KR100806837B1 - Method for forming salicide of semiconductor device - Google Patents

Method for forming salicide of semiconductor device Download PDF

Info

Publication number
KR100806837B1
KR100806837B1 KR1020010087251A KR20010087251A KR100806837B1 KR 100806837 B1 KR100806837 B1 KR 100806837B1 KR 1020010087251 A KR1020010087251 A KR 1020010087251A KR 20010087251 A KR20010087251 A KR 20010087251A KR 100806837 B1 KR100806837 B1 KR 100806837B1
Authority
KR
South Korea
Prior art keywords
salicide
forming
layer
gate electrode
semiconductor device
Prior art date
Application number
KR1020010087251A
Other languages
Korean (ko)
Other versions
KR20030056910A (en
Inventor
류혁현
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020010087251A priority Critical patent/KR100806837B1/en
Publication of KR20030056910A publication Critical patent/KR20030056910A/en
Application granted granted Critical
Publication of KR100806837B1 publication Critical patent/KR100806837B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체 기판 상에 게이트 전극들을 형성하고, 소오스/드레인 이온 주입을 하는 단계; 상기 게이트 전극의 상부를 선택적으로 패터닝하여 홈을 형성하는 단계; 상기 전면에 살리사이드 형성용 물질층은 150Å 두께의 코발트 또는 250Å 두께의 티타늄 나이트라이드로 형성하고, 열처리 공정으로 상기 게이트 전극 및 소오스/드레인 영역의 표면에 살리사이드층을 형성하는 단계를 포함하여 이루어진다.The present invention comprises the steps of forming gate electrodes on a semiconductor substrate and performing source / drain ion implantation; Selectively patterning an upper portion of the gate electrode to form a groove; The material layer for forming a salicide on the front surface is formed of 150 트 thick cobalt or 250 Å thick titanium nitride, and forming a salicide layer on the surface of the gate electrode and the source / drain region by a heat treatment process. .

살리사이드 Salicide

Description

반도체 소자의 살리사이드 형성 방법{Method for forming salicide of semiconductor device}Method for forming salicide of semiconductor device

도 1a내지 도 1d는 종래 기술의 반도체 소자의 살리사이드 형성 방법을 나타낸 공정 단면도1A to 1D are cross-sectional views illustrating a method of forming a salicide of a semiconductor device of the prior art.

도 2a내지 도 2d는 본 발명에 따른 반도체 소자의 살리사이드 형성 방법을 나타낸 공정 단면도2A to 2D are cross-sectional views illustrating a method of forming a salicide of a semiconductor device according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

21 : 반도체 기판 22 : 소자 격리층21 semiconductor substrate 22 device isolation layer

23 : 게이트 산화막 24 : 게이트 전극23 gate oxide film 24 gate electrode

25 : LDD 영역 26 : 제 1 게이트 측벽25 LDD region 26 first gate sidewall

27 : 제 2 게이트 측벽 28 : 소오스/드레인 영역27: second gate sidewall 28: source / drain region

29 : 살리사이드 형성용 물질층 30 : 살리사이드층29: material layer for forming a salicide 30: salicide layer

본 발명은 반도체 소자의 제조에 관한 것으로, 특히 게이트 전극의 표면에 형성하는 살리사이드의 면저항을 개선하는 데 적당한 반도체 소자의 살리사이드 형 성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of semiconductor devices, and more particularly to a method for forming a salicide of a semiconductor device suitable for improving the sheet resistance of the salicide formed on the surface of the gate electrode.

일반적으로 고속의 반도체 소자를 구성하기 위하여 게이트 전극과 소오스/드레인 영역의 면저항과 콘택 저항을 감소시켜야 한다.In general, in order to form a high-speed semiconductor device, the sheet resistance and the contact resistance of the gate electrode and the source / drain regions should be reduced.

이를 위하여, 게이트 전극과 소오스/드레인 영역에만 선택적으로 비저항이 낮은 실리사이드(silicide)를 형성시키는 살리사이드(Self-Aligned silicide) 공정이 널리 사용되고 있다.To this end, a salicide (Self-Aligned silicide) process of forming a silicide (Siicide) having a low specific resistance selectively to the gate electrode and the source / drain region is widely used.

특히 1G 이상의 DRAM 또는 로직(logic) 및 통합 메모리 로직(Merged Memory Logic; MML) 소자 등의 게이트 특성을 향상시키기 위해 살리사이드 게이트 공정이 많이 적용되고 있다.In particular, salicide gate processes have been widely applied to improve gate characteristics of 1G DRAM or more logic and integrated memory logic (MML) devices.

이하, 첨부된 도면을 참고하여 종래 기술의 반도체 소자의 살리사이드층 형성 공정에 관하여 설명하면 다음과 같다.Hereinafter, a salicide layer forming process of a semiconductor device of the prior art will be described with reference to the accompanying drawings.

도 1a내지 도 1d는 종래 기술의 반도체 소자의 살리사이드 형성을 위한 공정 단면도이다.1A to 1D are cross-sectional views of a process for forming a salicide of a semiconductor device of the prior art.

먼저, 도 1a에서와 같이, 반도체 기판(1)에 트렌치를 형성하고 절연 물질을 매립하는 STI(Shallow Trench Isolation) 공정으로 소자 격리층(2)을 형성하여 액티브 영역을 정의한다.First, as shown in FIG. 1A, the device isolation layer 2 is formed by a shallow trench isolation (STI) process in which a trench is formed in the semiconductor substrate 1 and an insulating material is embedded to define an active region.

그리고, 상기 반도체 기판(1) 상에 게이트 산화막(3)을 형성하고, 상기 게이트 산화막(3) 상에 게이트 전극용 폴리실리콘막(4)을 형성한다.A gate oxide film 3 is formed on the semiconductor substrate 1, and a polysilicon film 4 for gate electrodes is formed on the gate oxide film 3.

이어, 도 1b에서와 같이, 상기 폴리실리콘막(4) 상에 감광막(도시하지 않음)을 도포하고 노광 및 현상공정으로 패터닝하여 게이트 전극 영역을 정의한 후, 상 기 패터닝된 감광막을 마스크로 이용하여 상기 폴리실리콘막(4)을 선택적으로 제거하여 게이트 전극(4)을 형성한다.Subsequently, as shown in FIG. 1B, a photoresist (not shown) is coated on the polysilicon layer 4 and patterned by an exposure and development process to define a gate electrode region, and then the patterned photoresist is used as a mask. The polysilicon film 4 is selectively removed to form a gate electrode 4.

그리고, 상기 게이트 전극(4)을 마스크로 하여 저농도의 불순물 이온을 주입하여 LDD 영역(5)을 형성한다.The LDD region 5 is formed by implanting impurity ions of low concentration using the gate electrode 4 as a mask.

이어, 전면에 제 1,2 게이트 측벽 형성용 물질층을 증착하고 이방성 식각하여 제 1,2 게이트 측벽(6)(7)을 형성한다.Subsequently, the first and second gate sidewalls 6 and 7 are formed by depositing and anisotropically etching the material layers for forming the first and second gate sidewalls.

그리고, 전면에 포토레지스트를 도포하고 선택적으로 패터닝하여 트랜지스터 형성 영역이 오픈되는 포토레지스트 패턴층(도시하지 않음)을 형성한다.Then, photoresist is applied to the entire surface and selectively patterned to form a photoresist pattern layer (not shown) in which the transistor formation region is opened.

이어, 상기 포토레지스트 패턴층을 마스크로 하여 고농도의 불순물 이온을 주입하여 트랜지스터의 소오스/드레인 영역(8)을 형성한다.Subsequently, a high concentration of impurity ions are implanted using the photoresist pattern layer as a mask to form a source / drain region 8 of the transistor.

그리고 도 1c에서와 같이, 전면에 살리사이드 형성용 금속층(9)으로 Co 또는 Ti을 증착한다.1C, Co or Ti is deposited on the entire surface of the salicide-forming metal layer 9.

이어, 도 1d에서와 같이, RTP(Rapid Thermal Process) 공정을 진행하여 살리사이드층(10)을 형성한 후, 미반응의 살리사이드 형성용 금속층을 제거한다.Subsequently, as shown in FIG. 1D, after forming a salicide layer 10 by performing a rapid thermal process (RTP) process, an unreacted salicide-forming metal layer is removed.

이후, BLC(Bit Line Contact) 공정을 위한 제 1 절연막(도시하지 않음)을 형성하고, 전면에 ILD(Inter Layer Dielectric)층으로 제 2 절연막(도시하지 않음)을 형성한다.Thereafter, a first insulating film (not shown) for a bit line contact (BLC) process is formed, and a second insulating film (not shown) is formed on an entire surface of the interlayer dielectric (ILD) layer.

그리고, 상기 제 2 절연막을 평탄화한 후에 전면에 포토레지스트를 도포하고 선택적으로 패터닝하여 비트 라인 콘택 영역을 정의하는 포토레지스트 패턴층(도시하지 않음)을 형성한 후, 상기 포토레지스트 패턴층을 마스크로 하여 노출된 절연 층을 식각하여 비트라인 콘택홀을 형성한 후에 도전성 물질층 콘택홀내에 매립하여 비트라인 콘택층을 형성한다.After the second insulating film is planarized, a photoresist is coated on the entire surface and selectively patterned to form a photoresist pattern layer (not shown) defining a bit line contact region, and then the photoresist pattern layer is used as a mask. The exposed insulating layer is etched to form the bit line contact hole, and then is embedded in the conductive material layer contact hole to form the bit line contact layer.

그러나 이와 같은 종래 기술의 반도체 소자의 살리사이드층 형성 공정은 다음과 같은 문제점이 있다.However, the salicide layer forming process of the semiconductor device of the prior art has the following problems.

살리사이드 형성 후에 진행되는 열공정에 의하여 살리사이드의 면저항(sheet resistance : Rs)이 증가하며, 특히 반도체 소자의 고집적화에 따라 게이트 전극의 선폭이 줄어들기 때문에 점점 더 열화되는 현상을 보인다.The sheet resistance (Ss) of the salicide increases by the thermal process performed after the formation of the salicide, and in particular, since the line width of the gate electrode decreases due to the high integration of the semiconductor device, the deterioration phenomenon gradually increases.

본 발명은 이와 같은 종래 기술의 반도체 소자의 살리사이드층 형성 공정의 문제를 해결하기 위한 것으로, 본 발명은 단면적을 증가시킨 게이트 전극 상부에 살리사이드를 형성함으로써, 살리사이드의 면저항특성을 개선하는 데 적당한 반도체 소자의 살리사이드 형성 방법을 제공하는데 그 목적이 있다.The present invention is to solve the problem of the salicide layer forming process of the prior art semiconductor device, the present invention is to improve the sheet resistance characteristics of the salicide by forming a salicide on the gate electrode having an increased cross-sectional area It is an object to provide a method for forming a salicide of a suitable semiconductor device.

이와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 살리사이드 형성 방법은 반도체 기판 상에 게이트 전극들을 형성하고, 소오스/드레인 이온 주입을 하는 단계; 상기 게이트 전극의 상부를 선택적으로 패터닝하여 홈을 형성하는 단계; 상기 전면에 살리사이드 형성용 물질층은 150Å 두께의 코발트 또는 250Å 두께의 티타늄 나이트라이드로 형성하고, 열처리 공정으로 상기 게이트 전극 및 소오스/드레인 영역의 표면에 살리사이드층을 형성하는 단계를 포함함을 특징으로 한다.Salicide forming method of a semiconductor device according to the present invention for achieving the above object comprises the steps of forming a gate electrode on the semiconductor substrate, source / drain ion implantation; Selectively patterning an upper portion of the gate electrode to form a groove; The material layer for forming a salicide on the front surface is formed of 150 트 thick cobalt or 250 Å thick titanium nitride, and forming a salicide layer on the surface of the gate electrode and the source / drain region by a heat treatment process. It features.

이하, 첨부된 도면을 참고하여 본 발명에 따른 반도체 소자의 살리사이드 형 성 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a salicide forming method of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2a내지 도 2d는 본 발명에 따른 반도체 소자의 살리사이드 형성을 위한 공정 단면도이다.2A to 2D are cross-sectional views illustrating a process for forming a salicide of a semiconductor device according to the present invention.

먼저, 도 2a에서와 같이, 반도체 기판(21)에 트렌치를 형성하고 절연 물질을 매립하는 STI(Shallow Trench Isolation) 공정으로 소자 격리층(22)을 형성하여 액티브 영역을 정의한다.First, as shown in FIG. 2A, the device isolation layer 22 is formed by a shallow trench isolation (STI) process in which a trench is formed in the semiconductor substrate 21 and an insulating material is embedded to define an active region.

그리고 전면에 게이트 산화막(23), 게이트 형성용 물질층을 차례로 증착하고 선택적으로 패터닝하여 게이트 전극(24)을 형성한다.In addition, the gate oxide layer 23 and the gate forming material layer are sequentially deposited on the front surface and selectively patterned to form the gate electrode 24.

여기서, 상기 게이트 형성용 물질층은 폴리실리콘을 재료로 하여 2000∼2500Å의 두께로 형성한다.Here, the gate forming material layer is formed to have a thickness of 2000 to 2500 kPa using polysilicon as a material.

이어, 상기 게이트 전극(24)을 마스크로 하여 저농도의 불순물 이온을 주입하여 LDD 영역(25)을 형성한다.Subsequently, a low concentration of impurity ions are implanted using the gate electrode 24 as a mask to form the LDD region 25.

또한, 전면에 제 1,2 게이트 측벽 형성용 물질층을 증착하고 이방성 식각하여 제 1,2 게이트 측벽(26)(27)을 형성한다.In addition, the first and second gate sidewalls 26 and 27 are formed by depositing and anisotropically etching the material layers for forming the first and second gate sidewalls.

여기서, 제 1 게이트 측벽 형성용 물질층으로 HLD막을 100∼200Å의 두께로 형성하고, 제 2 게이트 측벽 형성용 물질층으로 질화막을 600∼1000Å의 두께로 형성한다.Here, the HLD film is formed to have a thickness of 100 to 200 GPa with the first gate sidewall forming material layer, and the nitride film is formed to have a thickness of 600 to 1000 GPa with the second gate sidewall forming material layer.

이어, 액티브 영역의 반도체 기판(21)에 고농도의 불순물 이온을 주입한 후, 열처리하여 트랜지스터의 소오스/드레인 영역(28)을 형성한다.Subsequently, a high concentration of impurity ions are implanted into the semiconductor substrate 21 in the active region, followed by heat treatment to form the source / drain regions 28 of the transistor.

그리고 도 2b에서와 같이, 전면에 포토레지스터를 도포하고 노광 및 현상공 정을 통해 선택적으로 패터닝하여 포토레지스트 패턴층(도시하지 않음)을 형성한 후, 상기 포토레지스트 패턴층을 마스크로 하여 상기 게이트 전극(24)의 상부에 500∼700Å의 깊이를 갖는 홈을 형성한다.As shown in FIG. 2B, a photoresist is applied to the entire surface and selectively patterned through exposure and development processes to form a photoresist pattern layer (not shown), and then the gate using the photoresist pattern layer as a mask. Grooves having a depth of 500 to 700 Å are formed in the upper portion of the electrode 24.

이때, 상기 게이트 전극(24)의 폴리실리콘층은 凹의 형태로 형성된다.At this time, the polysilicon layer of the gate electrode 24 is formed in the shape of 凹.

이어, 도 2c에서와 같이, 상기 포토레지스트 패턴층을 제거한 후, 전면에 살리사이드 형성용 물질층(29)으로 코발트(Co) 또는 티타늄 나이트라이드(TiN)를 증착한다.Subsequently, as shown in FIG. 2C, after the photoresist pattern layer is removed, cobalt (Co) or titanium nitride (TiN) is deposited on the entire surface of the salicide forming material layer 29.

이때, 살리사이드 형성용 물질층(29)이 코발트인 경우 150Å의 두께로 형성하고, 티타늄 나이트라이드인 경우 250Å의 두께로 형성한다.At this time, when the salicide forming material layer 29 is cobalt, it is formed to a thickness of 150 kPa, and in the case of titanium nitride, it is formed to a thickness of 250 kPa.

이어, 도 2d에서와 같이, RTP(Rapid Thermal Process) 공정을 통해 살리사이드 형성용 물질층과 실리콘과의 반응을 유도하여 살리사이드층(30)을 형성한 후, 미반응의 살리사이드 형성용 물질층(29)을 습식 식각 공정으로 제거한다.Subsequently, as shown in FIG. 2D, a salicide layer 30 is formed by inducing a reaction between the salicide forming material layer and silicon through a rapid thermal process (RTP) process, and then an unreacted salicide forming material. Layer 29 is removed by a wet etch process.

이때, 상기 살리사이드층(30)은 凹 형태의 게이트 전극(24) 및 소오스/드레인(28) 상에 형성된다.In this case, the salicide layer 30 is formed on the gate electrode 24 and the source / drain 28 having a fin shape.

이후, 전면에 BLC(Bit Line Contact) 공정을 위한 절연막(도시하지 않음)과 전면에 ILD(Inter Layer Dielectric)층으로 BPSG(Boron Phosphorus Silicate Glass)을 증착하여 절연층(도시하지 않음)을 형성한다.Subsequently, an insulating layer (not shown) is formed by depositing a BPSG (Boron Phosphorus Silicate Glass) with an insulating film for a BLC process (BLC) on the front surface and an inter layer dielectric (ILD) layer on the front surface. .

또한, 비트 라인 콘택 영역을 정의하는 포토레지스트 패턴(도시하지 않음)을 형성한 후, 상기 포토레지스트 패턴을 마스크로 하여 노출된 절연층을 식각하여 비트라인 콘택홀을 형성한 후에 도전성 물질층 콘택홀내에 매립하여 비트라인 콘택( 도시하지 않음)을 형성한다.In addition, after forming a photoresist pattern (not shown) defining a bit line contact region, the exposed insulating layer is etched using the photoresist pattern as a mask to form a bit line contact hole, and then a conductive material layer contact hole. Buried in to form bit line contacts (not shown).

이와 같은 본 발명에 따른 반도체 소자의 살리사이드 형성 방법은 다음과 같은 효과가 있다.The salicide formation method of the semiconductor device according to the present invention has the following effects.

본 발명은 게이트 전극 상에 홈을 형성하여 단면적을 증가시킴으로써, 게이트 전극 상에 형성되는 살리사이드의 면적을 증가시킬 수 있다.The present invention can increase the area of the salicide formed on the gate electrode by increasing the cross-sectional area by forming a groove on the gate electrode.

이에 따라 살리사이드의 면저항 특성을 개선할 수 있으므로 고집적 소자에서 저항의 증가를 방지할 수 있는 효과가 있다.Accordingly, since the sheet resistance property of the salicide can be improved, there is an effect of preventing the increase of the resistance in the highly integrated device.

Claims (3)

반도체 기판 상에 게이트 전극들을 형성하고, 소오스/드레인 이온 주입을 하는 단계;Forming gate electrodes on the semiconductor substrate and performing source / drain ion implantation; 상기 게이트 전극의 상부를 선택적으로 패터닝하여 홈을 형성하는 단계; Selectively patterning an upper portion of the gate electrode to form a groove; 상기 전면에 살리사이드 형성용 물질층은 150Å 두께의 코발트 또는 250Å 두께의 티타늄 나이트라이드로 형성하고, 열처리 공정으로 상기 게이트 전극 및 소오스/드레인 영역의 표면에 살리사이드층을 형성하는 단계를 포함함을 특징으로 하는 반도체 소자의 살리사이드 형성 방법.The material layer for forming a salicide on the front surface is formed of 150 트 thick cobalt or 250 Å thick titanium nitride, and forming a salicide layer on the surface of the gate electrode and the source / drain region by a heat treatment process. Salicide formation method of a semiconductor device characterized by the above-mentioned. 제 1 항에 있어서, The method of claim 1, 상기 게이트 전극에 형성하는 홈은 500∼700Å 깊이의 凹 형태를 갖도록 형성함을 특징으로 하는 반도체 소자의 살리사이드 형성 방법.The groove formed in the gate electrode is formed so as to have a 500 shape of 500 ~ 700 Å depth Salicide forming method of a semiconductor device. 삭제delete
KR1020010087251A 2001-12-28 2001-12-28 Method for forming salicide of semiconductor device KR100806837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010087251A KR100806837B1 (en) 2001-12-28 2001-12-28 Method for forming salicide of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010087251A KR100806837B1 (en) 2001-12-28 2001-12-28 Method for forming salicide of semiconductor device

Publications (2)

Publication Number Publication Date
KR20030056910A KR20030056910A (en) 2003-07-04
KR100806837B1 true KR100806837B1 (en) 2008-02-25

Family

ID=32215058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010087251A KR100806837B1 (en) 2001-12-28 2001-12-28 Method for forming salicide of semiconductor device

Country Status (1)

Country Link
KR (1) KR100806837B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442153B1 (en) * 2002-09-17 2004-07-27 아남반도체 주식회사 Method for forming a silicide gate line in a semiconductor dual damascene structure
KR101068137B1 (en) * 2004-04-19 2011-09-27 매그나칩 반도체 유한회사 Method for manufacturing high voltage transistor
KR101068140B1 (en) * 2004-05-12 2011-09-27 매그나칩 반도체 유한회사 Method of manufacturing semiconductor device
KR101150756B1 (en) * 2004-11-23 2012-06-08 매그나칩 반도체 유한회사 method for manufacturing semiconductor device
CN103794480B (en) * 2012-10-29 2016-06-01 中芯国际集成电路制造(上海)有限公司 The manufacture method of a kind of semiconducter device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003972A (en) * 1998-06-30 2000-01-25 김영환 Method for forming a polycide gate electrode of semiconductor device
KR20010026811A (en) * 1999-09-09 2001-04-06 박종섭 Method of manufacturing a transistor in a semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003972A (en) * 1998-06-30 2000-01-25 김영환 Method for forming a polycide gate electrode of semiconductor device
KR20010026811A (en) * 1999-09-09 2001-04-06 박종섭 Method of manufacturing a transistor in a semiconductor device

Also Published As

Publication number Publication date
KR20030056910A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
KR20020003027A (en) Method for forming a self aligned contact in a damascene metal gate
KR100806837B1 (en) Method for forming salicide of semiconductor device
KR100348316B1 (en) Method for Fabricating of Semiconductor Device
KR100492155B1 (en) Method for forming silicide layer of semiconductor device
KR100811386B1 (en) Semiconductor device and method for fabricating the same
KR100400784B1 (en) Method for forming salicide of semiconductor device
KR20060073818A (en) Method for manufacturing contact of semiconductor device
KR100744228B1 (en) Fabrication method of semiconductor device
KR100419068B1 (en) Method for manufacturing MOS transistor
KR20050052027A (en) Semiconductor device having a recessed gate electrode and fabrication method thereof
KR100713927B1 (en) Method of manufacturing semiconductor device
KR100806836B1 (en) Method for forming salicide of semiconductor device
KR100560632B1 (en) Method of fabricating semiconductor device using metal salicide
KR101012438B1 (en) Method of manufacturing semiconductor device
KR100641470B1 (en) Method for manufacturing low power cmos device
KR20000055596A (en) Method for forming gate electrode with polycide structure
KR100589498B1 (en) Method of manufacturing semiconductor device
KR101024252B1 (en) Method for fabrication of semiconductor device
KR100604811B1 (en) Method for forming gate electrode having increased area served for silicidation
KR100791691B1 (en) Structure and method for manufacturing mos transistor
KR100478479B1 (en) Method for manufacturing MOS transistor
KR100678005B1 (en) Fabrication method of semiconductor device
KR100298463B1 (en) Method for manufacturing semiconductor device the same
KR100400780B1 (en) Method for fabricating of semiconductor device
KR100236094B1 (en) Method of forming contact of semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140116

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee