KR101004711B1 - 3족 질화물 반도체 발광소자 및 그 제조 방법 - Google Patents

3족 질화물 반도체 발광소자 및 그 제조 방법 Download PDF

Info

Publication number
KR101004711B1
KR101004711B1 KR1020060083404A KR20060083404A KR101004711B1 KR 101004711 B1 KR101004711 B1 KR 101004711B1 KR 1020060083404 A KR1020060083404 A KR 1020060083404A KR 20060083404 A KR20060083404 A KR 20060083404A KR 101004711 B1 KR101004711 B1 KR 101004711B1
Authority
KR
South Korea
Prior art keywords
nitride semiconductor
semiconductor layer
substrate
light emitting
emitting device
Prior art date
Application number
KR1020060083404A
Other languages
English (en)
Other versions
KR20080020219A (ko
Inventor
김창태
정현민
남기연
최병균
Original Assignee
주식회사 에피밸리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에피밸리 filed Critical 주식회사 에피밸리
Priority to KR1020060083404A priority Critical patent/KR101004711B1/ko
Priority to PCT/KR2006/005755 priority patent/WO2007119919A1/en
Priority to JP2008557198A priority patent/JP2009528694A/ja
Priority to CN200680052876.4A priority patent/CN101375416B/zh
Priority to EP06835457A priority patent/EP2008314A4/en
Priority to TW096113427A priority patent/TW200802981A/zh
Publication of KR20080020219A publication Critical patent/KR20080020219A/ko
Priority to US12/196,000 priority patent/US20090020771A1/en
Application granted granted Critical
Publication of KR101004711B1 publication Critical patent/KR101004711B1/ko

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

본 발명은 사파이어 기판; 사파이어 기판의 제1 면 측에 성장되며, 제1 도전성을 가지는 제1 질화물 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 질화물 반도체층, 그리고 제1 질화물 반도체층과 제2 질화물 반도체층 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 구비하며, 비아홀과 이어진 개구부가 형성되어 있는 복수개의 질화물 반도체층; 사파이어 기판의 제2 면으로부터 비아홀을 통해 제1 질화물 반도체층에 전기적으로 연결되는 제1 전극; 그리고, 제2 질화물 반도체층에 전기적으로 연결되는 제2 전극;을 포함하는 것을 특징으로 하며 특히 비아홀을 칩 아이솔레이션 라인에 위치시켜 발광 면적을 최대로 하는 것을 특징으로 하는 3족 질화물 반도체 발광 소자 및 그 제조 방법에 관한 것이다.
수직 구조, LED, 개구부, 비아홀

