KR100911276B1 - 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치 - Google Patents

패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치 Download PDF

Info

Publication number
KR100911276B1
KR100911276B1 KR1020087011911A KR20087011911A KR100911276B1 KR 100911276 B1 KR100911276 B1 KR 100911276B1 KR 1020087011911 A KR1020087011911 A KR 1020087011911A KR 20087011911 A KR20087011911 A KR 20087011911A KR 100911276 B1 KR100911276 B1 KR 100911276B1
Authority
KR
South Korea
Prior art keywords
block
packet
data symbols
blocks
received data
Prior art date
Application number
KR1020087011911A
Other languages
English (en)
Other versions
KR20080050536A (ko
Inventor
아모드 칸데카르
아브니쉬 아그라월
Original Assignee
콸콤 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콸콤 인코포레이티드 filed Critical 콸콤 인코포레이티드
Publication of KR20080050536A publication Critical patent/KR20080050536A/ko
Application granted granted Critical
Publication of KR100911276B1 publication Critical patent/KR100911276B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)

Abstract

단일 패킷에 대해 복수의 변조 방식들을 이용하기 위한 기술들이 제시된다. 각각의 데이터 패킷은 T개의 블록들 까지 처리되고 전송되며, 여기서 T>1 이다. 복수의 변조 방식들이 T 개의 블록들에 이용되어 우수한 성능을 달성한다. 송신기는 데이터 패킷을 인코딩하여 코드 비트들을 발생시킨다. 그리고 나서 상기 송신기는 상기 패킷에 대해 발생된 코드 비트들로써 코드 비트들의 블록을 형성하고, 상기 블록에 이용하기 위한 변조 방식을 결정하고(예컨대, 상기 패킷에 대해 선택된 모드/레이트에 기초하여), 상기 변조 방식에 기초하여 상기 블록에 대한 코드 비트들을 매핑하여 데이터 심볼들을 획득하며, 상기 데이터 시볼들의 블록을 처리하고 수신기로 전송한다. 상기 송신기는 상기 데이터 패킷이 정확하게 디코딩되거나 모든 T개의 블록들이 전송될 때까지 유사한 방법으로 다른 블록을 발생시키고 전송한다. 수신기는 상보적인 처리를 수행하여 상기 패킷을 수신하고 디코딩한다.

