KR100975799B1 - Gear drive unit with speed measurement - Google Patents

Gear drive unit with speed measurement Download PDF

Info

Publication number
KR100975799B1
KR100975799B1 KR1020087030800A KR20087030800A KR100975799B1 KR 100975799 B1 KR100975799 B1 KR 100975799B1 KR 1020087030800 A KR1020087030800 A KR 1020087030800A KR 20087030800 A KR20087030800 A KR 20087030800A KR 100975799 B1 KR100975799 B1 KR 100975799B1
Authority
KR
South Korea
Prior art keywords
sensor
wheel
delete delete
gear
drive unit
Prior art date
Application number
KR1020087030800A
Other languages
Korean (ko)
Other versions
KR20090015977A (en
Inventor
마르쿠스 마이어
슈테판 렉
위르겐 헤어프
마르쿠스 클립켄
디트마르 샤이블레
슈테판 코트하우스
프랑크 모스콥
토마스 훅
미하엘 죌너
마틴 하거
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7692210&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100975799(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20090015977A publication Critical patent/KR20090015977A/en
Application granted granted Critical
Publication of KR100975799B1 publication Critical patent/KR100975799B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/074Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for retracting the mirror arrangements to a non-use position alongside the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19679Spur
    • Y10T74/19684Motor and gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19828Worm

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Gear Transmission (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

본 발명은 피동 휠(22)과 맞물리는 구동 휠(16)을 가진, 자동차에 사용하기 위한 기어 구동 유닛(10)에 관한 것이며, 속도를 검출하기 위한 센서(42)와 상호 작용하는 위치 센서(36)를 가진 센서 휠(26)은 구동 휠(16) 또는 피동 휠(22)과 맞물리는 것을 특징으로 한다.The present invention relates to a gear drive unit 10 for use in a motor vehicle, having a drive wheel 16 engaged with a driven wheel 22, wherein the position sensor interacts with a sensor 42 for detecting speed. Sensor wheel 26 with 36 is characterized in engagement with drive wheel 16 or driven wheel 22.

위치 센서, 센서 휠, 구동 휠, 피동 휠, 자기저항 소자, 기어 구동 유닛 Position sensor, sensor wheel, drive wheel, driven wheel, magnetoresistive element, gear drive unit

Description

속도 검출기를 구비한 기어 구동 유닛{Gear drive unit with speed measurement}Gear drive unit with speed measurement

본 발명은 독립 청구항의 전제부에 따른, 특히 자동차에 사용하기 위한, 속도 검출기를 구비한 기어 구동 유닛에 관한 것이다.The present invention relates to a gear drive unit with a speed detector, in particular for use in motor vehicles, according to the preamble of the independent claim.

EP 0 865 148 A1에는 정류자 모터를 구비한 자동차의 장착 부품들을 조절하기 위한 모터 기어 구동 유닛이 공지되어 있다. 실질적으로 포트형인 모터 하우징은 모터 하우징으로부터 연장된 아마추어 샤프트를 가진 모터 아마추어를 포함한다. 모터 하우징과 기어장치 하우징 사이에서 아마추어 샤프트는 반구형 베어링에 의해 지지된다. 모터 아마추어와 반구형 베어링 사이에서 아마추어 샤프트 상에 콜렉터 및 환형 자석이 배치된다. 환형 자석은 그 외주에서 N극 방향과 S극 방향으로 교대로 자화된다. 변하는 자기장은 서로 90°로 오프셋되어 배치된 2개의 홀 센서에 의해 검출되고, 전자 인쇄 회로 기판 위에 배치된 제어 전자 장치에 의해 평가된다. 전자 인쇄 회로 기판은 환형 자석에 바로 근접할 때까지 모터 하우징 내로 돌출한다. 모터 하우징의 내부에 또는 브러시 홀더의 영역 내에 전자 인쇄 회로 기판의 상기 배치는 매우 복잡하고 융통성이 없다. 또한, 회전수 센서에서 브러시 스파크는 장애를 일으킨다.In EP 0 865 148 A1 a motor gear drive unit for adjusting the mounting parts of a motor vehicle with a commutator motor is known. The substantially ported motor housing includes a motor armature having an armature shaft extending from the motor housing. The armature shaft is supported by the hemispherical bearing between the motor housing and the gearbox housing. Collectors and annular magnets are arranged on the armature shaft between the motor armature and the hemispherical bearing. The annular magnet is magnetized alternately in the N-pole direction and the S-pole direction at its outer circumference. The changing magnetic field is detected by two Hall sensors arranged offset from each other by 90 ° and evaluated by the control electronics arranged on the electronic printed circuit board. The electronic printed circuit board projects into the motor housing until it is in close proximity to the annular magnet. The arrangement of the electronic printed circuit board inside the motor housing or in the area of the brush holder is very complex and inflexible. In addition, brush sparks in the speed sensor cause a failure.

이와 달리 독립 청구항의 특징을 갖는 본 발명에 따른 장치는, 속도 센서가 전체적으로 모터 하우징 외부에 배치될 수 있는 장점을 갖는다. 따라서 센서가 배치된 전자 인쇄 회로 기판을 모터 하우징 내에 배치하는, 매우 복잡한 공정이 생략된다. 기어장치 하우징의 영역 내에 전자 인쇄 회로 기판을 배치함으로써, 전자 인쇄 회로 기판의 형태는 더 작고 간단하게 구현될 수 있다. 또한, 바람직하게 기어장치 공간은, 콜렉터 공간에 대해 간단하게 밀봉될 수 있는데, 그 이유는 전자 인쇄 회로 기판이 더 이상 콜렉터 공간 내로 돌출하지 않기 때문이다.Alternatively, the device according to the invention having the features of the independent claims has the advantage that the speed sensor can be arranged entirely outside the motor housing. Therefore, a very complicated process of disposing the electronic printed circuit board on which the sensor is disposed in the motor housing is omitted. By placing the electronic printed circuit board in the area of the gear device housing, the form of the electronic printed circuit board can be made smaller and simpler. Also, preferably the gearing space can be simply sealed relative to the collector space, since the electronic printed circuit board no longer protrudes into the collector space.

구동 휠 또는 피동 휠의 적절한 위치에 센서 휠을 배치하는 것을 자유롭게 선택함으로써, 센서의 배치는 기어 구동 유닛의 각각의 하우징에 따라 최적으로 조정될 수 있다. 센서가 콜렉터로부터 떨어져 배치됨으로써, 센서에 대한 상기 콜렉터의 영향이 방지된다. 센서 휠이 구동 휠 또는 피동 휠을 따라 자유롭게 선택 가능하게 위치설정됨으로써 기어 구동 유닛의 바람직한 공간 이용 및 디자인이 가능해진다. 환형 자석이 생략됨으로써, 아마추어 샤프트 및 그에 따른 전체 기어 구동 유닛의 길이도 줄어든다. 이는 시트 조절을 위해 사용시 또는 슬라이딩 선루프에서 특히 중요한데, 그 이유는 이 경우 사용 가능한 공간이 제한되기 때문이다.By freely selecting the arrangement of the sensor wheel in the proper position of the drive wheel or driven wheel, the arrangement of the sensor can be optimally adjusted according to the respective housing of the gear drive unit. By placing the sensor away from the collector, the influence of the collector on the sensor is prevented. The freely selectable positioning of the sensor wheels along the drive wheels or driven wheels enables the desired space utilization and design of the gear drive unit. By omitting the annular magnet, the length of the armature shaft and thus the entire gear drive unit is also reduced. This is especially important when used for seat adjustment or in sliding sunroofs, since the space available in this case is limited.

다른 바람직한 실시예에서, 구동 휠 또는 피동 휠은 동시에 센서 휠로서 구 현된다. 상기 센서 휠이 예컨대 구동 휠에 통합되면, 센서 휠의 자유 단부면은 동시에 아마추어 샤프트의 자유 단부가 된다. 다른 한편으로, 피동 휠이 위치 센서를 포함하면, 마찬가지로 추가의 센서 휠이 필요 없으므로, 공간 및 부품들이 절감된다.In another preferred embodiment, the drive wheel or driven wheel is simultaneously implemented as a sensor wheel. If the sensor wheel is for example integrated in the drive wheel, the free end face of the sensor wheel is at the same time the free end of the armature shaft. On the other hand, if the driven wheel includes a position sensor, there is no need for additional sensor wheels as well, saving space and parts.

또한, 본 발명의 특징들에 따른 장치의 바람직한 다른 개선이 가능하다. 구동 휠이 아마추어 샤프트 상에 배치된 워엄으로서 구현되는 것이 특히 바람직하다. 스퍼 기어, 특히 워엄 기어로서 구현된 센서 휠은 임의의 위치에서 워엄 기어로 구현된 피동 휠에 맞물릴 수 있거나, 또는 워엄과 직접 맞물릴 수 있다. 속도 센서의 소정의 감도에 따라 센서 휠에 대한 변속비(톱니 수)가 적절하게 선택될 수 있다. 센서 휠이 워엄 기어에 마주 놓인 측면에서 워엄과 맞물리면, 아마추어 샤프트는 상기 위치에서 추가적으로 지지된다.In addition, other desirable improvements of the device according to the features of the invention are possible. It is particularly preferred that the drive wheel be implemented as a worm disposed on the armature shaft. The sensor wheel embodied as a spur gear, in particular a worm gear, may engage the driven wheel embodied in the worm gear at any position, or may directly engage the worm. The transmission ratio (number of teeth) for the sensor wheel can be appropriately selected according to the predetermined sensitivity of the speed sensor. When the sensor wheel engages with the worm on the side opposite the worm gear, the armature shaft is additionally supported in this position.

자석을 위치 센서로서 사용하는 것이 바람직한데, 그 이유는 상기 자석이 간단하게 센서 휠에 장착될 수 있거나, 또는 센서 휠이 간단하게 자화될 수 있는 재료를 포함하기 때문이다. 2극 자석이 특히 바람직하지만, 속도 측정의 분해능을 높이기 위한 다극 구조도 문제없이 형성될 수 있다. 물론, 2극 자석의 장착/자화가 바람직한데, 그 이유는 이 실시예가 환형 자석을 제조하는 것보다 훨씬 저렴하기 때문이다.It is preferable to use a magnet as a position sensor, because the magnet can simply be mounted to the sensor wheel or the sensor wheel comprises a material that can be easily magnetized. Although bipolar magnets are particularly preferred, a multipole structure for increasing the resolution of the velocity measurement can also be formed without problems. Of course, mounting / magnetization of the bipolar magnet is preferred because this embodiment is much cheaper than manufacturing an annular magnet.

위치 센서가 센서 휠의 자유 단부면에 배치되면, 이는 상응하는 센서 장치의 배치시 더 큰 융통성을 허용한다. 유도, 광학 또는 자기 센서들의 사용 여부와 무관하게, 상기 센서들은 - 아마추어 샤프트 상에 있는 환형 자석의 경우처럼 - 방사 방향 배치에 국한되는 것이 아니라, 상기 센서들은 센서 휠의 자유 단부면을 따라 직접 배치될 수 있으므로, 센서를 위한 더 큰 설치 공간이 제공된다.If the position sensor is arranged on the free end face of the sensor wheel, this allows greater flexibility in the placement of the corresponding sensor device. Regardless of whether inductive, optical or magnetic sensors are used, the sensors are not limited to radial placement, as in the case of an annular magnet on the armature shaft, but the sensors are arranged directly along the free end face of the sensor wheel. As such, a larger installation space for the sensor is provided.

