KR100885137B1 - 부분 재사용 시스템에서의 레이트 예측 - Google Patents

부분 재사용 시스템에서의 레이트 예측 Download PDF

Info

Publication number
KR100885137B1
KR100885137B1 KR20077003640A KR20077003640A KR100885137B1 KR 100885137 B1 KR100885137 B1 KR 100885137B1 KR 20077003640 A KR20077003640 A KR 20077003640A KR 20077003640 A KR20077003640 A KR 20077003640A KR 100885137 B1 KR100885137 B1 KR 100885137B1
Authority
KR
South Korea
Prior art keywords
determining
channel quality
reuse set
subcarrier
quality indicator
Prior art date
Application number
KR20077003640A
Other languages
English (en)
Other versions
KR20070042181A (ko
Inventor
아모드 칸데카
아브네시 아그라왈
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20070042181A publication Critical patent/KR20070042181A/ko
Application granted granted Critical
Publication of KR100885137B1 publication Critical patent/KR100885137B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Abstract

부분 주파수 재사용을 갖는 무선 통신 시스템에서의 레이트 예측을 위한 장치 및 방법이 개시된다. 직교 주파수 분할 다중 액세스 (OFDMA) 를 구현하는 무선 통신 시스템은 캐리어의 일부가 핸드오프를 예상하지 않는 단말기에 대해 할당되고 캐리어의 다른 일부가 핸드오프의 더 높은 가능성을 갖는 단말기에 대해 보존되는 부분 주파수 재사용 플랜을 구현할 수 있다. 일부의 각각은 재사용 세트를 한정할 수 있다. 단말기는 재사용 세트 내에서 주파수 홉이 강제될 수 있다. 또한, 단말기는 캐리어의 서브세트의 현재의 할당에 기초하여 재사용 세트를 결정하도록 구성될 수 있다. 단말기는 적어도 현재의 재사용 세트에 부분적으로 기초하여 채널 추정 및 채널 품질 표시자를 결정할 수 있다. 단말기는 인덱스값에 기초하여 레이트를 결정할 수 있는 소스로 채널 품질 표시자를 리포트할 수 있다.
파일럿 모듈, 송신기 모듈, 레이트 예측 모듈, 블랭크 파일럿

Description

부분 재사용 시스템에서의 레이트 예측{RATE PREDICTION IN FRACTIONAL REUSE SYSTEMS}
35 U.S.C. §119에 따른 우선권 주장
본 특허 출원은 "재사용 세트의 사전 인지 없는 레이트 예측 (Rate Prediction Without Prior Knowledge of Reuse Set)"의 명칭으로 2004년 7월 16일자로 출원된 가출원 제 60/588,629호를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도되고, 여기에서 참조로서 전부 명백히 포함된다.
발명의 배경
발명의 기술 분야
본 발명은 무선 통신 분야에 관한 것이다. 보다 상세하게는, 본 발명은 무선 통신 시스템에서의 레이트 예측에 관한 것이다.
관련 기술의 설명
무선 통신 시스템은 종종 하나 이상의 이동 무선 단말기와 통신하는 무선 기지국의 네트워크로서 구성된다. 무선 기지국 각각은 임의의 다른 기지국에 관하여 고유한 환경에서 동작할 수 있다. 예를 들면, 기지국은 고밀도의 잠재적인 유저를 갖는 다수의 고층 빌딩을 갖는 대도시 커버리지 영역 (coverage area) 을 지원하도록 구성될 수 있다. 동일한 통신 네트워크에 접속된 다른 기지국은, 신호 품질에 영향을 줄 수 있는 지형 변동이 실질적으로 없는 (void) 비교적 스파스 (sparse) 하게 상주된 커버리지 영역을 지원하도록 구성될 수 있다. 유사하게, 제 1 무선 기지국은 다수의 잠재적인 간섭 소스를 포함하는 커버리지 영역을 지원하도록 구성될 수 있는 반면에, 제 2 기지국은 간섭 소스가 크게 없는 커버리지 영역을 지원하도록 구성될 수 있다.
또한, 기지국 커버리지 영역 내에서의 특정 유저 단말기에 의해 겪게 되는 신호 품질은 전기적 환경뿐만 아니라 물리적 환경에 기초하여 변화할 수 있다. 이동 유저 단말기는 주위 환경의 구성뿐만 아니라 유저 단말기의 속도 및 위치에 기인할 수 있는 도플러 및 페이딩과 같은 신호 저하를 겪을 수 있다.
따라서, 무선 통신 시스템에서의 각 유저 단말기는 유저 단말기와 관련 기지국간에 통신되는 신호의 품질에 영향을 주는 고유한 동작 조건을 겪을 수 있다. 통상적으로, 기지국 및 유저 단말기는 높은 대역폭 통신 링크에 걸쳐 통신하는 것이 바람직하다. 그러나, 모든 유저 단말기 또는 기지국이 동작 상태에서의 차이 때문에 동일한 정보 대역폭을 지원할 수 있지는 않을 것이다.
또한 무선 통신 시스템은 유저 단말기가 기지국 사이에서 핸드오프하게 할 수도 있다. 핸드오프 상황에 있어서, 핸드오프에서의 유저 단말기는 핸드오프에 관련된 기지국과 동일한 정보 대역폭을 지원하지 않을 수도 있다. 이상적으로, 유저 단말기는 동일한 또는 더 높은 정보 대역폭을 지원할 수 있는 기지국으로 핸드오프한다. 그러나, 핸드오프는 향상되는 통신 이외의 이유로 개시될 수 있다. 예를 들면, 유저 단말기는 위치에서의 변화에 기인하여 기지국들 사이에서 핸드오프할 수 있다. 즉, 유저 단말기는 제 1 기지국의 커버리지 영역으로부터 제 2 기지국의 커버리지 영역으로 이동할 수 있다. 제 2 기지국은 유저 단말기에 의해 겪게 되는 페이딩 및 간섭에 기인하여 더 낮은 정보 대역폭을 지원하는 능력만을 가질 수도 있다.
발명의 간단한 요약
부분 주파수 재사용을 갖는 무선 통신 시스템에서의 레이트 예측을 위한 장치 및 방법이 개시된다. 직교 주파수 분할 다중 액세스 (OFDMA) 를 구현하는 무선 통신 시스템은, 캐리어의 일부가 핸드오프를 예상하지 않는 단말기에 할당되고 캐리어의 다른 일부가 핸드오프의 보다 높은 가능성을 갖는 단말기를 위해 보존되는 부분 주파수 재사용 플랜을 구현할 수 있다. 각 일부는 재사용 세트를 한정할 수 있다. 단말기는 재사용 세트 내의 주파수 홉이 강제될 수 있다. 또한, 단말기는 캐리어의 서브세트의 현재의 할당에 기초하여 재사용 세트를 결정하도록 구성될 수 있다. 단말기는 적어도 현재의 재사용 세트에 부분적으로 기초하여 채널 추정 및 채널 품질 표시자를 결정할 수 있다. 단말기는, 인덱스값에 기초하여 레이트를 결정할 수 있는 소스로 채널 품질 표시자를 리포트할 수 있다.
본 발명은 부분 재사용 통신 시스템의 재사용 세트 내에서의 서브캐리어 할당의 결정, 파일럿 (pilot) 신호의 송신, 서브캐리어 할당 및 파일럿 신호에 부분적으로 기초한 채널 품질 표시자값의 수신, 채널 품질 표시자에 부분적으로 기초한 송신 포맷의 결정 및 송신 포맷에 부분적으로 기초한 코드 레이트의 제어를 포함하여 부분 재사용 통신 시스템에서의 레이트 제어를 위한 방법을 포함한다.
또한, 본 발명은 부분 재사용 통신 시스템의 재사용 세트 내의 서브캐리어 할당의 결정, 주파수 분할 다중화 (FDM) 파일럿 신호 및 하나 이상의 전용 파일럿 신호를 포함하는 파일럿 신호의 송신, 서브캐리어 할당 및 파일럿 신호에 부분적으로 기초한 채널 품질 표시자값의 수신, 변경된 채널 품질 표시자를 발생시키기 위해 전력 제어 증분과 채널 품질 표시자로의 백오프값과의 가산, 복수의 소정의 임계값과 변경된 채널 표시자와의 비교, 변경된 채널 품질 표시자에 의해 초과되는 임계값 레벨에 부분적으로 기초한 송신 포맷의 결정, 및 송신 포맷에 부분적으로 기초한 코드 레이트의 제어를 포함하는 부분 재사용 통신 시스템에서의 레이트 제어 방법을 포함한다.
도면의 간단한 설명
본 발명의 실시형태의 특징, 목적, 및 이점은, 유사한 엘리먼트가 유사한 첨부 번호를 가지는 도면과 관련하여 주어질 경우, 하기에 설명되는 상세한 설명으로부터 보다 명백해질 것이다
도 1은 레이트 예측 및 부분 재사용을 구현하도록 구성되는 무선 통신 시스템의 일 실시형태의 기능 블록 다이어그램이다.
도 2는 무선 통신 시스템의 부분 재사용의 일 실시형태의 커버리지 영역 다이어그램이다.
도 3은 파일럿 채널 캐리어 할당의 일 실시형태의 시간-주파수 도표이다.
도 4는 송신기 및 수신기의 일 실시형태의 기능 블록 다이어그램이다.
도 5는 부분 재사용 통신 시스템에서의 레이트 예측 방법의 일 실시형태의 스트림도이다.
발명의 상세한 설명
직교 주파수 다중 액세스 (OFDMA) 및 부분 재사용을 구현하는 무선 통신 시스템은 복수의 캐리어 세트를 한정할 수 있고 하나 이상의 캐리어 세트 내에서 동작하도록 유저 단말기와의 통신을 강제할 수 있다.
OFDMA 시스템은 부분 재사용을 이용할 수도 있다. 부분 재사용의 일 실시형태에 있어서, 수신기는 핸드오프에서의 유저 단말기에 대한 대역폭의 일부를 보존하고, 따라서 이들 유저 단말기가 보다 작은 간섭 레벨을 겪게 한다. 그러나, 상이한 재사용 세트가 상이한 채널 품질을 알 수도 있으므로, 이것은 레이트 예측의 문제를 보다 어렵게 할 수도 있다. 또한, 유저 단말기는 재사용 방식에 블라인드 (blind) 할 수도 있다.
부분 재사용 OFDMA 무선 통신 시스템 내에서 주파수 호핑 기법이 통합될 수 있다. 각 유저 단말기는 할당된 호핑 시퀀스를 갖는다. 이 호핑 시퀀스는 재사용 세트 내에서 호핑하도록 강제된다. 그 결과, 유저 단말기는 임의의 주어진 시간에 할당된 서브캐리어로부터 상이한 재사용 세트를 추정할 수 있다. 그 후, 유저 단말기는 임의의 소망의 재사용 세트, 예를 들면, 유저 단말기가 스케줄링되는 재사용 세트에 대한 채널 품질 정보 (CQI) 를 리포트할 수 있다.
일 실시형태에 있어서, 유저 단말기는, 재사용 세트가 재사용 세트 내에서 호핑하는 서브캐리어의 세트로서 결정될 수 있는 소정의 호핑 시퀀스에 기초하여 상이한 재사용 세트를 결정할 수 있다. 유저 단말기는 다양한 프로세스를 이용 하여 재사용 세트를 상주시키는 서브캐리어를 결정할 수 있다.
예를 들면, 유저 단말기는 주어진 시간 인스턴스 (instance) 에서 서브캐리어를 선택할 수 있다. 그 후, 유저 단말기는 이 서브캐리어가 다음 시간 인스턴스에서 어디로 호핑하는지를 결정하도록 소정의 호핑 시퀀스를 이용할 수 있다. 유저 단말기는 재사용 세트에 이러한 서브캐리어 할당을 추가할 수 있다. 유저 단말기는 식별된 서브캐리어의 세트가 성장을 멈출 때까지 즉, 모든 신규의 주파수 홉이 서브캐리어의 식별된 세트 내에 있을 때까지 프로세스를 반복할 수 있다. 서브캐리어의 식별된 세트는 재사용 세트일 수 있다. 다른 재사용 세트를 결정하기 위해, 유저 단말기는 지금까지 결정된 임의의 재사용 세트에서 식별된 서브캐리어의 세트 내에 있지 않은 서브캐리어를 선택할 수 있다. 예를 들면, 유저 단말기는 현재의 서브캐리어 할당으로부터 별개인 서브캐리어를 선택할 수 있다. 그 후, 유저 단말기는 재사용 세트에서의 남은 서브캐리어를 식별하도록 프로세스를 반복할 수 있다. 일반적으로, 유저 단말기는 서브캐리어 할당 및 소정의 호핑 시퀀스에 기초하여 임의의 재사용 세트를 결정할 수 있다.
유저 단말기는 과거의 근소한 시간 간격에 걸쳐 서브캐리어의 할당을 조사함으로써 저복잡성 방식으로 자신의 할당된 재사용 세트를 결정하고, 서브캐리어 할당이 재사용 세트를 형성한다고 가정할 수 있다. 이러한 알고리즘은 각 유저 단말기가 많은 양의 시간 동안 단일 재사용 세트를 할당받는 "정적 재사용"의 경우에 대해 양호하게 작용한다.
일 실시형태에서, 기지국으로부터 유저 단말기로의 포워드 링크 (FL) 방향에 있어서, 유저 단말기는 소정의 수의 프레임 또는, 예를 들면 5㎳의 이산 시간과 같은 소정의 시간 주기 또는 다수의 프레임에 걸쳐 유저의 신호 대 잡음비 (SNR) 에 기초하여 CQI를 결정할 수도 있다. 또한, 유저 단말기는 하나 이상의 CQI값으로서 CQI 정보를 양자화할 수도 있다. 일 실시형태에 있어서, CQI값은 SNR의 2㏈의 스텝으로 양자화된다. 유저 단말기는, 간섭 측정이 데이터 서브캐리어에 기초할 수 있음과 동시에 채널 강도를 결정하도록 파일럿 측정을 이용할 수 있다. 유저 단말기는 기지국에 양자화된 또는 비양자화된 CQI를 송신한다. 일 실시형태에 있어서, 기지국은 파일럿 측정이 이것을 고려하지 않는다면, 전력 제어를 획득하기 위해 이 CQI를 변경할 수 있다. 일 실시형태에 있어서, 전력 제어의 보상은, 기지국이 CQI에서의 +2㏈ 변화에 의해 +2㏈ 전력 제어를 획득하는 선형적 방식으로 행해진다. 그 후, 기지국은 패킷 포맷 및 대응하는 레이트 중 어떤 것이 유저 단말기에 할당될 것인지를 결정하기 위해 이 변경된 CQI를 일 세트의 임계값과 비교한다.
상술한 바와 같이, 유저 단말기는 데이터 서브캐리어에 대한 간섭 추정에 기초하여 CQI 결정을 수행한다. 유저가 언제나 스케줄링되지 않을 것이므로, 간섭 추정은 다른 유저 단말기에 할당된 서브캐리어에 대해 수행될 수도 있다. 일 실시형태에 있어서, 상이한 재사용 세트가 상이한 간섭 통계량을 알 것이므로 유저 단말기가 재사용 세트에 속하는 서브캐리어에 대한 간섭 전력을 측정한다는 것은 중요할 수도 있다. 주어진 서브캐리어는 그 재사용 세트 내의 호핑에 제약되기 때문에, 유저는 호핑 시퀀스를 이용하여 유저의 지난 세트의 할당된 서브캐 리어로부터 추정함으로써 유저의 재사용 세트를 결정할 수 있다.
다른 실시형태에 있어서, 유저 단말기는, 유저 단말기가 할당되지 않은 재사용 세트를 포함하여 하나 이상의 재사용 세트에 대해 CQI를 결정할 수 있다. 다른 실시형태에 있어서, 유저 단말기는 모든 가능한 재사용 세트, 유저 단말기가 마지막으로 스케줄링된 재사용 세트, 소정 그룹의 재사용 세트, 또는 기지국과의 통신에 기초하는 지시된 재사용 세트에 대해 CQI를 결정하고 리포트할 수 있다.
유저 단말기는 수신기에서의 데이터 복조를 위해 이용되는 동일한 간섭 추정 알고리즘을 이용하여 재사용 세트 내에서 연관된 서브캐리어의 세트에 대한 간섭을 측정할 수 있다. 일 실시형태에 있어서, 간섭 측정 알고리즘은 블랭크 (blank) 파일럿, 즉, 기지국이 블랭크를 남기는 전용 심볼을 이용할 수 있다. 간섭 전력의 이러한 측정에 대응하여, 유저 단말기는 또한 FDM 파일럿을 이용하여 채널 강도의 측정을 결정할 수 있다. 이러한 2개의 측정을 이용하여, 유저 단말기는 연관된 서브캐리어의 세트에 대한 SNR을 결정할 수 있다. 유저 단말기는 연관된 서브캐리어의 모든 세트 및 모든 홉에 대해 하나의 SNR 측정을 얻을 수 있다. 이러한 방식으로 주파수 및 시간을 통해 알게 되는 SNR 분포의 몇몇 실현을 얻을 수 있다. 이들 실현을 이용하여, 프레임을 통해 알게 될 SNR의 평균값을 계산할 수 있다. 유저 단말기는 기지국으로 이러한 측정을 되송신할 수 있다.
일 실시형태에 있어서, 기지국에서의 레이트 예측 알고리즘은, 비관적 CQI 측정의 경우에 이른 종료에 대한 몇몇 가능성이 존재하고 또한 CQI 측정이 긍정적인 경우에 에러에 대해서의 몇몇 보호가 존재하도록 종료에 대한 제 3 송신을 타겟 하도록 구성될 수 있다. 일 실시형태에 있어서, 종료 통계량은 제 3 송신에 대한 FER 곡선에 기초하여 계산된다. 이러한 실시형태에 있어서, CQI값이 최고의 패킷 포맷을 위한 제 3 송신에 대한 임계값보다 높으면, 레이트 예측은 제 2 송신을 타겟할 것이다. 이러한 실시형태에 있어서, CQI값이 최고의 패킷 포맷을 위해 요구되는 것보다 여전히 높으면, 레이트 예측은 제 1 송신을 타겟하는 것을 계속할 것이다. 다른 실시형태에 있어서, 레이트 예측 알고리즘은 지연 또는 스펙트럼 효율 요건에 기초한 제 2 또는 제 1 송신과 같은 종료에 대한 다른 송신을 초기에 타겟하도록 구성될 수 있다.
리버스 링크 (RL) 방향에 있어서, 기지국에서의 수신기는 CQI값을 결정하고 그 CQI값을 송신 유저 단말기에 리포트할 수 있다. RL 레이트 예측 알고리즘은 FL 알고리즘과 매우 유사하게 구성될 수 있다. 리버스 링크상의 채널 추정이, 예를 들면, RL 송신상의 낮은 비트 레이트 또는 다이버시티의 결여에 기인하여 빈약하면, 장기 평균화 (long averaging) 필터가 더 정확한 CQI를 얻기 위해 이용될 수 있다. 몇몇 리버스 링크 실시형태에 있어서, 유저 단말기가 송신하도록 스케줄링되지 않으면, 이용가능한 파일럿 신호만이, FL을 위해 이용되는 것과 동등한 기간에서의 전체 주파수 대역의, 유저 단말기의 재사용 세트 내에 있을 수도 있거나 있지 않을 수도 있는 몇개의, 예를 들면, 2-4개의 서브캐리어에만 기지국 액세스를 가할 수 있는 제어 채널 상에 있을 수도 있다. 따라서, 일 실시형태에 있어서, 유저 단말기는 정확한 측정을 얻기 위해 장기간에 걸쳐 CQI값을 평균화할 수 있다. 평균화 기간은 대략 100㎳일 수 있지만, 시스템 설계에 기초하여 결정될 수 있는 어떤 다른 기간일 수 있다. FL의 경우에서와 같이, 간섭 측정은 동일한 재사용 세트에서의 유저에 속하는 데이터 서브캐리어에 기초할 수 있다. FL과의 하나의 차이는 기지국이 모든 재사용 세트를 인지하고 실제로 각각의 재사용 세트에 대한 개별 CQI를 결정할 수 있다는 것이다.
CQI의 평균화 기간은 레이트 제어 알고리즘이 로컬 채널 페이딩에 응답하지 않을 수 있는 상황을 일으킬 수도 있다. 어느 정도까지의 레이트에서의 변화가 채널 할당 대역폭에 의해 한정될 수도 있으므로, 이것은 본 이슈가 아닐 수도 있다. 또한, 리버스 링크 전력 제어 알고리즘은 일반적으로 레이트 예측 알고리즘의 것보다 더 빠른 레이트에서 고정값 주위의 제어 채널 SNR을 유지한다. 그 결과, 레이트 예측 알고리즘은 거의 정적인 SNR을 알아야 한다.
리버스 링크 전력 제어 알고리즘은 제어 채널의 SNR을 거의 일정하게 유지한다. 그러나, 데이터 전력 스펙트럼 밀도 (psd) 는 유저 단말기에 의해 제어되는 양만큼 제어 채널 psd로부터 오프셋 (offset) 될 수 있다. 이러한 오프셋은 유저 단말기가 스케줄링될 경우, 대역내 시그널링을 통하여 기지국으로 통신될 수 있고 CQI 계산에서 이용될 수 있다. 유저 단말기가 상당한 시간 간격 동안 스케줄링되지 않을지라도, 이러한 오프셋은, 레이트 예측 알고리즘이 오프셋에서의 에러를 고려해야 하지 않고 이전의 오프셋값을 이용할 수도 있는 충분히 작은 양만큼 변화하는 것으로 가정될 수 있다. 다른 방법으로, 레이트 예측 알고리즘은 유저 단말기가 마지막으로 스케줄링될 때부터, 즉, 오프셋의 값이 마지막으로 통신될 때부터 경과된 시간의 양에 기초하여 추가의 백오프를 취할 수 있다.
일단 CQI값이 계산되면, 알고리즘은 FL의 경우에서와 같이 진행한다. CQI값은, 초기에 제 3 송신에 기초하여, 상이한 패킷 포맷에 대해 하나 이상의 소정의 임계값과 비교된다. CQI가 제 3 송신에서 가장 덜 복잡한 패킷 포맷에 대해서도 너무 높다면, 또는 패킷이 보다 엄한 지연 요건을 가진다면, 가장 이른 송신에 대한 임계값이 이용될 수도 있다. 백오프 제어 루프는 FL에서 이용되는 것과 동일할 수 있다.
레이트 예측은 데이터 송신의 레이트에 비하여 저속 레이트로 수행될 수 있다. 따라서, 몇몇 다른 가능한 레이트 예측 실시형태가 존재한다. 전력 제어 알고리즘이 제어 채널 SNR을 본질적으로 일정하게 유지하기 때문에, 이러한 알고리즘에 의해 예측된 레이트는 주로 제어 채널 오프셋의 값에 의존한다. 따라서, 레이트 예측 알고리즘은 패킷 포맷에 오프셋의 값을 맵핑하는 테이블을 형성할 것이다. 그러나, 이러한 테이블이 이용가능하면, 레이트 예측은 기지국 또는 액세스 단말기 중 하나에서 수행될 수 있다.
다른 실시형태는 관찰된 종료 통계량 및 QoS에 의해 요구되는 종료 요건에 단순히 기초하여 레이트 예측을 수행한다. 또한 이러한 실시형태는 액세스 단말기 또는 기지국 중 하나에서 행해질 것이다. 그러나, 이러한 알고리즘은 사실상 특별하며, 시뮬레이션을 통해서 개발되어야 한다.
도 1은 무선 통신 시스템 (100) 의 일 실시형태의 기능 블록 다이어그램이다. 그 시스템은 유저 단말기 (110) 와 통신할 수 있는 하나 이상의 고정된 엘리먼트를 포함한다. 예를 들면, 유저 단말기 (110) 는 하나 이상의 통신 표준 에 따라 동작하도록 구성되는 무선 전화기일 수 있다. 유저 단말기 (110) 는 휴대용 유닛, 이동 유닛, 또는 고정된 유닛일 수 있다. 또한, 유저 단말기 (110) 는 이동 유닛, 이동 단말기, 이동국, 유저 장비, 휴대용 장비, 전화기 등으로 지칭될 수도 있다. 단일 유저 단말기 (110) 만이 도 1에 도시되었지만, 통상적인 무선 통신 시스템 (100) 은 다중의 유저 단말기 (110) 와 통신하는 능력을 가진다.
유저 단말기 (110) 는 통상적으로 구획 (sector) 된 셀룰러 타워로서 여기에 도시된 하나 이상의 기지국 (120a 또는 120b) 과 통신한다. 여기에서 사용되는 바와 같이, 기지국은 단말기와 통신하기 위해 이용되는 고정국일 수도 있고 또한 액세스 포인트, 노드 B, 또는 어떤 다른 용어로서 지칭되고, 그들의 몇몇 또는 모든 기능을 포함할 수도 있다. 통상적으로, 유저 단말기 (110) 는 유저 단말기 (110) 내에서의 수신기에서의 가장 센 신호 강도를 제공하는 기지국, 예를 들면 120b와 통신할 것이다. 하나 이상의 기지국 (120a-120b) 은 120a와 같은 기지국에 대한 대역폭의 일부가 120b와 같은 인접한 기지국에 할당되는 대역폭의 일부와 공유되는 부분적 주파수 재사용을 이용하도록 구성될 수 있다.
각각의 기지국 (120a 및 120b) 은 적절한 기지국 (120a 및 120b) 으로 및 으로부터 통신 신호를 라우팅 (routing) 하는 기지국 제어기 (BSC; 130) 에 접속될 수 있다. BSC (130) 는 유저 단말기 (110) 와 일반 전화 교환망 (PSTN; 150) 간의 인터페이스로서 동작하도록 구성될 수 있는 이동 전화 교환국 (MSC; 140) 에 접속될 수도 있다. 또한, MSC는 유저 단말기 (110) 와 네트워크 (160) 간의 인 터페이스로서 동작하도록 구성될 수 있다. 네트워크 (160) 는, 예를 들면, 구내 정보 통신망 (LAN) 또는 광역 통신망 (WAN) 일 수 있다. 일 실시형태에 있어서, 네트워크 (160) 는 인터넷을 포함한다. 따라서, MSC (140) 는 PSTN (150) 및 네트워크 (160) 에 접속된다. 또한 MSC (140) 는 다른 통신 시스템 (미도시) 과 시스템간 핸드오프를 조정하도록 구성될 수 있다.
무선 통신 시스템 (100) 은 OFDM 통신을 이용하여 포워드 링크 및 리버스 링크 양자에서 통신하는 OFDMA 시스템으로서 구성될 수 있다. 용어 포워드 링크는 기지국 (120a 또는 120b) 으로부터 유저 단말기 (110) 로의 통신 링크를 지칭하고, 용어 리버스 링크는 유저 단말기 (110) 로부터 기지국 (120a 또는 120b) 으로의 통신 링크를 지칭한다. 기지국 (120a 및 120b) 및 유저 단말기 (110) 양자는 채널 및 간섭 추정에 대해 리소스를 할당할 수도 있다. 예를 들면, 기지국 (120a 및 120b) 및 유저 단말기 (110) 양자는, 채널 및 간섭 추정에 대한 대응하는 수신기에 이용되는 파일럿 신호를 브로드캐스트할 수도 있다. 명확화를 위해, 본 시스템 실시형태의 설명은 120a와 같은 기지국에 의해 수행되는 포워드 링크에서의 레이트 예측을 설명한다. 그러나, 레이트 예측이 포워드 링크에서의 애플리케이션에 한정되지 않고, 리버스 링크뿐만 아니라 포워드 링크 양자에 이용될 수도 있거나, 다른 것을 제외한 하나의 통신 링크에서 구현될 수도 있음을 알 수 있다.
기지국 (120a 및 120b) 은 채널 및 간섭 추정의 목적으로 파일럿 신호를 브로드캐스트하도록 구성될 수 있다. 파일럿 신호는 OFDM 주파수 세트로부터 선 택된 다수의 톤을 포함할 수 있다. 예를 들면, 공통 파일럿 신호는 OFDM 주파수 세트로부터 선택된 균일하게 이격된 톤을 이용할 수 있다. 균일하게 이격된 구성은 코움 파일럿 신호 (comb pilot signal) 로서 지칭될 수도 있다. 다른 방법으로, 공통 파일럿 신호는 OFDM 주파수 세트로부터 및 선택된 균일하게 이격된 캐리어 블랭킹된 전용 파일럿 신호로부터 형성될 수 있다.
또한, 기지국 (120a 및 120b) 은 통신을 위해 유저 단말기 (110) 에 재사용 세트로부터의 캐리어의 세트를 할당하도록 구성될 수 있다. 유저 단말기 (110) 에 할당된 캐리어의 세트는 고정될 수 있거나 변화할 수 있다. 캐리어의 세트가 변화하면, 예를 들면 120a의 기지국은 할당된 캐리어의 세트의 업데이트를 유저 단말기 (110) 에 주기적으로 전송할 수 있다. 다른 방법으로, 특정 유저 단말기 (110) 에 할당된 캐리어의 세트는 소정의 주파수 호핑 알고리즘에 따라 변화할 수도 있다. 따라서, 일단 기지국 (120a) 이 유저 단말기 (110) 에 캐리어의 세트를 할당하면, 유저 단말기 (110) 는 소정의 주파수 호핑 알고리즘에 기초하여 캐리어의 다음 세트를 결정할 수 있다. 소정의 주파수 호핑 알고리즘은, 이전 캐리어 세트를 포함하는 동일한 재사용 세트에서 캐리어 세트가 남는다는 것을 보장하도록 구성될 수 있다.
유저 단말기 (110) 는 수신된 파일럿 신호에 기초하여 채널 및 간섭의 추정치를 결정할 수 있다. 또한, 유저 단말기 (110) 는 수신된 신호 대 잡음비 (SNR) 의 결정에 의해서와 같이 수신된 신호의 신호 품질의 추정치를 결정할 수 있다. 수신된 신호의 신호 품질은 추정된 채널 및 간섭에 부분적으로 기초하여 결정될 수 있는 채널 품질 표시자 (CQI) 값으로서 정량화될 수 있다. 다중 재사용 세트를 구현하는 무선 통신 시스템 (100) 에 있어서, 바람직하게, 유저 단말기 (110) 는 연관된 재사용 세트에 대응하는 채널 및 간섭 추정치를 결정한다.
유저 단말기 (110) 는, 예를 들면, 120a의 기지국으로 CQI값을 되리포트하고, 기지국 (120a) 은 채널에 의해 지원될 가능성 있는 데이터 포맷 및 레이트를 결정하기 위해 하나 이상의 소정의 임계값에 대하여 CQI값을 비교할 수 있다. 하이브리드 자동 반복 요구 (HARQ) 알고리즘과 같은 재송신 프로세스를 구현하는 무선 통신 시스템에 있어서, 기지국 (120a) 은 초기의 송신 또는 다음의 재송신을 타겟하는 데이터 포맷 및 레이트를 결정할 수 있다.
HARQ를 구현하는 무선 통신 시스템 (100) 에 있어서, 재송신은 보다 낮은 인코딩 레이트에 대응하는 보다 낮은 레이트에서 송신될 수도 있다. HARQ 구현은 최대개수 또는 재송신을 제공하도록 구성될 수 있고, 각각의 재송신은 보다 낮은 레이트에서 발생한다. 다른 실시형태에 있어서, HARQ 프로세스는 동일한 레이트에서 몇몇 재송신을 송신하도록 구성될 수 있다.
도 2는 부분 주파수 재사용을 구현하는 셀룰러 무선 통신 시스템의 일 실시형태의 커버리지 영역 다이어그램 (200) 이다. 무선 통신 시스템은, 예를 들면, 도 1에 도시된 무선 통신 시스템 (100) 일 수 있다.
커버리지 영역 다이어그램 (200) 은 전체의 커버리지를 제공하도록 배열된 다수의 커버리지 영역 (210, 220, 230, 240, 250, 260, 및 270) 을 도시한다. 각각의 커버리지 영역, 예를 들면 210, 은 센터에 위치된 기지국을 가질 수 있다. 물론, 무선 통신 시스템은 도 2에 도시된 커버리지 영역의 수에 한정되지 않고, 커버리지 영역은 도 2에 도시된 패턴에 한정되지 않는다. 예를 들면 210의 커버리지 영역은 소정의 수의 캐리어를 이용하여 OFDM 통신을 지원하도록 구성될 수 있다. 예를 들면 210의 하나 이상의 커버리지 영역은 다중 재사용 세트를 구현할 수 있고, 복수의 커버리지 영역, 예를 들면 210, 220, 및 230, 은 부분 주파수 재사용을 구현할 수 있다.
제 1 커버리지 영역 (210) 은 내부 원을 포함하는 외부의 육각형 형상으로서 배열된 것과 같이 도시된다. 제 1 커버리지 영역 (210) 은 부분 주파수 재사용 및 다중 재사용 세트를 구현할 수 있다. 내부 커버리지 영역 (212) 은 핸드오프 개시의 낮은 가능성을 갖는 유저 단말기에 할당된 안정된 재사용 세트를 구현할 수 있다. 내부 커버리지 영역 (212) 외측의 외부 커버리지 영역 (214) 은 핸드오프 개시의 보다 높은 가능성을 갖는 유저 단말기에 할당될 수 있는 핸드오프 재사용 세트를 구현할 수 있다.
안정된 재사용 세트는 OFDM 주파수 세트로부터 캐리어의 제 1 세트를 이용할 수 있고, 핸드오프 재사용 세트는 OFDM 주파수 세트로부터 캐리어의 별개의 제 2 세트를 이용할 수 있다. 또한, 핸드오프 재사용 세트에서의 캐리어의 제 2 세트는 220 또는 230과 같은 인접한 커버리지 영역의 재사용 세트와 공유될 수 있다.
제 1 커버리지 영역 (210) 에서의 유저 단말기는 안정된 재사용 세트 내에서 캐리어의 세트를 초기에 할당받을 수 있다. 예를 들면, 기지국은 안정된 재사용 세트에서 할당된 캐리어를 유저 단말기로 전달할 수 있다. 그 후, 유저 단 말기는 주파수 호핑 알고리즘에 부분적으로 기초하여 재사용 세트 내에서 다음의 캐리어 할당을 결정할 수 있다. 유저 단말기가 안정된 재사용 세트로부터 캐리어를 할당받는 시간 동안, 유저 단말기는 채널 및 간섭 추정치를 결정하고, 안정된 재사용 세트에 기초하여 CQI값을 결정한다.
유저 단말기가 외부 커버리지 영역 (214) 으로 내부 커버리지 영역 (212) 의 외측을 과감히 나감에 따라, 기지국은 핸드오프 재사용 세트로부터 유저 단말기에 캐리어의 세트를 할당할 수도 있다. 다른 방법으로, 기지국은 유저 단말기가 핸드오프 재사용 세트로 호핑해야 한다는 것을 나타내기 위해 유저 단말기에 제어 메세지를 송신할 수 있다. 그 후, 유저 단말기는, 안정된 재사용 세트에서 캐리어 세트를 결정하는데 이용되는 주파수 호핑 알고리즘과 동일하거나 상이할 수 있는 주파수 호핑 알고리즘에 부분적으로 기초하여 핸드오프 재사용 세트 내에서 다음의 캐리어 할당을 결정할 수 있다. 유저 단말기는 채널 및 간섭 추정치를 결정하고, 핸드오프 재사용 세트에 기초하여 CQI값을 결정한다. 보다 적은 유저가 핸드오프 재사용 세트에 할당될 수 있기 때문에, 이러한 재사용 세트 구성은 바람직할 수도 있어, 핸드오프 재사용 세트에서의 유저가 보다 작은 간섭 레벨을 알게 한다.
도 3은 전용 파일럿 신호를 갖는 코움 파일럿 신호를 이용한 OFDMA 통신 시스템의 스펙트럼의 일 예의 시간-주파수 다이어그램 (300) 이다. 시간-주파수 다이어그램 (300) 은 캐리어 블록 (310a-310f) 이 시스템에서의 각 유저에 할당되는 OFDMA 시스템의 일 예를 예시한다. 예를 들면, 320의 'P'로 나타낸 다수의 공통 파일럿 신호는 각 시간 에포크 (epoch) 에서 존재하지만, 각 캐리어 블록 (310a-310f) 내에서 반드시 나타나지는 않는다. 또한, 예를 들면 320의 공통 파일럿 신호는 각 시간 에포크에서 동일한 캐리어에 할당되지 않지만, 대신에 소정의 알고리즘을 따른다. 'D'로 나타낸 다수의 전용 파일럿 신호 (330) 는 각 캐리어 블록 (310a-310f) 내에서 존재할 수 있지만 각 시간 에포크에서는 존재하지 않을 수도 있다. 각 수신기는 공통 (320) 및 전용 (330) 파일럿 신호의 모두에 부분적으로 기초하여 채널 및 간섭 추정치를 결정할 수 있다.
예를 들면 310a-310d의 캐리어 블록의 제 1 세트는 안정된 재사용 세트에 할당될 수 있고 예를 들면 310e-310g의 캐리어 블록의 제 2 세트는 핸드오프 재사용 세트에 할당될 수 있다. 또한, 핸드오프 재사용 세트는 제 2 기지국과 공유될 수 있다. 상이한 재사용 세트가 상이한 간섭 레벨을 가지기 때문에, 유저 단말기는 채널 및 간섭을 추정하고 할당된 재사용 세트에 기초하여 CQI값을 결정하도록 구성될 수 있다. 그 후, 유저 단말기는, 예를 들면, 제어 채널 또는 오버헤드 채널을 이용하여 기지국으로 CQI값을 되리포트 할 수 있다.
도 4는 도 1의 무선 통신 시스템과 같은 무선 통신 시스템에 의해 구현될 수 있는 데이터 소스 (400) 및 수신기 (404) 의 일 실시형태의 기능 블록 다이어그램이다. 예를 들면, 데이터 소스 (400) 는 기지국 내에서의 송신기부 또는 유저 단말기 내에서의 송신기부일 수 있다. 유사하게, 수신기 (404) 의 실시형태는, 예를 들면, 도 1의 무선 통신 시스템 (100) 에 도시된 기지국 및 유저 단말기 중 하나 또는 양자에서 구현될 수 있다.
하기의 설명은 부분 재사용 및 HARQ에 의한 OFDMA 통신을 위해 구성되는 무선 통신 시스템의 기지국에서 데이터 소스 (400) 가 구현되는 실시형태를 설명한다. 데이터 소스 (400) 는 하나 이상의 유저 단말기에 하나 이상의 OFDMA 신호를 송신하도록 구성된다. 데이터 소스 (400) 는 하나 이상의 수신기로 향하는 데이터를 저장하도록 구성되는 데이터 버퍼 (410) 를 포함한다. 데이터는, 예를 들면, 그대로의 인코딩되지 않은 데이터 또는 인코딩된 데이터일 수 있다. 통상적으로, 데이터 버퍼 (410) 에 저장된 데이터는 인코딩되지 않고, 인코더 (412) 에 접속되며, 여기서 레이트 예측 모듈 (430) 에 의해 결정되는 레이트에 따라 인코딩된다. 인코더 (412) 는 에러 검출 및 포워드 에러 정정 (FEC) 을 위한 인코딩을 포함할 수 있다. 인코딩된 데이터는 하나 이상의 인코딩 알고리즘에 따라 인코딩될 수 있다. 각각의 인코딩 알고리즘 및 결과로서의 코딩 레이트는 다중 포맷 HARQ 시스템의 특정 데이터 포맷과 연관될 수 있다. 인코딩은 컨볼루셔널 코딩, 블록 코딩, 인터리빙, 직접 시퀀스 스프레딩, 순환 리던던시 코딩 등 또는 어떤 다른 코딩을 포함할 수 있으나, 이에 한정되지 않는다. 레이트 예측 모듈 (430) 은 데이터 포맷 및 관련 코딩의 선택을 수행한다.
송신될 인코딩 데이터는 인코더 (412) 로부터의 직렬 데이터 스트림을 병렬인 복수의 데이터 스트림으로 변환하도록 구성되는 직렬 대 병렬 변환기 (414) 에 접속된다. 임의의 특정 유저 단말기에 할당된 캐리어의 수는 모든 이용가능한 캐리어의 서브세트일 수도 있다. 따라서, 특정 유저 단말기로 향하는 데이터는 그 유저 단말기에 할당된 데이터 캐리어에 대응하는 이러한 병렬 데이터 스트림으 로 변환된다.
직렬 대 병렬 변환기 (414) 의 출력은 공통 파일럿에 공통 파일럿 채널을 할당하고 전용 파일럿 신호를 할당하도록 구성되는 파일럿 모듈 (420) 에 접속된다. 파일럿 모듈 (420) 은 OFDMA 시스템의 각각의 캐리어를 대응하는 데이터 또는 파일럿 신호로 변조하도록 구성될 수 있다.
파일럿 모듈 (420) 의 출력은 인버스 고속 푸리에 변환 (IFFT) 모듈 (422) 에 접속된다. IFFT 모듈 (422) 은 OFDMA 캐리어를 대응하는 시간 도메인 심볼로 변환하도록 구성된다. 물론, 고속 푸리에 변환 (FFT) 구현은 필수 요건이 아니고, 이산 푸리에 변환 (DFT) 또는 어떤 다른 타입의 변환이 시간 도메인 심볼을 생성하는데 이용될 수 있다. IFFT 모듈 (422) 의 출력은 병렬 시간 도메인 심볼을 직렬 스트림으로 변환하도록 구성되는 병렬 대 직렬 변환기 (424) 에 접속된다.
직렬 OFDMA 심볼 스트림은 병렬 대 직렬 변환기 (424) 로부터 송수신기 (440) 에 접속된다. 이러한 실시형태에 있어서, 송수신기 (440) 는 포워드 링크 신호를 송신하고 리버스 링크 신호를 수신하도록 구성되는 기지국 송수신기이다.
송수신기 (440) 는 안테나 (446) 를 통하여 유저 단말기로 브로드캐스트하기 위해 적절한 주파수에서 직렬 심볼 스트림을 아날로그 신호로 변환하도록 구성되는 송신기 모듈 (444) 을 포함한다. 또한 송수신기 (440) 는 안테나 (446) 에 접속되고 하나 이상의 원격 유저 단말기에 의해 송신되는 신호를 수신하도록 구성되 는 수신기 모듈 (442) 을 포함할 수 있다.
레이트 예측 모듈 (430) 은 기지국과 같은 데이터 소스 (400) 를 유저 단말기와 같은 수신기 (404) 에 링크시키는 통신 채널에 걸쳐 지원될 수 있는 적당한 데이터 포맷 및 대응하는 인코딩을 결정하도록 구성된다. 레이트 예측 모듈 (430) 은, 리버스 링크 채널을 통하여, 수신기 (404) 로부터 하나 이상의 CQI값을 수신하고, CQI값에 기초하여 데이터 레이트 및 관련 인코딩을 결정한다.
레이트 예측 모듈 (430) 은, 적절한 레이트 결정을 돕기 위해 하나 이상의 수신된 CQI값을 각각 프로세스하는 임계값 비교기 (432), 백오프 제어 모듈 (434), 및 전력 제어 보상 모듈 (436) 을 포함할 수 있다.
통상적으로, OFDMA 무선 통신 시스템은 포워드 링크상의 전력 제어를 이용한다. 통상적으로 유저 단말기는 파일럿 전력에 기초한 또는 현재 데이터 전력일 수도 있는 CQI값을 리포트하기 때문에, 전력 제어의 이용은 레이트-예측 결정을 복잡하게 할 수 있다. 송신의 후속 프레임에서의 유저 단말기에 의해 결정되는CQI값은, 송신 전력이 변화한다면 실질적으로 상이할 것이다. 또한, 유저 단말기는, 송신 전력의 비선형 함수일 수도 있는 유효 SNR을 리포트할 수도 있다.
기지국은 송신 전력 변화를 근사적으로 계산하도록 CQI값을 변경하기 위해 전력 제어 보상 모듈 (436) 을 이용할 수 있다. 일 실시형태에 있어서, 전력 제어 보상 모듈 (436) 은 전력 제어값에 대한 선형 근사를 수행한다. 송신 전력이 일정한 ㏈값에 의해 상하로 변화하면, 전력 제어 보상 모듈 (436) 은 리포트되는 CQI값을 동일한 ㏈값만큼 변경한다.
전력 제어 보상 모듈 (436) 에 의해 구현되는 선형 근사는 근사치이며, 아마도 보상될 수 있는 잔여 에러 (residual error) 를 발생시킬 것이다. 이러한 에러는 일정한 동작 조건에 대해 매우 중요할 수 있다. 주목해야 할 또 다른 것은 이러한 에러가 단측 (one-sided) 일 수 있는데, 즉, 송신 전력이 증가할 때 포지티브이고 송신 전력이 감소할 때 네거티브이다.
CQI값을, 평균 에러를 0에 근접하게 더 저감하도록, 더 바이어스되거나, 보상될 수 있다. 백오프 제어 모듈 (434) 은 CQI값으로부터 백오프값을 감산함으로써 추가적인 보상을 제공하도록 구성될 수 있다.
백오프 제어 모듈 (434) 은, 모든 유저 단말기에 대한 백오프로서 지칭되는 ㏈ 단위의 변수 즉, Δ를 유지할 수 있다. 유저 단말기가 CQI값을 리포트할 때마다, 전력 제어 보상 모듈 (436) 은 송신 전력 변수를 고려하기 위해 그 값을 조절한다. 그 후, 백오프 제어 모듈 (434) 은 변경된 CQI값으로부터 값 Δ을 감산한다. Δ의 값은 적절한 값으로 초기화될 필요가 있고, 또한 한정된 최소 및 최대값을 가질 수 있다. 이것과는 별도로, 백오프 제어 모듈 (434) 은, 패킷 에러 레이트가 1%와 같은 소정의 임계값보다 작아야 한다는 제약을 만족시키기 위해 백오프값을 업데이트할 수 있다. 이것을 달성하기 위해, 백오프 제어 모듈 (434) 은 패킷이 에러로 수신될 때마다, 소정의 증분, 예를 들면 0.25㏈ 만큼 Δ의 값을 증가시킬 수 있다. 패킷 에러는 비성공적으로 타겟된 송신만이 아닌, HARQ 시스템에서의 비성공적인 이전의 송신을 지칭할 수도 있다. 백오프 제어 모듈 (434) 은 패킷이 정확하게 디코딩될 때마다, 소정의 양, 예를 들면 0.25*0.01 ㏈만큼, 백오프값을 저감하도록 구성될 수 있다.
백오프 제어 모듈 (434) 은 Δ가 패킷 에러 레이트를 1% 이하로 유지하도록 이용되기 때문에, Δ에 대한 상한을 상부 경계를 가지지 않을 수도 있다. 그러나, 백오프 제어 모듈 (434) 은 하한을 구현할 수도 있다. 그렇지 않으면 레이트 예측 모듈 (430) 은 타겟된 것보다 더 낮은 레이트일 수도 있는 최고로 실현가능한 패킷 포맷의 이전의 송신을 구동할 수도 있기 때문에, 하한이 필요할 수도 있다. 초기값으로서, 백오프 제어 모듈 (434) 은 0㏈에서 하한을 구현할 수 있다. 초기값은 초기 에러를 회피하는 것을 제외하면 매우 중요하지는 않고, 대략 1.5㏈로 임의로 설정될 수 있다.
임계값 비교기 (432) 는 다수의 소정의 임계값과 프로세싱된 CQI값을 비교하도록 구성될 수 있으며, 각각의 임계값은 통신 링크에 의해 적절히 지원될 코딩 및 특정 패킷 포맷에 대응한다. 전술한 바와 같이, HARQ 시스템에 있어서, 레이트 예측 모듈은 제 1 송신에 후속하는 레이트를 타겟할 수 있다.
상술된 바와 같이, 수신기 (404) 는, 예를 들면, 도 1에 도시된 유저 단말기 (110) 또는 기지국 (120a 또는 120b) 의 일부일 수 있다. 하기의 설명은 유저 단말기 내에 구현된 수신기 (404) 를 설명한다.
수신기 (404) 는 무선 채널을 통해 데이터 소스 (400) 와 통신하도록 구성된 송수신기 (450) 와 접속된 안테나 (456) 를 포함할 수 있다. 송수신기 (450) 는 안테나 (456) 를 통하여 무선 신호를 수신하고 직렬 기저 대역 심볼 스트림을 발생시키도록 구성된 수신기 모듈 (452) 을 포함할 수 있다.
송수신기 (450) 의 수신기 모듈 (452) 의 출력은 OFDMA 시스템에서 직렬 심볼 스트림을 캐리어의 수에 대응하는 복수의 병렬 스트림으로 변환하도록 구성되는 직렬 대 병렬 변환기 (460) 에 접속된다.
직렬 대 병렬 변환기 (460) 의 출력은 고속 푸리에 변환 (FFT) 모듈 (462) 에 접속된다. FFT 모듈 (462) 은 시간 도메인 심볼을 주파수 도메인 동등물로 변환하도록 구성된다.
FFT 모듈 (462) 의 출력은, 공통 파일럿 신호 및 임의의 전용 파일럿 신호에 부분적으로 기초하여 채널 및 간섭 추정치를 결정하도록 구성되는 채널 추정기 (464) 에 접속된다. 캐리어 할당 모듈 (480) 은 데이터에 할당된 캐리어, 공통 파일럿 신호에 할당된 캐리어, 및, 만약 있다면, 전용 파일럿 신호에 할당된 캐리어를 결정할 수 있다. 캐리어 할당 모듈 (480) 은, 예를 들면, 이전의 할당에 기초하여 현재의 캐리어 할당을 결정하기 위해 주파수 호핑 알고리즘을 구현할 수 있다. 캐리어 할당 모듈 (480) 은 특정 재사용 세트에 대한 캐리어 할당을 결정하도록 구성될 수 있다. 캐리어 할당 모듈 (480) 은 채널 추정기 (464) 에 접속되고 채널 추정기 (464) 에 캐리어 할당을 통지한다.
채널 추정기 (464) 는 공통 파일럿 신호 및, 만약 있다면, 전용 파일럿 신호에 부분적으로 기초하여 채널 및 간섭 추정치를 결정한다. 채널 추정기 (464) 는 최소 제곱법, 최대 가능성 추정, 최소 제곱 및 최대 가능성 추정의 조합 등을, 또는 채널 및 간섭 추정의 어떤 다른 프로세스를 이용하여 추정치를 결정할 수 있다.
수신된 심볼의 주파수 도메인 변환치 및 채널 및 간섭 추정치를 포함하는 채널 추정기 (464) 의 출력은 복조기 (470) 에 접속된다. 또한, 캐리어 할당 모듈 (480) 은 데이터 송신에 할당된 캐리어 주파수를 복조기 (470) 에 통지할 수 있다. 복조기 (470) 는 채널 및 간섭 추정치에 부분적으로 기초하여 수신된 데이터 캐리어를 복조하도록 구성된다. 몇몇 경우에 있어서, 복조기 (470) 는 수신된 신호를 복조할 수 없을 수도 있다. 전술한 바와 같이, 채널 품질이 불충분하고 데이터의 송신된 레이트를 지원할 수 없기 때문에, 또는 불충분한 채널 및 간섭 추정에 기인한 저하가 충분히 심각하여 디코딩 에러를 발생시키기 때문에, 복조기 (470) 는 비성공적일 수도 있다.
복조기 (470) 가 비성공적이면, 수신된 신호를 복조하는데 불능의 표시를 생성할 수 있다. 복조기 (470) 는, 예를 들면, 캐리어 할당 모듈 (480) 에게 통지하여, 캐리어 할당 모듈 (480) 이 다음의 송신에서 전용 파일럿 신호를 기대할 수 있게 한다. 또한, 복조기 (470) 는 데이터 소스 (400) 로의 되송신을 위한 송수신기 (450) 에서의 송신기 모듈 (454) 로의 비성공적 복조 표시를 제공할 수 있다.
복조기 (470) 가 비성공적이면, 수신된 데이터가 드롭되고 메모리에 임의의 데이터를 접속할 필요가 없다. 복조기 (470) 가 성공적이면, 복조기 (470) 는 병렬 복조 데이터를 직렬 데이터 스트림으로 변환하도록 구성되는 병렬 대 직렬 변환기 (472) 로 복조 데이터를 접속하도록 구성될 수 있다. 병렬 대 직렬 변환기 (472) 의 출력은 추가의 프로세싱을 위해 데이터 버퍼 (474) 에 접속된다.
또한, 채널 품질 표시자 (CQI) 모듈 (490) 은 채널 추정기 (464) 및 복조기 (470) 에 접속되고 파일럿 전력의 값, 채널 추정치, 및 간섭 추정치를 이용하여, CQI값을 결정할 수 있다. 일 실시형태에 있어서, CQI값은 SNR에 부분적으로 기초한다. CQI 모듈 (490) 은, 예를 들면, 오버헤드 채널, 제어 채널 또는 트래픽 채널을 이용하여 데이터 소스 (400) 에 값을 송신하도록 구성될 수 있는 송신기 모듈 (454) 에 CQI값을 접속시킨다.
CQI 모듈 (490) 은 하나 이상의 재사용 세트에 대한 CQI값을 결정할 수 있다. 예를 들면, CQI 모듈 (490) 은 현재의 서브캐리어 할당 및 소정의 주파수 호핑 알고리즘에 기초하여 현재의 재사용 세트에 대한 CQI값을 결정할 수 있다. 또한, CQI 모듈 (490) 은 수신기 (404) 에 할당된 재사용 세트와 별개인 재사용 세트에 대한 CQI값을 결정할 수도 있다.
도 5는 부분 재사용 OFDMA 시스템에서의 레이트 예측 방법 (500) 의 일 실시형태의 스트림도이다. 방법 (500) 은, 예를 들면, 포워드 링크 송신을 구성하기 위해 도 1의 무선 통신 시스템의 기지국에 의해 수행될 수 있다. 다른 방법으로, 방법 (500) 은 리버스 링크 송신을 구성하기 위해 도 1의 무선 통신 시스템의 유저 단말기에 의해 수행될 수 있다. 아래의 설명은 방법 (500) 을 수행하는 기지국을 가정한다.
방법 (500) 은, 기지국이 부분 재사용 통신 시스템의 재사용 세트 내에서 서브캐리어 할당을 초기에 결정할 경우에 블록 502에서 시작한다. 기지국은, 예를 들면, 핸드오프의 낮은 가능성을 갖는 유저 단말기에 대한 안정된 재사용 세트 에서의, 또는 기지국의 소정의 반경 내에서의 서브캐리어 할당을 결정할 수 있다. 다른 방법으로, 기지국은 핸드오프의 높은 가능성을 갖는 유저 단말기에 대한 핸드오프 재사용 세트에서의 서브캐리어 할당을 결정할 수도 있다.
기지국은 유저 단말기에 서브캐리어 할당을 송신할 수 있다. 유저 단말기 또는 이동국이 주파수 호핑 알고리즘 및 이전의 서브캐리어 할당에 부분적으로 기초하여 서브캐리어 할당을 결정할 수 있다면, 기지국은 서브캐리어 할당을 송신할 필요가 없다. 기지국은 할당된 서브캐리어를 통해 유저 단말기로 데이터를 송신할 수 있다.
기지국은 블록 510으로 진행하여 파일럿 신호를 송신한다. 파일럿 신호는 공통 파일럿 신호 및 전용 파일럿 신호를 포함할 수 있다. 유저 단말기는 파일럿 신호를 수신할 수 있고 서브캐리어 할당 및 파일럿 신호에 기초하여 CQI값을 결정할 수 있다. 유저 단말기는 기지국으로 이 CQI값을 송신할 수 있다.
기지국은 블록 520으로 진행하여 서브캐리어 할당 및 파일럿 신호에 부분적으로 기초하여 CQI값을 수신한다. 일 실시형태에 있어서, 유저 단말기는 현재 캐리어 할당에 기초하는 CQI값을 결정하고 송신할 수 있다. 다른 실시형태에 있어서, 유저 단말기는 현재 서브캐리어 할당 및 주파수 호핑 알고리즘을 이용하여 결정될 수 있는 추후의 서브캐리어 할당에 기초하여 CQI값을 결정할 수 있다.
그 후, 기지국은 블록 530으로 진행하여 채널 품질 표시자에 부분적으로 기초하여 송신 포맷을 결정한다. 상술된 바와 같이, 기지국은, 예를 들면, 전력 제어 보상 모듈, 백오프 제어 모듈 등을, 또는 어떤 다른 신호 프로세싱 모듈을 이 용하여 수신된 CQI 값을 프로세싱할 수 있다. 몇몇 실시형태에 있어서, 기지국은 소정의 수의 CQI값을 평균화할 수 있다.
기지국은, 예를 들면, CQI값을 다수의 소정 임계값과 비교함으로써 송신 포맷을 결정할 수 있다. 그 후 기지국은 블록 540으로 진행하여 송신 포맷에 부분적으로 기초하여 코드 레이트를 제어한다.
기지국은, 예를 들면, 레이트 예측 모듈에 의해 결정되는 코드 레이트에 따라 데이터를 인코딩하기 위해 인코더를 제어할 수 있다. 그 후, 기지국은 유저 단말기에 인코딩된 데이터를 송신할 수 있다.
여기에서 개시된 실시형태들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 회로들은 범용 프로세서, 디지털 신호 프로세서 (DSP), 축소 명령 집합 컴퓨터 (RISC) 프로세서, 주문형 집적회로 (ASIC), 필드 프로그래머블 게이트 어레이 신호 (FPGA), 또는 기타 프로그래머블 로직 디바이스, 별도의 게이트 또는 트랜지스터 로직, 별도의 하드웨어 컴포넌트들, 또는 여기서 설명된 기능을 수행하도록 설계되는 이들의 임의의 조합으로 구현 또는 수행될 수도 있다. 범용 프로세서는 마이크로프로세서일 수도 있지만, 다른 방법으로, 그 프로세서는 임의의 프로세서, 제어기, 마이크로 제어기, 또는 상태 기계일 수도 있다. 또한, 프로세서는 컴퓨팅 디바이스들의 조합, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들, DSP 코어와 결합된 하나 이상의 마이크로프로세서들 또는 임의의 기타 다른 구성물로 구현될 수도 있다.
여기에 개시된 실시형태들과 관련하여 설명된 방법, 프로세스 또는 알고리즘 의 단계들은 프로세서에 의해 실행되는 하드웨어, 소프트웨어 모듈, 또는 그 2 개의 조합으로 직접 구현될 수도 있다.
소프트웨어 모듈은 RAM 메모리, 플래시 메모리, 비휘발성 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 레지스터, 하드 디스크, 착탈형 디스크, CD-ROM, 또는 당업계에 알려진 임의의 다른 형태의 저장 매체에 상주할 수도 있다. 예시적인 저장 매체는 프로세서에 커플링되며, 그 프로세서는 저장 매체로부터 정보를 판독할 수 있고 저장 매체에 정보를 기입할 수 있다. 다른 방법으로, 저장 매체는 프로세서와 일체형일 수도 있다. 또한, 다양한 방법은 실시형태에 나타낸 순서로 수행될 수도 있거나 단계의 변경된 순서를 이용하여 수행될 수도 있다. 또한, 하나 이상의 프로세스 또는 방법 단계들은 생략될 수도 있고 하나 이상의 프로세스 또는 방법 단계들은 방법들 및 프로세스들에 추가될 수도 있다. 추가의 단계, 블록, 또는 행위는 방법들 및 프로세스들의 시작 부분, 끝부분, 또는 사이에 존재하는 엘리먼트들에서 추가될 수도 있다.
개시되어 있는 실시형태들에 대한 상기의 설명은 당업자로 하여금 본 발명을 제조 또는 이용할 수 있도록 제공된다. 당업자는 이들 실시형태에 대한 다양한 변형들을 명백히 알 수 있으며, 여기에서 정의된 일반적인 원리들은 본 발명의 사상 또는 범위를 벗어나지 않고도 다른 실시형태들에 적용될 수도 있다. 따라서, 본 발명은 여기에서 설명된 실시형태들에 제한되는 것이 아니라, 여기에서 개시된 원리 및 신규한 특징들과 부합하는 최광의 범위를 부여하려는 것이다.

Claims (36)

  1. 부분 재사용 통신 시스템에서의 레이트 제어 방법으로서,
    상기 레이트 제어 방법은,
    재사용 세트 내에서 서브캐리어 할당을 결정하는 단계;
    파일럿 신호 및 상기 서브캐리어 할당에 대응하는 수신 채널 품질 표시자에 기초하여 송신 포맷을 결정하는 단계; 및
    상기 송신 포맷에 기초하여 코드 레이트를 제어하는 단계를 포함하고,
    상기 재사용 세트는 안정된 재사용 세트 및 핸드오프 재사용 세트를 포함하는 그룹으로부터 선택되는, 레이트 제어 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 서브캐리어 할당은 상기 핸드오프 재사용 세트로부터의 캐리어의 서브세트를 포함하는, 레이트 제어 방법.
  4. 제 1 항에 있어서,
    상기 서브캐리어 할당은 상기 안정된 재사용 세트로부터의 캐리어의 서브세트를 포함하는, 레이트 제어 방법.
  5. 제 1 항에 있어서,
    상기 파일럿 신호는 복수의 블랭크 파일럿을 포함하는, 레이트 제어 방법.
  6. 제 1 항에 있어서,
    상기 파일럿 신호는 상기 재사용 세트 내에서 하나 이상의 블랭크 파일럿을 포함하는, 레이트 제어 방법.
  7. 제 1 항에 있어서,
    상기 채널 품질 표시자는, 상기 서브캐리어 할당을 이용하여 결정되는 간섭 추정치에 기초하는 신호 대 잡음비 (SNR) 를 포함하는, 레이트 제어 방법.
  8. 제 1 항에 있어서,
    상기 송신 포맷을 결정하는 단계는:
    하나 이상의 소정의 임계값에 대하여 채널 품질 표시자의 값을 비교하는 단계; 및
    상기 비교의 결과에 기초하여 상기 송신 포맷을 결정하는 단계를 포함하는, 레이트 제어 방법.
  9. 제 1 항에 있어서,
    상기 송신 포맷을 결정하는 단계는:
    상기 채널 품질 표시자에 기초하여 변경된 채널 품질 표시자값을 발생시키는 단계; 및
    상기 변경된 채널 품질 표시자값에 기초하여 상기 송신 포맷을 결정하는 단계를 포함하는, 레이트 제어 방법.
  10. 제 9 항에 있어서,
    상기 변경된 채널 품질 표시자값을 발생시키는 단계는 전력 제어 증분과 채널 품질 표시자값을 합산하는 단계를 포함하는, 레이트 제어 방법.
  11. 제 9 항에 있어서,
    상기 변경된 채널 품질 표시자값을 발생시키는 단계는 백오프값과 채널 품질 표시자값을 합산하는 단계를 포함하는, 레이트 제어 방법.
  12. 제 9 항에 있어서,
    상기 변경된 채널 품질 표시자값을 발생시키는 단계는, 채널 품질 표시자값과 하나 이상의 이전에 수신된 채널 품질 표시자값에 기초하여 평균 채널 품질 표시자값을 결정하는 단계를 포함하는, 레이트 제어 방법.
  13. 제 1 항에 있어서,
    상기 송신 포맷을 결정하는 단계는 패킷 포맷을 결정하는 단계를 포함하는, 레이트 제어 방법.
  14. 제 1 항에 있어서,
    상기 송신 포맷을 결정하는 단계는 재송신 프로세스에 기초하여 상기 송신 포맷을 결정하는 단계를 포함하는, 레이트 제어 방법.
  15. 제 1 항에 있어서,
    상기 송신 포맷을 결정하는 단계는:
    복수의 소정의 임계값에 대하여 채널 품질 표시자값을 비교하는 단계; 및
    상기 복수의 소정의 임계값으로부터, 임계값 레벨에 기초하여 송신 포맷을 선택하는 단계를 포함하는, 레이트 제어 방법.
  16. 부분 재사용 통신 시스템에서의 채널 정보 결정 방법으로서,
    상기 채널 정보 결정 방법은,
    복수의 서브캐리어 중 일 서브캐리어를 선택하는 단계;
    선택된 상기 일 서브캐리어에 기초하여 부분 재사용 세트를 결정하는 단계; 및
    상기 부분 재사용 세트에 기초하여 CQI를 결정하는 단계를 포함하고,
    상기 부분 재사용 세트는 안정된 재사용 세트 및 핸드오프 재사용 세트를 포함하는 그룹으로부터 선택되는, 채널 정보 결정 방법.
  17. 제 16 항에 있어서,
    상기 부분 재사용 세트를 결정하는 단계는, 상기 서브캐리어 및 소정의 주파수 호핑 알고리즘에 기초하여 상기 부분 재사용 세트를 식별하는 단계를 포함하는, 채널 정보 결정 방법.
  18. 제 16 항에 있어서,
    상기 서브캐리어는 이전의 서브캐리어 할당으로부터의 서브캐리어를 포함하는, 채널 정보 결정 방법.
  19. 제 16 항에 있어서,
    상기 서브캐리어는 현재의 서브캐리어 할당과는 별개인 서브캐리어를 포함하는, 채널 정보 결정 방법.
  20. 제 16 항에 있어서,
    상기 부분 재사용 세트를 결정하는 단계는 소정의 시간 주기 동안 할당된 서브캐리어의 세트를 결정하는 단계를 포함하는, 채널 정보 결정 방법.
  21. 제 16 항에 있어서,
    상기 CQI값을 결정하는 단계는 소정의 시간 주기에 걸쳐 신호 대 잡음비 (SNR) 를 결정하는 단계를 포함하는, 채널 정보 결정 방법.
  22. 부분 재사용 통신 시스템에서의 레이트 제어 장치로서,
    상기 레이트 제어 장치는,
    파일럿 신호를 생성하도록 구성된 파일럿 모듈;
    상기 파일럿 신호를 송신하도록 구성된 송신기 모듈;
    상기 파일럿 신호 및 부분 재사용 세트에서의 서브캐리어 할당에 기초하여 채널 품질 정보를 수신하도록 구성된 수신기;
    상기 채널 품질 정보에 기초하여 코딩 레이트를 결정하도록 구성된 레이트 예측 모듈; 및
    상기 레이트 예측 모듈에 접속된 입력 및 송신기에 접속된 출력을 가지고, 상기 코딩 레이트에 기초하여 데이터 스트림을 인코딩하도록 구성된 인코더를 포함하고,
    상기 부분 재사용 세트는 안정된 재사용 세트 및 핸드오프 재사용 세트를 포함하는 그룹으로부터 선택되는, 레이트 제어 장치.
  23. 제 22 항에 있어서,
    상기 파일럿 신호는 전용 파일럿 신호를 포함하는, 레이트 제어 장치.
  24. 제 23 항에 있어서,
    상기 전용 파일럿 신호는 상기 서브캐리어 할당에서의 하나 이상의 블랭크 파일럿을 포함하는, 레이트 제어 장치.
  25. 제 22 항에 있어서,
    상기 레이트 예측 모듈은 상기 채널 품질 정보의 값에 전력 제어 증분을 합산하도록 구성된 전력 제어 보상 모듈을 포함하고,
    상기 레이트 예측 모듈은 상기 전력 제어 증분과 상기 채널 품질 정보의 값과의 합에 기초하여 코드 레이트를 결정하는, 레이트 제어 장치.
  26. 제 22 항에 있어서,
    상기 레이트 예측 모듈은 상기 채널 품질 정보의 값에 백오프값을 합산하도록 구성된 백오프 제어 모듈을 포함하고,
    상기 레이트 예측 모듈은 상기 백오프값과 상기 채널 품질 정보의 값과의 합에 기초하여 코드 레이트를 결정하는, 레이트 제어 장치.
  27. 제 22 항에 있어서,
    상기 레이트 예측 모듈은 상기 채널 품질 정보의 값에 기초하는 표시자와 복수의 소정의 임계값을 비교하고, 상기 비교에 기초하여 코드 레이트를 결정하도록 구성된, 레이트 제어 장치.
  28. 제 22 항에 있어서,
    상기 레이트 예측 모듈은 하이브리드 자동 반복 요구 (HARQ) 시스템에서의 재송신 레이트에 대응하는 코드 레이트를 결정하도록 구성된, 레이트 제어 장치.
  29. 제 22 항에 있어서,
    상기 레이트 예측 모듈, 인코더, 및 파일럿 모듈은 프로세서를 포함하는, 레이트 제어 장치.
  30. 부분 재사용 통신 시스템에서의 레이트 제어 장치로서,
    상기 레이트 제어 장치는,
    상기 부분 재사용 통신 시스템의 재사용 세트 내에서의 서브캐리어 할당을 결정하는 수단;
    파일럿 신호를 송신하는 수단;
    상기 서브캐리어 할당 및 상기 파일럿 신호에 기초하여 채널 품질 표시자값을 수신하는 수단;
    채널 품질 표시자에 기초하여 송신 포맷을 결정하는 수단; 및
    상기 송신 포맷에 기초하여 코드 레이트를 제어하는 수단을 포함하고,
    상기 재사용 세트는 안정된 재사용 세트 및 핸드오프 재사용 세트를 포함하는 그룹으로부터 선택되는, 레이트 제어 장치.
  31. 제 30 항에 있어서,
    상기 서브캐리어 할당을 송신하는 수단을 더 포함하는, 레이트 제어 장치.
  32. 제 30 항에 있어서,
    상기 송신 포맷을 결정하는 수단은,
    하나 이상의 소정의 임계값에 대하여 상기 채널 품질 표시자값을 비교하는 수단; 및
    상기 비교의 결과에 기초하여 상기 송신 포맷을 결정하는 수단을 포함하는, 레이트 제어 장치.
  33. 제 30 항에 있어서,
    상기 송신 포맷을 결정하는 수단은,
    상기 채널 품질 표시자값에 기초하여 변경된 채널 품질 표시자값을 발생시키는 수단; 및
    상기 변경된 채널 품질 표시자값에 기초하여 상기 송신 포맷을 결정하는 수단을 포함하는, 레이트 제어 장치.
  34. 부분 재사용 통신 시스템에서의 채널 품질 표시자 (CQI) 값을 결정하는 장치로서,
    상기 채널 품질 표시자 값 결정 장치는,
    상기 부분 재사용 통신 시스템 내에서 서브캐리어를 선택하는 수단;
    상기 서브캐리어에 기초하여 부분 재사용 세트를 결정하는 수단; 및
    상기 부분 재사용 세트에 기초하여 CQI값을 결정하는 수단을 포함하고,
    상기 부분 재사용 세트는 안정된 재사용 세트 및 핸드오프 재사용 세트를 포함하는 그룹으로부터 선택되는, 채널 품질 표시자 값 결정 장치.
  35. 제 34 항에 있어서,
    상기 부분 재사용 세트를 결정하는 수단은 상기 서브캐리어 및 소정의 주파 수 호핑 알고리즘에 기초하여 상기 부분 재사용 세트를 식별하는 수단을 포함하는, 채널 품질 표시자값 결정 장치.
  36. 제 34 항에 있어서,
    상기 부분 재사용 세트를 결정하는 수단은 소정의 시간 주기 동안 할당된 서브캐리어의 세트를 결정하는 수단을 포함하는, 채널 품질 표시자값 결정 장치.
KR20077003640A 2004-07-16 2005-07-14 부분 재사용 시스템에서의 레이트 예측 KR100885137B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58862904P 2004-07-16 2004-07-16
US60/588,629 2004-07-16

Publications (2)

Publication Number Publication Date
KR20070042181A KR20070042181A (ko) 2007-04-20
KR100885137B1 true KR100885137B1 (ko) 2009-02-23

Family

ID=35058834

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20077003640A KR100885137B1 (ko) 2004-07-16 2005-07-14 부분 재사용 시스템에서의 레이트 예측

Country Status (11)

Country Link
US (1) US9294218B2 (ko)
EP (2) EP2256975B1 (ko)
JP (3) JP2008507215A (ko)
KR (1) KR100885137B1 (ko)
CN (1) CN101019362B (ko)
AT (1) ATE488062T1 (ko)
CA (1) CA2574066C (ko)
DE (1) DE602005024692D1 (ko)
ES (2) ES2356170T3 (ko)
TW (1) TWI389501B (ko)
WO (1) WO2006020032A1 (ko)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754961A (en) 1994-06-20 1998-05-19 Kabushiki Kaisha Toshiba Radio communication system including SDL having transmission rate of relatively high speed
US8934848B2 (en) 2003-08-06 2015-01-13 Panasonic Intellectual Property Corporation Of America Radio communication device and radio communication method configured for channel quality reporting of selected sub-carrier bands
DE102004028703A1 (de) * 2004-06-14 2005-12-29 Siemens Ag Verfahren zur Zuweisung von Übertragungskapazitäten bei einer Signalübertragung, Basisstation und mobiles Endgerät
US20060092873A1 (en) * 2004-10-29 2006-05-04 Telefonaktiebolaget Lm Ericsson ( Publ) Method for adaptive interleaving in a wireless communication system with feedback
US8233907B1 (en) 2004-11-03 2012-07-31 At&T Mobility Ii Llc System and method for constructing a carrier to interference matrix based on subscriber calls
KR100703442B1 (ko) * 2004-11-12 2007-04-03 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 핸드오버 방법 및 시스템
KR100617835B1 (ko) * 2005-01-05 2006-08-28 삼성전자주식회사 통신 시스템에서 채널 품질 정보 송수신 장치 및 방법
US7742444B2 (en) * 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8064327B2 (en) * 2005-05-04 2011-11-22 Samsung Electronics Co., Ltd. Adaptive data multiplexing method in OFDMA system and transmission/reception apparatus thereof
US8965440B2 (en) * 2005-05-31 2015-02-24 Alcatel Lucent Method of estimating a current channel condition in a wireless communications network
US9055552B2 (en) * 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8750908B2 (en) * 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
EP1734666A1 (en) 2005-06-17 2006-12-20 Fujitsu Limited Resource management in multi-hop communication system
DE602005025261D1 (de) 2005-06-17 2011-01-20 Fujitsu Ltd Systeme und Verfahren zur Leistungsregelung im Mehrstreckenkommunikationssystem
EP1734665B1 (en) 2005-06-17 2011-08-10 Fujitsu Limited Multi-hop communication system
EP2369879A3 (en) 2005-06-17 2011-11-09 Fujitsu Limited Communication system
KR100747600B1 (ko) * 2005-08-19 2007-08-08 한국전자통신연구원 직교 주파수 분할 다중접속 시스템을 위한 주파수 재사용율분할 방식에 기반을 둔 동적 자원 할당 방법 및 그를 위한프레임 전송 방법
US8116780B2 (en) * 2005-08-19 2012-02-14 Electronics And Telecommunications Research Institute Dynamic resource allocation method based on frequency reuse partitioning for OFMDA/FDD system, and frame transmission method therefor
US20070147226A1 (en) * 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
KR100973456B1 (ko) * 2005-10-27 2010-08-02 퀄컴 인코포레이티드 무선 통신 시스템에 있어서 액세스를 시도하는 방법 및장치
US8175021B2 (en) * 2005-11-04 2012-05-08 Texas Instruments Incorporated Method for transmission of unicast control in broadcast/multicast transmission time intervals
US8811369B2 (en) * 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
KR20080092946A (ko) * 2006-01-11 2008-10-16 퀄컴 인코포레이티드 인지 통신
US20070177501A1 (en) * 2006-01-31 2007-08-02 Texas Instruments Incorporated Signaling Requirements to Support Interference Coordination in OFDMA Based Systems
US7440412B2 (en) * 2006-03-13 2008-10-21 Tzero Technologies, Inc. Link quality prediction
EP1999982B1 (en) * 2006-03-20 2018-08-29 BlackBerry Limited Method&system for fractional frequency reuse in a wireless communication network
ATE415796T1 (de) * 2006-03-20 2008-12-15 Alcatel Lucent Verfahren zur einteilung von benutzerendgeräten zu unterträgern in einem mehrzellen-, oder mehrsektorkommunikationsnetzwerk mit fdm übertragung, eine basisstation und ein netzwerk dafür
EP1863209A1 (en) * 2006-06-02 2007-12-05 Alcatel Lucent Channel quality reporting in an orthogonal frequency division multiplexing system
US7933606B2 (en) * 2006-06-30 2011-04-26 Nokia Corporation Multi-level control for measurement reports
EP1895806B1 (de) 2006-08-30 2016-09-28 Vodafone Holding GmbH Ressourcenaufteilung in drahtlosen kommunikationssystemen
US8611259B2 (en) * 2006-09-08 2013-12-17 Samsung Electronics Co., Ltd. Method and system for providing channel state information feedback in a wireless communication system
US8254927B2 (en) * 2006-09-11 2012-08-28 Qualcomm Incorporated SFN and signaling mechanisms for softer handoff groups
BRPI0621985A2 (pt) * 2006-09-29 2011-12-20 Intel Corp método de avaliação de qualidade de canal em comunicações ofdm(a) e um sistema correspondente
GB0619454D0 (en) 2006-10-02 2006-11-08 Fujitsu Ltd Communication systems
CA2663976A1 (en) * 2006-10-24 2008-05-02 Qualcomm Incorporated Enabling resource partitioning for wireless communication systems
RU2425468C2 (ru) * 2006-10-31 2011-07-27 Квэлкомм Инкорпорейтед Управление межсотовой мощностью при наличии многократного использования дробных частот
GB2443464A (en) 2006-11-06 2008-05-07 Fujitsu Ltd Signalling in a multi-hop communication systems
US8483038B2 (en) 2006-12-04 2013-07-09 Ntt Docomo, Inc. Radio communication apparatus and radio communication method
JP5156334B2 (ja) * 2006-12-04 2013-03-06 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
KR101401617B1 (ko) 2007-02-16 2014-06-03 삼성전자주식회사 Ofdm 송신 및 수신 시스템 및 그 방법
GB2447883A (en) 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems
GB2447635A (en) * 2007-03-19 2008-09-24 Fujitsu Ltd Scheduling qos communications between nodes within a predetermined time unit in wimax systems
FI20075223A0 (fi) * 2007-04-02 2007-04-02 Nokia Corp Parannettu siirtoyhteyden sovitusmenetelmä
KR101454027B1 (ko) * 2007-08-10 2014-10-24 한국전자통신연구원 병렬 구조를 가지는 시분할 다중화 통신 시스템 및 방법
US7827270B2 (en) * 2007-10-31 2010-11-02 Cisco Technology, Inc. Mobility service clustering using network service segments
US8798665B2 (en) 2007-11-15 2014-08-05 Qualcomm Incorporated Beacon-based control channels
US9326253B2 (en) * 2007-11-15 2016-04-26 Qualcomm Incorporated Wireless communication channel blanking
US8761032B2 (en) 2007-11-16 2014-06-24 Qualcomm Incorporated Random reuse based control channels
US7649839B2 (en) * 2007-11-21 2010-01-19 Motorola, Inc. Method and device for managing data rate in a communication system
JP5088149B2 (ja) * 2008-01-17 2012-12-05 富士通株式会社 スケジューリング方法及び無線基地局
US9009573B2 (en) 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
JP5169689B2 (ja) * 2008-02-14 2013-03-27 富士通株式会社 通信装置
US8306473B2 (en) * 2008-02-15 2012-11-06 Qualcomm Incorporated Methods and apparatus for using multiple antennas having different polarization
KR101480550B1 (ko) * 2008-03-26 2015-01-20 엘지전자 주식회사 셀간 간섭 조절의 수행방법
US8675537B2 (en) 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US9107239B2 (en) 2008-04-07 2015-08-11 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
US8595501B2 (en) * 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
KR101433847B1 (ko) 2008-05-28 2014-09-23 삼성전자주식회사 광대역 무선통신시스템에서 버스트 스케줄링 장치 및 방법
WO2010018643A1 (ja) * 2008-08-12 2010-02-18 株式会社日立コミュニケーションテクノロジー 無線通信システム、無線通信装置及び無線リソース管理方法
US8565210B2 (en) 2008-08-27 2013-10-22 Lg Electronics Inc. Apparatus for transmitting a signal in wireless communication system and method for same
WO2010044621A2 (ko) * 2008-10-15 2010-04-22 엘지전자주식회사 부분적 주파수 재사용을 이용한 무선 통신 시스템에서 mbs 데이터 전송 방법 및 장치
US8654834B2 (en) 2009-01-06 2014-02-18 Electronics And Telecommunications Research Institute Method for tuning coding rate and applying unequal error protection for adaptive video transmission, and video transmission/reception apparatus using the method
US9084119B2 (en) * 2009-01-07 2015-07-14 Qualcomm Incorporated Carrier reuse in a multicarrier wireless communication environment
US8817769B2 (en) * 2009-01-26 2014-08-26 Qualcomm Incorporated Power decision pilot for wireless communication
CN101795148B (zh) * 2009-02-03 2014-07-16 中兴通讯股份有限公司 基于信道质量指示测算导频的映射方法和装置
ES2637293T3 (es) * 2009-03-18 2017-10-11 Electronics And Telecommunications Research Institute Método para señalizar patrones de subtramas de CSI-RS
US20110038356A1 (en) * 2009-08-13 2011-02-17 Yuval Bachrach VBR interference mitigation in an mmwave network
US8599768B2 (en) * 2009-08-24 2013-12-03 Intel Corporation Distributing group size indications to mobile stations
KR101752416B1 (ko) * 2009-08-28 2017-06-29 엘지전자 주식회사 부분 주파수 재사용을 이용한 신호 전송 방법
IL202000A0 (en) * 2009-11-09 2010-11-30 Alvarion Ltd Fractional frequency reuse deployment method for wireless system
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置
US9398602B2 (en) * 2010-09-22 2016-07-19 Qualcomm Incorporated Multi-radio coexistence
CN102958170B (zh) * 2011-08-30 2015-04-29 华为技术有限公司 一种上行干扰协调方法和基站
JP5479566B2 (ja) * 2012-12-12 2014-04-23 京セラ株式会社 無線端末および無線通信方法
EP2852238A1 (en) 2013-09-19 2015-03-25 NTT DoCoMo, Inc. Signaling and interference estimation for dynamic fractional reuse
DE102014214923A1 (de) 2014-07-30 2016-02-25 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Ermittlung eines Schätzwertes für eine Rauschleistung
CN107979454B (zh) * 2017-11-22 2021-01-19 华南理工大学 一种ofdma分布式模式下行链路梳状谱快速提取方法
CN113595698B (zh) * 2020-04-30 2023-06-02 华为技术有限公司 一种调整信道质量指标cqi的方法和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079953A (ko) * 2001-01-19 2003-10-10 브로드스톰 텔레커뮤니케이션즈 인코포레이티드 시분할 다중화 및 반송파-선택적 로딩을 통한 다중-반송파통신
KR20030085040A (ko) * 2001-03-23 2003-11-01 콸콤 인코포레이티드 무선 통신 시스템에서 채널 상태 정보를 사용하기 위한방법 및 장치
KR20040004462A (ko) * 2000-12-15 2004-01-13 브로드스톰 텔레커뮤니케이션즈 인코포레이티드 적응형 서브캐리어-클러스터 구성과 선택적 로딩을이용하는 ofdma

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE503893C2 (sv) 1994-07-15 1996-09-30 Ericsson Telefon Ab L M Förfarande och anordning för frekvenshoppning i ett radiokommunikationssystem
KR100194956B1 (ko) * 1996-08-21 1999-06-15 정선종 코드분할다중화접속 이동 무선전화 시스템을 위한 적응 전력 제어방법
JP2001359152A (ja) 2000-06-14 2001-12-26 Sony Corp 無線通信システム、無線基地局装置、無線移動局装置、無線ゾーン割当て方法及び無線通信方法
GB2318252A (en) 1996-10-09 1998-04-15 Motorola Ltd Channel Allocation in a Cellular Radio Network
US6137787A (en) * 1997-04-03 2000-10-24 Chawla; Kapil K. Method and apparatus for resource assignment in a wireless communication system
US6256729B1 (en) * 1998-01-09 2001-07-03 Sun Microsystems, Inc. Method and apparatus for resolving multiple branches
US6792276B1 (en) * 1999-07-13 2004-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Hot spot with tailored range for extra frequency to minimize interference
US6526279B1 (en) * 1999-08-11 2003-02-25 Ericsson Inc. Communication system with a mobile terminal supporting mobile assisted signal strength measurements for a plurality of networks and methods for operating the same
US6591108B1 (en) * 2000-03-06 2003-07-08 Lucent Technologies Inc. Apparatus and method to reduce the reuse factor for adaptive-dynamic channel assignment systems
JP2001274764A (ja) 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd デジタル信号送信装置
US6687239B1 (en) * 2000-05-08 2004-02-03 Vtech Telecommunications, Ltd Method for dynamic channel allocation in a frequency hopping radio system
US7257094B2 (en) * 2001-01-16 2007-08-14 Texas Instruments Incorporated Jointly controlling transmission rate and power in a communications system
US7027418B2 (en) * 2001-01-25 2006-04-11 Bandspeed, Inc. Approach for selecting communications channels based on performance
US6940827B2 (en) * 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
US6907228B1 (en) * 2001-08-21 2005-06-14 Nortel Networks Limited Allocating carrier frequencies for communicating beacon control signaling
US6757542B2 (en) * 2001-09-27 2004-06-29 Telefonaktiebolaget Lm Ericsson Total radio network solution for GSM/EDGE
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US7403528B2 (en) * 2002-09-13 2008-07-22 Lucent Technologies Inc. Method of data communication using a control message
US7426176B2 (en) 2002-09-30 2008-09-16 Lucent Technologies Inc. Method of power allocation and rate control in OFDMA systems
EP2026472A1 (en) 2002-11-07 2009-02-18 Adaptix, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
DE60304104T2 (de) * 2002-11-07 2006-11-09 Samsung Electronics Co., Ltd., Suwon Verfahren zur Wiederverwendung von Frequenzen in einem OFDM-Mobilfunkkommunikationssystem
JP3679089B2 (ja) * 2002-11-20 2005-08-03 松下電器産業株式会社 基地局装置および再送パケットの送信電力制御方法
JP2004172981A (ja) 2002-11-20 2004-06-17 Matsushita Electric Ind Co Ltd 無線送信装置および無線送信方法
WO2004077711A2 (en) * 2003-02-24 2004-09-10 Hawe William R System, method and apparatus for ascertaining a dynamic attribute of a system
US20050025040A1 (en) * 2003-07-29 2005-02-03 Nokia Corporation Method and apparatus providing adaptive learning in an orthogonal frequency division multiplex communication system
KR100511554B1 (ko) 2003-09-02 2005-08-31 한국전자통신연구원 Ofdma fdd 기반 시스템에서의 순방향 채널 구성방법 및 순방향 채널 할당 방법
US8526963B2 (en) 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system
KR100943572B1 (ko) * 2003-12-23 2010-02-24 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 주파수재사용율을 고려한 적응적 부채널 할당 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004462A (ko) * 2000-12-15 2004-01-13 브로드스톰 텔레커뮤니케이션즈 인코포레이티드 적응형 서브캐리어-클러스터 구성과 선택적 로딩을이용하는 ofdma
KR20030079953A (ko) * 2001-01-19 2003-10-10 브로드스톰 텔레커뮤니케이션즈 인코포레이티드 시분할 다중화 및 반송파-선택적 로딩을 통한 다중-반송파통신
KR20030085040A (ko) * 2001-03-23 2003-11-01 콸콤 인코포레이티드 무선 통신 시스템에서 채널 상태 정보를 사용하기 위한방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Muneta S. et al.,A new frequency-domain link adaptation scheme for broadvand OFDM systems, VTC, pp.253-257, 19-22 Sept. 1999.

Also Published As

Publication number Publication date
CN101019362A (zh) 2007-08-15
TWI389501B (zh) 2013-03-11
JP2010239623A (ja) 2010-10-21
ATE488062T1 (de) 2010-11-15
US9294218B2 (en) 2016-03-22
EP1774688B1 (en) 2010-11-10
KR20070042181A (ko) 2007-04-20
DE602005024692D1 (de) 2010-12-23
WO2006020032A1 (en) 2006-02-23
EP2256975A3 (en) 2011-11-30
JP2011120280A (ja) 2011-06-16
EP1774688A1 (en) 2007-04-18
US20060014542A1 (en) 2006-01-19
ES2553433T3 (es) 2015-12-09
JP2008507215A (ja) 2008-03-06
CA2574066A1 (en) 2006-02-23
EP2256975A2 (en) 2010-12-01
CN101019362B (zh) 2012-11-21
ES2356170T3 (es) 2011-04-05
JP5634909B2 (ja) 2014-12-03
JP5431238B2 (ja) 2014-03-05
EP2256975B1 (en) 2015-08-19
CA2574066C (en) 2015-11-17
TW200627855A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
KR100885137B1 (ko) 부분 재사용 시스템에서의 레이트 예측
JP2010239623A5 (ko)
JP2011120280A5 (ko)
US9209956B2 (en) Segment sensitive scheduling
US9883459B2 (en) Channel sounding techniques for a wireless communication system
JP5231245B2 (ja) 送信モード遷移を判定するための測定報告のための方法及び装置
KR101657554B1 (ko) 업링크 구조를 제공하고 무선 통신 네트워크에서 파일럿 신호 오버헤드를 최소화하는 방법 및 시스템
JP2008526117A5 (ko)
JP2008526117A (ja) キャパシティベースの信号対雑音比を利用してモバイル通信を予測し改善するシステム及び方法
JP2006313981A (ja) 通信端末装置、基地局装置及び基地局装置選択方法
Zitouni et al. Efficient V2X Waveforms: NOMA combined with FBMC/UFMC reduces the Co-channel Interference

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 11