Description

패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한 방법 및 장치{METHOD AND APPARATUS FOR USING DIFFERENT MODULATION SCHEMES FOR A TRANSMISSION OF A PACKET}
본 발명은 일반적으로 통신 그리고 더 상세하게는 통신 시스템에서의 데이터 전송에 관한 것이다.
통신 시스템에서, 일반적으로 송신기는 트래픽 데이터를 인코딩, 인터리빙(interleave) 및 변조(즉, 심볼 매핑(symbol map))하여 데이터 심볼들을 얻게 되며, 이들은 데이터에 대한 변조된 심볼들이다. 코히어런트(coherent) 시스템에 대해, 송신기는 상기 데이터 심볼들과 함께 파일럿 심볼들로 다중화(multiplex)한다. 파일럿 심볼들은 파일럿(pilot)에 대한 변조 심볼들로, 이는 송신기 및 수신기 모두에 의해 선험적으로 알려지는 데이터이다. 추가로 송신기는 상기 다중화 된 데이터와 파일럿 심볼들을 처리하여 변조된 신호를 발생시키고 통신 채널을 통해 이러한 신호를 전송한다. 상기 채널은 채널 응답으로써 상기 송신된 신호를 왜곡하고 또한 잡음 및 간섭으로써 상기 신호를 악화시킨다.
수신기는 상기 전송된 신호를 수신하고 상기 수신된 신호를 처리하여 수신된 데이터 심볼들과 수신된 파일럿 심볼들을 획득한다. 코히어런트 시스템에 있어서, 상기 수신기는 상기 수신된 파일럿 심볼들로써 채널 응답을 추정하고 채널 응답 추정들로써 상기 수신된 데이터 심볼들에 대한 코히어런트 검출(coherent detection)을 수행하여 검출된 데이터 심볼들을 획득하며, 이들은 상기 송신기에 의해 전송된 데이터 심볼들의 추정들이다. 그리고 나서 수신기는 상기 검출된 데이터 심볼들을 디인터리빙(deinterleave) 및 디코딩하여 디코딩된 데이터를 획득하며, 이는 상기 송신기에 의해 전송된 트래픽 데이터의 추정이다.
송신기에 의해 수행되는 코딩 및 변조는 데이터 전송의 성능에 큰 영향을 끼친다. 그러므로 당해 기술 분야에서 우수한 성능을 달성할 수 있는 방법으로 코딩 및 변조를 수행하기 위한 기술이 요구된다.
단일 패킷에 대해 다중 변조 방식들(즉, 변조 포맷들(format))을 이용하여 우수한 성능을 달성하기 위한 기술이 여기에 기술된다. 이러한 기술들은 다양한 무선 및 유선 통신 시스템에 이용될 수 있다. 또한 이러한 기술들은 이하에서 기술되는, 증분적 중복(incremental redundancy, IR) 전송을 이용하는 시스템에 적합하다.
각 데이터 패킷은 최대 T 블록들로 처리되고 전송되며, 여기서 T>1이다. 각 블록은 상기 패킷의 일부분 만에 대한 코드 비트들을 반송하며 상기 블록에 대해 이용되는 변조 방식에 기초하여 변조된다. 다수의 상이한 변조 방식들이 상기 패킷의 T 블록들에 대해 이용되어 우수한 성능을 달성할 수 있다. 상기 T 블록들에 대한 변조 방식들은 이하에 기술되는 바와 같이 선택될 수 있다.
송신기는 기준(base) 순방향 에러 정정(forward error correction, FEC)에 따라 데이터 패킷을 인코딩하여 상기 패킷에 대한 코드 비트들을 발생시킬 수 있다. 그리고 나서 상기 송신기는, 예컨대 펑처링 패턴(puncturing pattern)에 기초하여, 상기 패킷에 대해 발생된 코드 비트들로써 코드 비트들의 블록을 형성한다. 상기 송신기는 변조 방식을 결정하여 상기 블록에 대해 이용(예컨대, 상기 데이터 패킷에 대해 선택된 모드/레이트(mode/rate)에 기초하여)하고 이러한 변조 방식에 기초하여 상기 블록에 대한 코드 비트들을 매핑(map)하여 상기 블록에 대한 데이터 심볼들을 획득한다. 추가로 상기 송신기는 상기 데이터 심볼들의 블록을 처리하고 수신기로 전송한다. 송신기는 상기 데이터 패킷이 수신기에 의해 정확하게 디코딩 되지 않았다면 그리고 상기 패킷에 대해 T 블록들이 전송되지 않았다면 유사한 방법으로 데이터 심볼들의 다른 블록을 발생시키고 전송한다. 상기 수신기는 보충적인 처리를 수행하여 상기 패킷을 수신하고 디코딩한다.
본 발명의 다양한 특징들 및 실시예들이 이하에서 상세히 기술된다.
여기 사용되는 용어 "예시적"은 "예, 보기 또는 설명으로서 제시되는"것을 의미한다. 여기에서 "예시적"으로 기술된 임의의 실시예 또는 설계가 반드시 다른 실시예들이나 설계들에 대해 바람직하거나 유리한 것으로 해석되는 것은 아니다.
여기 기술되는 단일 패킷에 대해 다중 변조 방식들을 이용하기 위한 기술은 직교 주파수 분할 다중 접속(OFDMA) 시스템, 코드 분할 다중 접속(CDMA) 시스템, 시분할 다중 접속(TDMA) 시스템, 주파수 분할 다중 접속(FDMA) 시스템, 직교 주파수 분할 다중화(OFDM)-기반 시스템, 단일-입력 단일-출력(SISO) 시스템, 다중-입력 다중-출력(MIMO) 시스템 등과 같은 다양한 통신 시스템들에 이용될 수 있다. 이러한 기술들은 증분적 중복(IR)을 이용하는 시스템들 및 IR을 이용하지 않는 시스템들(예컨대, 단순히 데이터를 반복하는 시스템)에 대해 이용될 수 있다. 명확화를 위해, 이러한 기술들은 IR을 이용하는 통신 시스템에 대해 기술된다.
도 1은 통신 시스템에서 송신기 및 수신기 간의 IR 전송을 나타낸다. 데이터 전송에 대한 타임라인(timeline)이 프레임들로 구분되며, 각 프레임은 특정한 시간 듀레이션(duration)을 갖는다. 도 1에 도시된 IR 전송 실시예에 대해, 수신기는 처음에 통신 채널을 추정하고, 상기 채널 상태에 기초하여 "모드(mode)"를 선 택하고, 상기 선택된 모드를 프레임 0에서 송신기로 전송한다. 대안적으로, 상기 수신기는 상기 채널 품질의 추정(estimate)을 역전송하고, 송신기는 상기 채널 품질 추정에 기초하여 모드를 선택한다. 어느 경우이든, 상기 모드는 패킷에 대한 패킷 크기, 코드 레이트(code rate), 변조 방식 등을 지시할 수 있다. 상기 송신기는 선택된 모드에 따라 데이터 패킷(패킷 1)을 처리하고, 상기 패킷에 대한 데이터 심볼들의 T개 까지의 블록을 발생시킨다. T는 특정 데이터 패킷에 대한 블록들의 최대 개수이며 IR에 대해 1보다 크다(T>1). 일반적으로 제 1 블록은 충분한 정보를 포함하여 상기 수신기로 하여금 양호한 채널 상태 하에서 상기 패킷을 디코딩하도록 하여 준다. 이후의 각 블록은 일반적으로 선행 블록들에 포함되지 않은 추가적인 패리티/리던던시(parity/redundancy) 정보를 포함한다. 그리고 나서 상기 송신기는 프레임 1에서 패킷 1에 대한 제 1 데이터 심볼 블록(블록 1)을 전송한다. 상기 수신기는 상기 제 1 데이터 심볼 블록을 수신, 검출 및 디코딩하여, 패킷 1이 잘못 디코딩되었는지(즉, "소거되었는지")를 결정하고, 프레임 2에서 부정 응답(NAK)을 역전송한다. 상기 송신기는 상기 NAK를 수신하고 프레임 3에서 패킷 1에 대한 제 2 데이터 심볼 블록(블록 2)를 전송한다. 수신기는 블록 2를 수신 및 검출하고, 블록 1과 2를 디코딩하고, 패킷 1이 여전히 잘못 디코딩 되었다고 결정하며, 프레임 4에서 다른 NAK를 역전송한다. 상기 블록 전송 및 NAK 응답은 임의의 횟수만큼 반복될 수 있다.
도 1에 도시된 상기 예시에 있어서, 상기 송신기는 데이터 심볼 블록 N-1에 대해 NAK를 수신하고 프레임 n에서 패킷 1에 대한 데이터 심볼 블록 N(블록 N)을 전송하며, 여기서 N≤T이다. 상기 수신기는 블록 N을 수신 및 검출하고, 블록 1내지 N을 디코딩하고, 상기 패킷이 정확하게 디코딩되었는지를 결정하고, 그리고 프레임 n+1에서 확인응답(ACK)를 역전송한다. 또한 수신기는 통신 채널을 추정하고, 다음 데이터 패킷에 대한 모드를 선택하며, 상기 선택된 모드를 프레임 n+1에서 송신기로 전송한다. 상기 송신기는 블록 N에 대한 ACK를 수신하고 패킷 1의 전송을 종결한다. 또한 송신기는 선택된 모드에 따라 다음 데이터 패킷(패킷 2)을 처리하고, 프레임 n+2에서 패킷 2에 대한 제 1 데이터 심볼 블록(블록 1)을 전송한다. 송신기 및 수신기에서의 처리는 상기 통신 채널을 통해 전송되는 각각의 데이터 패킷에 대해 동일한 방법으로 계속된다.
도 1에 도시된 바와 같이, 증분적 중복으로써, 송신기는 일련의 블록 전송들로 각 데이터 패킷을 전송하며, 각 블록 전송은 상기 패킷의 일부를 반송한다. 수신기는 상기 패킷에 대해 수신된 모든 블록들에 기초하여 각 블록 전송 후에 상기 패킷을 디코딩하려 할 수 있다. 송신기는 수신기에 의한 성공적인 디코딩 후에 상기 전송을 종료한다.
도 1에 도시된 바와 같이, 각 블록 전송에 대해 상기 송신기로부터의 ACK/NAK 응답에 대해 1 프레임의 지연이 존재한다. 일반적으로, 이러한 지연은 하나 또는 복수의 프레임들일 수 있다. 채널 활용을 개선하기 위해, 복수의 데이터 패킷들이 인터레이스(interlace)되는 방식으로 전송될 수 있다. 예를 들어, 하나의 트래픽 채널에 대한 데이터 패킷들은 홀수-번 프레임들로 전송될 수 있으며 다른 트래픽 채널에 대한 데이터 패킷들은 짝수-번 프레임들로 전송될 수 있다. 또 한 3개 이상의 트래픽 채널들이, 예컨대 상기 ACK/NAK 지연이 1 프레임보다 길다면, 인터레이스될 수도 있다.
상기 시스템은 한 세트의 모드들을 지원하도록 설계될 수 있는데, 이들은 또한 레이트(rate), 패킷 포맷(packet format), 무선 설정(radio configuration), 또는 어떠한 다른 용어로 불리울 수 있다. 각 모드는 특정한 코드 레이트 또는 코딩 방식, 특정 변조 방식, 특정한 주파수 효율(spectral efficiency), 및 목표 성능 레벨, 예컨대 1%의 패킷 오류율(packet error rate, PER)을 달성하는데 요구되는 신호-대-잡음-및-간섭비(signal-to-noise-and-interference ratio, SINR)과 관련될 수 있다. 주파수 효율(spectral efficiency)은 상기 시스템 대역폭에 의해 정규화되는 데이터율(또는 정보 비트율)을 지칭하며, 헤르츠 당 초당 비트(bps/Hz) 단위로 주어진다. 일반적으로, 더 높은 SINR이 더 높은 주파수 효율을 위해 요구된다. 지원되는 모드들의 세트는 일반적으로 다소 고르게 이격되는 증분들로, 주파수 효율들의 범위를 커버한다. 특정 채널 상태 및 수신된 SINR에 대해, 상기 수신되는 SINR이 지원하는 최고의 주파수 효율을 가진 모드가 선택되고 데이터 전송을 위해 이용될 수 있다.
주파수 효율은 상기 코드율 및 변조 방식에 의해 결정된다. 상기 코드율은 인코더에 의해 발생되고 전송된 코드 비트들의 수에 대한 인코더로의 입력 비트들의 수의 비율이다. 예를 들어, 2/9의 코드율(또는 R=2/9)은 매 2개의 입력 비트들에 대해 9개의 코드 비트를 발생시킨다. 더 낮은 코드율(예컨대 R=1/4 또는 1/5)은 더 많은 리던던시(redundancy)를 가지며 따라서 더 좋은 에러 정정 능력을 갖는 다. 그러나, 더 많은 코드 비트들이 낮은 코드율에 대해 전송될수록, 주파수 효율 또한 낮아진다.
다양한 변조 방식들이 데이터 전송에 이용될 수 있다. 각 변조 방식은 M개의 신호 포인트들을 포함하는 신호 컨스텔레이션(constellation)과 관련되며, 여기서 M>1 이다. 각 신호 포인트는 복소수 값으로 정의되며 B-비트 이진 값으로 식별되며, 여기서 B≥1 이고 2B=M 이다. 심볼 매핑에 있어서, 전송되는 상기 코드 비트들은 먼저 B 코드 비트들의 세트로 그룹핑(group)된다. 각각의 B 코드 비트들의 세트는 특정 신호 포인트로 매핑되는 B-비트 이진 값을 형성하며, 그리고 나서 상기 B 코드 비트들의 그룹에 대한 변조 심볼로서 전송된다. 따라서 각각의 변조 심볼은 B 코드 비트들에 대한 정보를 반송한다. 일부 널리 이용되는 변조방식들은 이진 위상 편이 변조(BPSK), 직교 위상 편이 변조(QPSK), M-진 위상 편이 변조(M-PSK), 및 M-진 직교 진폭 변조(M-QAM)를 포함한다. 변조 심볼 당 코드 비트들의 수(B)는: BPSK에 대해 B=1, QPSK에 대해 B=2, 8-PSK에 대해 B=3, 16-QAM에 대해 B=4, 64-QAM에 대해 B=6 등으로 주어질 수 있다. B는 변조 방식들의 차수를 나타내며, 변조 심볼 당 더 많은 코드 비트들이 더 고차의 변조 방식들에 대해 전송될 수 있다.
특정 코드율 및 특정 변조 방식에 대한 주파수 효율(S)은 코드율(R)과 변조 방식에 대한 변조 심볼 당 코드 비트의 수(B)의 곱, 즉 S=R×B로 계산될 수 있다. 특정 주파수 효율은 코드율과 변조 방식(또는 코딩 및 변조 쌍)의 다른 다양한 조 합들로써 구해질 수 있다. 예를 들어, S=4/3 인 주파수 효율은 이하의 코드율 및 변조 방식의 조합들로써 구해질 수 있다:
QPSK(B=2) 및 코드율 R=2/3;
8-PSK(B=3) 및 코드율 R=4/9;
16-QAM(B=4) 및 코드율 R=1/3; 및
64-QAM(B=6) 및 코드율 R=2/9.
특정 주파수 효율에 대한 상기 상이한 코드율 및 변조 방식의 조합들은 다른 성능을 가질 수 있으며, 이는 목표 PER을 달성하는데 요구되는 SINR로써 계량될 수 있다. 이러한 상이한 코드율 및 변조 방식의 조합들이 상이한 채널 상태들과 아마도 상이한 채널 모델들에 대해 평가될 수 있다(예컨대, 컴퓨터 시뮬레이션, 실측 등을 통해). 최상의 성능을 갖는 코드율 및 변조 방식의 조합이 선택되어 상기 시스템에 의해 지원되는 모드들의 세트에 포함될 수 있다.
특정 주파수 효율에 대해, 더 고차의 변조 방식 및 더 낮은 코드율의 조합이 일반적으로 더 낮은 차수의 변조 방식 및 더 높은 코드율의 조합보다 더 나은 용량을 달성할 수 있다. 그러나, 더 나은 용량을 달성하는 변조 방식과 코드율의 특정 조합은 실질적인 문제들 때문에 더 나은 성능을 제공하지 못할 수 있으며, 일반적으로 변조 방식과 코드율 간에는 트레이드 오프(tradeoff)가 존재한다. 성능을 최적화하기 위해 이러한 트레이드 오프에 대하여 변조 방식 및 코드율의 "최적" 조합이 존재한다.
더 고차의 변조 방식 및 낮은 코드율 조합의 성능 이점은 주파수 또는 시간- 선택적 채널에 대한 증가이다. 주파수 선택적 채널은 시스템 대역폭에 걸쳐 변화하는(즉, 평평하지 않은) 주파수 응답을 갖는 통신채널이다. 시간 선택적 채널은 시간에 걸쳐 변화하는(즉, 정지하지 않은) 응답을 갖는 통신 채널이다. 상이한 주파수 효율에 대해 최적의 코드율 및 변조 방식의 조합을 결정하기 위한 연구가 수행되었다. 상기 연구에서, 어림잡은 결과는 R=1/2 또는 더 낮은 코드율이 주파수/시간 선택적 채널에 대해 이용되어야 한다는 것이다. 따라서, 1/2보다 높은 코드율이 특정 주파수 효율에 대해 이용될 수 있을지라도, 1/2에 근접하거나 더 낮은 코드율이 더 고차의 변조 방식과 함께 이용되어야 한다. 본 연구는 특정 채널 모델에 대한 것이었으며, 성능은 다른 채널 모델들에 대해 달라질 수 있다.
증분 리던던시를 이용하지 않는 시스템에 대해, 각 데이터 패킷은 상기 패킷에 대해 선택되는 코드를 위한 특정 코드율 및 특정 변조 방식에 기초하여 코딩되고 변조된다. 그리고 나서 패킷 전체가 전송되고 상기 선택된 모드에 관련된 주파수 효율을 달성한다. 시스템에 의해 지원되는 각 모드에 대한 코드율 및 변조 방식은 컴퓨터 시뮬레이션, 실측 등으로써 결정될 수 있다.
증분 리던던시를 이용하는 시스템에 대해, 각 데이터 패킷은 상술한 바와 같이, 상기 패킷이 수신기에 의해 정확하게 디코딩될 때까지 하나 이상의 블록들로 전송된다. 데이터 패킷을 위해 전송되는 각각의 추가 블록은 상기 패킷의 주파수 효율을 감소시킨다. 따라서 각 데이터 패킷에 대한 주파수 효율은 선험적으로 알려지 있지 않으며 상기 패킷에 대한 각각의 블록 전송과 함께 변화한다.
표 1은 시스템에 의해 지원되는 7가지 모드들의 예시적인 세트를 나타낸다. 각 모드 m은 특정 변조 방식 및 특정 "기준(base)" 코드율 Rbase ,m과 관련되며, 이는 각 블록 전송을 위해 이용되는 코드율이다. 동일한 기준 코드율 및 변조 방식이 특정 모드에 대해 각각의 블록 전송을 위해 이용된다. 예를 들어, QPSK 및 R=2/3인 기준 코드율이 모드 3에 대해 이용된다. 모드 3으로 전송되는 데이터 패킷에 대해, 각각의 상기 패킷 블록은 QPSK 및 코드율 R=2/3을 이용하여 전송된다. 표 1은 T=4이며 데이터 패킷은 상기 데이터 패킷이 정확하게 디코딩되었는지 여부에 관계없이 4 블록 전송들 이후에 종결된다.
또한 각 모드는 다른 수의 블록 전송들에 대해 상이한 "유효(effective)" 코드율들과 관련된다. 모드 m으로 전송되는 데이터 패킷에 대해, l번째 블록 전송 이후의 데이터 패킷에 대한 상기 유효 코드율 Reff ,m(l)은(여기서 l=1,2,...,T) l로 나누어진 상기 기준 코드율, 즉 Reff ,m(l)=Rbase ,m/l과 같다. 이는 l배의 코드 비트들의 수가 l 블록 전송들로 상기 패킷 데이터에 대해 전송되었기 때문이다. 예를 들어, 모드 3으로 전송되는 데이터 패킷은 상기 패킷에 대해 단 하나의 블록이 전송된다면 R=2/3 인 유효 코드율과 S=3/4인 주파수 효율을, 두 개의 블록들이 상기 패킷에 대해 전송된다면 R=1/3인 유효 코드율과 S=2/3인 주파수 효율을, 3개의 블록들이 상기 패킷에 대해 전송된다면 R=2/9인 유효 코드율과 S=4/9인 주파수 효율을, 그리고 4개의 블록들이 상기 패킷에 대해 전송된다면 R=1/6인 유효 코드율과 S=1/3인 주파수 효율을 갖는다.
표 1
모드 변조 방식 기준 코드율 ~이후의 주파수 효율
1 블록 전송 2 블록 전송 3 블록 전송 4 블록 전송
1 QPSK R = 1/5 2×(1/5)=2/5 2×(1/10)=1/5 2×(1/15)=2/15 2×(1/20)=1/10
2 QPSK R = 1/3 2×(1/3)=2/3 2×(1/6)=1/3 2×(1/9)=2/9 2×(1/12)=1/6
3 QPSK R = 2/3 2×(2/3)=4/3 2×(2/6)=2/3 2×(2/9)=4/9 2×(2/12)=1/3
4 8-PSK R = 2/3 3×(2/3)=2 3×(2/6)=1 3×(2/9)=2/3 3×(2/12)=1/2
5 16-QAM R = 2/3 4×(2/3)=8/3 4×(2/6)=4/3 4×(2/9)=8/9 4×(2/12)=2/3
6 64-QAM R = 5/9 6×(5/9)=10/3 6×(5/18)=5/3 6×(5/27)=10/9 6×(5/36)=5/6
7 64-QAM R = 2/3 6×(2/3)=4 6×(2/6)=2 6×(2/9)=4/3 6×(2/12)=1
표 1에 도시한 바와 같이, 각 모드에 대한 유효 코드율(열 4내지 7의 괄호 내부에 표시됨) 및 주파수 효율(열 4내지 7의 등호 이후에 표시됨)은 패킷에 대해 전송되는 블록들의 수에 따라 달라진다. 따라서 각 모드는 복수의 주파수 효율들에 대해 이용될 수 있다. 각 모드에 대해, 특정 주파수 효율(예컨대, 두 블록 전송들을 가진)에서 최적의 성능을 달성하는 코드율과 변조 방식의 조합이 선택되어 상기 모드에 대해 이용될 수 있다. 그러나, 이러한 코드율 및 변조 방식의 조합은 다른 주파수 효율들에서는(예컨대, 하나, 셋, 그리고 네개의 블록 전송들을 갖는) 좋은 성능을 달성하지 못할 수 있다.
성능을 향상시키기 위해, 상이한 코드율과 변조 방식의 조합이 특정 모드에 대해 상이한 블록 전송들을 위해 이용될 수 있다. 각 모드에 대한 상기 상이한 코드율 및 변조 방식의 조합들은 다양한 방식으로 결정될 수 있다.
제 1 실시예로, 각 블록 전송을 위해 이용할 변조 방식은 상기 블록 전송 후에 달성되는 주파수 효율에 기초하여 선택된다. 각각의 모드 m에 대해, l번째 블록 전송에 대한 상기 변조 방식 Mm(l)은 다음과 같이 선택될 수 있다. 모드 m에 대한 l번째 블록 전송 후의 주파수 효율 Sm(l)이 먼저 표 1로부터 결정된다. 그리고 나서 상기 변조 방식 Mm(l)은, 1/2 또는 그보다 낮은 유효 코드율 R' eff,m (l)과 함께, 상기 주파수 효율 Sm(l)을 달성하는 최저차의 변조 방식으로 세팅 된다. 상기 유효 코드율 R' eff ,m (l)은 상기 변조 방식 Mm(l)이 각각의 l번째 블록 전송들을 위해 이용되었다면 모든 l개의 블록 전송들에 대한 코드율이다. 상기 유효 코드율, 변조 방식, 그리고 주파수 효율 간의 관계는 다음과 같이 표현될 수 있다: Sm(l)=R' eff ,m (l)×Bm(l), 여기서 Bm(l)은 변조 방식 Mm(l)에 대한 변조 심볼 당 코드 비트들의 수이다. 따라서 변조 방식 Mm(l)은 다음과 같이, 주파수 효율 Sm(l)에 기초하여 선택될 수 있다:
1.0 bps/Hz 이하인 주파수 효율에 대해 QPSK를 이용;
1.0 과 1.5 bps/Hz 간의 주파수 효율에 대해 8-PSK를 이용;
1.5 및 2.0 bps/Hz 간의 주파수 효율에 대해 16-QAM을 이용; 그리고
2.0 bps/Hz를 초과하는 주파수 효율에 대해 64-QAM을 이용한다.
상기 매핑은 단지 QPSK, 8-P나 16-QAM, 그리고 64-QAM 만이 시스템에 의해 지원된다고 가정한다. 다른 매핑들도 지원되는 변조 방식들의 다른 세트들에 대해 이용가능할 수 있다.
표 2는 표 1에 열거된 7가지 모드들을 위한 각 블록 전송들에 대한 제 1 실시예에 기초하여 선택되는 변조 방식을 나타낸다. 표 2의 제 2 행은 기준 주파수 효율 S base ,m 을 나타내며, 이는 1 블록 전송 후의 주파수 효율이다. 각 모드 m에 대 해, 각 블록 전송에 이용하는 변조 방식은 상기 블록 전송 후의 주파수 효율에 기초하고 상기 기술된 주파수 효율-대-변조 방식 매핑을 이용하여 결정된다. 예를 들어, 모드 3에 대해, 8-PSK가 제 1 블록 전송을 위해 이용되는데 이는 이러한 전송 후의 주파수 효율이 S=4/3이기 때문이며, 제 2 블록 전송에 대해 QPSK가 이용되는데 이는 이러한 전송 후의 주파수 효율이 S=2/3이기 때문이다. 다른 예로써, 모드 6에 대해, 64-QAM이 제 1 블록 전송에 이용되는데 이는 이 전송 후의 주파수 효율이 S=10/3이기 때문이고, 16-QAM이 제 2 블록 전송에 이용되는데 이는 이러한 전송 후의 주파수 효율이 S=5/3이기 때문이고, 8-PSK가 제 3 블록 전송에 이용되는데 이는 이러한 전송 후의 주파수 효율이 S=10/9 이기 때문이며, QPSK가 제 4 블록 전송에 이용되는데 이는 이러한 전송 후의 주파수 효율이 S=5/6이기 때문이다.
표 2
모드 m S base ,m 제 1 블록 전송 제 2 블록 전송 제 3 블록 전송 제 4 블록 전송
1 2/5 QPSK QPSK QPSK QPSK
2 2/3 QPSK QPSK QPSK QPSK
3 4/3 8-PSK QPSK QPSK QPSK
4 2 16-QAM QPSK QPSK QPSK
5 8/3 64-QAM 8-PSK QPSK QPSK
6 10/3 64-QAM 16-QAM 8-PSK QPSK
7 4 64-QAM 16-QAM 8-PSK QPSK
제 2 실시예로, 각 모드에 대해, 각 블록 전송에 이용하기 위한 코드율 및 변조 방식의 특정 조합이 우수한 성능을 달성하기 위해 독립적으로 선택된다. 모드 m인 제 1 블록 전송에 대해, 주파수 효율 S base ,m 를 갖는 코드율과 변조 방식의 다양한 조합들이 평가되고(예컨대, 컴퓨터 시뮬레이션, 실측 등에 기초하여), 최고의 성능을 갖는 코드율 Rm(1)과 변조 방식 Mm(1)의 조합이 선택된다. 모드 m인 제 2 블록 전송에 대해, 비록 상기 제 1 전송이 Mm(1)과 Rm(1)을 이용하여 전송되었으며 디코딩된 패킷이 삭제되었다는 전제 하에서이기는 하나, 주파수 효율 S base,m 를 갖는 코드율과 변조 방식의 다양한 조합들이 다시 평가된다. 제 2 블록 전송에 대해 최적의 성능을 갖는 코드율 Rm(2) 및 변조방식 Mm(2)의 조합이 선택된다. 모드 m인 제 3 블록 전송에 대해, 비록 상기 제 1 전송이 Mm(1)과 Rm(1)을 이용하여 전송되었고, 제 2 블록 전송이 Mm(2)과 Rm(2)을 이용하여 전송되었으며, 상기 두 블록 전송들 모두로써 디코딩된 패킷이 삭제되었다는 전제 하에서이기는 하나, 주파수 효율 S base ,m 를 갖는 코드율과 변조 방식의 다양한 조합들이 다시 평가된다. 최적의 성능을 갖는 코드율 Rm(3) 및 변조방식 Mm(3)의 조합이 다시 선택된다. 모드 m인 제 4 블록 전송에 대해, 비록 상기 제 1 전송이 Mm(1)과 Rm(1)을 이용하여 전송되었고, 제 2 블록 전송이 Mm(2)과 Rm(2)을 이용하여 전송되었고, 제 3 블록 전송이 Mm(3)과 Rm(3)을 이용하여 전송되었으며, 상기 세 블록 전송들 모두로써 디코딩된 패킷이 삭제되었다는 전제 하에서이기는 하나, 주파수 효율 S base ,m 를 갖는 코드율과 변조 방식의 다양한 조합들이 다시 평가된다. 최적의 성능을 갖는 코드율 Rm(4) 및 변조방식 Mm(4)의 조합이 다시 선택된다. 따라서 코드율 Rm(l)과 변조 방식 Mm(l)의 다른 조합이 모드 m의 각 블록 전송에 대해 선택될 수 있다.
제 3 실시예로, 각 모드에 대해 지정된 주파수 효율에 대한 최적의 성능을 제공하는 코드율 및 변조 방식의 조합이 선택된다. 이러한 지정된 주파수 효율은 미리 결정된 수의(예컨대 2) 블록 전송들 이후의 주파수 효율이며 패킷들이 이러한 많은 블록 전송들 이후에 정확하게 디코딩되었다고 가정한다. 제 2 블록 전송 후의 조기 종료되는 각 모드에 대한 최적의 변조 방식은 표 2의 제 4 열에 제시된다. 그리고 나서 만일 결과적인 코드율이 1/2 이하라면, 각 모드에 대해, 더 고차의 변조 방식이 제 1 블록 전송을 위해 선택된다. 표 3은 제 3 실시예에 관한 각각의 모드에 대해 선택된 변조 방식들을 나타낸다. 본 실시예는 모든 T 블록 전송들 중 가장 빈번한, 제 1 블록 전송에 대하여 향상된 성능을 제공하는 반면 송신기 및 수신기에서의 복잡도를 감소시킬 수 있다.
표 3
모드 m S base ,m 제 1 블록 전송 제 2 블록 전송 제 3 블록 전송 제 4 블록 전송
1 2/5 QPSK QPSK QPSK QPSK
2 2/3 QPSK QPSK QPSK QPSK
3 4/3 8-PSK QPSK QPSK QPSK
4 2 16-QAM 8-PSK 8-PSK 8-PSK
5 8/3 64-QAM 16-QAM 16-QAM 16-QAM
6 10/3 64-QAM 64-QAM 64-QAM 64-QAM
7 4 64-QAM 64-QAM 64-QAM 64-QAM
각 모드에서 각각의 블록 전송을 위해 코드율 및 변조 방식을 선택하기 위한 몇가지 실시예들이 상기 기술되었다. 또한 각각의 블록 전송을 위한 코드율 및 변조 방식이 다른 방법으로 선택될 수 있으며, 이는 본 발명의 범위 내에 해당된다.
도 2는 IR 전송을 이용하는 무선 통신 시스템(200)의 송신기(210) 및 수신기(250)의 블록 다이어그램을 나타낸다. 송신기(210)에서, TX 데이터 처리기(220) 는 데이터 소스(212)로부터 데이터 패킷들을 수신한다. TX 데이터 처리기(220)는 패킷에 대해 선택된 모드에 따라 각 데이터 패킷을 처리(예컨대, 포맷(format), 인코딩, 구분(partition), 인터리빙(interleave), 및 변조)하고 상기 패킷에 대해 T 개까지 데이터 심볼들의 블록을 발생시킨다. 각 데이터 패킷에 대해 선택된 상기 모드는 (1) 패킷 크기(즉, 상기 패킷에 대한 정보 비트들의 개수) 및 (2) 상기 패킷의 각 데이터 심볼 블록에 이용하기 위한 코드율 및 변조 방식의 특정 조합을 나타낼 수 있다. 제어기(230)는 상기 패킷에 대해 수신된 피드백(ACK/NAK)와 함께 상기 선택된 모드에 기초하여 각각의 데이터 패킷에 대해 데이터 소스(212) 및 TX 데이터 처리기(220)에 관한 다양한 제어를 제공한다. TX 데이터 처리기(220)는 데이터 심볼 블록들의 흐름(stream)(예컨대, 각 프레임 당 한 1 블록)을 제공하며, 여기서 각 패킷에 대한 블록들은 하나 이상의 다른 패킷들에 대한 블록들과 인터레이스(interlace) 될 수 있다.
송신기 유닛(TMTR)(222)은 TX 데이터 처리기(220)로부터 상기 데이터 심볼 블록들의 흐름을 수신하고 변조된 신호를 발생시킨다. 송신기 유닛(222)은 상기 데이터 심볼들과 함께 파일럿 심볼들로 다중화하며(예컨대, 시간, 주파수, 및/또는 코드분할 다중화) 전송 심볼들의 흐름(stream)을 얻는다. 각 전송 심볼은 데이터 심볼, 파일럿 심볼, 또는 0인 신호 값을 갖는 널(null) 심볼일 수 있다. 송신기 유닛(222)은 상기 시스템이 OFDM을 이용한다면 OFDM 변조를 수행할 수 있다. 송신기 유닛(222)은 일련의 시간-영역 샘플(sample)들을 발생시키고 나아가 상기 샘플 흐름(stream)을 조정(예컨대, 아날로그로 변환, 주파수 상향변환, 필터링, 및 증 폭)하여 변조된 신호를 발생시킨다. 그리고 나서 상기 변조된 신호는 안테나(224)로부터 통신 채널을 통해 수신기(250)로 송신된다.
수신기(250)에서, 상기 송신된 신호는 안테나(252)에 의해 수신되며, 상기 수신된 신호는 수신기 유닛(RCVR)(254)에 제공된다. 수신기 유닛(254)은 상기 수신된 신호를 조정, 디지털화, 및 전-처리(pre-process)(예컨대, OFDM 복조)하여 수신된 데이터 심볼들과 수신된 파일럿 심볼들을 얻는다. 수신기 유닛(254)은 상기 수신된 데이터 심볼들을 검출기(256)에 제공하며 상기 수신된 파일럿 심볼들을 채널 추정기(258)에 제공한다. 채널 추정기(258)는 상기 수신된 파일럿 심볼들을 처리하고 상기 통신 채널에 대한 채널 추정들(예컨대, 채널 이득 추정 및 SINR 추정들)을 제공한다. 검출기(256)는 상기 채널 추정들로써 수신된 데이터 심볼들에 대한 검출을 수행하고 검출된 데이터 심볼들을 RX 데이터 처리기(260)에 제공한다. 상기 검출된 데이터 심볼들은 상기 데이터 심볼들을 형성하는데 이용되는 코드 비트들에 대한 로그-우도 비(log-likelihood ratio, LLR)들로써(이하에서 기술되는 바와 같이) 또는 다른 표현들로써 나타낼 수 있다. 새로운 검출된 데이터 심볼들의 블록이 특정 데이터 패킷에 대해 얻어질 때마다, RX 데이터 처리기(260)는 상기 패킷에 대해 얻어진 모든 검출된 데이터 심볼들을 처리(예컨대, 디인터리빙(deinterleave) 및 디코딩)하고 디코딩된 패킷을 데이터 싱크(data sink)(262)에 제공한다. 또한 RX 데이터 처리기(260)는 상기 디코딩된 패킷을 점검하고 상기 패킷 상태를 제공하며, 이는 상기 패킷이 정확하게 또는 잘못 디코딩되었는지 여부를 나타낸다.
제어기(270)는 채널 추정기(258)로부터 채널 추정들을 그리고 RX 데이터 처리기(260)로부터 패킷 상태를 수신한다. 제어기(270)는 상기 채널 추정들에 기초하여 수신기(250)로 전송될 다음 데이터 패킷에 대한 모드를 선택한다. 또한 제어기(270)는 피드백 정보를 조합하며, 이는 다음 패킷에 대하여 선택된 모드, 방금 디코딩된 패킷에 대한 ACK 또는 NAK 등을 포함할 수 있다. 상기 피드백 정보는 TX 데이터 처리기(282)에 의해 처리되며, 추가로 송신기 유닛(284)에 의해 조정되고, 안테나(252)를 통해 송신기(210)로 전송된다.
송신기(210)에서, 수신기(250)로부터 전송된 상기 신호는 안테나(224)에 의해 수신되고, 수신기 유닛(242)에 의해 조정되며, 추가로 RX 데이터 처리기(244)에 의해 처리되어 수신기(250)에 의해 전송된 상기 피드백 정보를 복구한다. 제어기(230)는 상기 수신된 피드백 정보를 획득하고, ACK/NAK를 이용하여 수신기(250)로 전송 중인 패킷의 IR 전송을 제어하며, 선택된 모드를 이용하여 수신기(250)로 전송될 다음 데이터 패킷을 처리한다.
제어기들(230 및 270)은 송신기(210) 및 수신기(250)에서의 동작을, 각각 감독한다. 메모리 유닛들(232 및 272)은 제어기들(230 및 270)에 의해 이용되는 프로그램 코드들과 데이터를 위한 스토리지를 각각 제공한다.
도 3은 송신기(210)에서의 TX 데이터 처리기(220)의 실시예인 블록 다이어그램을 나타낸다. TX 데이터 처리기(220)는 데이터 패킷들을 수신하고, 선택된 모드에 기초하여 각 패킷을 처리하며, 상기 패킷에 대한 T개까지의 데이터 심볼 브록들을 제공한다. 도 4는 TX 데이터 처리기(220)에 의한 하나의 데이터 패킷에 대한 처리를 나타낸다.
TX 데이터 처리기(220) 내부에서, 순환 잉여 검사(cyclic redundancy check, CRC) 발생기(312)가 데이터 패킷을 수신하고, 상기 데이터 패킷에 대한 CRC 값을 발생시키며, 상기 CRC 값을 상기 데이터 패킷에 덧붙여서 포맷된(formatted) 패킷을 형성한다. 상기 CRC 값은 상기 수신기에 의해 이용되어 패킷이 정확하게 또는 잘못 디코딩되었는지 여부를 검사한다. 또한 다른 오류 검출 코드들이 CRC 대신 이용될 수 있다. 전방 오류 정정(forward error corection, FEC) 인코더(314)는 기준 코딩 방식에 따라 상기 포맷된 패킷을 인코딩하고 코딩된 패킷 즉 "코드워드(codeword)"를 제공한다. 상기 인코딩은 데이터 전송의 신뢰성을 향상시킨다. FEC 인코더(314)는 터보 코드(Turbo code), 컨벌루션 코드(convolutional coce), 저-밀도 패리티 체크(low-density parity check, LDPC) 코드, 또는 다른 코드를 구현할 수 있다. 예를 들어, FEC 인코더(314)는 레이트 1/5 터보 코드를 구현하고 각각의 포맷된 패킷에 대해 K 입력 비트들로써 5K 코드 비트들을 발생시키며, 여기서 K는 패킷 크기이며 선택된 모드에 좌우될 수 있다. 예시적인 레이트 1/5 터보 코드는 IS-2000 표준에 의해 정의되며 문서 3GPP2 C.S0024, 명칭 "cdma2000 고속 레이트 패킷 데이터 무선 인터페이스 사양(High Rate Packet Data Air Interface Specification)"에 기술되어 있으며, 공개적으로 이용가능하다.
구분 유닛(partitioning unit)(320)은 각 패킷에 대한 코드 비트들을 수신하고, 제어기(230)로부터의 코딩 제어에 의해 지시되는 바와 같이, 상기 블록을 위해 이용되는 변조 방식에 기초하여 각 블록에 대하여 충분한 수의 코드 비트들을 제공 한다. 버퍼들(322a내지 322t)은 각 패킷의 블록 1내지 T에 대한 코드 비트들을, 각각 수신하고 저장한다. 또한 각 버퍼(322)는 인터리빙 방식에 따라 그 블록에 대한 코드 비트들을 인터리빙(즉, 재배열) 할 수 있다. 상기 인터리빙은 코드 비트들에 대해 시간 및/또는 주파수 다이버시티를 제공한다. 멀티플렉서(MUX)(324)는 모든 T개의 버퍼들(322a 내지 322t)에 접속되며 T개의 코드 비트들의 블록들을, 한 번에 한 블록씩 그리고 제어기(230)로부터의 IR 전송 제어에 의해 지시되었다면, 제공한다. 멀티플렉서(324)는 제 1 블록 전송에 대해 버퍼(322a)로부터의 상기 코드 비트들을 제공하고, 제 2 블록 전송에 대해 버퍼(322b)(도 3에 도시하지 않음)로부터의 코드 비트들을 제공하며, 이렇게 하여, 최종 블록 전송에 대해 버퍼(322t)로부터의 코드 비트들을 제공한다. 멀티플렉서(324)는 NAK가 데이터 패킷에 대해 수신되면 다음 코드 비트들의 블록을 제공한다. 모든 T개의 버퍼들(322a 내지 322t)은 ACK가 수신될 때마다 소거될 수 있다.
심볼 매핑 유닛(326)은 각 블록에 대한 코드 비트들을 수신하고 상기 코드 비트들을 변조 심볼들에 매핑한다. 상기 심볼 매핑은, 제어기(230)로부터의 변조 제어에 의해 지시되는 바와 같이, 상기 블록에 대해 이용된 변조 방식에 따라 수행된다. 상기 심볼 매핑은 (1) B개의 비트들의 세트들을 그룹화하여 B-비트 이진 값들을 형성함으로써(여기서 QPSK에 대해 B=2, 8-PSK에 대해 B=3, 16-QAM에 대해 B=4, 64-QAM에 대해 B=6), 그리고 (2) 각 B-비트 이진 값을 상기 블록에 이용되는 변조 방식에 대한 신호 컨스텔레이션(constellation) 내의 어느 점으로 매핑함으로써 이뤄질 수 있다. 심볼 매핑 유닛(326)은 각 코드 비트들의 블록에 대해 데이터 심볼들의 블록을 제공한다.
명확화를 위해, 코딩된 패킷의 상기 코드 비트들을 복수의 블록들로 분할하는 것이 예시적인 설계로서 이하에서 기술된다. 본 설계에 있어서, FEC 코드는 레이트 1/5 터보 코드이고, 최대 블록 전송 횟수는 4(즉, T=4)이며, 패킷 사이즈는 모든 모드들에 대해 K 입력 비트이며, 각 블록은 주파수 효율 S에 대해 K/S 변조 심볼들을 포함한다. 모든 모드들에 대하여 동일한 패킷 사이즈를 이용하는 것은 상이한 모드들에 대해 이하에서 기술되는 처리를 명확하게 설명한다. 많은 시스템에서, 변조 심볼의 수는 모든 모드들에 대해 고정되며, 패킷 사이즈는 상이한 모드들에 대하여 변화한다. 따라서, 상이한 패킷 사이즈들이 상이한 모드들에 대해 이용될 수도 있으며, 고정된 블록 사이즈가 모든 모드들에 대해 이용될 수도 있다.
도 5a는 특정 모드에 대해 동일한 변조 방식이 모든 T 블록 전송들에 대해 이용 중인 표 1의 상기 방식에 대한 분할 유닛(320a)의 블록 다이어그램을 나타낸다. 데이터 패킷에 CRC 값이 부착되어 K개의 입력 비트들로 포맷된 패킷을 형성하며, 이는 이후에 인코딩되어 5K개의 코드 비트들로 코딩된 패킷을 발생시킨다. 상기 레이트 1/5 터보 코드에 대해, 첫 번째 K개의 코드 비트들은 K개의 입력 비트들과 동일하며 계통적 비트(systematic bit)들로 칭하며, 나머지 4K개의 코드 비트들은 터보 인코더에 의해 발생되며 패리티 비트(parity bit)들로 칭한다.
도 5a는 표 1의 모드 3에 대한 분할을 나타내며, 이는 각 블록 전송에 대해 QPSK를 이용한다. 상기 예시적 설계에 있어서, 각 블록은 모드 3에 대해 3K/4개의 변조 심볼들을 포함하며, 3K/2개의 코드 비트들이 QPSK를 이용하여 한 블록으로 전 송될 수 있다. 분할 유닛(320a)내에서, 펑처링(puncturing) 유닛(510a)은 상기 코딩된 패킷에 대한 5K 코드 비트들을 수신하고, 제 1 블록 전송에 대한 3K/2개의 코드 비트들을 버퍼(322a)에 제공하며, 나머지 7K/2개의 코드 비트들을 펑처링 유닛(510b)에 제공한다. IR 전송을 위해, 상기 K개의 계통적 비트들과 요구되는 수만큼의 패리티 비트들은 일반적으로 제 1 블록 전송으로 전송된다. 이는 상기 수신기로 하여금 좋은 채널 상태 하에서 단 하나의 블록 전송으로써 상기 데이터 패킷을 복구하게 하여 준다. 각 블록 전송으로 전송되는 상기 패리티 비트들은 특정한 펑처링 패턴(puncturing pattern)에 기초하여 코딩된 패킷 전체로부터 얻어질 수 있다. 향상된 디코딩 성능은 복수의 블록 전송들에 걸쳐 상기 코딩된 패킷에 대하여 상기 패리티 비트들을 의사-난수적으로(pseudo-randomly) 확산시킴으로써 달성될 수 있다.
펑처링 유닛(510b)은 유닛(510a)로부터 7K/2개의 코드 비트들을 수신하고, 제 2 블록에 이용되는 펑처링 패턴에 기초하여 수신되는 7K/2개의 코드 비트들 중에서 3K/2개의 코드 비트들을 선택하고, 상기 선택된 3K/2개의 코드 비트들을 버퍼(322b)에 제공하며, 나머지 2K개의 코드 비트들을 펑처링 유닛(510c)에 제공한다. 유닛(510c)은 제 3 블록에 이용되는 펑처링 패턴에 기초하여 상기 수신된 2K개의 코드 비트들 중에서 3K/2개의 코드 비트들을 선택하고, 상기 선택된 3K/2 개의 코드 비트들을 버퍼(322c)에 제공하며, 나머지 K/2개의 코드 비트들을 펑처링 유닛(510d)에 제공한다. 이러한 K/2개의 코드 비트들은 다른 블록에 대해서 충분하지 않다. 전체 코딩된 패킷이 전송되었기 때문에, 동일한 코딩된 패킷이 도 4에 제시된 바와 같이 반복된다. 일반적으로, 상기 코딩된 패킷은 상기 패킷에 대한 T 블록 전송들에 대해 필요한 횟수만큼 반복될 수 있다. 따라서 유닛(510d)은 또한 FEC 인코더(314)로부터 코드 비트들을 수신하고, FEC 인코더(314)로부터의 1K개의 계통적 비트들과 함께 유닛(510c)로부터 K/2개의 코드 비트들을 선택하며, 선택된 3K/2개의 코드 비트들을 버퍼(322d)에 제공한다. 그 후에 각각의 버퍼들(322a 내지 322d)로부터의 상기 3K/2개의 코드 비트들은 심볼 매핑되어 3K/4개의 QPSK 변조 심볼들을 얻는다.
도 5b는 단일 패킷에 이용되는 복수의 변조 방식들과 함께 표 2에 제시되는 실시예들의 모드 3에 대한 분할 유닛(320b)의 블록 다이어그램을 나타낸다. 표 2의 모드 3에 대해, 8-PSK가 제 1 블록에 이용되고 QPSK가 이후 각각의 블록에 이용된다. 분할 유닛(320b) 내부에서, 펑처링 유닛(520a)는 상기 코딩된 패킷에 대해 5K개의 코드 비트들을 수신하고, 제 1 블록에 대한 9K/4개의 코드 비트들을 버퍼(322a)에 제공하며, 나머지 11K/4개의 코드 비트들을 펑처링 유닛(520b)에 제공한다. 유닛(520b)은 제 2 블록에 이용되는 펑처링 패턴에 기초하여 상기 수신된 11K/4개의 코드 비트들 중에서 3K/2개의 코드 비트들을 선택하고, 상기 선택된 3K/2개의 코드 비트들을 버퍼(322b)에 제공하며, 나머지 5K/4개의 코드 비트들을 펑처링 유닛(520c)에 제공한다. 또한 유닛(520c)은 FEC 인코더(314)로부터 5K 코드 비트들을 수신하고, FEC 인코더(314)로부터의 제 1 K/4개의 계통적 비트들 뿐 아니라 유닛(520b)로부터의 5K/4개의 코드 비트들을 선택하고, 선택된 3K/2개의 코드 비트들을 버퍼(322c)에 제공하며, 나머지 19K/4개의 코드 비트들을 펑처링 유 닛(520d)에 제공한다. 유닛(520d)은 나머지 3K/4개의 계통적 비트들을 선택하고, 펑처링 패턴에 기초하여 다른 3K/4개의 패리티 비트들을 선택하며, 상기 선택된 3K/2개의 코드 비트들을 버퍼(322d)에 제공한다. 그 후에 각각의 버퍼들(322a 내지 322d)로부터의 상기 코드 비트들은 심볼 매핑되어 3K/4개의 변조 심볼들을 얻는다.
도 5c는 표 2에 제시된 실시예에서 모드 7에 대한 분할 유닛(320c)의 블록 다이어그램을 나타내며, 여기서는 제 1, 2, 3, 및 4 블록 각각에 대하여 64-QAM, 16-QAM, 8-PSK, 및 QPSK를 이용한다. 블록 크기 K/S에 대하여, 각 블록은 S=4인 모드 7에 대해 K/4개의 변조 심볼들을 포함하며, 3K/2개의 코드 비트들이 64-QAM을 이용하여 한 블록으로 전송될 수 있다. 분할 유닛(320c) 내부에서, 펑처링 유닛(530a)은 코딩된 패킷에 대한 5K개의 코드 비트들을 수신하고, 제 1 블록에 대한 3K/2개의 코드 비트들을 버퍼(322a)에 제공하며, 나머지 7K/2개의 코드 비트들을 펑처링 유닛(530b)에 제공한다. 유닛(530b)은 제 2 블록에 대해 이용되는 펑처링 패턴에 기초하여 수신된 7K/2개의 코드 비트들 중에서 K개의 코드 비트들을 선택하고, 상기 선택된 K개의 코드 비트들을 버퍼(322b)에 제공하며, 나머지 5K/2개의 코드 비트들을 펑처링 유닛(530c)에 제공한다. 유닛(530c)은 제 3 블록에 대해 이용되는 펑처링 패턴에 기초하여 수신된 5K/2개의 코드 비트들 중에서 3K/4개의 코드 비트들을 선택하고, 상기 선택된 3K/4개의 코드 비트들을 버퍼(322c)에 제공하며, 나머지 7K/4개의 코드 비트들을 펑처링 유닛(530d)에 제공한다. 유닛(530d)은 제 4 블록에 대해 이용되는 펑처링 패턴에 기초하여 상기 수신된 7K/4개의 코드 비트 들 중에서 K/2개의 코드 비트들을 선택하며, 상기 선택된 K/2개의 코드 비트들을 버퍼(322d)에 제공한다. 각각의 버퍼들(322a 내지 322d)로부터의 코드 비트들은 이후에 심볼 매핑되어 K/4개의 변조 심볼들을 얻는다.
도 5a 내지 5C는 예시적인 설계 및 수 개의 모드에 대한 분할 및 펑처링을 나타낸다. 각 모드에 대한 T개의 블록들에 관한 분할 및 펑처링은 상기 기술된 바와 같이 또는 다른 방법으로 수행될 수 있다. 예를 들어, 상기 계통적 비트들은 상기 패킷에 대해 먼저 전송되지 않을 수 있고, 각 패킷에 대한 코드 비트들은 의사-난수(pseudo-random) 방식 등으로 선택될 수 있다. 또한 FEC(예컨대 컨벌루션) 코드가 계통적 비트들을 발생시키지 않을 수 있으며, 이 경우 각각의 블록에 대한 상기 코드 비트들은 상기 코딩된 패킷들 중에서 의사-난수적으로 선택될 수 있다. 또한, 상기 프레이밍 구조(framing structure)는 상기 기술된 구조와 상이할 수 있다.
도 6은 수신기(250)의 검출기(256) 및 RX 데이터 처리기(260)의 실시예의 블록 다이어그램이다. 검출기(256) 내부에서, LLR 계산 유닛(610)은 수신기 유닛(254)으로부터 수신된 데이터 심볼들을 그리고 채널 추정기(258)로부터 채널 추정들을 얻어서 상기 수신된 데이터 심볼들에 대한 LLR들을 계산한다. 각각의 수신된 데이터 심볼은 다음과 같이 표현될 수 있다:
Figure 112008035212825-pat00001
= h i · s i i , 등식(1)
여기서 s i 는 데이터 패킷에 대해 전송되는 i번째 데이터 심볼이고;
h i 는 데이터 심볼 s i 에 의해 관찰되는 복소 채널 이득이고;
η i 는 데이터 심볼
Figure 112008035212825-pat00002
에 의해 관찰되는 잡음 및 간섭이며; 그리고
Figure 112008035212825-pat00003
는 상기 데이터 패킷에 대해 i번째로 수신되는 데이터 심볼이다.
등식(1)은 각 데이터 심볼 s i 가 단일 채널 이득 h i 를 갖는 통신 채널을 가정한다. 예를 들어, 이 경우는 각 데이터 심볼이 OFDM을 이용하는 하나의 부대역(subband)으로 전송되거나, 또는 상기 통신 채널이 단일 전파(propagation) 경로에 대해 단일 채널 탭(tap)을 갖는 경우일 수 있다. 상기 잡음은 평균 0이고 분산 v i 인 부가 백색 복소 가우스 잡음(additive white complex Gaussian noise, AWGN)으로 가정될 수 있다.
각각의 수신된 데이터 심볼
Figure 112008035212825-pat00004
는 송신된 데이터 심볼 s i 의 추정이며, 이는 B 코드 비트들 b i = [b i ,1, b i ,2 ... b i ,B]를 상기 데이터 심볼 s i 에 대해 이용되는 변조 방식에 관한 신호 컨스털레이션(constellation) 내의 점으로 매핑함으로써 얻어진다. 수신된 데이터 심볼
Figure 112008035212825-pat00005
에 대한 j번째 코드 비트의 LLR은 다음과 같이 표현될 수 있다:
Figure 112008035212825-pat00006
, j=1,...,B, 등식(2)
여기서 b i,j 는 수신된 데이터 심볼
Figure 112008035212825-pat00007
에 대한 j번째 코드 비트이고;
Pr(
Figure 112008035212825-pat00008
|b i,j =1)은 비트 b i,j 가 1인 데이터 심볼
Figure 112008035212825-pat00009
가 수신될 확률이고;
Pr(
Figure 112008035212825-pat00010
|b i,j =-1)은 비트 b i,j 가 -1(즉, '0')인 데이터 심볼
Figure 112008035212825-pat00011
가 수신될 확률이며; 그리고
LLR i ,j 는 코드 비트 b i,j 의 LLR이다.
LLR은 양-극성 값으로, 상기 코드 비트가 a+1일 가능성이 더 크면 더 큰 양수값을 그리고 코드 비트가 a-1일 가능성이 더 크면 더 큰 음수 값을 갖는다. 0인 LLR은 상기 코드비트가 +1 또는 -1이 될 가능성이 동일함을 나타낸다.
각 수신된 데이터 심볼
Figure 112008035212825-pat00012
에 대한 상기 B 코드 비트들이 독립적이라면(이는 적절한 인터리빙으로써 이뤄질 수 있다), 등식(2)은 다음과 같이 표현될 수 있다:
Figure 112008035212825-pat00013
, 등식(3)
여기서 Ω j,q 는 j번째 코드 비트가 q인 신호 컨스털레이션 내의 점들의 세트이고;
s는 값이 구해지는 상기 세트 Ω j,q 내의 변조 심볼 또는 신호 점이며; 그리고
Figure 112008035212825-pat00014
는 수신된 데이터 심볼
Figure 112008035212825-pat00015
에 대한 채널 이득의 추정이다.
q=1에 대한 상기 신호 세트 Ω j, 1, q=-1에 대한 신호 세트 Ω j,- 1, 그리고 파라미터 B 모두는 상기 수신된 데이터 심볼
Figure 112008035212825-pat00016
에 이용되는 변조 방식에 따라 좌우된다. 상이한 변조 방식들이 패킷의 상이한 블록들이 이용될 수 있으며, Ω j, 1, Ω j,- 1, 및 B는 블록들에 따라 달라질 수 있다.
등식(3)은 공지된 바와 같이, 다양한 방법으로 구해질 수 있다. 유닛(610)은 {LLR i ,j }로 표기되는 B개의 LLR들을, 각 수신된 데이터 심볼
Figure 112008035212825-pat00017
의 B개 코드 비트들에 대해 계산한다. 또한 유닛(610)은 복수의 동일한 데이터 심볼 s i 의 전송들에 대해 계산되는 LLR들을 결합할 수 있어서, 단지 하나의 LLR만이 코딩된 패킷의 각 코드 비트를 관하여 저장되며, 이는 메모리 요구를 감소시킬 수 있다. 또한 유닛(610)은 각 코드 비트에 대한 상기 LLR을 미리 결정된 수의 비트들로 양자화하여 저장을 용이하게 할 수 있다. 상기 LLR들에 대해 이용되는 비트들의 수는 디코더의 요구사항, 상기 수신된 데이터 심볼들의 SINR 등과 같은 다양한 요인들에 달려 있다. 유닛(610)은 각각의 수신된 데이터 블록의 코드 비트들에 대한 LLR들을 RX 데이터 처리기(260)에 제공한다.
RX 데이터 처리기(260) 내부에서, 패킷 버퍼(620)는 각 데이터 패킷의 코드 비트들에 대한 상기 LLR들을 저장한다. 새로운 데이터 패킷을 수신하기에 앞서, 버퍼(620)는 초기화되거나 0인 LLR 값들인, 소거값(erasure)들로 채워진다. 소거(erasure)는 디코딩 프로세스에서 불명의(missing) 코드 비트(아직 수신되지 않 았거나 전혀 송신되지 않은 것)를 대체하고 적절한 웨이트(weight)가 주어지는 값이다. 주소 발생기(622)는 유닛(610)으로부터 수신된 각각의 LLR에 대한 적절한 주소를 발생시켜서, 상기 LLR이 상기 패킷에 대해 적절한 위치에 저장된다. 각 코드 비트에 대한 상기 LLR에 관한 주소는 (1) 데이터 패킷에 대해 선택된 모드, (2) 코드비트가 수신되는 특정 블록, 그리고 (3) 이러한 블록에 이용되는 펑처링 패턴에 기초하여 발생될 수 있으며, 이들 모두는 IR 전송 제어에 의해 지시될 수 있다.
새로운 데이터 심볼 블록이 데이터 패킷에 대해 송신기(210)로부터 수신될 때마다, 디코딩은 상기 패킷에 대해 수신되는 모든 블록들에 대한 LLR들 상에서 새로이 실행될 수 있다. 패킷 버퍼(620)는 LLR들과 소거값(erasure)들의 시퀀스(즉, 재조합된 패킷)를 디코딩을 위해 FEC 디코더(630)에 제공한다. 이러한 시퀀스는 상기 패킷에 대해 수신된 모든 데이터 심볼들에 관한 LLR들과 상기 패킷에 대해 수신되지 않은 모든 데이터 심볼들에 관한 소거값(erasure)들을 포함한다. 제 1 블록을 수신 후에, 상기 시퀀스는 블록 1로 반송된 코드 비트들에 대한 LLR들과 다른 모든 코드 비트들에 대한 소거값들을 포함한다. 제 2 블록을 수신한 후에, 상기 시퀀스는 블록 1 및 2로 반송된 코드 비트들에 대한 LLR들과 다른 모든 코드 비트들에 대한 소거값들을 포함한다. FEC 디코더(630)는 제어기(270)로부터의 디코딩 제어에 의해 지시되는 바와 같이, 송신기(210)에서 수행되는 FEC 인코딩과 상보적인 방법으로 상기 LLR들과 소거값들의 시퀀스를 디코딩한다. 예를 들어, 터보 또는 컨벌루션 코딩이, 각각, 송신기(210)에서 실행된다면, 터보 디코더 또는 비터비(Viterbi) 디코더가 FEC 디코더(630)로 이용될 수 있다. FEC 디코더(630)는 디 코딩된 패킷을 제공한다. 그리고 나서 CRC 검사기(632)는 상기 디코딩된 패킷을 검사하여 상기 패킷이 정확하게 또는 잘못 디코딩되었는지 여부를 결정하고 상기 디코딩된 패킷의 상태를 제공한다.
또한 수신기(250)는 반복 검출 및 디코딩(iterative detection and decoding, IDD) 방식을 이용하여 패킷을 디코딩할 수 있다. 상기 IDD 방식은 FEC 코드의 오류 정정 능력을 활용하여 향상된 성능을 제공한다. 이는 LLR 계산 유닛(610)과 FEC 디코더(630) 사이에서 다수의 반복을 위해 선험적 정보를 반복적으로 전달함으로써 이뤄질 수 있다. 상기 선험적 정보는 상기 수신된 데이터 심볼들에 대한 전송된 코드 비트들의 우도(likelihood)을 나타낸다. 각 반복에 대해, LLR 계산 유닛(610)은 수신된 데이터 심볼들, 채널 추정들, 그리고 FEC 디코더(630)로부터의 디코더 LLR들에 기초하여 상기 코드 비트들에 대한 LLR들을 계산한다. 등식(2)는 상기 디코더 LLR들을 고려하여 수정될 수 있다. 그리고 나서 FEC 디코더(630)는 유닛(610)으로부터의 갱신된 LLR들을 디코딩하여 새로운 디코더 LLR들을 얻으며, 이는 유닛(610)에 역으로 제공될 수 있다. 상기 반복 검출 및 디코딩 프로세스 동안, 검출된 데이터 심볼들의 신뢰성은 각각의 검출/디코딩 반복과 함께 향상된다.
일반적으로, 수신기(250)는 다양한 방법들로 데이터 검출 및 디코딩을 수행할 수 있다. LLR들의 발생은 일반적으로 터보 및 컨벌루션 코드들에 이용되는 특정한 디코딩 구현이다. 수신기(250)는 송신기(210)에서 이용되는 인코딩 기술에 적용가능한 임의의 일반적인 디코딩 기술을 이용할 수 있다.
도 7은 데이터 패킷을 전송하기 위해 송신기(210)에서 수행되는 프로세스(700)의 순서도를 나타낸다. 먼저 송신기는 상기 데이터 패킷을 인코딩(예를 들어, 기준 FEC 코드로써)하여 코드 비트들을 발생시킨다(블록(712)). 블록 번호에 대한 인덱스 l은 제 1 블록에 대해 1로 초기화된다(블록(714)). l번째 블록을 전송하기 위해, 코드 비트들의 블록이 상기 데이터 패킷에 대하여 이미 전송된 코드 비트들을 고려하여 상기 데이터 패킷에 대해 발생되는 코드 비트들로써 형성된다(블록(722)). 상기 l번째 블록에 이용하는 변조 방식은 상기 데이터 패킷에 대해 선택된 모드에 기초하여 결정된다(블록(724)). 그리고 나서 l번째 블록에 대한 코드 비트들이 이러한 블록에 대한 변조 방식에 기초하여 데이터 심볼들로 매핑된다(블록(726)). 상기 데이터 심볼들의 l번째 블록은 추가로 처리되고 전송된다(블록(728)). 상기 데이터 패킷이 l 블록 전송들에 기초하여 정확하게 디코딩되지 않았다면 그리고 블록들의 최대 개수가 전송되지 않았다면(블록(732)에서 결정되는 바와 같이), 인덱스 l은 증가되고(블록(734)), 상기 프로세스는 블록(722)로 복귀하여 다음 데이터 심볼들의 블록을 발생시키고 전송한다. 그렇지 않으면, 상기 프로세스는 종료된다.
도 8은 데이터 패킷을 수신하기 위해 수신기(250)에서 수행되는 프로세스(800)의 순서도를 나타낸다. 먼저 수신기는 데이터 패킷의 모든 코드 비트들에 대한 소거값들로써 패킷 버퍼를 초기화한다(블록(812)). 블록 번호에 대한 인덱스 l은 제 1 블록에 대해 1로 초기화된다(블록(814)). l번째 블록에 대해, 수신된 데이터 심볼들의 블록이 처음에 획득된다(블록(822)). 상기 l번째 블록에 이용되는 변조 방식은 상기 데이터 패킷에 대해 선택된 모드에 기초하여 결정된다(블록(824)). 그리고 나서 수신기는 수신된 데이터 심볼들의 l번째 블록에 대한 검출을 상기 블록에 관해 이용되는 변조 방식에 따라서 수행하여 상기 블록으로 전송된 코드 비트들에 관한 LLR들을 획득한다(블록(826)). l번째 블록에 관한 상기 LLR들은 이러한 블록 내의 코드 비트들에 대해 이전에 계산된 LLR들과 조합된다(블록(828)). 어느 경우이던, 상기 l번째 블록에 대한 LLR들은 패킷 버퍼 내의 적절한 위치들에 저장된다(블록(828)). 그리고 나서 상기 데이터 패킷에 대한 LLR들 및 소거값들이 상기 패킷 버퍼로부터 검색되고 상기 기준 FEC 코드에 따라 디코딩되어 디코딩된 패킷을 얻으며(블록(830)), 이는 추가로 상기 패킷이 정확하게 또는 잘못 디코딩되었는지 여부를 결정하기 위해 검사된다(블록(832)). 상기 데이터 패킷이 수신된 데이터 심볼들의 l번째 블록에 기초하여 정확하게 디코딩되지 않았다면(블록(840)에서 결정되는 바와 같이) 그리고 최대 개수의 블록들이 얻어지지 않았다면(블록(842)에서 결정되는 바와 같이), 상기 인덱스 l은 증가되고(블록(844)), 상기 프로세스는 블록(822)로 복귀하여 수신된 데이터 심볼들의 다음 블록을 얻고 처리한다. 그렇지 않으면, 상기 프로세스는 종료된다.
단일 데이터 패킷에 대한 복수의 변조 방식 이용은 향상된 성능을 제공할 수 있다. 제 1 블록 전송에 더 고차의 변조 방식을(상응하는 더 낮은 코드율과 조합하여) 이용하는 것은 어떠한 채널 모델들에 대한 이러한 블록 전송에 상당한 이득(예컨대 1 내지 2.5dB)을 제공할 수 있다. 더 낮은 차수의 변조 방식들(및 그에 상응하는 더 높은 코드율들)을 이용하는 것은 코딩된 패킷의 반복을 피하거나 감소 시키며, 이는 또한 성능을 향상시킬 수 있다. 예를 들어, 코딩된 패킷은 모드 7에서 모든 4 블록 전송들에 대해 64-QAM이 이용된다면 부분적으로 반복되고 만일 64-QAM, 16-QAM, 8-P나 및 QPSK가 상기 4 블록 전송들에 대해 이용된다면 반복되지 않는다.
여기 기술된 단일 패킷에 대해 복수의 변조 방식들을 이용하기 위한 기술들은 다양한 수단들로써 구현될 수 있다. 예를 들어, 이러한 기술들은 하드웨어, 소프트웨어, 또는 이들의 조합으로 구현될 수 있다. 하드웨어 구현으로, 송신기의 처리 유닛들(예컨대, TX 데이터 처리기(220))은 하나 이상의 주문형 반도체(ASIC), 디지털 신호 처리기(DSP), 디지털 신호 처리 장치(DSPD), 프로그래머블 논리 장치(PLD), 필드 프로그래머블 게이트 어레이(FPGA), 처리기, 제어기, 마이크로-제어기, 마이크로프로세서, 여기 기술된 기능들을 수행하도록 설계된 다른 전자 유닛들, 또는 이들의 조합 내에서 구현될 수 있다. 또한 수신기의 처리 유닛(예컨대 검출기(256) 및 RX 데이터 처리기(260))은 하나 이상의 ASIC, DSP 등 내부에서 구현될 수 있다.
소프트웨어 구현으로, 상기 기술들은 여기 기술된 기능들을 수행하는 모듈들(예컨대, 프로시저, 기능 등)로써 구현될 수 있다. 소프트웨어 코드들은 메모리 유닛(예컨대 도 2의 메모리 유닛들(232 및 272)) 내에 저장되고 처리기(예컨대, 제어기들(230 및 270))에 의해 실행될 수 있다. 상기 메모리 유닛은 처리기 내부에서 또는 상기 처리기 외부에서 구현될 수 있다.
상기 개시된 실시예들에 대한 상술한 설명은 임의의 당업자가 본 발명을 생 산 또는 이용할 수 있게 하기 위해 제시된다. 이러한 실시예들에 대한 다양한 수정들이 당업자에게는 명백할 것이며, 여기 정의된 일반 원리들은 본 발명의 사상 또는 범위를 벗어나지 않고 다른 실시예들에 적용가능하다. 따라서, 본 발명은 여기 제시된 실시예들에 제한하고자 하는 것이 아니라 여기 개시된 원리들과 신규한 특징들에 따라 가장 광범위하게 해석되는 것이다.
본 발명의 특징 및 본질은 동일한 참조 부호가 전체에 걸쳐 그에 대응하도록 식별되는 도면들과 함께 이하에 제시되는 실시예로부터 더욱 명백해질 것이며:
도 1은 증분적 중복 전송을 나타낸다;
도 2는 송신기 및 수신기의 블록 다이어그램을 나타낸다;
도 3은 전송(TX) 데이터 처리기의 블록 다이어그램을 나타낸다;
도 4는 TX 데이터 처리기에 의한 하나의 데이터 패킷 처리를 나타낸다;
도 5a는 단일 변조 방식으로써 패킷에 대한 코드 비트들의 블록의 형성을 나타낸다;
도 5b 및 5C는 다른 두 가지 모드에 대해 다중 변조 방식들로써 패킷에 대한 코드 비트들의 블록 형성을 나타낸다;
도 6은 검출기 및 수신(RX) 데이터 처리기의 블록 다이어그램을 나타낸다;
도 7 및 8은 다중 변조 방식으로써 데이터 패킷을 각각 전송하고 수신하는 프로세스를 나타낸다.

Claims (10)

  1. 통신 시스템에서 데이터를 수신하기 위한 방법으로서:
    데이터 패킷에 대한 복수의 수신된 데이터 심볼들의 블록들을 획득하는 단계;
    상기 복수의 블록들 각각에 이용되는 변조 방식을 결정하는 단계로서, 적어도 두 개의 상이한 변조 방식들이 상기 복수의 블록들에 이용되는, 변조 방식 결정 단계;
    상기 블록에 대한 검출된 데이터 심볼들을 발생시키기 위해 상기 블록에 이용되는 상기 변조 방식에 따라 상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하는 단계; 및
    디코딩된 패킷을 획득하기 위해 상기 복수의 수신된 데이터 심볼들의 블록들로부터 발생된, 검출된 데이터 심볼들을 디코딩하는 단계를 포함하는 데이터 수신 방법.
  2. 제 1 항에 있어서,
    상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하는 단계는
    각각의 수신된 데이터 심볼에 대한 코드 비트들의 세트에 대한 로그-우도 비(log-likelihood ratio, LLR)들의 세트를 발생시키는 단계를 포함하는, 데이터 수신 방법.
  3. 제 1 항에 있어서,
    상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하는 단계는
    적어도 두 개의 상이한 변조 방식들 중에서 가장 고차인 제 1 변조 방식에 따라, 처음으로 획득된, 수신된 데이터 심볼들의 제 1 블록에 대한 검출을 수행하는 단계를 포함하는, 데이터 수신 방법.
  4. 제 3 항에 있어서,
    상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하는 단계는
    상기 적어도 두 개의 상이한 변조 방식들 중에서 두 번째로 고차인 제 2 변조 방식에 따라, 두 번째로 획득된, 수신된 데이터 심볼들의 제 2 블록에 대한 검출을 수행하는 단계를 더 포함하는, 데이터 수신 방법.
  5. 제 1 항에 있어서,
    상기 검출된 데이터 심볼들을 디코딩하는 단계는
    상기 복수의 수신된 데이터 심볼들의 블록들 각각을 획득하는 단계 이후, 상기 디코딩된 패킷을 획득하기 위해 수신된 데이터 심볼들의 모든 블록들에 대해 발생되는, 검출된 데이터 심볼들을 디코딩하는 단계를 포함하는, 데이터 수신 방법.
  6. 통신 시스템 내의 장치로서:
    데이터 패킷에 대한 복수의 수신된 데이터 심볼들의 블록들을 획득하도록 동작하는 수신기 유닛;
    상기 복수의 블록들 각각에 이용되는 변조 방식을 결정하도록 동작하는 제어기로서, 여기서 적어도 두 개의 상이한 변조 방식들이 상기 복수의 블록들에 이용되는, 제어기;
    상기 블록에 대한 검출된 데이터 심볼들을 발생시키기 위해 상기 블록에 이용되는 상기 변조 방식에 따라 상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하도록 동작하는 검출기; 및
    디코딩된 패킷을 얻기 위해 상기 복수의 수신된 데이터 심볼들의 블록들로부터 발생된, 검출된 데이터 심볼들을 디코딩하도록 동작하는 디코더를 포함하는 장치.
  7. 제 6 항에 있어서,
    상기 검출기는 상기 적어도 두 개의 상이한 변조 방식들 중에서 가장 고차인 제 1 변조 방식에 따라, 처음으로 획득된, 수신된 데이터 심볼들의 블록에 대한 검출을 수행하도록 동작하는, 장치.
  8. 통신 시스템 내의 장치로서:
    데이터 패킷에 대한 복수의 수신된 데이터 심볼들의 블록들을 획득하기 위한 수단;
    상기 복수의 블록들 각각에 이용되는 변조 방식을 결정하기 위한 수단으로서, 여기서 적어도 두 개의 상이한 변조 방식들이 상기 복수의 블록들에 이용되는, 변조 방식 결정 수단;
    상기 블록에 대한 검출된 데이터 심볼들을 발생시키기 위해 상기 블록에 이용되는 상기 변조 방식에 따라 상기 복수의 수신된 데이터 심볼들의 블록들 각각에 대한 검출을 수행하기 위한 수단; 및
    디코딩된 패킷을 획득하기 위해 상기 복수의 수신된 데이터 심볼들의 블록들로부터 발생된, 검출된 데이터 심볼들을 디코딩하기 위한 수단을 포함하는 장치.
  9. 통신 시스템 내에서 데이터를 수신하기 위한 방법으로서:
    데이터 패킷에 대한 수신된 데이터 심볼들의 블록을 획득하는 단계;
    상기 수신된 데이터 심볼들의 블록에 이용되는 변조 방식을 결정하는 단계;
    상기 블록에 대한 검출된 데이터 심볼들을 발생시키기 위해 상기 변조 방식에 따라 상기 수신된 데이터 심볼들의 블록에 대한 검출을 수행하는 단계로서, 여기서 각각의 검출된 데이터 심볼은 상기 데이터 패킷에 대한 변조 심볼의 추정(estimate)인, 검출 수행 단계;
    디코딩된 패킷을 유도하기 위해 상기 데이터 패킷에 대한 획득된 모든 수신된 데이터 심볼들의 블록들로부터 발생된, 검출된 데이터 심볼들을 디코딩하는 단계; 및
    만일 상기 데이터 패킷이 잘못 디코딩된 경우 그리고 최대 개수의 수신된 데이터 심볼들의 블록들이 상기 데이터 패킷에 대해 획득되지 않은 경우, 상기 수신된 데이터 심볼들의 블록을 획득하는 단계, 상기 블록에 이용되는 상기 변조 방식을 결정하는 단계, 상기 수신된 데이터 심볼들의 블록에 대한 검출을 수행하는 단계, 그리고 수신된 데이터 심볼들의 다른 블록에 대해 상기 검출된 데이터 심볼들을 디코딩하는 단계를 반복하는 단계를 포함하며, 여기서 적어도 두 개의 상이한 변조 방식들이 상기 최대 개수의 수신된 데이터 심볼들의 블록들에 이용되는, 데이터 수신 방법.
  10. 제 9 항에 있어서,
    각각의 변조 심볼에 대해 발생된 복수의 검출된 데이터 심볼들을 조합하는 단계를 더 포함하는 데이터 수신 방법.
KR1020087011911A 2004-12-22 2005-12-21 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치 KR100911276B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/022,538 2004-12-22
US11/022,538 US9385843B2 (en) 2004-12-22 2004-12-22 Method and apparatus for using multiple modulation schemes for a single packet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020077016779A Division KR100912159B1 (ko) 2004-12-22 2005-12-21 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치

Publications (2)

Publication Number Publication Date
KR20080050536A KR20080050536A (ko) 2008-06-05
KR100911276B1 true KR100911276B1 (ko) 2009-08-11

Family

ID=36130132

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020077016779A KR100912159B1 (ko) 2004-12-22 2005-12-21 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치
KR1020087011911A KR100911276B1 (ko) 2004-12-22 2005-12-21 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020077016779A KR100912159B1 (ko) 2004-12-22 2005-12-21 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치

Country Status (14)

Country Link
US (2) US9385843B2 (ko)
EP (3) EP2173053B1 (ko)
JP (6) JP5166039B2 (ko)
KR (2) KR100912159B1 (ko)
CN (3) CN101447852B (ko)
AR (2) AR052437A1 (ko)
AT (3) ATE555559T1 (ko)
CA (2) CA2634279C (ko)
DE (2) DE05855269T1 (ko)
ES (3) ES2386232T3 (ko)
HK (2) HK1130597A1 (ko)
PL (1) PL2173053T3 (ko)
TW (3) TWI403133B (ko)
WO (1) WO2006069270A1 (ko)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809021B2 (en) 2002-07-10 2010-10-05 Solarflare Communications, Inc. Communication system and encoding method having low overhead
US8009696B2 (en) * 2004-08-06 2011-08-30 Ipeak Networks Incorporated System and method for achieving accelerated throughput
US9385843B2 (en) 2004-12-22 2016-07-05 Qualcomm Incorporated Method and apparatus for using multiple modulation schemes for a single packet
US7447983B2 (en) * 2005-05-13 2008-11-04 Verizon Services Corp. Systems and methods for decoding forward error correcting codes
US7983350B1 (en) * 2005-10-25 2011-07-19 Altera Corporation Downlink subchannelization module
US7580469B2 (en) * 2006-07-06 2009-08-25 Provigent Ltd Communication link control using iterative code metrics
WO2008054141A1 (en) * 2006-11-01 2008-05-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control information in packet data communication system
US8566676B2 (en) 2007-01-05 2013-10-22 Qualcomm Incorporated FEC code and code rate selection based on packet size
US7907675B2 (en) * 2007-01-31 2011-03-15 Fujitsu Toshiba Mobile Communications Limited Radio communication system and radio communication method
KR20080090706A (ko) * 2007-04-05 2008-10-09 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
US8296619B2 (en) * 2007-04-20 2012-10-23 Interdigital Technology Corporation Method and apparatus for indicating a temporary block flow to which a piggybacked ACK/NACK field is addressed
US20100157836A1 (en) * 2007-07-06 2010-06-24 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus, and mobile station apparatus
WO2009113792A1 (en) * 2008-03-10 2009-09-17 Electronics And Telecommunications Research Institute Apparatus and method for mapping symbol
KR101182852B1 (ko) * 2008-03-10 2012-09-14 한국전자통신연구원 심볼 매핑 방법 및 장치
US8873671B2 (en) * 2008-03-26 2014-10-28 Qualcomm Incorporated Method and system for LLR buffer reduction in a wireless communication modem
US8638653B2 (en) * 2008-03-27 2014-01-28 Intel Corporation Adaptive transmissions for optimized application delivery in wireless networks
US9184874B2 (en) * 2008-03-31 2015-11-10 Qualcomm Incorporated Storing log likelihood ratios in interleaved form to reduce hardware memory
WO2010030513A1 (en) * 2008-09-12 2010-03-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Iterative correlation-based equalizer for underwater acoustic communications over time-varying channels
US20110030025A1 (en) * 2009-07-31 2011-02-03 Azure Communications Inc. High speed wireless video transmission
EP2293466B1 (en) * 2009-09-03 2013-08-28 Mitsubishi Electric R&D Centre Europe B.V. Method and a device for relaying symbols transferred by a source to a destination
RU2012120334A (ru) 2009-11-17 2013-11-27 Сони Корпорейшн Передатчик и приемник для широковещательной передачи данных в системе вещания с нарастающей избыточностью
PL3393053T3 (pl) 2010-03-12 2022-09-26 Electronics And Telecommunications Research Institute Sposób i urządzenie do nadawania i odbierania danych w systemie MIMO
KR101813031B1 (ko) * 2010-04-13 2017-12-28 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치
CN101860501B (zh) * 2010-04-15 2013-02-27 新邮通信设备有限公司 一种数据调制方法和装置
CN103477583B (zh) 2011-04-19 2016-11-09 太阳专利托管公司 预编码方法、预编码装置
EP2523412B1 (en) * 2011-05-11 2018-09-26 Samsung Electronics Co., Ltd. Apparatus and method for soft demapping
EP2536053B1 (en) * 2011-06-14 2014-08-13 Telefonaktiebolaget L M Ericsson (publ) Device and method for conditionally controlling interference
US9319898B2 (en) * 2012-08-29 2016-04-19 Samsung Electronics Co., Ltd. Wireless communication system with rate selection mechanism and method of operation thereof
FR2995162B1 (fr) * 2012-08-31 2015-09-04 Thales Sa Methode d'optimisation de l'efficacite spectrale d'une transmission de donnees et dispositif mettant en oeuvre la methode
US9397784B2 (en) * 2012-09-12 2016-07-19 Cohda Wireless Pty Ltd. Split radio architecture
US20140105315A1 (en) * 2012-10-12 2014-04-17 The Governors Of The University Of Alberta Frequency time block modulation for mitigating doubly-selective fading
US9204437B2 (en) * 2013-02-27 2015-12-01 Qualcomm Incorporated Methods and apparatus for conditional offload of one or more log-likelihood ratios (LLRs) or decoded bits
CA3043836C (en) * 2014-02-13 2020-10-20 Electronics And Telecommunications Research Institute Modulator and modulation method using non-uniform 16-symbol signal constellation for low-density parity check codeword having 4/15 code rate
KR102323765B1 (ko) * 2014-02-13 2021-11-11 한국전자통신연구원 부호율이 3/15인 ldpc 부호어를 위한 비균등 16-심볼 신호성상을 이용한 변조기 및 이를 이용한 변조 방법
US9520898B2 (en) * 2014-02-13 2016-12-13 Electronics And Telecommunications Research Institute Modulator and modulation method using non-uniform 16-symbol signal constellation for low-density parity check codeword having 3/15 code rate
CN104980251B (zh) * 2014-04-14 2018-09-21 上海数字电视国家工程研究中心有限公司 编码调制方法及解码解调方法
CN104022848B (zh) * 2014-06-19 2017-04-19 西安电子科技大学 逼近信道容量的无速率tcm码的编译码方法
KR102314602B1 (ko) * 2015-04-23 2021-10-19 한국전자통신연구원 안테나 장치 및 그 빔포밍 방법
US11032031B2 (en) * 2016-01-18 2021-06-08 Qualcomm Incorporated HARQ LLR buffer and reordering buffer management
US10182439B2 (en) * 2016-02-16 2019-01-15 Samsung Electronics Co., Ltd Method and apparatus for data-aided iterative channel estimation
US9973300B2 (en) * 2016-06-09 2018-05-15 Echelon Corporation Modulation adaption method for multi-mode modems
US10819783B1 (en) 2016-08-30 2020-10-27 Ampere Computing Llc Managing a data packet for an operating system associated with a multi-node system
US10439960B1 (en) 2016-11-15 2019-10-08 Ampere Computing Llc Memory page request for optimizing memory page latency associated with network nodes
US10339065B2 (en) 2016-12-01 2019-07-02 Ampere Computing Llc Optimizing memory mapping(s) associated with network nodes
US10873373B2 (en) 2018-03-16 2020-12-22 Huawei Technologies Co., Ltd. Simplified detection for spatial modulation and space-time block coding with antenna selection
US11546858B2 (en) * 2018-03-23 2023-01-03 Qualcomm Incorporated Power control techniques for uplink control information transmissions in wireless communications
US10778339B2 (en) 2018-09-14 2020-09-15 Viasat, Inc. Systems and methods for creating in a transmitter a stream of symbol frames configured for efficient processing in a receiver
US11057292B1 (en) * 2019-06-07 2021-07-06 Cisco Technology, Inc. Border node traffic convergence
US10939359B2 (en) * 2019-06-24 2021-03-02 Nxp B.V. Location-based communication
TWI708488B (zh) * 2019-08-20 2020-10-21 智易科技股份有限公司 傳輸系統、傳送裝置及傳輸路徑分配方法
US20210110037A1 (en) * 2019-10-10 2021-04-15 International Business Machines Corporation Malware detection system
US11616667B2 (en) 2020-08-11 2023-03-28 Qualcomm Incorporated Multi-level coded modulation for non-coherent communication
CN113364558A (zh) * 2021-06-04 2021-09-07 重庆御芯微信息技术有限公司 基于自有通信协议WIoTA的编码方法
US20230040471A1 (en) * 2021-08-03 2023-02-09 Qualcomm Incorporated Selecting transport blocks for network coding

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208663A (en) * 1989-03-22 1993-05-04 Konica Corporation Color image processing apparatus provided with an image discrimination means
JP3240262B2 (ja) 1996-07-25 2001-12-17 株式会社日立国際電気 適応変調伝送方法とそのシステム
JPH1056420A (ja) 1996-08-08 1998-02-24 Kokusai Electric Co Ltd Cdma適応変調方法とそのシステム
US5983384A (en) 1997-04-21 1999-11-09 General Electric Company Turbo-coding with staged data transmission and processing
US5852630A (en) * 1997-07-17 1998-12-22 Globespan Semiconductor, Inc. Method and apparatus for a RADSL transceiver warm start activation procedure with precoding
US6125148A (en) * 1997-08-29 2000-09-26 Telefonaktiebolaget Lm Ericsson Method for demodulating information in a communication system that supports multiple modulation schemes
US6353907B1 (en) * 1997-10-29 2002-03-05 At&T Corp. Incremental redundancy radio link protocol
US6778558B2 (en) * 1998-02-23 2004-08-17 Lucent Technologies Inc. System and method for incremental redundancy transmission in a communication system
JP3450729B2 (ja) 1998-12-21 2003-09-29 日本電信電話株式会社 パケット通信装置
FI109251B (fi) * 1999-09-10 2002-06-14 Nokia Corp Tiedonsiirtomenetelmä, radiojärjestelmä, radiolähetin ja radiovastaanotin
JP2001119332A (ja) 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd 無線通信装置及び無線マルチキャストデータ転送方法
US6604216B1 (en) * 1999-12-10 2003-08-05 Telefonaktiebolaget Lm Ericsson Telecommunications system and method for supporting an incremental redundancy error handling scheme using available gross rate channels
EP1185033A4 (en) 2000-04-06 2004-06-23 Ntt Docomo Inc MULTICASTING METHOD AND SYSTEM, MOBILE STATION AND BASE STATION
JP4511686B2 (ja) 2000-05-26 2010-07-28 パナソニック株式会社 無線通信装置及び無線通信方法
US6947490B1 (en) * 2000-06-22 2005-09-20 Nortel Networks Limited Cellular radio communications system
JP3679320B2 (ja) 2000-10-18 2005-08-03 三菱電機株式会社 電力線搬送通信装置
US7139237B2 (en) * 2000-12-29 2006-11-21 Motorola, Inc. Method and system for multirate multiuser modulation
US6721834B2 (en) * 2001-02-09 2004-04-13 Lucent Technologies Inc. Rate adaptation in a wireless communication system
WO2002065647A1 (en) * 2001-02-13 2002-08-22 Samsung Electronics Co., Ltd Apparatus and method for generating codes in communication system
JP3596477B2 (ja) * 2001-02-28 2004-12-02 日本電気株式会社 移動通信システム及びそれに用いる変調・符号化モード切替方法
JP3394528B2 (ja) 2001-03-19 2003-04-07 松下電器産業株式会社 パケット伝送システム及びパケット伝送方法
US6909758B2 (en) * 2001-04-27 2005-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for decoding data blocks
EP1255368A1 (en) 2001-04-30 2002-11-06 Siemens Information and Communication Networks S.p.A. Method to perform link adaptation in enhanced cellular communication systems with several modulation and coding schemes
US6889056B2 (en) * 2001-04-30 2005-05-03 Ntt Docomo, Inc. Transmission control scheme
BR0210557A (pt) 2001-06-25 2004-05-25 Nokia Corp Método para usar um enlace de rádio em uma modulação adaptativa no sistema de comunicações móveis, método para selecionar um esquema de codificação e de modulação para uso no sistema de comunicações móveis, e, método para uso no sistema de comunicações móveis possuindo um canal de rádio com uma qualidade do canal de rádio variante-tempo
KR100450948B1 (ko) 2001-07-12 2004-10-02 삼성전자주식회사 통신시스템에서 변조방식 결정장치 및 방법
KR100539864B1 (ko) * 2001-07-25 2005-12-28 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 고속 데이터의 재전송장치 및 방법
JP3880437B2 (ja) 2001-08-31 2007-02-14 松下電器産業株式会社 送受信装置及び送受信方法
CN1213557C (zh) * 2001-09-25 2005-08-03 华为技术有限公司 基于自适应编码调制和自动重传请求的链路自适应方法
US7167461B2 (en) * 2001-10-15 2007-01-23 Qualcomm Incorporated Method and apparatus for processing shared subpackets in a communication system
KR100827147B1 (ko) * 2001-10-19 2008-05-02 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 고속 데이터의효율적 재전송 및 복호화를 위한 송,수신장치 및 방법
US7376879B2 (en) 2001-10-19 2008-05-20 Interdigital Technology Corporation MAC architecture in wireless communication systems supporting H-ARQ
KR100918765B1 (ko) * 2001-10-20 2009-09-24 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 부호화 및 레이트매칭장치 및 방법
US7260770B2 (en) * 2001-10-22 2007-08-21 Motorola, Inc. Block puncturing for turbo code based incremental redundancy
KR100744347B1 (ko) * 2001-10-29 2007-07-30 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 데이터 송/수신장치 및 방법
KR100557167B1 (ko) * 2001-11-02 2006-03-03 삼성전자주식회사 이동통신시스템에서의 재전송 장치 및 방법
KR100566241B1 (ko) 2001-11-19 2006-03-29 삼성전자주식회사 이동통신시스템에서 연성 심볼 결합 장치 및 방법
KR100800807B1 (ko) * 2001-11-20 2008-02-01 삼성전자주식회사 재전송을 지원하는 통신시스템에서 재전송의 변조방식결정 방법 및 장치
EP1330049B1 (en) * 2002-01-21 2004-07-14 Samsung Electronics Co., Ltd. Apparatus and method for distributing power in an HSDPA system
US6999439B2 (en) * 2002-01-31 2006-02-14 Mitsubishi Denki Kabushiki Kaisha Information transmission method, mobile communications system, base station and mobile station in which data size of identification data is reduced
US7324436B2 (en) 2002-04-30 2008-01-29 Lg Electronics Inc. Determining useable combinations of variables for transmitting a subpacket of an encoder packet
CN1225854C (zh) 2002-06-13 2005-11-02 华为技术有限公司 一种自适应调制与编码方法
US7050405B2 (en) * 2002-08-23 2006-05-23 Qualcomm Incorporated Method and system for a data transmission in a communication system
JP4115784B2 (ja) 2002-09-11 2008-07-09 三菱電機株式会社 再送制御方法および通信装置
KR100630143B1 (ko) * 2002-09-30 2006-09-29 삼성전자주식회사 통신 시스템에서 셔플링 데이터의 수신 방법 및 장치
KR100633665B1 (ko) * 2002-10-02 2006-10-11 엘지전자 주식회사 그래픽 데이터의 재생을 관리하기 위한 데이터 구조를갖는 기록 매체, 그에 따른 기록 및 재생 방법 및 장치
JP2004128988A (ja) * 2002-10-03 2004-04-22 Ntt Docomo Inc 通信システム、受信装置、送信装置及び通信方法
US7289452B2 (en) 2002-10-24 2007-10-30 Nokia Corporation Transport block size (TBS) signaling enhancement
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
AU2003280576A1 (en) 2002-10-31 2004-05-25 Matsushita Electric Industrial Co., Ltd. Transmitting device and transmitting method
JP3619821B2 (ja) 2002-10-31 2005-02-16 松下電器産業株式会社 送信装置及び送信方法
JP4018989B2 (ja) 2003-01-20 2007-12-05 松下電器産業株式会社 送信装置及び送信方法
KR100547784B1 (ko) * 2003-01-21 2006-01-31 삼성전자주식회사 시공간 트렐리스 코드를 사용하는 이동 통신 시스템에서데이터 송수신 장치 및 방법
CN100435495C (zh) 2003-02-20 2008-11-19 富士通株式会社 无线信道控制方法及接收装置
JP4067984B2 (ja) 2003-02-27 2008-03-26 三菱電機株式会社 受信機
JP4224329B2 (ja) 2003-03-25 2009-02-12 パナソニック株式会社 符号化装置および符号化方法
KR100591890B1 (ko) * 2003-04-01 2006-06-20 한국전자통신연구원 다중 안테나 무선 통신 시스템에서의 적응 송수신 방법 및그 장치
US7706347B2 (en) * 2003-05-15 2010-04-27 Lg Electronics Inc. Signal processing apparatus and method using multi-output mobile communication system
JP2005033399A (ja) * 2003-07-10 2005-02-03 Fujitsu Ltd パケット送受信装置
KR100678182B1 (ko) * 2003-08-20 2007-02-02 삼성전자주식회사 비동기 광대역 부호분할 다중접속 시스템에서 상향링크 패킷 데이터 서비스 방법 및 장치
KR100594021B1 (ko) * 2003-11-13 2006-06-30 삼성전자주식회사 무선통신 시스템에서 패킷 송수신을 위한 비트 스크램블링방법 및 장치
US7489621B2 (en) * 2003-12-30 2009-02-10 Alexander A Maltsev Adaptive puncturing technique for multicarrier systems
EP1788742B1 (en) * 2004-09-13 2013-09-11 Panasonic Corporation Automatic retransmission request control system and retransmission method in mimo-ofdm system
US9385843B2 (en) 2004-12-22 2016-07-05 Qualcomm Incorporated Method and apparatus for using multiple modulation schemes for a single packet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Adaptive, asynchronous incremental redundancy with fixed transmission time intervals for HSDPA. IEEE. 2002.

Also Published As

Publication number Publication date
CN101447852A (zh) 2009-06-03
EP2173053A1 (en) 2010-04-07
CA2634279A1 (en) 2006-06-29
CA2590654C (en) 2013-05-21
CN101888290B (zh) 2012-08-22
CA2590654A1 (en) 2006-06-29
EP2173053B1 (en) 2011-06-22
JP5714635B2 (ja) 2015-05-07
CN101447852B (zh) 2013-03-27
EP2058971A2 (en) 2009-05-13
TWI387271B (zh) 2013-02-21
KR20070087190A (ko) 2007-08-27
ATE555559T1 (de) 2012-05-15
US9385843B2 (en) 2016-07-05
CA2634279C (en) 2014-12-09
ATE514247T1 (de) 2011-07-15
WO2006069270A1 (en) 2006-06-29
JP2008526115A (ja) 2008-07-17
HK1150913A1 (en) 2012-01-13
CN101124764A (zh) 2008-02-13
US10291349B2 (en) 2019-05-14
CN101124764B (zh) 2015-01-28
JP2013176098A (ja) 2013-09-05
JP2012100285A (ja) 2012-05-24
JP2009089378A (ja) 2009-04-23
JP2016054497A (ja) 2016-04-14
KR20080050536A (ko) 2008-06-05
HK1130597A1 (en) 2009-12-31
TWI403133B (zh) 2013-07-21
EP2058971A3 (en) 2009-05-27
TW201029402A (en) 2010-08-01
DE602005014013D1 (de) 2009-05-28
EP1834434B1 (en) 2009-04-15
ES2368723T3 (es) 2011-11-21
ES2293869T3 (es) 2009-07-13
TW200642380A (en) 2006-12-01
EP2058971B1 (en) 2012-04-25
TWI364958B (en) 2012-05-21
DE05855269T1 (de) 2008-04-03
PL2173053T3 (pl) 2011-11-30
AR052437A1 (es) 2007-03-21
JP6498591B2 (ja) 2019-04-10
ES2293869T1 (es) 2008-04-01
US20060133533A1 (en) 2006-06-22
KR100912159B1 (ko) 2009-08-14
CN101888290A (zh) 2010-11-17
JP5290231B2 (ja) 2013-09-18
JP5889620B2 (ja) 2016-03-22
JP2010213294A (ja) 2010-09-24
ES2386232T3 (es) 2012-08-14
US20160285585A1 (en) 2016-09-29
EP1834434A1 (en) 2007-09-19
JP5166039B2 (ja) 2013-03-21
AR066671A2 (es) 2009-09-02
TW200843422A (en) 2008-11-01
ATE429093T1 (de) 2009-05-15

Similar Documents

Publication Publication Date Title
KR100911276B1 (ko) 패킷의 전송을 위해 상이한 변조 방식들을 이용하기 위한방법 및 장치
US7131049B2 (en) Transmission/reception apparatus and method for packet retransmission in a CDMA mobile communication system
US8908496B2 (en) Incremental redundancy transmission in a MIMO communication system
TWI436615B (zh) 用於以交錯形式將對數概度比儲存在記憶體中以減少記憶體需求的方法、接收器、裝置與電腦可讀取媒體
FI127323B (fi) Lähetinvastaanotinyksikkö ja menetelmä paketin uudelleenlähettämiseksi matkaviestinjärjestelmässä
US9100065B2 (en) Symbol vector-level combining transmitter for incremental redundancy HARQ with MIMO
SE524830C2 (sv) Återsändning av höghastighetsdata i ett CDMA- mobilkommunikationssystem
WO2002017550A2 (en) Two stage data packet processing scheme
Jia et al. LDPC Coded Link Adaptation Based on Irregular Modulation Integrated with Full Incremental Redundancy

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 11