센서 휠에 대해 방사 방향으로 또는 평면으로 배치될 수 있는 홀 센서를 사용하는 것이 특히 저렴하고 취급이 간단하다. 이러한 실시예는 높은 분해능으로 속도를 검출할 필요가 없는 용도에 특히 바람직하다(증분 시스템).It is particularly inexpensive and simple to use using a Hall sensor, which can be arranged radially or in a plane with respect to the sensor wheel. This embodiment is particularly preferred for applications in which there is no need to detect speed with high resolution (incremental systems).

고도로 정확한 절대-각도-측정 장치에 사용하기 위해, 센서로서 자기저항 소자(GMR, AMR)를 사용하는 것이 특히 바람직하다. 센서가 극성 변환만을 검출할 수 있는 증분식 환형 자석 장치와 달리, 자기저항 소자는 자기장, 예컨대 2극 자석의 배향(alignment)을 직접 측정한다. 이로써 더 높은 분해능이 달성되며, 이는 예컨대 높은 정확도를 요구하는 조절 경로를 위해 더 정확한 조정을 가능하게 한다. 더 긴 조절 경로를 위해 센서 휠의 완전한 회전이 증분식으로 기록되고, 센서 휠의 일 회전의 분할이 절대적으로 검출된다. 바람직하게 자기저항 소자(GMR, AMR)는 적어도 하나의 2극 자석을 포함하는 센서 휠의 단부면에 대해 평면으로 배치될 수 있다.For use in highly accurate absolute-angle-measuring devices, it is particularly preferable to use magnetoresistive elements (GMR, AMR) as sensors. Unlike incremental annular magnet devices, in which the sensor can only detect polarity changes, the magnetoresistive element directly measures the alignment of a magnetic field, such as a bipolar magnet. This achieves a higher resolution, which allows for a more accurate adjustment, for example for a control path that requires high accuracy. The complete rotation of the sensor wheel is recorded incrementally for a longer adjustment path, and the division of one rotation of the sensor wheel is absolutely detected. Preferably, the magnetoresistive elements GMR and AMR may be arranged in a plane with respect to the end surface of the sensor wheel including at least one dipole magnet.

센서 장치가 센서 휠의 일 회전의 각도 분할을 자유롭게 선택하게 할 수 있는 평가 장치를 포함하는 것이 특히 바람직하다. 이로써, 센서 휠이 일 회전하는 동안 센서 장치가 발생시키는 에지의 개수가 디자인에 의해 임의로 조정될 수 있다. 회전 각도의 가변적 분할은 전자 회로 또는 소프트웨어에 의해 절대 회전 각도 측정에 기초하여 이루어질 수 있다. 이는, 속도 측정의 분해능이 구체적인 적용예에 대해 최적으로 조정되는 것을 가능하게 하고 작동중에도 변경될 수도 있다.It is particularly preferable to include an evaluation device that can allow the sensor device to freely select the angular division of one rotation of the sensor wheel. In this way, the number of edges generated by the sensor device during one rotation of the sensor wheel can be arbitrarily adjusted by the design. Variable division of the rotation angle can be made based on an absolute rotation angle measurement by electronic circuitry or software. This allows the resolution of the velocity measurement to be optimally adjusted for the specific application and may be changed during operation.

센서 휠을, 피동 휠에 마주 놓인 워엄 측면에 배치하는 것이 특히 바람직한데, 그 이유는 센서 휠이 동시에 아마추어 샤프트를 지지하기 때문이다. 아마추어 샤프트는 일반적으로 극 포트에서 및 모터 하우징과 기어장치 하우징 사이의 이행 영역에서 예컨대 반구형 베어링에 의해 영구 지지된다. 부하 모멘트의 상승시 아마추어 샤프트의 편위(shift)를 저지하기 위해, 기어장치 하우징 내의 아마추어 샤프트의 자유 단부는 예컨대 베어링 핀에 의해 지지된다. 상기 베어링 핀의 형성은 한편으로는 비교적 비용이 많이 들고, 다른 한편으로는 상기와 같은 지지는 대개 원치 않는 소음과 함께 진동을 야기한다. 피동 휠과의 맞물림 영역에 있는 워엄 기어장치는 매우 정확하게 제조되기 때문에, 지지 기어로서 센서 휠을 반대 측면에 배치하는 것은 매우 정확하고 조용한 장착을 보장한다. 이로써 워엄과 피동 휠의 톱니가 장애 없이 서로 맞물리는 것이 보장되고 톱니의 손상 또는 상기 톱니의 스킵(skip)이 확실히 방지된다.It is particularly desirable to position the sensor wheel on the side of the worm opposite the driven wheel, since the sensor wheel simultaneously supports the armature shaft. The armature shaft is generally permanently supported by, for example, a hemispherical bearing in the pole port and in the transition region between the motor housing and the gear housing. In order to prevent the shift of the armature shaft on rise of the load moment, the free end of the armature shaft in the gear housing is supported by a bearing pin, for example. The formation of the bearing pins is relatively expensive on the one hand, and on the other hand such support usually causes vibrations with unwanted noise. Since the worm gear unit in the engagement area with the driven wheel is manufactured very accurately, positioning the sensor wheel on the opposite side as a support gear ensures a very accurate and quiet mounting. This ensures that the teeth of the worm and driven wheels mesh with each other without obstacles and reliably prevents damage of the teeth or skipping of the teeth.

센서 휠의 축이 상기 센서 휠의 지지를 위해 기어장치 하우징내에 직접 삽입되는 것이 바람직하다. 이는, 적은 추가 부품으로 간단한 조립을 가능하게 한다. 발생한 지지력은 바람직하게 기어장치 하우징으로 직접 전달된다.Preferably, the axis of the sensor wheel is inserted directly into the gear housing for the support of the sensor wheel. This allows for simple assembly with few additional parts. The generated bearing force is preferably transmitted directly to the gearbox housing.

모터 하우징 내에 센서가 배치되지 않고, 전자 인쇄 회로 기판이 모터 하우징 내로 돌출하지 않음으로써, 윤활유가 콜렉터 공간 내로 침투하는 것을 방지하기 위해 상기 모터 하우징은 간단한 방식으로 기어장치 하우징에 대해 효과적으로 밀 봉될 수 있다. 이로써, 전자 인쇄 회로 기판이 모터 하우징에 대해, 비용이 많이 들고 공정이 복잡한 방식으로 밀봉될 필요가 없다. 이 경우, 전자 인쇄 회로 기판은 전체적으로 기어장치 하우징 또는 전자장치 하우징내에 배치되고 작고 간단한 형태를 갖는다.By not placing a sensor in the motor housing and the electronic printed circuit board not protruding into the motor housing, the motor housing can be effectively sealed to the gear housing in a simple manner to prevent lubricant from penetrating into the collector space. . In this way, the electronic printed circuit board does not need to be sealed to the motor housing in a costly and complicated manner. In this case, the electronic printed circuit board is entirely disposed in the gear housing or the electronic housing and has a small and simple form.

본 발명에 따른 장치의 2개의 실시예들이 도면에 도시되고 하기의 상세한 설명에서 더 자세히 설명된다.Two embodiments of the device according to the invention are shown in the drawings and described in more detail in the detailed description below.

도 1 및 도 2에 도시된, 본 발명에 따른 장치의 제 1 실시예는 아마추어 샤프트(14)를 갖는 전기 모터(12)를 포함하며, 상기 아마추어 샤프트 상에 구동 휠(16)로서 워엄(18)이 상대 회전 불가능하게 배치된다. 워엄(18)은 워엄 기어(20)로서 형성된 피동 휠(22)과 맞물린다. 워엄 기어(20)에는 피동 피니언(24)이 상대 회전 불가능하게 형성되고, 상기 피동 피니언을 통해 회전 모멘트가 전달될 수 있다. 모터 속도 또는 회전 속도를 검출하기 위해, 센서 휠(26)은 톱니 장치(28)를 통해 워엄 기어(20)와 맞물린다. 워엄 기어(20) 및 센서 휠(26)은 2개의 축들(워엄 기어 축(30) 및 센서 휠 축(32))상에서 회전되고, 상기 축들은 각각 자세히 도시되지 않은, 기어 구동 유닛(10)의 하우징(52)에 상대 회전 불가능하게 배치된다. 도 2는 센서 휠(26)의 단면도를 도시하며, 상기 센서 휠 축(32)은 자세히 도시되지 않은 하우징(52)에 고정된다(도 2의 상부). 센서 휠(26)은 자유 단부면(34)을 갖고, 상기 단부면에서 위치 센서(36)인 2극 자석(38)이 자화된다. 위치 센서(36) 바로 맞은편에서, 기판(40)상에 센서(42)가 배치되고, 상기 센서는 본 실시예에서 자기저항 소자(GMR, AXR; 44)로 구현된다. 센서(42)는 기판(40)에 있는 평가 장치(46)에 연결되며, 상기 평가 장치는 속도 검출의 출력 신호로서 신호 에지의 시퀀스를 전달한다. 자기저항 소자(GMR, AXR; 44)는 홀 센서(43)와는 달리, 자기장의 극성 변화를 검출할 수 있을 뿐만 아니라, 회전하는 2극 자석(38)의 절대 회전각도를 측정할 수 있다. 이로써, 속도 신호의 분해능은, 센서 휠(26)의 각도 분할, 즉 회전당 신호 에지 개수가 평가 장치(46)에 의해 조정됨으로써 임의로 조정될 수 있다. 이는 평가 장치(46) 내에서, 전자 회로에 의한 하드웨어식으로 및 소프트웨어식으로 구현될 수 있다. 환형 자석(37)의 극 분할 개수에 의해서만 감도가 변경될 수 있는, 홀 센서(43), 및 아마추어 샤프트(14)상에 배치된 환형 자석(37)에 의한 종래의 속도 검출과 달리, 본 발명에 따른 실시예에서 속도 검출의 감도는 작동중에도 변경될 수 있다. 이는, 기어 구동 유닛(10)을 각각의 적용예에 맞게 매우 간단하게 조정하는 것을 가능하게 한다.The first embodiment of the device according to the invention, shown in FIGS. 1 and 2, comprises an electric motor 12 having an armature shaft 14, on which the worm 18 is driven as a drive wheel 16 on the armature shaft. ) Is arranged so that relative rotation is impossible. The worm 18 engages a driven wheel 22 formed as the worm gear 20. In the worm gear 20, a driven pinion 24 is formed to be relatively rotatable, and a rotation moment can be transmitted through the driven pinion. In order to detect motor speed or rotational speed, sensor wheel 26 engages worm gear 20 via toothed device 28. The worm gear 20 and the sensor wheel 26 are rotated on two axes (warm gear axis 30 and sensor wheel axis 32), each of which is not shown in detail in the gear drive unit 10. It is disposed in the housing 52 so as not to rotate relatively. 2 shows a cross-sectional view of the sensor wheel 26, in which the sensor wheel shaft 32 is secured to a housing 52, not shown in detail (upper part of FIG. 2). The sensor wheel 26 has a free end face 34, on which the dipole magnet 38, which is a position sensor 36, is magnetized. Directly opposite the position sensor 36, a sensor 42 is arranged on the substrate 40, which is embodied as magnetoresistive elements GMR, AXR 44 in this embodiment. The sensor 42 is connected to an evaluation device 46 on the substrate 40, which carries a sequence of signal edges as an output signal of speed detection. Unlike the Hall sensor 43, the magnetoresistive elements GMR and AXR 44 can not only detect a change in polarity of the magnetic field, but also measure an absolute rotation angle of the rotating two-pole magnet 38. In this way, the resolution of the speed signal can be arbitrarily adjusted by the angular division of the sensor wheel 26, ie the number of signal edges per revolution, adjusted by the evaluation device 46. This can be implemented in the evaluation device 46 in hardware and software form by electronic circuitry. Unlike the conventional speed detection by the hall sensor 43 and the annular magnet 37 disposed on the armature shaft 14, the sensitivity can be changed only by the number of pole divisions of the annular magnet 37, the present invention. In the embodiment according to the sensitivity of the speed detection can be changed even during operation. This makes it possible to adjust the gear drive unit 10 very simply for the respective application.

도 3 및 도 4는 본 발명에 따른 기어 구동 유닛(10)의 다른 실시예를 도시하고, 상기 실시예에서 센서 휠(26)은 아마추어 샤프트(14)를 지지하는데 사용된다. 기어 구동 유닛(10)은 모터(12) 및 기어장치 하우징(52)을 포함하고, 상기 모터는 콜렉터(13)와, 이들을 둘러싸는 모터 하우징(50)을 포함하고, 상기 기어장치 하우징(52)은 기어장치 이외에도 속도 센서를 전체적으로 둘러싼다. 아마추어 샤프트(14)는 한편으로는 모터 하우징(50)의 베이스에 있는 아마추어 베어링(48), 및 모터 하우징(50)과 기어장치 하우징(52) 사이의 영역에 있는 볼 베어링(54)에 영구 지지된다. 또한, 센서 휠(26)과 워엄 기어(20)가 서로 마주 놓이게 배치됨으로써 아마추어 샤프트(14)의 자유 단부(56)는 적어도 방사 방향으로 지지된다. 이러한 배치에 의해, 아마추어 샤프트(14)는 워엄 기어(20)의 톱니 맞물림부(58)로부터 방사 방향으로 편위되지 않는 것이 보장된다. 이는 특히, 워엄 기어(20)가 갑자기 멈추거나 또는 상기 워엄 기어가 약간 변형되는 경우이다. 워엄 기어(20)의 손상 또는 톱니 맞물림부(58)의 스킵이 저지된다. 도 4에는 전자 인쇄 회로 기판(40)이 파선으로 도시되고, 상기 기판에서 센서 휠(26)의 단부면(34)에 마주 놓이게 센서(42)인 홀 센서(43)가 배치된다. 센서 휠(26)은 자화되어 다극 환형 자석(37)을 형성하는, 플라스토페라이트(plastoferrrite)로 이루어진 사출 성형 플라스틱 부품으로 제조된다(적어도 부분적으로). 상기 환형 자석(37)에 바로 근접하게 배치된 홀 센서(43)는 환형 자석(37)의 극성 변화를 증분식으로 검출한다. 따라서 속도 검출의 분해능은 환형 자석(37)의 극 쌍의 개수 및 센서 휠(26)의 톱니 개수에 의해 주어진다.3 and 4 show another embodiment of the gear drive unit 10 according to the invention, in which the sensor wheel 26 is used to support the armature shaft 14. The gear drive unit 10 includes a motor 12 and a gear device housing 52, the motor including a collector 13 and a motor housing 50 surrounding them, the gear device housing 52 In addition to the gear unit, the overall surround the speed sensor. The armature shaft 14 is permanently supported on the armature bearing 48 at the base of the motor housing 50 and on the ball bearing 54 in the region between the motor housing 50 and the gearbox housing 52 on the one hand. do. In addition, the sensor wheel 26 and the worm gear 20 are disposed to face each other so that the free end 56 of the armature shaft 14 is supported at least in the radial direction. This arrangement ensures that the armature shaft 14 is not radially biased from the tooth engagement portion 58 of the worm gear 20. This is especially the case when the worm gear 20 suddenly stops or the worm gear is slightly deformed. Damage to the worm gear 20 or skipping of the tooth engagement portion 58 is prevented. An electronic printed circuit board 40 is shown in broken lines in FIG. 4, and a Hall sensor 43, which is a sensor 42, is disposed opposite the end face 34 of the sensor wheel 26 on the substrate. The sensor wheel 26 is made (at least partially) of an injection molded plastic part made of plastoferrrite, magnetized to form a multipole annular magnet 37. The Hall sensor 43 disposed immediately adjacent to the annular magnet 37 detects the change in polarity of the annular magnet 37 incrementally. The resolution of the speed detection is thus given by the number of pole pairs of the annular magnet 37 and the number of teeth of the sensor wheel 26.

상기 실시예의 변형예로서, 피동 휠(22)은 위치 센서(36)를 포함하며, 이 경우 상기 위치 센서는 간단한 2극 자석(38)으로서 피동 휠(22)의 단부면에 형성된다. 따라서 피동 휠(22)은 센서 휠(26)의 기능도 하는데, 그 이유는 상기 기판(40)에도 2극 자석(38)의 회전을 검출하는 센서(42)가 배치되기 때문이다. 이것은 도 3에 도시된다. 도 4에는, 센서 전체가 기어장치 하우징(52) 내에 배치되는 것이 도시된다. 이로써, 속도가 검출되는 종래의 기어 구동 유닛(10)에서 일반적인 것처럼, 기판(40)이 콜렉터(13)를 향해 모터 하우징(50) 내로 연장되는 것은 불 필요하다. 따라서, 기어장치 하우징(52)이 모터 하우징(50)에 대해 양호하게 밀봉됨으로써, 기어장치의 윤활유가 모터 하우징(50) 내로 침투하는 것이 방지된다.As a variant of this embodiment, the driven wheel 22 comprises a position sensor 36, in which case the position sensor is formed on the end face of the driven wheel 22 as a simple two-pole magnet 38. Accordingly, the driven wheel 22 also functions as the sensor wheel 26 because the sensor 42 for detecting rotation of the dipole magnet 38 is also disposed in the substrate 40. This is shown in FIG. In FIG. 4, the entire sensor is shown disposed in the gear housing 52. As such, it is not necessary for the substrate 40 to extend into the motor housing 50 toward the collector 13, as is common in a conventional gear drive unit 10 in which speed is detected. Thus, the gear device housing 52 is well sealed with respect to the motor housing 50, whereby the lubricating oil of the gear device is prevented from penetrating into the motor housing 50.

실시예의 다른 변형예에서, 센서 휠(26)의 정확한 위치는, 최적으로 공간을 이용하면서 다양한 모터 구조가 구현되도록, 구동 휠(16), 특히 워엄(18) 또는 피동 휠(22)을 따라 변경될 수 있다. 또한, 센서 휠(26)의 톱니의 개수도 상응하는 요구 조건에 따라 센서를 조정하기 위해 선택될 수 있다. 센서 휠(26)로서 구동 휠(22)의 구현 또는 본 발명에 따른 개별 특징들의 다른 조합은 본 발명의 다른 실시예이다.In another variation of the embodiment, the exact position of the sensor wheel 26 is changed along the drive wheel 16, in particular the worm 18 or driven wheel 22, so that various motor structures are realized while optimally utilizing space. Can be. In addition, the number of teeth of the sensor wheel 26 may also be selected to adjust the sensor according to the corresponding requirements. The implementation of the drive wheel 22 as the sensor wheel 26 or another combination of the individual features according to the invention is another embodiment of the invention.

도 1은 본 발명에 따른 장치의 개략도.1 is a schematic diagram of an apparatus according to the invention.

도 2는 도 1의 라인 II-II을 따른 단면도.FIG. 2 is a sectional view along line II-II of FIG. 1;

도 3은 다른 실시예의 개략적인 단면도.3 is a schematic cross-sectional view of another embodiment.

도 4는 도 3의 라인 IV-IV을 따른 단면도.4 is a cross-sectional view along the line IV-IV of FIG. 3.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 기어 구동 유닛 12 : 전기 모터10 gear drive unit 12 electric motor

14 : 아마추어 샤프트 16 : 구동 휠14: Armature Shaft 16: Drive Wheel

18 : 워엄 20 : 웜 기어 휠18: Worm 20: Worm Gear Wheel

22 : 피동 휠 26 : 센서 휠22: driven wheel 26: sensor wheel

32 : 센서 휠 축 34 : 자유 단부면32: sensor wheel shaft 34: free end surface

36 : 위치 센서 42 : 센서(자기저항 소자)36: position sensor 42: sensor (magnetic resistance element)

46 : 평가 장치 50 : 모터 하우징46: evaluation device 50: motor housing

52 : 기어장치 하우징52: gear unit housing

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 구동 휠,Drive wheel, 상기 구동 휠과 맞물리는 피동 휠, 및A driven wheel in engagement with the drive wheel, and 속도 또는 회전 속도를 검출하기 위한 센서와 상호 작용하는 위치 센서를 가진 센서 휠로서 형성되는 상기 구동 휠 또는 상기 피동 휠을 포함하는, 차량에 사용하기 위한 기어 구동 유닛으로서,A gear drive unit for use in a vehicle, comprising the drive wheel or the driven wheel formed as a sensor wheel having a position sensor that interacts with a sensor for detecting speed or rotational speed, 상기 센서 휠은 회전 축과 단부면을 가지며,The sensor wheel has an axis of rotation and an end face, 상기 위치 센서는 상기 센서 휠의 단부면에 걸쳐서 연장하고 상기 센서 휠의 회전 축과 교차하는 플라스토페라이트로 형성되고,The position sensor is formed of plastoferrite extending over an end face of the sensor wheel and intersecting an axis of rotation of the sensor wheel, 상기 위치 센서는 센서 휠 축의 영역에서 상기 센서 휠의 축방향 자유 단부면에 배치되며,The position sensor is disposed on an axial free end face of the sensor wheel in the region of the sensor wheel axis, 상기 센서는 자기저항 소자(GMR, AMR)로서 형성되고, 상기 자기저항 소자는 자기장의 배향을 직접 측정하며,The sensor is formed as a magnetoresistive element (GMR, AMR), the magnetoresistive element directly measures the orientation of the magnetic field, 상기 센서 휠은 이 센서 휠 축 상에 직접 배치되는 2극 자석(38)을 갖고, 상기 자기저항 소자(GMR, AMR)는 회전하는 2극 자석(38)의 절대 회전 각을 측정하기 위해 상기 센서 휠의 단부면에 대해 평면으로 상기 센서 휠 축 상에 직접 배치되는 것을 특징으로 하는 기어 구동 유닛.The sensor wheel has a dipole magnet 38 disposed directly on this sensor wheel axis, and the magnetoresistive elements GMR, AMR are adapted to measure the absolute angle of rotation of the rotating dipole magnet 38. Gear drive unit, characterized in that it is disposed directly on the sensor wheel axis in a plane relative to the end surface of the wheel. 삭제delete 삭제delete 삭제delete
KR1020087030800A 2001-07-18 2002-07-06 Gear drive unit with speed measurement KR100975799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10134937.8 2001-07-18
DE10134937A DE10134937A1 (en) 2001-07-18 2001-07-18 Gear drive unit with speed detection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-7000617A Division KR20040030057A (en) 2001-07-18 2002-07-06 Gear drive unit with speed measurement

Publications (2)

Publication Number Publication Date
KR20090015977A KR20090015977A (en) 2009-02-12
KR100975799B1 true KR100975799B1 (en) 2010-08-16

Family

ID=7692210

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020087030800A KR100975799B1 (en) 2001-07-18 2002-07-06 Gear drive unit with speed measurement
KR10-2004-7000617A KR20040030057A (en) 2001-07-18 2002-07-06 Gear drive unit with speed measurement

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR10-2004-7000617A KR20040030057A (en) 2001-07-18 2002-07-06 Gear drive unit with speed measurement

Country Status (6)

Country Link
US (1) US7261012B2 (en)
EP (1) EP1412603B2 (en)
KR (2) KR100975799B1 (en)
DE (2) DE10134937A1 (en)
ES (1) ES2295377T5 (en)
WO (1) WO2003008747A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213224A1 (en) * 2002-03-25 2003-10-16 Delphi Tech Inc Steering column module for a motor vehicle
DE10321653B3 (en) 2003-05-14 2004-04-29 Pierburg Gmbh Final control device, e.g. for combustion engine choke flap, has 2 different polarity magnets in defined positions relative to final control element shaft, functionally connected to contactless switch
DE20310633U1 (en) * 2003-07-10 2004-11-11 Inalfa Roof Systems Group B.V. Drive mechanism for movable panel of open roof structure in vehicles has smaller diameter secondary gearwheel engaging in self-locking worm gearing and manually actuated when required
JP2006007925A (en) * 2004-06-24 2006-01-12 Ichikoh Ind Ltd Outside mirror for vehicle
US7019517B2 (en) * 2004-07-20 2006-03-28 Honeywell International Inc. Offset magnet rotary position sensor
EP1650572B1 (en) * 2004-10-22 2012-12-19 Getrag Ford Transmissions GmbH Gear-wheel with markings for determining speed and position
US7464620B2 (en) * 2004-11-11 2008-12-16 Schukraoof North America Actuator
DE102005057229B3 (en) 2005-11-29 2007-05-31 Sick Stegmann Gmbh Device for the absolute measurement of the linear or rotational position of a measurement object
DE102006040335B4 (en) * 2006-08-29 2019-11-14 Robert Bosch Gmbh Method for operating a charging device for an internal combustion engine
DE102006062333B4 (en) 2006-12-22 2016-05-12 Geze Gmbh Door or window drive
EP2071711B1 (en) * 2007-12-11 2010-06-02 Alcatel Lucent Position sensor, evaluation circuit, and electric motor
ES2371791T3 (en) 2008-10-08 2012-01-10 Völker AG MECHANISM OF ADJUSTMENT FOR AN ADJUSTABLE PIECE OF A FURNITURE.
DE102010002716A1 (en) 2010-03-10 2011-09-15 Robert Bosch Gmbh Gear box drive unit for e.g. seat adjustment drive in motor car, has armature shaft support assembly in active connection with drive shaft, where supporting force of assembly acts toward shaft and is variable
JP5540961B2 (en) * 2010-07-15 2014-07-02 日本精機株式会社 Rotational speed detection device and vehicle speed detection system
DE102010035292A1 (en) * 2010-08-25 2012-03-01 Robert Bosch Gmbh Drive module for a solar thermal power plant with integrated angle sensor
KR101758916B1 (en) * 2010-12-21 2017-07-17 엘지이노텍 주식회사 EPS Motor having steering angle sensor
DE102011089903A1 (en) 2011-12-27 2013-06-27 Robert Bosch Gmbh Device for detecting angular position of pinion of gear box drive device, has magnetic element whose magnetically active particles are bonded with each other through injection molding process and located on end face of wheel and gear
KR101428302B1 (en) * 2012-12-21 2014-08-07 현대자동차주식회사 Actuator for active air flap apparatus
CN104215789A (en) * 2013-06-05 2014-12-17 富泰华工业(深圳)有限公司 Rotating speed measuring device
DE112015001414A5 (en) * 2014-03-26 2016-12-08 Schaeffler Technologies AG & Co. KG Cam mechanism for actuating a selector shaft
DE102014010277B4 (en) * 2014-07-12 2023-10-05 Novoferm Tormatic Gmbh transmission
US20160091052A1 (en) * 2014-09-25 2016-03-31 Moatech Co., Ltd. Actuator and electronic equipment having the same
WO2017015355A1 (en) * 2015-07-20 2017-01-26 National Machine Group Motor driven electromechanical actuator
DE102016108007A1 (en) * 2016-04-29 2017-11-02 Lock Antriebstechnik Gmbh Switching device for switching an electric motor
KR200484380Y1 (en) 2016-10-31 2017-08-31 박영섭 Emitting Lure
CN206409098U (en) * 2017-01-22 2017-08-15 佛山市顺德区容桂霍斯车库门有限公司 A kind of electric door-opening machine door body position detecting device
JP6829663B2 (en) * 2017-07-04 2021-02-10 ミネベアミツミ株式会社 Absolute encoder
CN107366727A (en) * 2017-09-05 2017-11-21 中铁工程装备集团机电工程有限公司 A kind of wheel shaft of tunnel locomotive tests the speed transmission mechanism
JP7316077B2 (en) * 2019-03-29 2023-07-27 ミネベアミツミ株式会社 absolute encoder
CN110838785B (en) * 2019-10-24 2020-12-01 浙江天毅半导体科技有限公司 Integrated motor variable frequency controller convenient to combine
KR102311785B1 (en) * 2020-03-30 2021-10-13 경창산업주식회사 SBW Type Shift Actuator Device
JP7051978B2 (en) * 2020-10-29 2022-04-11 ミネベアミツミ株式会社 Absolute encoder
DE102020135115A1 (en) 2020-12-30 2022-06-30 Webasto SE Electric motor with position detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942689A (en) 1931-01-20 1934-01-09 Frederick R Erbach Domestic power unit
DE19854038A1 (en) * 1998-11-13 2000-05-25 Brose Fahrzeugteile Device for detecting the adjustment of translatory adjustment devices in vehicles
KR20010042478A (en) * 1999-02-09 2001-05-25 클라우스 포스, 게오르그 뮐러 Rotation sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108458A (en) * 1980-12-26 1982-07-06 Hino Motors Ltd Construction of fuel injection pump drive unit for diesel engine
US4567783A (en) * 1983-02-14 1986-02-04 Ex-Cell-O Corporation Multi-angle pinion and gear power transmission
DE3335858A1 (en) * 1983-10-03 1985-04-18 SMS Schloemann-Siemag AG, 4000 Düsseldorf DEVICE FOR THE HORIZONTAL ADJUSTMENT OF INSTALLATION PIECES IN ROLLING MILLS
GB2261860B (en) * 1991-10-30 1995-08-09 Honda Motor Co Ltd Steering apparatus with variable steering angle ratio for pitman arm steering mechanism
JP3008334U (en) * 1994-08-25 1995-03-14 株式会社村上開明堂 Electric retractable door mirror deceleration mechanism
JP3496733B2 (en) * 1995-02-20 2004-02-16 日産ディーゼル工業株式会社 Camshaft gear rotation position detector
IT1279573B1 (en) * 1995-05-30 1997-12-16 Skf Ind Spa COMPOSITE RING ELEMENT, IN PARTICULAR MAGNETIC DETECTOR ELEMENT THAT CAN BE INSERTED IN A ROLLING BEARING.
DE19534995A1 (en) * 1995-09-21 1997-03-27 Bosch Gmbh Robert Steering wheel angle sensor
DE19710014A1 (en) 1997-03-12 1998-09-17 Bosch Gmbh Robert Commutator motor
KR100288607B1 (en) * 1997-09-30 2001-05-02 모치마루 마모루 Wiper for a vehicular mirror
DE19749009A1 (en) * 1997-11-06 1999-05-12 Bosch Gmbh Robert Drive device with electric motor for automobile applications
DE19754843A1 (en) * 1997-12-10 1999-06-24 Bosch Gmbh Robert Drive device for a part of a vehicle that can be moved between end positions and method for its production
FI108887B (en) * 1998-01-23 2002-04-15 Metso Paper Automation Oy Operating device
US6288534B1 (en) * 1999-02-10 2001-09-11 Cts Corporation Non-contacting throttle valve position sensor
DE19935195C1 (en) * 1999-07-27 2000-11-16 Abb Patent Gmbh Contactless torque measuring device for drive shaft of setting drive uses elastic coupling between measuring shaft and coaxial sleeve permitting relative rotation dependent on torque
US6657346B2 (en) * 2001-08-24 2003-12-02 Huang Chuan Pan Device for detecting the rotating speed of a fan motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942689A (en) 1931-01-20 1934-01-09 Frederick R Erbach Domestic power unit
DE19854038A1 (en) * 1998-11-13 2000-05-25 Brose Fahrzeugteile Device for detecting the adjustment of translatory adjustment devices in vehicles
KR20010042478A (en) * 1999-02-09 2001-05-25 클라우스 포스, 게오르그 뮐러 Rotation sensor

Also Published As

Publication number Publication date
EP1412603B2 (en) 2011-09-14
EP1412603B1 (en) 2007-12-19
DE10134937A1 (en) 2003-02-06
KR20090015977A (en) 2009-02-12
ES2295377T3 (en) 2008-04-16
EP1412603A1 (en) 2004-04-28
US20040007067A1 (en) 2004-01-15
WO2003008747A1 (en) 2003-01-30
US7261012B2 (en) 2007-08-28
ES2295377T5 (en) 2011-12-01
DE50211406D1 (en) 2008-01-31
KR20040030057A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
KR100975799B1 (en) Gear drive unit with speed measurement
US6124710A (en) Rotary magnetic encoder using hall effect for detecting revolution of a shaft
US5998989A (en) Device including magnet-biased magnetoresistive sensor and rotatable, magnetized encoder for detecting rotary movements
JP5680962B2 (en) Non-contact multi-turn absolute position magnetic sensor
JP5480967B2 (en) Multi-period absolute position detector
US7019516B2 (en) Magnetic sensor unit less responsive to leaking magnetic flux
US5825178A (en) Sensing device for determining an angular position of a steering wheel on a steering column in a vehicle
JP4258376B2 (en) Multi-rotation encoder
US6400142B1 (en) Steering wheel position sensor
US20050022617A1 (en) Rotation detecting device and automobile with the same
US20100301845A1 (en) Absolute measurement steering angle sensor arrangement
US7932716B2 (en) Rotation angle sensor and rotation angle sensor system
US11913784B2 (en) Reduction mechanism and absolute encoder
US7162152B2 (en) Position detecting device of lens barrel with disk-shaped magnet and sensor chip
US20020175678A1 (en) Arrangement for determining the position of a motion sensor element
JP6129276B1 (en) Non-contact rotation angle detector
AU1261300A (en) Measuring device for the contactless measurement of an angle of rotation
US8896163B2 (en) Electric micromotor
JP2005274249A (en) Encoder
CN116964417A (en) Absolute encoder
JPS6358264A (en) Rotating direction detector
CN115280106A (en) Absolute encoder
JPH08285878A (en) Speed sensor
EP3543561B1 (en) Gear device
US20240159570A1 (en) Magnet sensor and ferromagnetic poles

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140804

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150803

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160808

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee