KR100829931B1 - Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same - Google Patents

Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same Download PDF

Info

Publication number
KR100829931B1
KR100829931B1 KR1020060130216A KR20060130216A KR100829931B1 KR 100829931 B1 KR100829931 B1 KR 100829931B1 KR 1020060130216 A KR1020060130216 A KR 1020060130216A KR 20060130216 A KR20060130216 A KR 20060130216A KR 100829931 B1 KR100829931 B1 KR 100829931B1
Authority
KR
South Korea
Prior art keywords
hydrogen storage
hydrogen
alloy
storage alloy
slurry
Prior art date
Application number
KR1020060130216A
Other languages
Korean (ko)
Inventor
김호성
이종호
부성재
김전민
박충년
정소이
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020060130216A priority Critical patent/KR100829931B1/en
Application granted granted Critical
Publication of KR100829931B1 publication Critical patent/KR100829931B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A hydrogen storage alloy for a Ni-MH battery, and a method for preparing the hydrogen storage alloy are provided to reduce the cost due to the use of Co by decreasing the amount of Co and to improve the pressure resistance of a battery. A hydrogen storage alloy comprises a mischmetal alloy containing La and Ce; and a hydrogen activator containing Ni, Co, Mn and Al, wherein the content of Co is 0.5 at% or less, and the content of least one of Mn and Al is 0.5 at% or more. The hydrogen storage alloy is prepared by (S1) mounting an alloy which comprises a mischmetal alloy containing La and Ce and a hydrogen activator containing Ni, Co, Mn and Al to an arc furnace; (S3) arc melting it; (S7) pulverizing the alloy to prepare a hydrogen storage alloy powder; (S9) mixing the powder with carbon black to make a slurry and coating it on a nickel sheet; (S11) drying the slurry coated on the nickel sheet and dipping the dried slurry in a PTFE solution; and (S13) re-drying the slurry dipped in a PTFE solution and rolling it.

Description

니켈수소전지용 수소저장합금 및 이의 제조방법{Metallic Alloy for Hydrogen Storage of Ni-MH Battery and Manufacturing Method of the Same}Metallic Alloy for Hydrogen Storage of Ni-MH Battery and Manufacturing Method of the Same}

도 1은 본 발명에 따른 수소저장합금을 제조하는 과정을 나타내는 순서도;1 is a flow chart showing a process for producing a hydrogen storage alloy according to the present invention;

도 2는 본 발명의 제1실시예에 따른 방전 특성을 나타내는 그래프;2 is a graph showing discharge characteristics according to the first embodiment of the present invention;

도 3은 본 발명의 제2실시예에 따른 방전 특성을 나타내는 그래프.3 is a graph showing discharge characteristics according to a second embodiment of the present invention.

본 발명은 니켈수소전지용 수소저장합금 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 수소저장합금의 조성물 중 하나인 Co의 함량을 줄이더라도 전지의 수명특성을 유지하면서 Co의 사용에 따른 비용을 절감하고, 전지의 내압특성을 향상시킨 니켈수소전지용 수소저장합금 및 이의 제조방법에 관한 것이다.The present invention relates to a hydrogen storage alloy for nickel hydride batteries and a method for manufacturing the same, and more particularly, to reduce the cost of using Co while maintaining the life characteristics of the battery even if the content of Co, which is one of the compositions of the hydrogen storage alloy, is reduced. In addition, the present invention relates to a hydrogen storage alloy for nickel-metal hydride batteries having improved pressure resistance characteristics of a battery and a method of manufacturing the same.

일반적으로, 니켈수소전지는 음극소재로서 수소저장합금을 사용하고, 양극 소재로서 수산화니켈 활물질을 사용함으로써, 약 100AH 급의 산업용 전지를 구현한다.In general, nickel-hydrogen batteries use an hydrogen storage alloy as a negative electrode material and a nickel hydroxide active material as a positive electrode material, thereby implementing an industrial battery of about 100 AH class.

종래기술로는 일반적으로 니켈수소전지의 음극을 구성하는 수소저장합금은 Mm, Ni, Co, Mn, Al으로 구성되어 있으며, Mm은 순수한 수소저장 능력의 합금, Ni 은 수소의 흡장과 방출을 돕는 촉매 기능, Co는 수축 팽창에 의한 합금의 미분화 억제, Mn은 수소 평형 해리압을 낮추는 기능을 한다.In the prior art, the hydrogen storage alloy constituting the negative electrode of a nickel-metal hydride battery is generally composed of Mm, Ni, Co, Mn, and Al, and Mm is an alloy of pure hydrogen storage ability, and Ni is used to assist the storage and release of hydrogen. The catalytic function, Co, suppresses the micronization of the alloy by shrinkage expansion, and Mn lowers the hydrogen equilibrium dissociation pressure.

여기에서, 음극의 구성하는 수소저장합금의 Co는 수축 및 팽창에 의한 합금의 미분화를 억제하기 위하여 일정이상 함량이 요구되며, 일반적으로 MmNi3.55Co0.75Mn0.4Al0.4 또는 MmNi3.5Co0.8Mn0.4Al0.4 등의 조성으로 사용된다. Here, Co of the hydrogen storage alloy constituting the negative electrode is required to a certain amount or more in order to suppress the differentiation of the alloy by shrinkage and expansion, generally MmNi3.55Co0.75Mn0.4Al0.4 or MmNi3.5Co0.8Mn0. 4Al0.4 or the like.

하지만, 상술한 구성을 가지는 종래의 수소저장합금은, 수소저장합금을 구성하는 Ni의 일부를 치환하는 물질 중에서 Co의 함량이 가장 높기 때문에 원가상승 요인이 될 뿐만 아니라, 기존 사용하는 수소저장합금의 Co 함량 범위에서는 제조된 수소저장합금의 격자간 간격이 감소하여 수소평형 해리압이 상온에서 약 10기압 수준으로 작동한다. However, the conventional hydrogen storage alloy having the above-described structure is not only a cost increase factor because of the highest content of Co among materials replacing a part of Ni constituting the hydrogen storage alloy, but also increases the cost of the existing hydrogen storage alloy. In the Co content range, the lattice spacing of the prepared hydrogen storage alloy is reduced, so that the hydrogen equilibrium dissociation pressure is operated at about 10 atm.

위의 구성을 가진 종래 기술은 전지 충전 시 음극을 구성하는 수소저장합금의 표면에서 수소가 흡착하여 합금 벌크(bulk)로 이동하기 어려워 지며, 이로 인해 전극에서 수소가스 발생 반응이 일어나기 쉽고 결과적으로 전지의 충전 효율이 저하로 전지의 밀폐화가 곤란한 문제점이 있었다.In the prior art having the above configuration, when the battery is charged, hydrogen is adsorbed on the surface of the hydrogen storage alloy constituting the negative electrode, making it difficult to move to the bulk of the alloy. There was a problem in that the sealing of the battery was difficult due to the decrease in the charging efficiency.

하지만, Co 함량을 감소 시킬 경우 전극의 수명 특성이 급격히 감소하는 문제점이 발생하여 전지용 재료로 사용이 곤란하게 된다.However, when the Co content is reduced, a problem occurs that the life characteristics of the electrode are rapidly decreased, making it difficult to use the battery material.

본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 수소저장합금의 조성물 중 하나인 Co의 함량을 줄이더라도 전지의 수명특성을 유지할 수 있어 Co의 사용에 따른 비용을 절감시킨 니켈수소전지용 수소저장합금 및 이의 제조방법을 제공하기 위한 것이다.The present invention is to solve the above-mentioned problems, an object of the present invention is to maintain the life characteristics of the battery even if reducing the content of Co, which is one of the hydrogen storage alloy composition to reduce the cost of using Co An object of the present invention is to provide a hydrogen storage alloy for a nickel hydrogen battery and a method of manufacturing the same.

본 발명의 다른 목적은 전지의 내압특성을 향상시킨 니켈수소전지용 수소저장합금 및 이의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a hydrogen storage alloy for nickel-metal hydride batteries and a method of manufacturing the same, which have improved the breakdown voltage characteristics of the battery.

상기와 같은 목적을 달성하기 위하여, 본 발명은 La 및 Ce를 함유한 미시메탈계 합금 및 Ni, Co, Mn 및 Al을 함유한 수소활성제를 포함하며, 상기 Co 는 0.5 at% 이하이고, Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상인 니켈수소전지용 수소저장합금을 제공한다.In order to achieve the above object, the present invention includes a micrometal alloy containing La and Ce and a hydrogen activator containing Ni, Co, Mn and Al, wherein Co is 0.5 at% or less, Mn and At least one of Al provides a hydrogen storage alloy for nickel hydrogen battery that is at least 0.5 at%.

그리고, 상기 Ni는 4.0 at% 이하이고, Co는 0.2 at% 인 것이 바람직하다.In addition, it is preferable that the said Ni is 4.0 at% or less and Co is 0.2 at%.

한편, 본 발명에 따른 니켈수소전지용 수소저장합금의 제조방법은 La 및 Ce를 함유한 미시메탈계 합금 및 Ni, Co, Mn 및 Al을 함유한 수소활성제를 포함하며, 상기 Co 는 0.5 at% 이하이고 Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상인 합금을 아크로(Arc furnace)에 장입하고 아크 용해(Arc melting)를 하는 단계, 유발을 사용하여 상기 합금을 파쇄하여 수소저장합금의 분말을 제조하는 단계, 상기 분말을 카본 블랙과 혼합한 후 슬러리를 제조하여 니켈 시트에 도포하는 단계, 일정 시간 동안 건조한 후 PTFE 용액에 침지시키는 단계 및 재 건조 후 일정 압하율로 롤링하는 단계를 수행한다.On the other hand, the method for producing a hydrogen storage alloy for nickel-metal hydride battery according to the present invention includes a micrometal alloy containing La and Ce and a hydrogen activator containing Ni, Co, Mn and Al, Co is 0.5 at% or less At least one of Mn and Al is charged to an arc furnace with arc at least 0.5 at%, and arc melting, to crush the alloy using a mortar to produce a powder of a hydrogen storage alloy. Step, after mixing the powder with carbon black to prepare a slurry and apply it to a nickel sheet, it is dried for a certain time, immersed in a PTFE solution, and then rolled to a constant reduction rate after redrying.

그리고, 상기 아크 용해를 하는 단계는 상기 합금을 아크로에 장입한 후 10- 3 Torr의 진공 상태로 만드는 것이 바람직하다. 또한, 상기 분말을 카본 블랙과 혼합한 후 슬러리로 제조하여 니켈 시트에 도포하는 단계에서, 상기 슬러리의 제조는 증점제(HPMC), 바인더(PTFE), 첨가제 바인더(503H)에 의해 이루어지는 것이 더욱 바람직하다.In the arc melting step, the alloy is charged into an arc furnace, and then made into a vacuum state of 10 −3 Torr. In addition, in the step of mixing the powder with carbon black to prepare a slurry and apply it to a nickel sheet, the slurry is more preferably made of a thickener (HPMC), a binder (PTFE), an additive binder (503H). .

이와 함께, 일정 시간 동안 건조한 후 PTFE 용액에 침지시키는 단계와, 재 건조 후 일정 압하율로 롤링하는 단계에서, 건조는 50 내지 70 ℃ 의 온도범위에서 이루어지는 것이 바람직하다.In addition, in the step of immersing in a PTFE solution after drying for a certain time, and rolling at a constant reduction ratio after re-drying, drying is preferably made in a temperature range of 50 to 70 ℃.

그리고, 본 발명에 따른 니켈수소 전지의 제조방법은 아크 용해를 하는 단계를 거친 후, 잉곳을 뒤집어 가며 3 내지 4 회 재 용해시키고, 상기 잉곳 표면의 산화막을 제거하는 단계를 더 수행하는 것이 바람직하다.In addition, in the method for manufacturing a nickel-metal hydride battery according to the present invention, after the arc melting step, the ingot is inverted and re-dissolved three to four times, and it is preferable to further perform the step of removing the oxide film on the surface of the ingot. .

이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of this embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted.

본 발명에 따른 니켈수소전지는, 크게 수소저장합금을 가지는 음극 및 수산화니켈을 가지는 양극을 포함하여 구성된다.The nickel-hydrogen battery according to the present invention comprises a cathode having a hydrogen storage alloy and a cathode having nickel hydroxide.

본 발명은 이 중 수소저장합금에 관한 것으로서, 본 발명에 따른 수소저장합금은 La 및 Ce를 함유한 미시메탈계 합금과, Ni, Co, Mn 및 Al을 함유한 수소활성 제를 포함하여 구성된다.The present invention relates to a hydrogen storage alloy, wherein the hydrogen storage alloy according to the present invention comprises a micrometal alloy containing La and Ce and a hydrogen activator containing Ni, Co, Mn and Al. .

그리고, 상기 Co 는 0.5 at% 이하이고, Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상으로 구성된다.And Co is 0.5 at% or less, at least one of Mn and Al is composed of 0.5 at% or more.

한편, 본 실시예에서는 상기 Ni는 4.0 at% 이하이고, Co는 0.2 at% 로 구성된다.In the present embodiment, Ni is 4.0 at% or less and Co is 0.2 at%.

구체적으로 설명하면, 본 발명은 종래의 기술인 MmNi3.55Co0.75Mn0.4Al0.4 또는 MmNi3.5Co0.8Mn0.4Al0.4 등의 수소저장합금의 Co 함량을 0.75이상에서 0.5이하로 줄이고, 대신에 Mn 및 Al의 함량을 0.5 이상으로 유지함으로 기존의 수소저장합금과 동등 이상의 성능을 유지하면서도 제품원가를 다운 시킬 수 있게 된다.Specifically, the present invention reduces the Co content of hydrogen storage alloys such as MmNi3.55Co0.75Mn0.4Al0.4 or MmNi3.5Co0.8Mn0.4Al0.4 in the prior art from 0.75 to 0.5 or less, and instead of Mn By maintaining the content of Al and 0.5 or more, it is possible to reduce the product cost while maintaining the performance or more equivalent to the existing hydrogen storage alloy.

특히, 기존의 수소저장합금 및 음극 제조방법에서는 Mn의 함량을 0.4이상 증가 시킬 경우 수명 특성이 감소하지만, 본 발명에서는 Mn 의 함량을 증가 시켜도 수명특성이 감소되지 않고 개선된다는 점을 실험을 통해 밝혀냈다.Particularly, in the existing hydrogen storage alloy and the anode manufacturing method, when the Mn content is increased by 0.4 or more, the lifespan characteristics are decreased, but in the present invention, the life characteristics are improved without increasing the Mn content. .

본 발명은 Mm(La 25-30%, Ce 45-55%, Pr 3-7%, Nd 10-20%) 또는 La-rich Mm alloy (La 56%, Ce 31.2%, Pr 3.1%, Nd 9.1%) 와 같이 안정하게 수소화물을 형성하기 쉬운 원소와 수소활성이 있는 Ni, Co, Mn, Al 등으로 구성되어 있으나, 여기에서 수소활성 원소인 Co의 함량을 0.5 이하로 줄이고 Mn 및 Al 의 함량을 0.5 이상으로 증가시킨다.In the present invention, Mm (La 25-30%, Ce 45-55%, Pr 3-7%, Nd 10-20%) or La-rich Mm alloy (La 56%, Ce 31.2%, Pr 3.1%, Nd 9.1 It is composed of elements that are easy to form hydrides such as%) and Ni, Co, Mn, Al, etc., which have hydrogen activity, but the content of Co, which is a hydrogen active element, is reduced to 0.5 or less and Mn and Al content Increase to at least 0.5.

이에 따라, 본 발명은 전지의 수명 감소를 억제하면서 전지를 구성하는 음극의 수소저장합금의 평형수소해리압력을 감소시켜 전지의 내압상승을 억제하게 된다. Accordingly, the present invention reduces the equilibrium hydrogen dissociation pressure of the hydrogen storage alloy of the negative electrode constituting the battery while suppressing the decrease of the battery life, thereby suppressing the increase in the internal pressure of the battery.

도 1을 참조하여, 본 발명에 따른 수소저장합금을 제조하는 과정을 설명하면 다음과 같다.Referring to Figure 1, when describing the process of producing a hydrogen storage alloy according to the present invention.

먼저, 상술한 바와 같이, 그리고, 상기 Co 는 0.5 at% 이하이고, Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상으로 구성한 수소저장합금을 준비한다.First, as described above, and Co is 0.5 at% or less, and at least any one of Mn and Al prepares a hydrogen storage alloy composed of 0.5 at% or more.

예를 들어, MmNi4.2Co0.2Mn0.3Al0.3, MmNi4.0Co0.2Mn0.5Al0.3, MmNi3.75Co0.2Mn0.75Al0.3, MmNi3.5Co0.2Mn1.0Al0.3, MmNi4.0Co0.2Mn0.3Al0.5, MmNi3.5Co0.2Mn0.3Al1.0 의 조성에 맞추어 각 구성원소를 40.0 g이 되도록 정확히 칭량한다. For example, MmNi4.2Co0.2Mn0.3Al0.3, MmNi4.0Co0.2Mn0.5Al0.3, MmNi3.75Co0.2Mn0.75Al0.3, MmNi3.5Co0.2Mn1.0Al0.3, MmNi4.0Co0.2Mn0. According to the composition of 3Al0.5 and MmNi3.5Co0.2Mn0.3Al1.0, each component is weighed accurately to 40.0 g.

그런 다음, 아크로(Arc furnace)에 장입하고 10-3 Torr의 진공이 되게 한다(S1), 다음으로, 산화방지를 위해 99.99%의 고순도 Ar gas를 주입한 상태에서 아크 용해(Arc melting)를 실시한다(S3).Then, it is charged into an arc furnace and vacuumed to 10 -3 Torr (S1). Then, arc melting is performed while injecting 99.99% high purity Ar gas to prevent oxidation. (S3).

그리고, 합금의 균질성을 높이기 위해 INGOT을 뒤집어 가며 3-4회 재 용해 시키며 용해에 따른 무게 변화가 없도록 하고, 제조한 잉곳 표면의 산화막을 제거한다(S5). 잉곳 표면의 산화막을 제거한 후에는 유발을 사용하여 기계적으로 파쇄하여 수소저장합금의 분말(40㎛)을 제조한다(S7).Then, in order to increase the homogeneity of the alloy, the ingot is inverted and re-dissolved 3-4 times, so that there is no weight change due to dissolution, and the oxide film on the surface of the manufactured ingot is removed (S5). After removing the oxide film on the surface of the ingot, using a mortar, mechanically crushed to prepare a powder (40 µm) of the hydrogen storage alloy (S7).

한편, 이러한 수소저장 합금 분말 3.0g을 카본 블랙 0.045g(1.5wt%)과 먼저 유발에서 건조 혼합(dry mixing)한 후, 증점제 HPMC 0.9g (30wt%), 바인더 PTFE 0.09g (3 wt%), 첨가제 바인더 503H 0.09g (3 wt%)를 2 ~ 3분 동안 교반기로 슬러리를 제조한 후, 니켈 시트(3 x 3 cm2)에 도포한다(S9).Meanwhile, 3.0 g of this hydrogen storage alloy powder was first dry mixed with 0.045 g (1.5 wt%) of carbon black, followed by 0.9 g (30 wt%) of thickener HPMC and 0.09 g (3 wt%) of PTFE binder. 0.09 g (3 wt%) of the additive binder 503H was prepared in a stirrer for 2-3 minutes, and then applied to a nickel sheet (3 × 3 cm 2 ) (S9).

그리고, 이 전극은 60℃에서 8시간 동안 오븐에서 건조한 후 2.0 wt%로 희석시킨 PTFE 용액에 침지시킨다(S11).Then, the electrode was dried in an oven at 60 ° C. for 8 hours and then immersed in a PTFE solution diluted to 2.0 wt% (S11).

그리고 60℃ 오븐에서 재건조 시킨 후, 압하율 40-50%로 롤링시켜 전극제작을 완료한다.After redrying in an oven at 60 ° C., rolling is performed at a reduction ratio of 40-50% to complete electrode production.

도 2 및 도 3을 참조하여, 본 발명의 수소저장합금의 전기화학적 특성을 설명하면 다음과 같다.2 and 3, the electrochemical characteristics of the hydrogen storage alloy of the present invention will be described.

상술한 바와 같은 방법으로 제조된 수소저장합금 전극을 작용전극(working electrode)으로 하고 Pt wire 를 대극(counter electrode)으로 하였으며 Hg/HgO (5M KOH) 전극을 참조전극(reference electrode)으로 하는 3전극 셀을 구성하고 전해액으로는 5M KOH 수용액을 사용하여 충방전 및 수명 특성 등의 전기화학적인 평가를 실시하였다.The hydrogen storage alloy electrode manufactured as described above was used as a working electrode, a Pt wire as a counter electrode, and a three-electrode with Hg / HgO (5M KOH) as a reference electrode. Cells were constructed and electrochemical evaluations such as charge and discharge and life characteristics were performed using 5M aqueous KOH solution.

도 2는 본 발명의 제1실시예에 따른 방전특성을 나타내는 도면으로서, Co 함량을 낮추고 Mn 치환량을 증가 시킬 경우(예: MmNi3.5Co0.2Mn1.0Al0.3)의 방전특성을 도시하고 있다.2 is a view showing the discharge characteristics according to the first embodiment of the present invention, showing the discharge characteristics when the Co content is lowered and the Mn substitution amount is increased (for example, MmNi3.5Co0.2Mn1.0Al0.3).

일반적으로 종래의 수소저장합금에서는 Mn 의 첨가량을 증가 시킬 경우 수소 흡장량을 감소시키지 않으면서 수소 해리압을 저하시키는 우수한 특성이 있으나, 충방전 Cycle 에 따라 합금중의 Mn이 전해액으로 용출되어 Cycle 성능이 저하하는 경향을 보이나, 본 발명에서는 Mn 의 양을 일정 수준의 함량 이상으로 증가 시켜도 Cycle 이 감소되지 않고 증가되는 경향을 보여준다.In general, in the conventional hydrogen storage alloy, when the amount of Mn is increased, the hydrogen dissociation pressure is lowered without decreasing the hydrogen storage amount. However, Mn in the alloy is eluted into the electrolyte depending on the charge and discharge cycle. Although this tends to decrease, in the present invention, even if the amount of Mn is increased above a certain level, the cycle does not decrease but increases.

도 3은 본 발명의 제2실시예에 따른 방전특성을 나타내는 도면으로서, Co 함 량을 낮추고 Al 치환량을 증가 시킬 경우 (예: MmNi3.5Co0.2Mn0.3Al1.0)의 방전특성을 도시하고 있다.3 is a view showing the discharge characteristics according to the second embodiment of the present invention, which shows the discharge characteristics when the Co content is lowered and the Al substitution amount is increased (eg, MmNi3.5Co0.2Mn0.3Al1.0). .

도 3에 도시된 바와 같이, 초기성능의 저하 없이 Mn 의 용출 및 Mn 산화물의 석출을 억제시켜 장수명을 유지시켜 준다.As shown in FIG. 3, elution of Mn and precipitation of Mn oxide are suppressed without degrading initial performance to maintain long life.

본 발명은 상술한 실시예에 한정되지 않으며, 첨부된 청구범위에서 알 수 있는 바와 같이 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 정신을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다.The present invention is not limited to the above-described embodiments, and as can be seen in the appended claims, those skilled in the art can make modifications without departing from the spirit of the present invention, and such modifications are possible. Belongs to the scope of.

상기의 구성을 가지는 본 발명에 따른 니켈수소전지는 다음과 같은 효과가 있다.Nickel hydrogen battery according to the present invention having the above configuration has the following effects.

본 발명은 종래 기술의 수소저장합금인 Mm base 의 alloy 에 대해 수소를 안정하게 저장시키고 수소를 활성화시키는 Co 함량을 0.5 이하로 감소 시키고 Mn 및 Al 의 함량을 0.5 이상으로 증가시킴으로써, 수소저장합금의 조성물 중 하나인 Co의 함량을 줄이더라도 전지의 수명특성을 유지할 수 있어 Co 의 함량 감소에 따른 장점으로 비용을 절감하여 원가를 절감할 수 있는 이점이 있다.The present invention is to stably store hydrogen and reduce the Co content for activating hydrogen to 0.5 or less and increase the Mn and Al content to 0.5 or more for the Mm base alloy of the prior art hydrogen storage alloy, Reducing the content of Co, which is one of the compositions, can maintain the lifespan of the battery, thereby reducing costs by reducing the cost of the Co content.

이와 함께, Co의 함량이 감소되면서 야기될 수 있는 수명이 저하하는 문제점을 개선할 뿐만 아니라 Mn 및 Al 함량 증가로 수소평형 해리압이 낮아져 전지의 내압 특성을 개선 할 수 있는 이점이 있다.In addition, as well as improving the problem that the life may be reduced as the content of Co is reduced, there is an advantage that the hydrogen equilibrium dissociation pressure is lowered by increasing the Mn and Al content to improve the breakdown voltage characteristics of the battery.

Claims (7)

La 및 Ce를 함유한 미시메탈계 합금; 및 Micrometallic alloys containing La and Ce; And Ni, Co, Mn 및 Al을 함유한 수소활성제를 포함하며,Hydrogen activators containing Ni, Co, Mn and Al, 상기 Co 는 0.5 at% 이하이고, Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상인 니켈수소전지용 수소저장합금.Co is 0.5 at% or less, and at least one of Mn and Al is 0.5 at% or more hydrogen storage alloy for nickel hydrogen batteries. 제1항에 있어서,The method of claim 1, 상기 Ni는 4.0 at% 이하이고, Co는 0.2 at% 인 것을 특징으로 하는 니켈수소전지용 수소저장합금.The Ni is 4.0 at% or less, Co is 0.2 at% hydrogen storage alloy, characterized in that the nickel. La 및 Ce를 함유한 미시메탈계 합금 및 Ni, Co, Mn 및 Al을 함유한 수소활성제를 포함하며, 상기 Co 는 0.5 at% 이하이고 Mn 및 Al 중 적어도 어느 하나는 0.5 at% 이상인 합금을 아크로(Arc furnace)에 장입하고 아크 용해(Arc melting)를 하는 단계;A micrometal alloy containing La and Ce and a hydrogen activator containing Ni, Co, Mn and Al, wherein Co is 0.5 at% or less and at least one of Mn and Al is at least 0.5 at%. Charging in an arc furnace and performing arc melting; 유발을 사용하여 상기 합금을 파쇄하여 수소저장합금의 분말을 제조하는 단계;Crushing the alloy using a mortar to produce a powder of hydrogen storage alloy; 상기 분말을 카본 블랙과 혼합한 후 슬러리를 제조하여 니켈 시트에 도포하는 단계;Mixing the powder with carbon black and preparing a slurry to apply the powder to the nickel sheet; 상기 니켈 시트에 도포된 슬러리를 건조시키는 단계;Drying the slurry applied to the nickel sheet; 상기 건조된 슬러리를 PTFE 용액에 침지시키는 단계; 및Immersing the dried slurry in a PTFE solution; And 상기 PTFE 용액에 침지된 슬러리를 재 건조시킨 후 롤링하는 단계;Redrying and rolling the slurry immersed in the PTFE solution; 를 수행하는 니켈수소전지용 수소저장합금의 제조방법.Method for producing a hydrogen storage alloy for nickel hydrogen batteries. 제3항에 있어서,The method of claim 3, 상기 아크 용해를 하는 단계는,The arc melting step, 상기 합금을 아크로에 장입한 후 10-3 Torr의 진공 상태로 만드는 것을 특징으로 하는 니켈수소전지용 수소저장합금의 제조방법.After charging the alloy into an arc furnace to produce a hydrogen storage alloy for nickel hydrogen battery, characterized in that the vacuum state of 10 -3 Torr. 제3항에 있어서,The method of claim 3, 상기 분말을 카본 블랙과 혼합한 후 슬러리로 제조하여 니켈 시트에 도포하는 단계에서, 상기 슬러리의 제조는 증점제(HPMC), 바인더(PTFE), 첨가제 바인더(503H)에 의해 이루어지는 것을 특징으로 하는 니켈수소전지용 수소저장합금의 제조방법.In the step of mixing the powder with carbon black and preparing a slurry and applying it to a nickel sheet, the slurry is prepared by thickener (HPMC), binder (PTFE), and additive binder (503H). Method for producing hydrogen storage alloy for batteries. 제3항에 있어서,The method of claim 3, 상기 니켈 시트에 도포된 슬러리를 건조시키는 단계와, 상기 PTFE 용액에 침지된 슬러리를 재 건조시킨 후 롤링하는 단계는 50 내지 70 ℃ 의 온도범위에서 슬러리를 건조시키는 것을 특징으로 하는 니켈수소전지용 수소저장합금의 제조방법.Drying the slurry applied to the nickel sheet, and rolling and re-drying the slurry immersed in the PTFE solution is hydrogen storage for nickel hydrogen batteries, characterized in that for drying the slurry in the temperature range of 50 to 70 ℃ Method of producing an alloy. 제3항에 있어서,The method of claim 3, 아크 용해를 하는 단계를 거친 후, 잉곳을 뒤집어 가며 3 내지 4 회 재 용해시키고, 상기 잉곳 표면의 산화막을 제거하는 단계를 더 수행하는 것을 특징으로 하는 니켈수소전지용 수소저장합금의 제조방법.After the arc melting step, the ingot is turned over and re-dissolved three to four times, the method for producing a hydrogen storage alloy for nickel hydrogen battery, characterized in that further performing the step of removing the oxide film on the surface of the ingot.
KR1020060130216A 2006-12-19 2006-12-19 Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same KR100829931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060130216A KR100829931B1 (en) 2006-12-19 2006-12-19 Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060130216A KR100829931B1 (en) 2006-12-19 2006-12-19 Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same

Publications (1)

Publication Number Publication Date
KR100829931B1 true KR100829931B1 (en) 2008-05-19

Family

ID=39664419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060130216A KR100829931B1 (en) 2006-12-19 2006-12-19 Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR100829931B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201364A (en) * 1989-12-26 1991-09-03 Yuasa Battery Co Ltd Hydrogen storage electrode and nickel-hydrogen battery
KR970703437A (en) * 1995-04-03 1997-07-03 이노우에 유스케 Rare earth metal-nickel hydrogen storage alloy, preparation method, and nickel-hydrogen two-dimensional battery negative electrode
KR980006580A (en) * 1996-06-28 1998-03-30 키타지마 마시카즈 Battery hydrogen storage alloy
KR20020032455A (en) * 2002-02-23 2002-05-03 정우조 Material with high performance and large capacity for secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201364A (en) * 1989-12-26 1991-09-03 Yuasa Battery Co Ltd Hydrogen storage electrode and nickel-hydrogen battery
KR970703437A (en) * 1995-04-03 1997-07-03 이노우에 유스케 Rare earth metal-nickel hydrogen storage alloy, preparation method, and nickel-hydrogen two-dimensional battery negative electrode
KR980006580A (en) * 1996-06-28 1998-03-30 키타지마 마시카즈 Battery hydrogen storage alloy
KR20020032455A (en) * 2002-02-23 2002-05-03 정우조 Material with high performance and large capacity for secondary battery

Similar Documents

Publication Publication Date Title
EP2045856B1 (en) Alkaline storage battery system
JPH02277737A (en) Electrode made of hydrogen storage alloy
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
JP2006012839A (en) Alkaline battery having improved lifetime
KR100829931B1 (en) Metallic alloy for hydrogen storage of ni-mh battery and manufacturing method of the same
JPH04212269A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP4183292B2 (en) Secondary battery
CN1288773C (en) Method for preparing titanium-vanadium based solid solution hydride alloy electrode
WO2014050075A1 (en) Storage cell system
CN1812169A (en) Titanyl and vanadium radical sosoloid alloy hydride electrode material and preperative method
CN114725363B (en) V-base hydrogen storage alloy for nickel-hydrogen battery cathode and preparation method and application thereof
CN204102994U (en) Nickel-hydrogen secondary cell
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP3369148B2 (en) Alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
CN105355895A (en) Active material of nickel metal hydride battery anode, preparation method and application of nickel metal hydride battery anode
JP2854920B2 (en) Nickel-metal hydride battery
JPH11191412A (en) Alkaline storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120503

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee