGCACACGT336T, reverse, GCCGCACACGT 1111 1010 APOE, exon3, Cys112ArgAPOE, exon3, Cys112Arg 336C, 역방향, GCCGCGCACGT336C, reverse, GCCGCGCACGT 1111 1111 APOE, exon3, Cys112ArgAPOE, exon3, Cys112Arg 336G, 역방향, GCCGCCCACGT336G, reverse, GCCGCCCACGT 1111 1212 APOE, exon3, Cys112ArgAPOE, exon3, Cys112Arg 336A, 역방향, GCCGCTCACGT336A, reverse, GCCGCTCACGT 1111 1313 APOE, exon3, Arg158CysAPOE, exon3, Arg158Cys 474C, 정방향, AGAAGCGCCTG474C, Forward, AGAAGCGCCTG 1111 1414 APOE, exon3, Arg158CysAPOE, exon3, Arg158Cys 474T, 정방향, AGAAGTGCCTG474T, Forward, AGAAGTGCCTG 1111 1515 APOE, exon3, Arg158CysAPOE, exon3, Arg158Cys 474A, 정방향, AGAAGAGCCTG474A, Forward, AGAAGAGCCTG 1111 1616 APOE, exon3, Arg158CysAPOE, exon3, Arg158Cys 474G, 정방향, AGAAGGGCCTG474G, forward, AGAAGGGCCTG 1111 1717 F5, exon10, Arg506GlnF5, exon10, Arg506Gln 1691G, 정방향, CAGGCGAGGAA1691G, Forward, CAGGCGAGGAA 1111 1818 F5, exon10, Arg506GlnF5, exon10, Arg506Gln 1691A, 정방향, CAGGCAAGGAA1691A, Forward, CAGGCAAGGAA 1111 1919 F5, exon10, Arg506GlnF5, exon10, Arg506Gln 1691C, 정방향, CAGGCCAGGAA1691C, forward, CAGGCCAGGAA 1111 2020 F5, exon10, Arg506GlnF5, exon10, Arg506Gln 1691T, 정방향, CAGGCTAGGAA1691T, Forward, CAGGCTAGGAA 1111 2121 F2, 3'-UTR, G20210AF2, 3'-UTR, G20210A 20210G, 정방향, TCAGCGAGCCT20210G, Forward, TCAGCGAGCCT 1111 2222 F2, 3'-UTR, G20210AF2, 3'-UTR, G20210A 20210A, 정방향, TCAGCAAGCCT20210A, Forward, TCAGCAAGCCT 1111 2323 F2, 3'-UTR, G20210AF2, 3'-UTR, G20210A 20210C, 정방향, TCAGCCAGCCT20210C, Forward, TCAGCCAGCCT 1111 2424 F2, 3'-UTR, G20210AF2, 3'-UTR, G20210A 20210T, 정방향, TCAGCTAGCCT20210T, Forward, TCAGCTAGCCT 1111 2525 FGB, 5'-UTR, G(-455)AFGB, 5'-UTR, G (-455) A -455G, 정방향, TTTAATGGCCCCT-455G, forward, TTTAATGGCCCCT 1313 2626 FGB, 5'-UTR, G(-455)AFGB, 5'-UTR, G (-455) A -455A, 정방향, TTTAATAGCCCCT-455A, forward, TTTAATAGCCCCT 1313 2727 FGB, 5'-UTR, G(-455)AFGB, 5'-UTR, G (-455) A -455C, 정방향, TTTAATCGCCCCT-455C, forward, TTTAATCGCCCCT 1313 2828 FGB, 5'-UTR, G(-455)AFGB, 5'-UTR, G (-455) A -455T, 정방향, TTTAATTGCCCCT-455T, forward, TTTAATTGCCCCT 1313 2929 GP1BA, 5'-UTR, T(-5)CGP1BA, 5'-UTR, T (-5) C -5T, 정방향, CACAGGTCCTCAT-5T, forward, CACAGGTCCTCAT 1313 3030 GP1BA, 5'-UTR, T(-5)CGP1BA, 5'-UTR, T (-5) C -5C, 정방향, CACAGGCCCTCAT-5C, forward, CACAGGCCCTCAT 1313 3131 GP1BA, 5'-UTR, T(-5)CGP1BA, 5'-UTR, T (-5) C -5A, 정방향, CACAGGACCTCAT-5A, forward, CACAGGACCTCAT 1313 3232 GP1BA, 5'-UTR, T(-5)CGP1BA, 5'-UTR, T (-5) C -5G, 정방향, CACAGGGCCTCAT-5G, forward, CACAGGGCCTCAT 1313 3333 FABP2, exon2, Ala54ThrFABP2, exon2, Ala54Thr 244G, 정방향, CAAGCGCTTTTCG244G, Forward, CAAGCGCTTTTCG 1313 3434 FABP2, exon2, Ala54ThrFABP2, exon2, Ala54Thr 244A, 정방향, CAAGCACTTTTCG244A, Forward, CAAGCACTTTTCG 1313 3535 FABP2, exon2, Ala54ThrFABP2, exon2, Ala54Thr 244C, 정방향, CAAGCCCTTTTCG244C, Forward, CAAGCCCTTTTCG 1313 3636 FABP2, exon2, Ala54ThrFABP2, exon2, Ala54Thr 244T, 정방향, CAAGCTCTTTTCG244T, Forward, CAAGCTCTTTTCG 1313 3737 PAI-1, 5'-UTR, 5G/4GPAI-1, 5'-UTR, 5G / 4G -675G, 정방향, ACACGTGGGGGAG-675G, forward, ACACGTGGGGGAG 1313 3838 PAI-1, 5'-UTR, 5G/4GPAI-1, 5'-UTR, 5G / 4G -675, 정방향, ACACGTGGGGAG-675, forward, ACACGTGGGGAG 1212 3939 PAI-1, 5'-UTR, 5G/4GPAI-1, 5'-UTR, 5G / 4G -675C, 정방향, ACACGTCGGGGAG-675C, forward, ACACGTCGGGGAG 1313 4040 PAI-1, 5'-UTR, 5G/4GPAI-1, 5'-UTR, 5G / 4G -675A, 정방향, ACACGTAGGGGAG-675A, forward, ACACGTAGGGGAG 1313 4141 PAI-1, 5'-UTR, 5G/4GPAI-1, 5'-UTR, 5G / 4G -675T, 정방향, ACACGTTGGGGAG-675T, forward, ACACGTTGGGGAG 1313 4242 IL-6, 5'-UTR, G(-174)CIL-6, 5'-UTR, G (-174) C -174G, 정방향, TCTTGCGATGCTA-174G, forward, TCTTGCGATGCTA 1313 4343 IL-6, 5'-UTR, G(-174)CIL-6, 5'-UTR, G (-174) C -174C, 정방향, TCTTGCCATGCTA-174C, forward, TCTTGCCATGCTA 1313 4444 IL-6, 5'-UTR, G(-174)CIL-6, 5'-UTR, G (-174) C -174A, 정방향, TCTTGCAATGCTA-174A, forward, TCTTGCAATGCTA 1313 4545 IL-6, 5'-UTR, G(-174)CIL-6, 5'-UTR, G (-174) C -174T, 정방향, TCTTGCTATGCTA-174T, forward, TCTTGCTATGCTA 1313 4646 NOS3, exon7, Glu298AspNOS3, exon7, Glu298Asp 894G, 정방향, GATGAGCCCCCAG894G, Forward, GATGAGCCCCCAG 1313 4747 NOS3, exon7, Glu298AspNOS3, exon7, Glu298Asp 894T, 정방향, GATGATCCCCCAG894T, Forward, GATGATCCCCCAG 1313 4848 NOS3, exon7, Glu298AspNOS3, exon7, Glu298Asp 894A, 정방향, GATGAACCCCCAG894A, Forward, GATGAACCCCCAG 1313 4949 NOS3, exon7, Glu298AspNOS3, exon7, Glu298Asp 894C, 정방향, GATGACCCCCCAG894C, Forward, GATGACCCCCCAG 1313

<< 실시예Example 5> 뇌졸중 조기진단용 칩( 5> Early diagnosis chip for stroke chipchip ) 제작Production

본 발명의 바람직한 양태로 제공하는 뇌졸중 조기진단용 chip은 MTHFR(5,10-methylenetetrahydrofolate reductase) C677T, AGT(Angiotensinogen) Met235Thr, APOE(Apolipoprotein E) ε2/ε3/ε4, F5(Coagulation factor V Leiden) Arg506Gln, F2(Coagulation factor II prothrombin) G20210A, FGB(Fibrinogen) G(-455)A, GP1BA(Glycoprotein Ib, platelet alpha polypeptide) T(-5)C, FABP2(Fatty acid-binding protein 2) Ala54Thr, PAI-1(Plasminogen activator inhibitor-1) 5G/4G, IL-6(Interleukin-6) G(-174)C, NOS3(Nitric oxide synthase 3) Glu298Asp, 총 11종의 유전자들의 SNP 분석을 위해 49개의 프로브가 집적되어 있다. 그리고 내부 대조군으로 인간 베타-글로빈에 대한 프로브가 고정화되어있다. 하나의 칩 기판위에 내부 대조군을 포함해서 총 12종의 유전자 단일염기 다형성 분석이 가능한 그리드(grid)가 8개씩 포함되도록 칩 레이아웃을 고안하였으며, 8 웰 혼성화 반응 챔버(8 well hybridization reaction chamber)를 통해 8개의 개별 검체에 대한 분석을 동시에 진행할 수 있도록 고안하였다(도 2 참조). Premature stroke chip provided in a preferred embodiment of the present invention MTHFR (5,10-methylenetetrahydrofolate reductase) C677T, AGT (Angiotensinogen) Met235Thr, APOE (Apolipoprotein E) ε2 / ε3 / ε4, F5 (Coagulation factor V Leiden) Arg506Gln, Coagulation factor II prothrombin (F2) G20210A, FGB (Fibrinogen) G (-455) A, GP1BA (Glycoprotein Ib, platelet alpha polypeptide) T (-5) C, FABP2 (Fatty acid-binding protein 2) Ala54Thr, PAI-1 (Plasminogen activator inhibitor-1) 5G / 4G, IL-6 (Interleukin-6) G (-174) C, Nitric oxide synthase 3 (NOS3) Glu298Asp, 49 probes integrated for SNP analysis of 11 genes It is. And the probe for human beta-globin is immobilized as an internal control. The chip layout was designed to include eight grids for the analysis of a total of 12 gene monobasic polymorphisms including an internal control on a single chip substrate, and an 8 well hybridization reaction chamber was used. It was designed to analyze the 8 individual samples at the same time (see Figure 2).

영하 70℃ 보관중인 프로브 스탁(stock)을 실온에서 해동한 후, 탈이온 멸균 3차 증류수에 최종농도 100 μM이 되도록 희석하여 워킹 스탁(working stock)으로 사용하였다. 워킹 스탁을 50배 희석한 각각의 프로브들을 3X SSC 스포팅 용액(500 mM NaCl, 3 mM sodium citrate, 1.5 M N,N,N-trimethylglycine, pH 6.8)과 1 : 7 - 10 비율(v/v)로 혼합하여 최종 96 웰 플레이트(well plate)에 분주되는 프로브의 농도범위가 20 - 30 pmole/uL 가 되도록 하였다. 상기 플레이트를 Microssys 5100 microarrayer(Cartesian Technologies, Ann Arbor, MI, USA)에 장착하고 이로부터 알데하이드(aldehyde)-, 티오이소시아네이트(thioisocyanate)-활성화된 글라스 슬라이드(CEL associates Inc., Houston, TX, USA), 에폭시(epoxy)-활성화된 플라스틱 칩, 또는 골드 필름 표면에 프로브들을 순서에 따라 2개씩 스포팅하였다. 스팟(spot)의 평균 크기(diameter)는 80 - 140 마이크로미터(micrometer)이며 스팟간 크로스-토크(cross-talk)효과를 최소화하기 위해 스팟간의 거리는 350 - 500 마이크로미터를 유지하였다. 칩 제작은 75% 습도(humidity)를 유지하는 클래스 10,000 룸에서 실시하였다. 프로브가 스팟팅된 칩은 120℃, 1시간 베이킹(baking)한 후, 0.25% SDS(Sodium dodecyl sulfate)용액에서 3분간 세척하고 멸균 3차 증류수로 다시 세척하였다. 이후 칩을 0.2% 소디움 보로하이드라이드(NaBH4)를 포함하는 용액에 반응시켜 프로브를 블럭킹(blocking)하였다. 이후 3차 증류수로 2회 세척하고 물기를 제거한 후 사용시점까지 데시케이터(dessicator)에 보관하였다.After thawing at 70 ° C., the probe stock was stored at room temperature, and then diluted with deionized sterile tertiary distilled water to a final concentration of 100 μM and used as a working stock. Each probe diluted 50-fold diluting working stock was subjected to a 1: 7-10 ratio (v / v) with 3X SSC spotting solution (500 mM NaCl, 3 mM sodium citrate, 1.5 MN, N, N-trimethylglycine, pH 6.8). By mixing, the concentration range of the probe dispensed into the final 96 well plate was 20-30 pmole / uL. The plate was mounted on a Microssys 5100 microarrayer (Cartesian Technologies, Ann Arbor, MI, USA) from which an aldehyde-, thioisocyanate-activated glass slide (CEL associates Inc., Houston, TX, USA) Two probes were spotted in order on the surface of the epoxy-activated plastic chip or gold film. The average diameter of the spots is 80-140 micrometers and the distance between spots was maintained at 350-500 micrometers to minimize cross-talk effects between spots. Chip fabrication was carried out in a class 10,000 room maintaining 75% humidity. The chip spotted with the probe was baked at 120 ° C. for 1 hour, and then washed for 3 minutes in 0.25% SDS (Sodium dodecyl sulfate) solution, and then again washed with sterile tertiary distilled water. The probe was then blocked by reacting the chip with a solution containing 0.2% sodium borohydride (NaBH 4 ). After washing twice with 3 distilled water, the water was removed and stored in a desiccator (dessicator) until the point of use.

<< 실시예Example 6> 뇌졸중 조기진단용 칩( 6> Early Stroke Diagnosis Chip chipchip ) ) 혼성화Hybridization (( hybridizationhybridization ) 반응 및 결과 분석) Response and result analysis

본 발명의 바람직한 일실시예에 따라 뇌졸중 조기진단을 위한 멀티플렉스 PCR 반응을 수행한 후, PCR 반응산물 15 uL와 탈이온 3차 멸균 증류수 25 uL를 첨가하여 95℃, 5분간 열변성시킨 후 얼음위에 5분간 보존하고 원심분리기로 스핀다운(spin down)하였다. 칩(chip) 표면에는 8 웰 혼성화 반응 챔버(8 well hybridization chamber)를 위치시키고 웰 커버(cover)로 웰 상층부를 덮어두었다. 이후 반응시키고자하는 웰(well)에 상기 반응 혼합용액에 혼성화 반응 온도인 50℃로 미리 가열해둔 60 uL의 혼성화 반응 용액(3X SSC, 0.1% SDS, 0.2 mg/mL 소혈청알부민, pH 7)을 첨가하여 혼합한 후 웰 커버의 구멍(hole)을 통해 반응액 혼합물을 주입하고 버블(bubble)이 발생하지 않도록 주의하였다. 챔버 리드(lid)를 고정시킨 후 58℃, 30분간 혼성화 반응을 통해 칩 표면의 프로브와 멀티플렉스 PCR 반응산물간 특이적인 뉴클레오티드 상보적(complementary) 결합을 유도하였다. 혼성화 반응이 종료된 칩 표면의 웰 커버를 제거하고 칩을 세척버퍼 1(0.1X SSC, 0.05% SDS)용액에 담그고 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후 세척용액 2(2X SSC, 0.1% SDS)용액에 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후 탈이온 3차 멸균 증류수에 담가 2회 세척하고 1,000 rpm에서 원심분리하여 칩을 건조하였다. 상기 칩을 스캔어래이 라이트(ScanArray Lite, Packard Instrument Co., Meriden, CT, USA) 스캐너를 이용하여 판독하였고, 분석 소프트웨어(QuantArray 2.0)를 이용하여 양성 대조군 스팟들의 평균 형광강도(fluorescence intensity) 및 표준오차를 스팟 주변의 값들과 비교하여 signal-to-noise(S/R) 비율을 구한 뒤 이 값이 5 이상일 경우 양성 값으로 스코어링(scoring) 처리하였다. After performing a multiplex PCR reaction for early diagnosis of stroke according to a preferred embodiment of the present invention, 15 μL of the PCR reaction product and 25 uL of deionized tertiary distilled distilled water are added thereto, followed by heat denaturation at 95 ° C. for 5 minutes, followed by ice. The stomach was preserved for 5 minutes and spun down with a centrifuge. An 8 well hybridization chamber was placed on the chip surface and the well top was covered with a well cover. Thereafter, 60 uL of a hybridization reaction solution (3X SSC, 0.1% SDS, 0.2 mg / mL bovine serum albumin, pH 7) was preheated to the reaction mixture solution at 50 ° C. in the reaction mixture solution. After the addition and mixing, the reaction solution mixture was injected through the hole of the well cover, and care was taken not to generate bubbles. After fixing the chamber lid, hybridization reaction was performed at 58 ° C. for 30 minutes to induce specific nucleotide complementary binding between the probe on the chip surface and the multiplex PCR reaction product. The well cover of the chip surface where the hybridization reaction was completed was removed, the chip was immersed in the washing buffer 1 (0.1X SSC, 0.05% SDS) solution, washed with stirring at 2,000 rpm for 2 minutes, and repeated. After washing with washing solution 2 (2X SSC, 0.1% SDS) solution at 2,000 rpm for 2 minutes (washing) was repeated. Thereafter, the chips were dried by immersion in deionized tertiary sterile distilled water twice and centrifuged at 1,000 rpm. The chip was read using a ScanArray Lite (Packard Instrument Co., Meriden, CT, USA) scanner, and the mean fluorescence intensity and standard of the positive control spots using the analysis software (QuantArray 2.0). The signal-to-noise (S / R) ratio was obtained by comparing the error with the values around the spot, and when this value was 5 or more, it was scored as a positive value.

도 1은 본 발명에 따른 뇌졸중 조기진단의 목적을 실현하기 위해 포함되는 총 11종의 뇌졸중 발현 예측 분석용 유전자들의 단일염기 다형성(SNP) 위치, 아미노산 치환 발생 여부, 해당 유전자의 뇌졸중 발생관련한 세포내 작용기전, 대립유전자 발생빈도 등을 요약한 표를 나타낸다.1 is a single nucleotide polymorphism (SNP) position, amino acid substitution occurrence of a total of 11 genes for stroke expression prediction analysis included in order to realize the purpose of early diagnosis of stroke according to the present invention, intracellularly related to stroke occurrence of the gene A table summarizing the mechanism of action and allelic frequency is shown.

도 2는 본 발명에 따라 제작된 뇌졸중 조기진단용 칩의 모식도이다. 총 11종의 뇌졸중 발현 예측 분석용 유전자들의 프로브(probe)가 배열된 칩 그리드(grid)를 나타내었으며, 형광물질이 표지된 타겟 DNA와 칩 위에 배열된 프로브간 혼성화(hybridization)반응이 이루어지는 8웰 혼성화 반응 챔버를 모식하여 나타냈다.Figure 2 is a schematic diagram of a chip for the early diagnosis of stroke produced according to the present invention. A chip grid in which probes of 11 stroke expression predictive assay genes were arranged was shown, and an 8-well hybridization reaction between the fluorescent DNA-labeled target DNA and the probes arranged on the chip was performed. The hybridization reaction chamber was schematically shown.

도 3은 본 발명에 따라 프로브가 고정화된 칩 제작 이후, 검체로부터 분리한 게노믹 DNA를 주형으로 분석 타겟 유전자를 멀티플렉스-PCR 반응을 통해 증폭한 뒤, 칩 위의 선택적 프로브들과 혼성화(hybridization) 반응을 실시함으로써 뇌졸중 발현 예측을 위한 유전 소인을 분석하는 칩 분석과정의 주요 단계를 나타낸 흐름도이다.Figure 3 after the chip is a probe immobilized in accordance with the present invention, amplified target gene by multiplex-PCR reaction with the genomic DNA isolated from the sample as a template, hybridization with the selective probes on the chip (hybridization) Is a flow chart showing the main steps of the chip analysis process that analyzes the genetic predisposition for predicting stroke expression by performing the

도 4는 본 발명의 바람직한 일 양태에 따른 뇌졸중 조기진단의 목적을 실현하기 위하여 혈액 응고 기전과 관련된 분석 타겟 유전자(5종)들의 임상분석 결과를 나타내는 칩 스캔 이미지(좌측 그림)와 칩 그리드(우측 그림)를 나타낸다. MTHFR 677CT 헤테로 유전형, F5 1691AA 돌연변이 유전형, F2 20210GA 헤테로 유전형, FGB (-455)GA 헤테로 유전형, GP1BA (-5)TT 야생형 유전형의 분석결과를 확인할 수 있 다. 4 is a chip scan image (left picture) and a chip grid (right picture) showing clinical analysis results of analytical target genes (five species) related to blood coagulation mechanisms in order to realize the purpose of early stroke diagnosis according to a preferred embodiment of the present invention. Picture). Analysis results of the MTHFR 677CT hetero genotype, F5 1691AA mutant genotype, F2 20210GA hetero genotype, FGB (-455) GA hetero genotype, GP1BA (-5) TT wild type genotype can be confirmed.

도 5는 본 발명의 바람직한 일 양태에 따른 뇌졸중 조기진단의 목적을 실현하기 위하여 뇌혈관 vasculature의 항상성과 관련된 분석 타겟 유전자(5종)들의 임상분석 결과를 나타내는 칩 스캔 이미지(좌측 그림)와 칩 그리드(우측 그림)를 나타낸다. AGT 704TC 헤테로 유전형, APOE ε2/ε4 유전형, FABP 244GA 헤테로 유전형, NOS3 894TT 돌연변이 유전형의 분석결과를 확인할 수 있다. 5 is a chip scan image (left picture) and a chip grid showing the results of clinical analysis of analytical target genes (five species) related to homeostasis of cerebrovascular vasculature in order to realize the purpose of early stroke diagnosis according to an exemplary embodiment of the present invention. (Right picture). Analysis results of AGT 704TC hetero genotype, APOE ε2 / ε4 genotype, FABP 244GA hetero genotype, NOS3 894TT mutant genotype can be confirmed.

도 6은 본 발명의 바람직한 일 양태에 따른 뇌졸중 조기진단의 목적을 실현하기 위하여 총 11종 전체 분석 타겟 유전자들의 임상분석 결과를 나타내는 칩 스캔 이미지(좌측 그림)와 칩 그리드(우측 그림)를 나타낸다. MTHFR 677TT 돌연변이 유전형, AGT 704TC 헤테로 유전형, APOE ε3/ε4 유전형, F5 1691AA 돌연변이 유전형, F2 20210GA 헤테로 유전형, FGB (-455)AA 돌연변이 유전형, GP1BA (-5)TC 헤테로 유전형, FABP 244GG 야생형 유전형, PAI-1 (-675) ins 유전형, IL-6 (-174)GG 야생형 유전형, NOS3 894TT 돌연변이 유전형의 분석결과를 확인할 수 있다.Figure 6 shows a chip scan image (left picture) and a chip grid (right picture) showing clinical analysis results of a total of 11 different analysis target genes for realizing the purpose of early stroke diagnosis according to a preferred aspect of the present invention. MTHFR 677TT mutant genotype, AGT 704TC heterogenotype, APOE ε3 / ε4 genotype, F5 1691AA mutant genotype, F2 20210GA heterogenotype, FGB (-455) AA mutant genotype, GP1BA (-5) TC heterogenotype, FABP 244GG wild type genotype, PAI Analysis results of -1 (-675) ins genotype, IL-6 (-174) GG wild type genotype, and NOS3 894TT mutant genotype can be confirmed.

도 7은 본 발명의 바람직한 일 양태에 따른 뇌졸중 조기진단용 칩 표면에 고정화된 프로브들과 멀티플렉스-PCR을 통해 증폭된 타겟 유전자의 SNP 부위 간에 형성되는 듀플렉스(duplex) 구조를 나타낸 모식도이다. GP1BA (-5)TT 야생형 유전형인 검체의 분석결과를 일례로 나타낼 경우, 야생형 GP1BA 유전자에 특이적인 프로브는 타겟 SNP 부위와 안정적인 듀플렉스 이차구조를 형성한다. 그러나, GP1BA (-)5T 돌연변이형 프로브의 SNP염기인 사이토신은 프로브의 염기서열 중앙에 위치하고, 상보적인 타겟 SNP 부위 염기와 불일치(mismatched)하기에 안정적인 듀플렉 스 이차구조 형성이 불가능하며 이에 따라 칩 반응 이후 세척과정에서 형광 시그널이 제거된다. 11 - 13개 염기 길이의 프로브의 중앙(central)에 SNP 부위를 위치시키고 3'-말단에 헤어핀(hairpin)구조가 형성되지 않으며 가급적 dimer 구조를 포함하지 않는 고-특이도의 높은 SNP 변별력을 갖는 프로브들을 고안하였다. FIG. 7 is a schematic diagram illustrating a duplex structure formed between SNP sites of a target gene amplified through multiplex-PCR and probes immobilized on a surface for early diagnosis of stroke according to a preferred embodiment of the present invention. As an example, the analysis results of a GP1BA (-5) TT wild-type genotype specimen show that a probe specific for the wild-type GP1BA gene forms a stable duplex secondary structure with a target SNP region. However, cytosine, the SNP base of the GP1BA (-) 5T mutant probe, is located in the center of the base of the probe and is unable to form a stable duplex secondary structure that is mismatched with the complementary target SNP site base. After the reaction, the fluorescence signal is removed during the washing process. The SNP site is located at the central of the 11-13 base length probe, has no hairpin structure at the 3'-end, and preferably has a high specificity of SNP discrimination that does not include a dimer structure. Probes were designed.

<110> PARK, MinKoo <120> Stroke early diagnosing chip and screening analysis thereof <160> 49 <170> KopatentIn 1.71 <210> 1 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for MTHFR 677C allele <400> 1 cgggagccga ttt 13 <210> 2 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for MTHFR 677T allele <400> 2 cgggagtcga ttt 13 <210> 3 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for MTHFR 677 <400> 3 cgggagacga ttt 13 <210> 4 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for MTHFR 677 <400> 4 cgggaggcga ttt 13 <210> 5 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for AGT 704T allele <400> 5 tgtccatggt g 11 <210> 6 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for AGT 704C allele <400> 6 tgtccacggt g 11 <210> 7 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for AGT 704 <400> 7 tgtccaaggt g 11 <210> 8 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for AGT 704 <400> 8 tgtccagggt g 11 <210> 9 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 336T allele <400> 9 gccgcacacg t 11 <210> 10 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 336C allele <400> 10 gccgcgcacg t 11 <210> 11 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for APOE 336 <400> 11 gccgcccacg t 11 <210> 12 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control for APOE 336 <400> 12 gccgctcacg t 11 <210> 13 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 474C allele <400> 13 agaagcgcct g 11 <210> 14 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 474T allele <400> 14 agaagtgcct g 11 <210> 15 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control for APOE 474 <400> 15 agaagagcct g 11 <210> 16 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for APOE 474 <400> 16 agaagggcct g 11 <210> 17 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F5 1691G allele <400> 17 caggcgagga a 11 <210> 18 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F5 1691A allele <400> 18 caggcaagga a 11 <210> 19 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F5 1691 <400> 19 caggccagga a 11 <210> 20 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F5 1691 <400> 20 caggctagga a 11 <210> 21 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F2 20210G allele <400> 21 tcagcgagcc t 11 <210> 22 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F2 20210A allele <400> 22 tcagcaagcc t 11 <210> 23 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F2 20210 <400> 23 tcagccagcc t 11 <210> 24 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F2 20210 <400> 24 tcagctagcc t 11 <210> 25 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FGB -455G allele <400> 25 tttaatggcc cct 13 <210> 26 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FGB -455A allele <400> 26 tttaatagcc cct 13 <210> 27 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FGB -455 <400> 27 tttaatcgcc cct 13 <210> 28 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FGB -455 <400> 28 tttaattgcc cct 13 <210> 29 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for GP1BA -5T allele <400> 29 cacaggtcct cat 13 <210> 30 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for GP1BA -5C allele <400> 30 cacaggccct cat 13 <210> 31 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for GP1BA -5 <400> 31 cacaggacct cat 13 <210> 32 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for GP1BA -5 <400> 32 cacagggcct cat 13 <210> 33 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FABP2 244G allele <400> 33 caagcgcttt tcg 13 <210> 34 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FABP2 244A allele <400> 34 caagcacttt tcg 13 <210> 35 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FABP2 244 <400> 35 caagcccttt tcg 13 <210> 36 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FABP2 244 <400> 36 caagctcttt tcg 13 <210> 37 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for PAI-1 -675G allele <400> 37 acacgtgggg gag 13 <210> 38 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> probe for PAI-1 4G allele <400> 38 acacgtgggg ag 12 <210> 39 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 39 acacgtcggg gag 13 <210> 40 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 40 acacgtaggg gag 13 <210> 41 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 41 acacgttggg gag 13 <210> 42 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for IL-6 -174G allele <400> 42 tcttgcgatg cta 13 <210> 43 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for IL-6 -174C allele <400> 43 tcttgccatg cta 13 <210> 44 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for IL-6 -174 <400> 44 tcttgcaatg cta 13 <210> 45 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for IL-6 -174 <400> 45 tcttgctatg cta 13 <210> 46 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for NOS3 894G allele <400> 46 gatgagcccc cag 13 <210> 47 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for NOS3 894T allele <400> 47 gatgatcccc cag 13 <210> 48 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for NOS3 894 <400> 48 gatgaacccc cag 13 <210> 49 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for NOS3 894 <400> 49 gatgaccccc cag 13 <110> PARK, MinKoo <120> Stroke early diagnosing chip and screening analysis <160> 49 <170> KopatentIn 1.71 <210> 1 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for MTHFR 677C allele <400> 1 cgggagccga ttt 13 <210> 2 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for MTHFR 677T allele <400> 2 cgggagtcga ttt 13 <210> 3 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for MTHFR 677 <400> 3 cgggagacga ttt 13 <210> 4 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for MTHFR 677 <400> 4 cgggaggcga ttt 13 <210> 5 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for AGT 704T allele <400> 5 tgtccatggt g 11 <210> 6 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for AGT 704C allele <400> 6 tgtccacggt g 11 <210> 7 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for AGT 704 <400> 7 tgtccaaggt g 11 <210> 8 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for AGT 704 <400> 8 tgtccagggt g 11 <210> 9 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 336T allele <400> 9 gccgcacacg t 11 <210> 10 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 336C allele <400> 10 gccgcgcacg t 11 <210> 11 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for APOE 336 <400> 11 gccgcccacg t 11 <210> 12 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control for APOE 336 <400> 12 gccgctcacg t 11 <210> 13 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 474C allele <400> 13 agaagcgcct g 11 <210> 14 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for APOE 474T allele <400> 14 agaagtgcct g 11 <210> 15 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control for APOE 474 <400> 15 agaagagcct g 11 <210> 16 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for APOE 474 <400> 16 agaagggcct g 11 <210> 17 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F5 1691G allele <400> 17 caggcgagga a 11 <210> 18 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F5 1691A allele <400> 18 caggcaagga a 11 <210> 19 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F5 1691 <400> 19 caggccagga a 11 <210> 20 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F5 1691 <400> 20 caggctagga a 11 <210> 21 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F2 20210G allele <400> 21 tcagcgagcc t 11 <210> 22 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> probe for F2 20210A allele <400> 22 tcagcaagcc t 11 <210> 23 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F2 20210 <400> 23 tcagccagcc t 11 <210> 24 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for F2 20210 <400> 24 tcagctagcc t 11 <210> 25 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FGB -455G allele <400> 25 tttaatggcc cct 13 <210> 26 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FGB -455A allele <400> 26 tttaatagcc cct 13 <210> 27 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FGB -455 <400> 27 tttaatcgcc cct 13 <210> 28 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FGB -455 <400> 28 tttaattgcc cct 13 <210> 29 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for GP1BA -5T allele <400> 29 cacaggtcct cat 13 <210> 30 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for GP1BA -5C allele <400> 30 cacaggccct cat 13 <210> 31 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for GP1BA -5 <400> 31 cacaggacct cat 13 <210> 32 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for GP1BA -5 <400> 32 cacagggcct cat 13 <210> 33 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FABP2 244G allele <400> 33 caagcgcttt tcg 13 <210> 34 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for FABP2 244A allele <400> 34 caagcacttt tcg 13 <210> 35 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FABP2 244 <400> 35 caagcccttt tcg 13 <210> 36 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for FABP2 244 <400> 36 caagctcttt tcg 13 <210> 37 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for PAI-1 -675G allele <400> 37 acacgtgggg gag 13 <210> 38 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> probe for PAI-1 4G allele <400> 38 acacgtgggg ag 12 <210> 39 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 39 acacgtcggg gag 13 <210> 40 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 40 acacgtaggg gag 13 <210> 41 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for PAI-1 -675 <400> 41 acacgttggg gag 13 <210> 42 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for IL-6 -174G allele <400> 42 tcttgcgatg cta 13 <210> 43 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for IL-6 -174C allele <400> 43 tcttgccatg cta 13 <210> 44 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for IL-6 -174 <400> 44 tcttgcaatg cta 13 <210> 45 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for IL-6 -174 <400> 45 tcttgctatg cta 13 <210> 46 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for NOS3 894G allele <400> 46 gatgagcccc cag 13 <210> 47 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> probe for NOS3 894T allele <400> 47 gatgatcccc cag 13 <210> 48 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for NOS3 894 <400> 48 gatgaacccc cag 13 <210> 49 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> negative control probe for NOS3 894 <400> 49 gatgaccccc cag 13  

Claims (12)

뇌졸중 발현 예측 유전자 표지자 들(gene markers)의 단일염기 다형성(SNP) 고-처리량 분석방법.Single-nucleotide polymorphism (SNP) high-throughput analysis of stroke marker predictive gene markers. 제 1항에 있어서, 5'- 또는 3'-말단에 아미노 모디파이어(amino modifier) 또는 티올 모디파이어(thiol modifier)가 수식된 프로브가 스팟팅(spotting)된 칩(chip)을 제작하는 단계;The method of claim 1, further comprising: manufacturing a chip in which a probe modified with an amino modifier or a thiol modifier at the 5′- or 3′-end is spotted; 혈액으로부터 게노믹(genomic) DNA를 분리하는 단계; Isolating genomic DNA from blood; 뇌졸중 발현 예측 표지 유전자들의 프로브 타겟 부위를 멀티플렉스 PCR(polymerase chain reaction)을 통해 증폭하면서 형광색소(fluorescent dye)가 포함되도록 타겟(target) DNA 증폭산물을 준비하는 단계;Preparing a target DNA amplification product to include fluorescent dyes while amplifying probe target sites of stroke expression predictive marker genes through multiplex polymerase chain reaction (PCR); 상기 멀티플렉스 PCR 반응산물과 칩 표면에 고정화된 프로브간 혼성화(hybridization) 반응을 수행하고 세척(washing)하는 단계;Performing a hybridization reaction between the multiplex PCR reaction product and a probe immobilized on a chip surface and washing the hybridization reaction; 형광색소에 특이적인 파장의 레이저(laser)로 칩을 스캐닝(scanning)하고 혼성화 반응 결과에 따른 형광강도를 측정함으로써 뇌졸중 발현 예측 유전자 표지자 들의 SNP 결과를 분석하는 단계;Analyzing the SNP results of stroke expression predictive markers by scanning the chip with a laser of a wavelength specific to the fluorescent dye and measuring the fluorescence intensity according to the hybridization reaction result; 상기 뇌졸중 발현 예측 표지 유전자들의 SNP 결과 및 MMP-9, TIMP-1, hs-CRP, homocysteine으로 구성된 4개 생화학 표지자 시험결과를 분석하고 통합하여 질환 발현 소인을 도출하는 단계; 그리고Analyzing and integrating the SNP results of the stroke expression predictive marker genes and the test results of four biochemical markers consisting of MMP-9, TIMP-1, hs-CRP, and homocysteine to derive a disease expression predisposition; And 상기 분석단계 전부를 포함하는 뇌졸중 분석방법.Stroke analysis method comprising all of the above analysis step. 삭제delete 삭제delete 제 1항에 있어서, 고-처리량 분석은 반응화합물에 포함된 형광색소의 시그널 강도를 그에 적합한 흡광도의 레이저로 스캐닝하여, 해당 뇌졸중 발현 예측 유전자 표지자의 SNP 결과를 대량으로 신속하게 분석할 수 있는 방법을 의미하며, DNA 칩, PNA 칩, 루미넥스(Luminex), 파이로시퀀싱(Pyrosequencing) 중에서 선택된 하나의 분석방법.The method of claim 1, wherein the high-throughput analysis is a method for rapidly analyzing a large amount of SNP results of a stroke marker predictive gene by scanning a signal intensity of a fluorescent dye included in a reaction compound with a laser having an appropriate absorbance. Means, DNA chip, PNA chip, Luminex (Luminex), Pyrosequencing (Pyrosequencing) one of the selected method. 제 1항에 있어서, 고-처리량 분석방법을 구현하기 위한 서열목록번호 1 내지 49의 염기서열을 갖는 DNA 올리고뉴클레오티드(deoxyribonucleic acid oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 DNA 프로브(probe)를 포함하는 뇌졸중 분석용 DNA 칩.The stroke of claim 1, wherein the stroke comprises one or more DNA probes selected from the group consisting of deoxyribonucleic acid oligonucleotides having nucleotide sequences of SEQ ID NOs: 1-49 for implementing high-throughput assays. DNA chip for analysis. 제 1항에 있어서, 고-처리량 분석방법을 구현하기 위한 서열목록번호 1 내지 49의 염기서열을 갖는 PNA 올리고뉴클레오티드(peptide nucleic acid oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 PNA 프로브(probe)를 포함하는 뇌졸중 분석용 PNA 칩.The method according to claim 1, comprising at least one PNA probe selected from the group consisting of PNA oligonucleotides having a nucleotide sequence of SEQ ID NOs: 1 to 49 for implementing high-throughput assays PNA chip for stroke analysis. 제 6항 또는 제 7항에 있어서, 알데하이드(aldehyde)-, 티오이소시아네이트(thioisocyanate)-, 또는 카르복실(carboxyl)-활성화된 유리 슬라이드(glass slide)이거나, 에폭시(epoxy)-활성화된 플라스틱(plastic) 또는 금 필름(gold film) 재질의 칩으로 구성되는 뇌졸중 분석용 칩.The process of claim 6 or 7, which is an aldehyde-, thioisocyanate-, or carboxyl-activated glass slide, or an epoxy-activated plastic. ) Or a chip for stroke analysis consisting of a chip made of a gold film material. 제 6항 또는 제 7항에 있어서, 뇌졸중 발현 예측 유전자 표지자의 SNP 분석을 위해 고안된 프로브는 5'- 또는 3'-말단에 아민(amine) 또는 티올(thiol) 작용기가 위치하도록 변형(modification)하였으며, 말단과 프로브 염기서열 사이에 탄소 6 - 9개(-(CH2)6-9-) 또는 티민(thymine) 염기 12 - 15개(-d(T)12-15-)의 스페이서(spacer)를 첨가하였고, 길이(length)는 9 - 15개 뉴클레오티드 범위내에서 선택하는 것을 특징으로 하는 프로브. 8. The probe of claim 6 or 7, wherein the probe designed for SNP analysis of stroke expression predictive gene markers has been modified to locate an amine or thiol functional group at the 5'- or 3'-terminus. , the carbon between the 6-terminal nucleotide sequence and the probe-9 (- (CH 2) 6-9 - ) or thymidine (thymine) base, 12-15 (-d (T) 12-15 -) spacer (spacer) of Probe was added, and the length was selected within the range of 9-15 nucleotides. 삭제delete 제 1항에 있어서, 뇌졸중 발현 예측 유전자 표지자 들의 SNP 분석을 위해 서열목록번호 1 내지 49의 프로브 염기서열 부위 중, 선택된 하나 이상의 타겟 DNA 단편을 증폭하는 멀티플렉스-PCR 키트.The multiplex-PCR kit of claim 1, wherein the multiplex-PCR kit amplifies one or more target DNA fragments selected from the probe sequence regions of SEQ ID NOs: 1 to 49 for SNP analysis of stroke expression predictive gene markers. 삭제delete
KR1020080049087A 2008-05-27 2008-05-27 Stroke early diagnosing chip and screening analysis thereof KR101019952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080049087A KR101019952B1 (en) 2008-05-27 2008-05-27 Stroke early diagnosing chip and screening analysis thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080049087A KR101019952B1 (en) 2008-05-27 2008-05-27 Stroke early diagnosing chip and screening analysis thereof

Publications (2)

Publication Number Publication Date
KR20090123149A KR20090123149A (en) 2009-12-02
KR101019952B1 true KR101019952B1 (en) 2011-03-11

Family

ID=41685429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080049087A KR101019952B1 (en) 2008-05-27 2008-05-27 Stroke early diagnosing chip and screening analysis thereof

Country Status (1)

Country Link
KR (1) KR101019952B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143995A1 (en) * 2015-03-09 2016-09-15 나노바이오시스 주식회사 Multiplex pcr chip and multiplex pcr device comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387292B1 (en) * 2010-06-29 2013-10-30 Fundacio Institut De Recerca Hospital Universitari Vall D'hebron COMBINATION OF SNPS TO DETERMINE THE RISK OF SUFFERING A NEUROVASCULAR DISEASE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 1: Acta. Neurol. Scand.*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143995A1 (en) * 2015-03-09 2016-09-15 나노바이오시스 주식회사 Multiplex pcr chip and multiplex pcr device comprising same

Also Published As

Publication number Publication date
KR20090123149A (en) 2009-12-02

Similar Documents

Publication Publication Date Title
KR101823368B1 (en) SNP marker regulating polyunsaturated fatty acid level in the pork and uses thereof
JP2007525998A (en) Detection of STRP such as fragile X syndrome
JP2018148930A (en) Method for discovering pharmacogenomic biomarkers
JP2009232850A (en) Primer extension method for detecting nucleic acid
KR20100016568A (en) Method for determination of onset risk of glaucoma
CN110904231B (en) Reagent for auxiliary diagnosis of liver cancer and application of reagent in preparation of reagent kit
CA2553545A1 (en) Method evolved for recognition of thrombophilia (mert)
KR101068939B1 (en) DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough
US20110287419A1 (en) Method For Genetic Analysis Of DNA To Detect Sequence Variances
KR101019952B1 (en) Stroke early diagnosing chip and screening analysis thereof
CN116083562B (en) SNP marker combination and primer set related to aspirin resistance auxiliary diagnosis and application thereof
KR100666099B1 (en) Oligonucleotide microarray and method for detecting mutations employing same
KR20130041767A (en) Normal-tension glaucoma susceptibility gene and method for using the same
KR102158713B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of GBA gene
KR101507505B1 (en) A Method for Diagnosing Myotonic Dystrophy Type 1
KR20170049768A (en) Single nucleotide polymorphism markers for determining of skin color and melanism sensitivity and use thereof
JP2010515467A (en) A platform for diagnostic markers and drug design in myocardial infarction and heart failure
JP2007166962A (en) Method for predicting or diagnosing alzheimer&#39;s disease
KR101728023B1 (en) Detection of mutations in ATP7B gene using PCR-LDR
JP5648948B2 (en) Genetic mutation screening method for hypophosphatasia
KR102158719B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of LOC102724084 gene
KR102158723B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of SPCS3 gene
KR102158716B1 (en) SNP marker for diagnosis of intracranial aneurysm comprising SNP of ARHGAP32 gene
KR101167945B1 (en) Polynucleotides derived from ATG16L1 gene comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods for autism spectrum disorders using the same
JP4502570B2 (en) IgA nephropathy diagnosis using genetic polymorphism analysis and IgA nephropathy diagnosis kit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180223

Year of fee payment: 8