Description

3족 질화물 반도체 발광소자 및 그 제조 방법{Ⅲ-NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME}
도 1은 종래의 3족 질화물 반도체 발광소자를 나타내는 단면도,
도 2는 본원인이 출원한 2006-35149 특허의 대표적인 도면을 나타내는 단면도,
도 3은 도 2에서 레이저를 이용하여 비아홀을 형성한 후의 모습을 나타낸 도면,
도 4는 본 발명에 따라 레이저를 이용하여 기판에 주기적으로 비아홀을 형성하고 레이저 스크라이빙한 기판의 모습을 나타내는 도면,
도 5는 본 발명에 따라 형성시킨 기판 위에 발광소자 에피탁시층을 MOCVD로 형성한 모습을 나타내는 개략적인 단면도,
도 6은 본 발명에 따라 형성시킨 기판 위에 발광소자 에피탁시층을 MOCVD로 형성한 모습을 나타낸 실물 사진,
도 7은 본 발명에 따른 3족 질화물 반도체 발광소자의 제조 과정에 있어서 스크라이빙 라인에 홀이 배치되는 발광 소자를 나타내는 도면,
도 8은 본 발명에 따른 3족 질화물 반도체 발광 소자에 있어서 홀이 배치되지 않는 부분에 있어서 광이 추출되는 부분의 개략적인 도면,
도 9는 본 발명에 따른 3족 질화물 반도체 발광소자의 제조 순서를 나타내는 그림.
본 발명은 3족 질화물 반도체 발광소자 및 그 제조 방법에 관한 것으로, 특히 수직 형태의 전극 구조를 형성하여 소자 내부의 전류 밀도를 일정하게 하여 전압 특성 및 광학적 특성을 개선한 3족 질화물 반도체 발광소자 특히 칩 아이솔레이션 영역에 비아홀을 배치한 발광 소자 및 그 제조 방법에 관한 것이다.
도 1은 종래의 3족 질화물 반도체 발광소자를 나타내는 단면도로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 에피성장되는 버퍼층(200), 버퍼층(200) 위에 에피성장되는 n형 질화물 반도체층(300), n형 질화물 반도체층(300) 위에 에피성장되는 활성층(400), 활성층(400) 위에 에피성장되는 p형 질화물 반도체층(500), p형 질화물 반도체층(500) 위에 형성되는 p측 전극(600), p측 전극(600) 위에 형성되는 p측 본딩 패드(700), p형 질화물 반도체층(500)과 활성층(400)이 메사 식각되어 노출된 n형 질화물 반도체층(301) 위에 형성되는 n측 전극(800)을 포함한다.
기판(100)은 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사피이어 기판, SiC 기판 또는 Si 기판 등이 이용되지만, 질화물 반도체층이 성장될 수 있는 기판이라면 어떠한 형태이어도 좋다.
기판(100) 위에 에피성장되는 질화물 반도체층들은 주로 MOCVD(유기금속기상성장법)에 의해 성장된다.
버퍼층(200)은 이종기판(100)과 질화물 반도체 사이의 격자상수 및 열팽창계수의 차이를 극복하기 위한 것이며, 미국특허 제5,122,845호에는 사파이어 기판 위에 380℃에서 800℃의 온도에서 100Å에서 500Å의 두께를 가지는 AlN 버퍼층을 성장시키는 기술이 개시되어 있으며, 미국특허 제5,290,393호에는 사파이어 기판 위에 200℃에서 900℃의 온도에서 10Å에서 5000Å의 두께를 가지는 Al(x)Ga(1-x)N (0≤x<1) 버퍼층을 성장시키는 기술이 개시되어 있고, 국제공개공보 WO/05/053042호에는 600℃에서 990℃의 온도에서 SiC 버퍼층(씨앗층)을 성장시킨 다음 그 위에 In(x)Ga(1-x)N (0<x≤1) 층을 성장시키는 기술이 개시되어 있다.
n형 질화물 반도체층(300)은 적어도 n측 전극(800)이 형성된 영역(n형 컨택층)이 불순물로 도핑되며, n형 컨택층은 바람직하게는 GaN로 이루어지고, Si으로 도핑된다. 미국특허 제5,733,796호에는 Si과 다른 소스 물질의 혼합비를 조절함으로써 원하는 도핑농도로 n형 컨택층을 도핑하는 기술이 개시되어 있다.
활성층(400)은 전자와 정공의 재결합을 통해 광자(빛)를 생성하는 층으로서, 주로 In(x)Ga(1-x)N (0<x≤1)로 이루어지고, 하나의 양자우물층(single quantum well)이나 복수개의 양자우물층들(multi quantum wells)로 구성된다. 국제공개공보 WO/02/021121호에는 복수개의 양자우물층들과 장벽층들의 일부에만 도핑을 하는 기술이 개시되어 있다.
p형 질화물 반도체층(500)은 Mg과 같은 적절한 불순물을 이용해 도핑되며, 활성화(activation) 공정을 거쳐 p형 전도성을 가진다. 미국특허 제5,247,533호에는 전자빔 조사에 의해 p형 질화물 반도체층을 활성화시키는 기술이 개시되어 있으며, 미국특허 제5,306,662호에는 400℃ 이상의 온도에서 열처리(annealing)함으로써 p형 질화물 반도체층을 활성화시키는 기술이 개시되어 있고, 국제공개공보 WO/05/022655호에는 p형 질화물 반도체층 성장의 질소전구체로서 암모니아와 하이드라진계 소스 물질을 함께 사용함으로써 활성화 공정없이 p형 질화물 반도체층이 p형 전도성을 가지게 하는 기술이 개시되어 있다.
일반적으로 3족 질화물 반도체 발광소자의 경우 기판(100)으로는 사파이어가 주로 사용되어 지는데, 사파이어는 전기가 통하지 않기 때문에 전류를 공급하기 위한 전극이 수평으로 위치하게 된다. 이때, 활성층(400)에서 발생한 빛의 일부는 외부로 탈출하여 외부양자효율에 영향을 주지만, 많은 양의 빛은 사파이어 기판(100)과 질화물 반도체층 내부에 갇혀 빠져나오지 못하고 열로 소멸되고 있는 실정이다. 또한, 수평방향으로 전류 인가되어 발광소자 내부에 전류밀도 불균형이 발생하여 소자의 성능에 좋지 않은 영향을 준다.
그래서, 사파이어 기판(100) 위에 복수개의 질화물 반도체층을 성장한 후 사파이어 기판(100)을 제거하고 수직 방향의 전극 구조를 가지는 고효율의 발광소자를 제작하기 위한 기술들이 연구되고 있다. 일반적으로 사파이어 기판(100)을 제거하기 방법으로 레이저를 이용하는 방법이 사용된다. 사파이어 기판(100)의 하부에 레이저를 조사하면 사파이어 기판(100)은 레이저 빛을 흡수하지 못하고 그대로 투과시키지만, 질화물 반도체층은 레이저 빛을 흡수하여 삼족 원소와 질소 원소가 분 리된다.
주된 삼족 원소인 갈륨은 상온에서도 액상을 유지하기 때문에 사파이어 기판(100)과 질화물 반도체층이 분리되는 것이다. 그러나, 레이저를 이용한 방법은 레이저의 조사시 높은 열이 발생하여 소자에 좋지 않은 영향을 주고 또한 사파이어 기판(100)과 질화물 반도체층 사이의 스트레스로 인하여 질화물 반도체층이 깨지기도 한다.
도 2는 본원인이 출원한 특허 2006-35149의 대표적인 도면을 나타낸 것이다.
기존 수평형 전극 소자에 비하여 10% 이상의 휘도 향상이 확인될 뿐만 아니라, 기존 몇몇 발광 소자 업체에서 전도성 세라믹 기판 혹은 금속 기판에 웨이퍼 본딩 방식으로 진행하는 수직형 전극 소자에 비해 비교적 간단한 공정으로 인한 제조 비용감축 및 웨이퍼 본딩과 레이저 리프트 오프 공정으로 인한 저조한 제조 수율을 획기적으로 높일 수 있는 장점이 있다. 도 2는 먼저 비아홀(90)을 형성한 후 에피탁시 증착(20, 30, 40)을 하고 기존의 칩 공정에서 p측 패드 전극(제2 전극;60) 증착
시 개구부(80)로 노출된 n형 GaN층 부분(22)에 함께 형성되는 패드 금속(65)와 n형
GaN(20)에 직접적으로 닿는 하부 증착(제1 전극)(70)시에 비아홀(90)을 통하여 상부 및 하부를 연결하는 구조(interconnection)의 수직형 발광 소자를 나타내는 단면도이다.
그러나, 도 3에서 보이는 것처럼 2006-35149 특허 출원 당시 레이저 드릴에 의한 비아홀을 칩의 내부에 배치하여 발광되는 면적이 비아홀 개수의 영역만큼 감소되어 실제 바깥으로 빠져나오는 세기가 작아지는 휘도 저하의 문제점이 있다.
본 발명은 상기 문제를 해결하기 위한 것으로, 비아홀을 가지는 사파이어 기판을 이용하며, 수직 구조의 전극을 형성하여 전류 밀도의 불균형을 제거하는 3족 질화물 반도체 발광 소자에 있어서, 특히 비아홀을 칩 아이솔레이션 라인에 위치시켜 발광 면적을 최대로 하는 것을 특징으로 하는 3족 질화물 반도체 발광 소자 및 그 제조 방법에 관한 것이다.
이를 위해 본 발명은 제1 면 및 제1 면에 대향하는 제2 면을 구비하는 기판,
기판의 제1 면 측에 성장되며, 제1 도전성을 가지는 제1 질화물 반도체층, 제1 도
전성과 다른 제2 도전성을 가지는 제2 질화물 반도체층, 그리고 제1 질화물 반도체
층과 제2 질화물 반도체층 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생
성하는 활성층을 구비하는 복수개의 질화물 반도체층을 포함하며, 제1 질화물 반도
체층에 전기적으로 연결되는 제1 전극과 제2 질화물 반도체층에 전기적으로 연결되
는 제2 전극을 구비하는, 3족 질화물 반도체 발광소자의 제조 방법에 있어서, 먼저
기판의 제1 면 위에 복수의 비아홀을 주기적으로 형성하되, 적어도 일부의 비아홀
은 제1 면 위에 정의된 칩 아이솔레이션 라인에 위치하도록 형성하는 제1 단계; 칩
아이솔레이션 라인을 따라 상기 적어도 일부의 비아홀을 지나가는 스크라이빙 라인
을 형성하는 제2 단계; 상기 스크라이빙 라인이 형성된 기판의 제1 면 측에 복수개
의 질화물 반도체층을 성장시키는 제3 단계; 비아홀을 통해 제1 전극을 제1 질화물
반도체층에 전기적으로 연결하도록 기판의 제2 면 측으로부터 기판의 일부를 제거
하는 제4 단계; 그리고, 비아홀을 통해 제1 전극을 제1 질화물 반도체층에 전기적
으로 연결하도록 기판의 제2 면 측으로부터 제1 전극을 형성하는 제5 단계;를 포함하는 것을 특징으로 하는 3족 질화물 반도체 발광소자의 제조 방법을 제공한다.
또한 본 발명은 제3 단계에서 홈의 상부에 개구부가 형성되도록 복수개의 질화물 반도체층을 성장시키는 것을 특징으로 하는 3족 질화물 반도체 발광소자의 제조 방법을 제공한다.
또한 본 발명은 기판이 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체 발광소자의 제조 방법을 제공한다.
이하 도면을 참고하여 본 발명을 보다 자세히 설명한다.
도 3은 레이저 스크라이빙 공정 추가 없이 기판에 비아홀(90)을 형성한 모습을 나타내는 개략 도면이다. 본 발명에서는 30㎛의 직경을 가지는 비아홀(90)을 기판(10)에 형성하였다. 비아홀(90)의 배열은 하나의 비아홀(90)을 중심으로 x축 방향으로 250㎛, y축의 방향으로 250㎛의 주기적 간격을 가지도록 형성하였으며, 비아홀(90)의 형성을 위해 사용한 레이저는 활성 매체가 네오드뮴이 포함된 이트리아계 산화물이며, 레이저의 파장은 532nm의 DPSS(Diod Pumped Solid State)레이저를 사용하였다. 이때, 레이저의 출력은 10W(10~100KHz)이며, 드릴링 속도는 20~50 holes/sec이었다. 레이저를 이용하여 비아홀(90)을 형성한 후에는 비아홀(90)을 형성하는 과정에서 형성되는 불순물을 제거하기 위해서 인산 등을 이용하여 기판을 유기 세척한다. 도 3은 1000X1000um 칩의 경우를 나타내는 것으로 250X250um 주기의 경우 총 16개의 비아홀을 칩 내부에 배치한 것을 나타내고 있다.
도 4는 본 발명에 따라 레이저 드릴링 작업을 한후 레이저 스크라이빙을 진
행한 기판의 50배 현미경 사진이다. 비아홀(90)의 경우 도 3의 레이저 드릴 방법과
유사한 조건으로 직경 35um인 모습을 나타내고 있다. 이후 선폭 7um, 깊이 25um의
레이저 스크라이빙 라인(1, 7)을 나중에 형성하였다. 도 3과 달리 비아홀(90)의 내부 개수가 16개에서 9개로 감소하여 발광 면적부가 증가하였다.
도 5는 본 발명에 따른 3족 질화물 반도체 발광소자의 제조를 위한 또 다른
한 단계를 설명하는 도면으로서, 홈(91)이 형성된 기판(10), 홈(91)이 형성된 기
판(10)의 제1 면 위에 n형 질화물 반도체층(20), n형 질화물 반도체층(20) 위에 성
장되는 활성층(30), 활성층(30) 위에 성장되는 p형 질화물 반도체층(40)을 성장한
개략도이다. 상기 성장된 복수개의 질화물 반도체층은 본 발명에 따른 실시예에 불과하며 에피 구조의 약간 변경이나 부가적인 에피층의 가감 등은 본 발명에 포함됨을 밝혀둔다.
n형 질화물 반도체층(20)은 GaN로 형성되었으며 n형 불순물이 도핑되었다. n형 불순물로는 Si를 사용하였으며, 불순물의 도핑 농도는 1x1017 ~ 1x1020/cm3의 값을 가진다. 도핑 농도가 1x1017/cm3 이하이면 반도체층(20)의 저항값이 높아져 오믹 접촉을 기대하기 어려우며 도핑 농도가 1x1020/cm3 이상이면 반도체층(20)의 결정성이 나빠질 수 있다.
n형 질화물 반도체층(20)의 두께는 바람직하게 2㎛ ~ 6㎛이며, 반도체층(20)의 두께가 6㎛ 이상이면 반도체층(20)의 결정성이 저하되어 소자에 좋지 않은 영향을 줄 수 있으며, 두께가 2㎛ 이하이면 전자의 공급이 원활하게 이루어지지 않을 수 있다. 그리고, n형 질화물 반도체층(20)의 성장온도는 바람직하게 600℃ ~ 1100 ℃이며, 성장온도가 600℃ 이하이면 반도체층(20)의 결정성이 나빠질 수 있고, 1100℃ 이상이면 반도체층(20)의 표면이 거칠어져 반도체층(20)의 결정성에 좋지 않은 영향을 줄 수 있다.
본 발명에서 n형 질화물 반도체층(20)은 트리메탈갈륨(TMGa), 암모니아(NH3) 및 SiH4을 각각 365sccm, 11slm. 8.5slm로 공급하여 4㎛ 성장하였다. 이때 성장온도는 1050℃이며, 도핑 농도는 3x1018/cm3, 반응기의 압력은 400torr이다.
위와 같은 n형 질화물 반도체층(20)의 성장 조건에서 충분히 빠르지 않은 성장 속도와 비교적 낮은 성장 온도 등으로 인하여 수평 방향 성장이 잘 이루어지지 않기 때문에 기판에 형성된 홈(91)을 덮지 않고, 개구부(80)를 형성하게 된다. n형 질화물 반도체층(20) 위에 성장되는 질화물 반도체층(30,40) 또한 수평 성장이 발생하지 않는 성장조건에서 성장하여 개구부(80)가 복수개의 질화물 반도체층의 최상층까지 형성되도록 성장하였다.
n형 질화물 반도체층(20) 위에 형성되는 활성층(30)은 전자와 정공의 재결합에 의하여 빛을 생성하는 역할을 한다. 또한, 활성층(30)은 단일 양자우물 구조 또는 다중 양자우물 형태를 가질 수 있다.
활성층(30) 위에 성장되는 p형 질화물 반도체층(40)은 GaN로 성장되었으며 p형 불순물이 도핑되었다, p형 불순물로는 Mg를 사용하였으며, 불순물의 도핑 농도는 1x1017 ~ 1x1020/cm3의 값을 가진다. 도핑 농도가 1x1017 /cm3 이하이면 p형 질화물 반도체층(40)의 역할을 하기 어려우며 도핑 농도가 1x1020/cm3 이상이면 반도체층(40)의 결정성이 나빠질 수 있다.
p형 질화물 반도체층(40)의 두께는 바람직하게 200Å ~ 3000Å이며, 반도체층(40)의 두께가 3000Å 이상이면 반도체층(40)의 결정성이 저하되어 소자에 좋지 않은 영향을 줄 수 있으며, 두께가 200Å 이하이면 정공의 공급이 원할하게 이루어지지 않을 수 있다. 그리고, p형 도전성을 가지는 질화물 반도체층(40)의 성장온도는 바람직하게 600℃ ~ 1100℃ 이며, 성장온도가 600℃ 이하이면 반도체층(40)의 결정성이 나빠질 수 있으며, 1100℃ 이상이면 반도체층(40)의 표면이 거칠어져 반도체층(40)의 결정성에 좋지 않은 영향을 줄 수 있다.
도 6은 비아홀과 레이저 스크라이빙 라인이 형성된 기판 위에 복수개의 질화
물 반도체층을 성장한 모습을 나타내는 도면으로서, 광학 현미경을 통하여 관찰한 복수개의 질화물 반도체층의 최상층의 표면을 나타낸다. 복수개의 질화물 반도체층
이 수평 성장이 이루어져 개구부가 형성되어 있다. 뿐만 아니라, 기판의 플랫존(flat zone)에 수직인 레이저 스크라이빙 라인(7)과 수평인 레이저 스크라이빙 라인(1)의 질화물 반도체 에피 성장은 양상이 다른데, 특히 수직 방향의 경우 수평방향보다 질화물 반도체의 성장 속도가 커서 레이저 스크라이빙 라인(7)을 거의 덮는 형태로 나타나고 있다.
도 7은 도 6의 점선으로 표시된 원형 영역을 개략적으로 나타낸 것으로 스크라이빙 라인에 홀이 배치되는 발광 소자를 나타내는 개략적인 도면이다. 그림에서 보듯이 칩을 격리(isolation) 시키기 위하여 만든 스크라이빙 라인(1) 위에 원형 비아홀 영역(2)이 위치하고 있으며, 발광 소자의 제조 공정 순서에 따라 p-metal 증착영역라인(3)에 의해 정의된 영역에 전류 확산을 위한 P형 금속을 증착한 후, 일부 n형 질화물 반도체층을 노출(4) 시키기 위해 ICP 식각을 한 것을 나타낸 것이다. 그리고 나서 제2 전극(P형 패드 금속) (5)을 증착한 모식도이다.
이와 같은 제조 방법을 칩에 구현하면 비아홀이 없는 칩 외곽부의 경우 도 8과 같은 경우처럼 활성층으로부터 나오는 빛을 최대한 바깥으로 추출할 수 있는 구조가 확보된다. 뿐만 아니라 기존 내부에 배치되는 비아홀 개수를 줄이므로써 실제 발광부 면적이 증가되어 휘도 개선이 용이하다.
도 9는 본 발명에 따른 3족 질화물 반도체 발광소자의 제조 과정을 나타내는 도면으로서, 레이저 스크라이빙 라인 위에 비아홀을 배치시킨 위에 전자와 정공의 재결합에 의하여 빛을 생성하는 활성층을 포함하는 복수개의 질화물 반도체층(20,30,40)을 성장한다.
복수개의 질화물 반도체층(20,30,40)을 성장한 후 복수개의 질화물 반도체층 (20,30,40)위에 p측 전극(50)을 형성한다. p측 전극(50)은 니켈, 금, 은, 크롬, 티타늄, 백금, 팔라듐, 로듐, 이리듐, 알루미늄, 주석, ITO, IZO, ZnO, CIO(copper Indium Oxide), 인듐, 탄탈륨, 구리, 코발트, 철, 루테늄, 지르코늄, 텅스텐 및 몰리브덴으로 이루어진 군으로부터 선택된 하나를 포함하여 형성한다.
p측 전극(50)을 형성한 후 n형 질화물 반도체층(20)을 노출시키는 공정을 수행한다. n형 질화물 반도체층(20)을 노출시키는 방법은 건식식각 및 습식식각법을 이용한다. 이때 n형 질화물 반도체층(20)이 노출되는 표면적을 크게 하기 위해서 하나의 스텝(21:step)을 가지는 형태로 식각한다.
n형 질화물 반도체층(20)의 노출을 위한 식각 공정 후 p측 전극(50)의 상부
와 p형 질화물 반도체층(40)의 상부에 p측 본딩 패드(60)를 형성하고, 기판(10)의 제2 면을 연마하는 공정을 수행한다. 기판(10)의 연마는 적어도 홈(91)이 형성된 곳까지 연마하여 형성된 홈(91)이 기판(10)을 관통하는 형태를 취하도록 한다. 기판(10)을 연마하는 방법은 그라인딩, 랩핑의 방법을 사용한다. 기판(10)의 제2 면을 연마한 후 기판(10)의 최종 두께는 50㎛에서 400㎛의 값을 가지며 바람직하게는 30㎛에서 300㎛의 값을 가진다. 기판(10)의 최종 두께가 30㎛ 이하이면 후속 공정에서 기판(10)이 깨질 우려가 있으며, 기판(10)의 최종 두께가 300㎛ 이상이면 수직 구조의 발광 소자로서 휘도 및 열적 개선의 폭이 크지 않을 수 있다.
상기 기판의 제2 면을 연마하기 전에 p측 본딩 패드(60)를 제외한 발광 소자의 전면에 보호막을 형성할 수 있다. 보호막은 SiOx, SiNx, SiON, BCB, Polyimide등을 이용하여 형성한다.
기판(10)의 제2 면을 연마하는 공정 후에 n측 전극(70)을 형성한다. n측 전극은(70) 연마된 기판의 제2 면에 형성하며, 형성된 홈을 통하여 n형 질화물 반도체층에 n측 전극(70)이 형성된다. n측 전극(70)의 형성은 스퍼터링(Sputtering)법, 전자빔 증작법(E-beam Evaporation), 열증착법 등의 방법을 이용하며, n측 전극(70)은 니켈, 금, 은, 크롬, 티타늄, 백금, 팔라듐, 로듐, 이리듐, 알루미늄, 주석, 인듐, 탄탈륨, 구리, 코발트, 철, 루테늄, 지르코늄, 텅스텐, 몰리브덴으로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 조합으로 형성되어 반사막의 역할을 한다. n측 전극(70)이 반사막으로 형성되어 활성층에서 발생한 빛을 반사하여 발광소자의 위로 생성된 빛을 방출시킨다. 또한, 기판의 제2 면에 형성된 n측 전극(70)이 n측 본딩 패드의 역할을 하여 반도체 발광 소자에 전류를 주입한다.
뿐만 아니라, n측 전극(70)의 형성에 있어서, p측 본딩 패드(60)의 증착시 개구부에 노출된 n형 질화물 반도체층(21)에 금속층의 형성이 가능하며 또한 n측 전극(70)의 형성 공정에서 기판의 제2 면에 형성된 홈을 통하여 n측 전극(70)이 형성되어 노출된 n형 질화물 반도체층(22)을 감싸는 형태로 가능하다.
본 발명에 의하면, 종래의 수직 방향의 전극 구조를 가지는 반도체 발광소자의 제조 공정에서 사파이어 기판의 제거 및 새로운 기판의 접착(Wafer Bonding) 등으로 인하여 발생하는 제조 비용을 줄일 수 있다.
또한 본 발명에 의하면, 금속 배선을 3족 질화물 발광소자의 아래 면으로 연결이 가능하여 열 분산이 용이하여 3족 질화물 반도체 발광소자의 열적 신뢰성을 개선할 수 있다.
또한 본 발명에 의하면 기존 칩 내부에 배치한 비아홀을 일부 칩 외곽 부분까지 배치하므로써 발광 면적을 확대하여 휘도 증가가 가능하다.

Claims (2)

  1. 제1 면 및 제1 면에 대향하는 제2 면을 구비하는 기판, 기판의 제1 면 측에 성장되며, 제1 도전성을 가지는 제1 질화물 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 질화물 반도체층, 그리고 제1 질화물 반도체층과 제2 질화물 반도체층 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 구비하는 복수개의 질화물 반도체층을 포함하며, 제1 질화물 반도체층에 전기적으로 연결되는 제1 전극과 제2 질화물 반도체층에 전기적으로 연결되는 제2 전극을 구비하는, 3족 질화물 반도체 발광소자의 제조 방법에 있어서,
    기판의 제1 면 위에 복수의 비아홀을 주기적으로 형성하되, 적어도 일부의 비아홀은 제1 면 위에 정의된 칩 아이솔레이션 라인에 위치하도록 형성하는 제1 단계;
    칩 아이솔레이션 라인을 따라 상기 적어도 일부의 비아홀을 지나가는 스크라이빙 라인을 형성하는 제2 단계;
    상기 스크라이빙 라인이 형성된 기판의 제1 면 측에 복수개의 질화물 반도체층을 성장시키는 제3 단계;
    비아홀을 통해 제1 전극을 제1 질화물 반도체층에 전기적으로 연결하도록 기판의 제2 면 측으로부터 기판의 일부를 제거하는 제4 단계; 그리고,
    비아홀을 통해 제1 전극을 제1 질화물 반도체층에 전기적으로 연결하도록 기판의 제2 면 측으로부터 제1 전극을 형성하는 제5 단계;를 포함하는 것을 특징으로 하는 3족 질화물 반도체 발광소자의 제조 방법.
  2. 제1 면 및 제1 면에 대향하는 제2 면을 구비하며, 제1 면에서 제 2면으로 향하는 복수의 비아홀을 구비하는 기판;
    기판의 제1 면 측에 성장되며, 제1 도전성을 가지는 제1 질화물 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 질화물 반도체층, 그리고 제1 질화물 반도체층과 제2 질화물 반도체층 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 구비하는 복수개의 질화물 반도체층;으로서 비아홀과 이어지는 개구부가 형성된 복수개의 질화물 반도체층;
    기판의 제2 면으로부터 비아홀을 통해 제1 질화물 반도체층에 전기적으로 연결되어 있으며, 반사판으로서 기판의 제2 면의 전체에 형성되어 있는 제1 전극; 그리고,
    제2 질화물 반도체층에 전기적으로 연결되는 제2 전극;을 포함하며,
    상기 복수의 비아홀 중 일부의 비아홀이 칩 아이솔레이션을 위한 칩 외곽부의 스크라이빙 라인에 배치된 것을 특징으로 하는 3족 질화물 반도체 발광소자.
KR1020060083404A 2006-04-18 2006-08-31 3족 질화물 반도체 발광소자 및 그 제조 방법 KR101004711B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020060083404A KR101004711B1 (ko) 2006-08-31 2006-08-31 3족 질화물 반도체 발광소자 및 그 제조 방법
PCT/KR2006/005755 WO2007119919A1 (en) 2006-04-18 2006-12-27 Iii-nitride semiconductor light emitting device and method for manufacturing the same
JP2008557198A JP2009528694A (ja) 2006-04-18 2006-12-27 Iii族窒化物半導体発光素子及びその製造方法
CN200680052876.4A CN101375416B (zh) 2006-04-18 2006-12-27 Iii族氮化物半导体发光器件及其制造方法
EP06835457A EP2008314A4 (en) 2006-04-18 2006-12-27 SEMICONDUCTOR LIGHT EMITTING DEVICE OF NITRIDE III TYPE AND METHOD FOR PRODUCING SAME
TW096113427A TW200802981A (en) 2006-04-18 2007-04-17 III-nitride semiconductor light emitting device and method for manufacturing the same
US12/196,000 US20090020771A1 (en) 2006-04-18 2008-08-21 III-Nitride Semiconductor Light Emitting Device And Method For Manufacturing The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060083404A KR101004711B1 (ko) 2006-08-31 2006-08-31 3족 질화물 반도체 발광소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20080020219A KR20080020219A (ko) 2008-03-05
KR101004711B1 true KR101004711B1 (ko) 2011-01-04

Family

ID=39395279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060083404A KR101004711B1 (ko) 2006-04-18 2006-08-31 3족 질화물 반도체 발광소자 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR101004711B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297095A (ja) 2001-11-19 2004-10-21 Sanyo Electric Co Ltd 化合物半導体発光素子の製造方法
KR20050066358A (ko) * 2003-12-26 2005-06-30 삼성전기주식회사 플립칩용 질화물 반도체 발광소자 및 그 제조방법
KR20050089120A (ko) * 2004-03-03 2005-09-07 주식회사 이츠웰 발광 다이오드 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297095A (ja) 2001-11-19 2004-10-21 Sanyo Electric Co Ltd 化合物半導体発光素子の製造方法
KR20050066358A (ko) * 2003-12-26 2005-06-30 삼성전기주식회사 플립칩용 질화물 반도체 발광소자 및 그 제조방법
KR20050089120A (ko) * 2004-03-03 2005-09-07 주식회사 이츠웰 발광 다이오드 및 그 제조 방법

Also Published As

Publication number Publication date
KR20080020219A (ko) 2008-03-05

Similar Documents

Publication Publication Date Title
KR100988041B1 (ko) 반도체 발광소자
US8581295B2 (en) Semiconductor light-emitting diode
KR101039988B1 (ko) 발광 소자 및 그 제조방법
JP2010537408A (ja) マイクロピクセル紫外発光ダイオード
WO2009139524A1 (en) Semiconductor light emitting device
KR20110077707A (ko) 수직형 발광 다이오드 및 그 제조방법
KR100700529B1 (ko) 전류 확산층을 구비한 발광 다이오드 및 그 제조 방법
KR100661960B1 (ko) 발광 다이오드 및 그 제조 방법
WO2008026902A9 (en) Iii-nitride semiconductor light emitting device
KR101525913B1 (ko) 수직구조 발광다이오드 및 이의 제조방법
KR20100103962A (ko) 발광소자 및 그 제조방법
KR100743471B1 (ko) 3족 질화물 반도체 발광소자의 제조 방법
KR100960279B1 (ko) 3족 질화물 반도체 발광소자
KR20080020215A (ko) 반도체 발광소자
US20090020771A1 (en) III-Nitride Semiconductor Light Emitting Device And Method For Manufacturing The Same
KR101004711B1 (ko) 3족 질화물 반도체 발광소자 및 그 제조 방법
KR100743470B1 (ko) 3족 질화물 반도체 발광소자 및 그 제조 방법
KR100996447B1 (ko) 3족 질화물 반도체 발광소자
KR100688037B1 (ko) 3족 질화물 반도체 발광소자
JP5207944B2 (ja) 半導体発光素子の製造方法
KR20070079139A (ko) 3족 질화물 반도체 적층체의 제조 방법 및 이를 이용한 3족질화물 반도체 발광소자와 그 제조 방법
WO2007089077A1 (en) Iii-nitride semiconductor light emitting device and method of manufacturing the same
KR20090045156A (ko) 3족 질화물 반도체 발광소자
KR101084641B1 (ko) 3족 질화물 반도체 발광소자
KR20110078628A (ko) 3족 질화물 반도체 발광소자

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee