KR100775240B1 - Hot metal pretreatment for improving desulfurizing efficiency - Google Patents

Hot metal pretreatment for improving desulfurizing efficiency Download PDF

Info

Publication number
KR100775240B1
KR100775240B1 KR1020010033758A KR20010033758A KR100775240B1 KR 100775240 B1 KR100775240 B1 KR 100775240B1 KR 1020010033758 A KR1020010033758 A KR 1020010033758A KR 20010033758 A KR20010033758 A KR 20010033758A KR 100775240 B1 KR100775240 B1 KR 100775240B1
Authority
KR
South Korea
Prior art keywords
slag
molten iron
converter
desorbent
degassing
Prior art date
Application number
KR1020010033758A
Other languages
Korean (ko)
Other versions
KR20020095615A (en
Inventor
지용태
이경목
안승환
김정식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010033758A priority Critical patent/KR100775240B1/en
Publication of KR20020095615A publication Critical patent/KR20020095615A/en
Application granted granted Critical
Publication of KR100775240B1 publication Critical patent/KR100775240B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

본 발명은 고로 용선을 토페도카로 출선하여 전로에 장입하기전에 탈류처리하는 용선예비처리방법에 관한 것으로, 그 목적은 탈류처리전 용선슬라그에 전로슬라그를 투입하여 용선슬라그의 염기도를 높임과 동시에 용선슬라그의 점도를 낮추어 탈류효율을 향상시키는 용선예비처리방법을 제공함에 있다.
The present invention relates to a molten iron preliminary treatment method for degassing the blast furnace molten iron to topeka before charging to the converter, the object of the present invention is to increase the basicity of the molten iron slag by adding the converter slag to the molten iron slag before the deflow treatment It is to provide a molten iron preliminary treatment method for improving the degassing efficiency by lowering the viscosity of the slag.

상기 목적을 달성하기 위한 본 발명은, 고로의 용선을 토페도카로 출선하여 예비처리하는 방법에 있어서, 상기 토페도카의 용선슬라그에 전로슬라그를 용선톤당 1.0~2.0kg 투입하는 단계, 상기 용선에 탈류제를 투입하여 탈류하는 단계를 포함하여 이루어지는 탈류효율향상을 위한 용선의 예비처리방법에 관한 것을 그 기술적요지로 한다. In the present invention for achieving the above object, in the method of preliminary treatment by releasing the molten iron of the blast furnace with topedoca, the step of injecting the converter slag 1.0 to 2.0kg per ton of molten iron of the topedoca, to the molten iron The technical gist of the present invention relates to a method for preliminary treatment of molten iron for improving the degassing efficiency, comprising the step of introducing a desulfurizing agent.

용선의 예비처리, 탈류, 탈규, 풍쇄슬라그 Pretreatment of molten iron

Description

탈류효율향상을 위한 용선의 예비처리방법{Hot metal pretreatment for improving desulfurizing efficiency}Hot metal pretreatment for improving desulfurizing efficiency

도 1은 고로에서 연속주조까지의 제조공정도.1 is a manufacturing process diagram from the blast furnace to continuous casting.

도 2는 용선예비처리공정에서 분체취입에 의한 탈류조업개략도.Figure 2 is a schematic diagram of the dehydration operation by blowing the powder in the molten iron preliminary treatment process.

도 3은 용선슬라그의 염기도에 따른 [S]의 분배비를 나타내는 그래프.3 is a graph showing the distribution ratio of [S] according to the basicity of molten iron slag.

도 4는 종래의 탈류처리공정에서 용선/슬라그 계면에서의 탈류반응 모식도.Figure 4 is a schematic diagram of the deflow reaction at the molten iron / slag interface in the conventional deflow treatment process.

도 5는 본 발명에 따라 풍쇄슬라그 투입할 때 풍쇄슬라그의 역할 및 Figure 5 is the role of the wind slag when the slag is injected in accordance with the present invention and

탈류반응 모식도.       Schematic of dehydration reaction.

도 6은 전로슬라그 투입량에 따른 염기도 및 탈류제의 반응효율을 나타내는 Figure 6 shows the reaction efficiency of the basicity and the desorbent according to the converter slag dosage

모식도.       Schematic diagram.

도 7은 풍쇄슬라그 투입시 탈류율 및 탈류제 반응효율을 비교하여  7 compares the dehydration rate and the desorbent reaction efficiency during the input of the wind-chain slag

나타낸 그래프.
Graph shown.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10..... 저장탱크 20..... 디스펜서           10 ..... storage tank 20 ..... dispenser

30..... 토페도카 40..... 인젝션 랜스
30 ..... Topedoka 40 ..... Injection Lance

본 발명은 고로 용선을 토페도카로 출선하여 전로에 장입하기전에 탈류처리하는 용선예비처리방법에 관한 것으로, 보다 상세하게는 탈류처리전 용선슬라그에 전로슬라그를 투입하여 용선슬라그의 염기도를 높임과 동시에 용선슬라그의 점도를 낮추어 탈류효율을 향상시키는 용선예비처리방법에 관한 것이다.
The present invention relates to a molten iron preliminary treatment method for degassing the blast furnace molten iron to Topedoka before charging to the converter, and more specifically, to increase the basicity of the molten iron slag by injecting the converter slag into the molten iron slag prior to dewatering treatment It relates to a molten iron preliminary treatment method for improving the degassing efficiency by lowering the viscosity of the molten iron slag.

고로제강법은 도 1에 나타난 바와 같이 제선-제강-연속주조공정으로 이루어진다. 고로에서 토페도카로 출선된 용선은 전로에 장입전에 탈린, 탈류 등의 사전처리를 하는데, 이 공정을 용선예비처리라 한다. 용선을 전로에 장입하기 전에 예비처리하는 것은 유황이 환원반응에 의해 제거되는데 반해, 산소취련을 실시하는 전로는 강산화성 분위기여서 전로에서 탈류반응이 제한적으로 일어날 수 밖에 없기 때문이다. 결국, 전로 노내에서는 현저한 탈황효과를 기대할 수 없기 때문에 극저류강을 제조하기 위해서는 용선예비처리 공정에서 전로에 장입되는 용선의 유황성분을 낮추는 것이 필요하다.
The blast furnace steelmaking method consists of a steelmaking-steelmaking-continuous casting process as shown in FIG. The chartered ship from the blast furnace to Topedoca is pretreated with delineation and dewatering before charging the converter. This process is called charter pretreatment. Pretreatment of the molten iron before charging it to the converter is because sulfur is removed by the reduction reaction, whereas the converter for oxygen scavenging has a strong oxidizing atmosphere, so that the dehydration reaction in the converter is limited. As a result, since significant desulfurization effects cannot be expected in the converter furnace, it is necessary to lower the sulfur content of the molten iron charged into the converter in the molten iron preliminary treatment process in order to manufacture the cryogenic steel.

용선예비처리에서 탈류처리는 최근 강에 대한 품질요구가 엄격해 지면서 슬라브의 내부품질을 확보하는 것과 함께 강의 취성에 민감한 유황을 낮은 수준으로 낮추기 위해서 그 적용이 늘고 있는 실정이다. 특히, 유황이 약 50ppm 이하의 극저 류강 생산에 있어서 전로 출강후 이차정련에서의 공정부하를 저감하기 위하여 용선예비처리 공정에서 탈류조업을 강화하고 있는 추세이다.
In the charter preliminary treatment, dehydration treatment is increasing in order to secure the internal quality of slabs and lower sulfur susceptibility sensitive to the brittleness of steel as the quality requirements for steel have become stricter. In particular, in the production of ultra-low flow steel of about 50 ppm or less of sulfur, the desulfurization operation is being strengthened in the charter preparation process in order to reduce the process load in the secondary refining after the converter is pulled out.

예비처리공정에서 분체취입에 의한 탈류처리방법의 예가 도 2에 나타나 있다. 토페도(Torpedo)의 용선에 랜스(40)를 침적시킨 상태에서의 랜스홀(Hole)로 분체(powder)의 용선탈류제(CaO 또는 CaC2)를 질소가스와 같이 용선에 취입하여 용선중의 유황을 저감시킨다. 탈류반응은 크게 두가지로 일어난다. 즉, 용선에 취입된 탈류제 계면에서 용선의 유황과 반응하는 일시적인(Transitory) 탈류반응과 용선 상부의 슬라그와 용선계면에서 일어나는 영구적인(Permanent) 탈류반응이 있다. 일시적인 탈류반응은 탈류제가 투입시에만 일어나는 반면, 영구적인 탈류반응은 지속적으로 일어난다.
An example of the degassing treatment method by blowing the powder in the pretreatment process is shown in FIG. 2. The molten iron desorbent (CaO or CaC 2 ) of the powder is blown into the molten iron, such as nitrogen gas, by a lance hole in which the lance 40 is deposited on the molten iron of Torpedo. To reduce sulfur. There are two major dehydration reactions. That is, there is a transient dehydration reaction with the sulfur of the molten iron at the desorbent interface blown into the molten iron and a permanent dehydration reaction occurring at the slag and the molten iron interface above the molten iron. Temporary dehydration occurs only when the desorbent is added, while permanent dehydration occurs continuously.

일반적으로 사용되는 용선탈류제의 탈류반응식은 다음과 같다. The deflow reaction formula of the molten iron desorbent generally used is as follows.

[CaC2분체를 사용하는 경우][When using CaC 2 powder]

CaC2 + S = CaS +2CCaC 2 + S = CaS + 2C

CaC2 + FeS = CaS +2C +Fe
CaC 2 + FeS = CaS + 2C + Fe

[CaO분체를 취입하는 경우] [When CaO powder is blown]                         

2FeS +4CaO +Si =2Fe +2CaS + Ca2SiO4 2FeS + 4CaO + Si = 2Fe + 2CaS + Ca2SiO 4

2FeS +2CaO +Si =2Fe +2CaS +SiO2
2FeS + 2CaO + Si = 2Fe + 2CaS + SiO 2

그런데, 고로에서 출선시 유출된 슬라그의 염기도 즉, 탈류처리전 슬라그 염기도(CaO/SiO2)는 평균 1.10(0.80~1.35)로 낮다. 도 3에서 보는 바와 같이, 슬라그의 염기도가 낮을수록 유황 포집능력이 낮다. 특히, 고로에서 출선시 용선을 탈규처리하는 경우에는 탈규반응에 의해 생성된 SiO2에 의해 염기도가 평균 0.80(0.34~1.13)로 낮아져 탈류효율이 더욱 낮아진다. 탈규조업은 전로조업중 발생되는 슬로핑(Slopping)을 저감하기 위하여 용선의 규소([Si])성분을 전로 장입전에 낮추는 것으로, 그 반응 식은 다음과 같다. However, the basicity of the slag which flowed out from the blast furnace, that is, the slag basicity (CaO / SiO 2 ) before the dehydration treatment, was low at an average of 1.10 (0.80 to 1.35). As shown in FIG. 3, the lower the basicity of the slag, the lower the sulfur trapping ability. In particular, when degreasing the molten iron in the blast furnace, the basicity is lowered to 0.80 (0.34 to 1.13) by SiO 2 generated by the desilification reaction, which further lowers the degassing efficiency. De-silification industry is to lower the silicon ([Si] component of molten iron before charging the converter in order to reduce the slipping generated in the converter operation, the reaction formula is as follows.

[Si]+2FeO(고체산소)→SiO2+2Fe[Si] + 2FeO (Solid Oxygen) → SiO 2 + 2Fe

상기와 같은 탈규처리에서 반응물로 생성된 SiO2로 인해 슬라그의 양도 일반용선 대비 많아 지기 때문에 탈류효율이 낮아 탈류제 원단위 증가, 탈류처리시간 증대 등 탈류처리시 부하가 증가된다.
Due to the SiO 2 produced as a reactant in the above desulfurization treatment, the amount of slag is also increased compared to general molten iron, so the degassing efficiency is low, thereby increasing the load during the degassing treatment such as an increase in the amount of desorbent and an increase in the degassing treatment time.

따라서, 종래의 용선 비처리공정에서는 탈류제를 취입하기전에 저염기도의 슬래그를 배재하여 탈류처리하였다. 그러나, 슬라그 배재작업을 하기 위해서는 별도의 슬라그 배재설비와 슬라그 배재 작업을 실시하기 위해 15분 정도의 시간이 필요하게 되어 전체 생산성을 저하시키는 요인으로 작용하였다.
Therefore, in the conventional molten iron non-treatment process, the slag of the low base degree was removed and subjected to the deflow treatment before blowing the desorbent. However, in order to perform slag excavation work, it takes about 15 minutes to perform separate slag excavation equipment and slag excavation work, which acted as a factor that lowers the overall productivity.

본 발명에서는 용선예비처리공정에서 특히 탈규처리한 용선의 경우에 슬라그의 배재작업 없이 용선슬라그를 개질시켜 탈류효율을 높일 수 있는 예비처리방법을 제공하는데, 그 목적이 있다.
The present invention is to provide a preliminary treatment method to improve the degassing efficiency by reforming the molten iron slag without the slag excavation work in the case of molten iron in the molten iron preliminary treatment step, the object is.

상기 목적을 달성하기 위한 본 발명의 예비처리방법은, The pretreatment method of the present invention for achieving the above object,

토페도카로 출선된 용선의 슬라그에 전로슬라그를 용선톤당 1.0~2.0kg 투입하여 고염기도화하는 단계, Injecting converter slag 1.0 ~ 2.0kg per ton of molten iron from the top of the chartered topedoka,

상기 용선에 탈류제를 투입하여 탈류하는 단계를 포함하여 구성된다.
It is configured to include the step of dewatering by introducing a desorbent to the molten iron.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 탈류반응효율을 높이기 위한 연구과정에서 저염기도이면서 고점도의 용선슬라그에서는 유황 포집능력([S] Capacity)이 떨어질 뿐 아니라, 용선슬라그가 탈류제를 도 4에서와 같이 코팅하여 탈류반응을 저하시키고 또한 부상되는 탈류제를 조대화시켜 반응계면적을 감소시킨다는 원인을 찾을 수 있었다. In the research process to improve the degassing reaction efficiency, the inventors of the present invention not only have low sulfur collection capacity ([S] Capacity) in the molten slag of low viscosity but also high viscosity, and the molten iron slag is coated with a desorbent as shown in FIG. And lowering the reaction area by coordinating the floating desorbent.                     

이러한 연구결과를 바탕으로, 용선슬라그에 전로슬라그 특히, 입자가 작고 구형의 풍쇄슬라그를 투입한 결과, 반응계면적이 넓어서 도 5에서 알 수 있는 바와 같이, 용선슬라그의 개질효과가 크다는 것을 알 수 있었다.
Based on the results of this study, converter slag, especially particles and spherical wind-clad slag, was added to the molten iron slag. As a result, the reaction surface area was wide, and as shown in FIG. 5, the reforming effect of the molten iron slag was large. there was.

본 발명에서는 통상의 방법에 따라 토페도카로 출선된 용선의 탈류처리전에 용선슬라그에 전로슬라그를 투입한다. 물론, 고로에서 토페도카로 출선할 때 탈규처리의 유무에 관계없이 본 발명이 적용된다. In the present invention, the converter slag is introduced into the molten iron slag before the dewatering treatment of the molten iron taken out of the topedoca in accordance with a conventional method. Of course, the present invention is applied regardless of the presence or absence of desulfurization treatment when departing from the blast furnace to topedoca.

전로슬라그는 염기도가 높으며, 일반슬라그와 풍쇄슬라그로 분리된다. 일반슬라그는 전로슬라그를 수냉, 건조시켜 파쇄시킨 것이다. 또한, 풍쇄슬라그는 전로에서 취련 및 출강후 노내에 남아 있던 용융전로슬라그를 배재하여 별도의 풍쇄처리장치에 의하여 풍쇄(風碎)한 것이다. 풍쇄처리는 통상 용융전로슬라그를 낙하시키면서 고속기류를 내뿜어서 풍쇄한다. 일반슬라그와 풍쇄슬라그의 차이는 입자의 크기와 형상에 차이가 있으며, 그 성분의 일례가 표 1에 제시되어 있다.Converter slag has high basicity and is divided into general slab and wind-chain slag. General slag is a crushed by drying and cooling the converter slag. In addition, the blow-off slag is blown by a separate blow-off treatment apparatus by excluding the molten converter slag remaining in the furnace after the blowing and tapping in the converter. The air blowing treatment blows out the high speed air stream while dropping the molten converter slag. The difference between the normal slag and the wind slag is different in the size and shape of the particles, an example of the components are shown in Table 1.

구분division 형상shape 크기size 주요성분(%)main ingredient(%) 용융점Melting point 풍쇄슬라그Windbreak Slag 구(ball)형Ball type 1~4mm≥90%, 1mm이하≤10%1 ~ 4mm≥90%, 1mm or less≤10% T.Fe:18~25%, CaO:38~46, SiO2:8~15%, MgO:7~10%, 기타 Al2O3 등 (염기도 3.5)T.Fe: 18 to 25%, CaO: 38 to 46, SiO 2 : 8 to 15%, MgO: 7 to 10%, other Al 2 O 3 etc. (base degree 3.5) 1350℃1350 ℃ 일반슬라그General slag 각형Square 5~15mm≥90% 기타≤10%5 ~ 15mm≥90% Others≤10%

본 발명에서는 입자가 작고 구형으로 반응계면적이 넓다는 측면을 고려하여 풍쇄슬라그를 이용하는 것이 바람직하다. In the present invention, it is preferable to use air-chain slag in consideration of the fact that the particles are small and the spheres have a wide reaction surface area.

본 발명에 따라 용선슬라그에 전로슬라그를 용선톤당 1.0~2.0kg 투입하는 것이 바람직하다. 전로슬라그의 투입량이 1.0kg/용선-톤 미만의 경우에는 염기도의 증가가 크지 않아 탈류제 반응효율이 낮으며, 2.0kg/용선-톤 보다 많이 첨가하는 경우에는 도 6에 나타나 있듯이, 용선슬라그의 염기도를 증가시키거나 점도를 낮추는 효과 보다는 오히려 온도를 하락시켜 탈류효율을 저감시킨다.
According to the present invention, it is preferable to add 1.0-2.0 kg of molten slag to the molten iron slag. When the input amount of the converter slag is less than 1.0 kg / melting-ton, the increase of basicity is not large, and thus the desorbent reaction efficiency is low, and when more than 2.0 kg / melting-ton is added, as shown in FIG. Rather than increasing the basicity or lowering the viscosity, the temperature is reduced to reduce the deflowing efficiency.

상기와 같이 용선슬라그에 전로슬라그를 투입한 다음에는 통상의 방법에 따라 탈류제를 투입하여 탈류처리할 수도 있으나, 탈류처리전 버블링을 실시하는 것이 바람직하다. 버블링작업을 통해 투입된 전로슬라그가 용선슬라그와 교반되면서 고점도, 저염기도의 용선슬라그를 저점도, 고염기도의 용선슬라그로 개질시켜 탈류제 분체 취입후에도 슬라그와 용선계면에서의 탈류능이 증대되기 때문이다. 버블링은 풍쇄슬라그의 충분한 효과를 보기 위해서는 2~3분정도 하는 것이 바람직하다. 물론, 버블링을 오래할수록 용선슬라그의 개질측면에서는 좋으나, 과다한 버블링 작업은 랜스의 수명하락과 작업시간을 증대시킬 수 있다.
After the converter slag is introduced into the molten iron slag as described above, the desulfurizing agent may be added by a conventional method, and the degassing treatment may be performed. As converter slag injected through bubbling operation is stirred with molten iron slag, the molten slag of high viscosity and low base airway is reformed into molten slag of low viscosity and high base airway, so that the dewatering ability in slag and molten iron surface is increased even after blowing the desorbent powder. Because. Bubbling is preferably about 2 to 3 minutes in order to see the full effect of the wind slag. Of course, the longer the bubbling, the better in terms of reforming the molten iron slag, but excessive bubbling can increase the life of the lance and increase the working time.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

고로에서 용선을 출선하여 용선예비처리 공정에 도착한 용선의 성분 및 도착온도는 아래 표 2와 같다. The components and arrival temperatures of the molten iron which has been chartered in the blast furnace and arrived at the molten iron preliminary treatment process are shown in Table 2 below.                     

구분division CC SiSi MnMn PP SS 온도(℃)Temperature (℃) 성분ingredient 4.0~4.54.0 ~ 4.5 0.25~1.000.25-1.00 0.25~0.450.25-0.45 0.090~0.1100.090-0.110 0.015~0.0500.015 ~ 0.050 1350~14501350-1450

표 2의 용선에 상기한 표 1의 풍쇄슬라그와 일반 전로슬라그를 표 3의 방법에 따라 투입하였다. In the molten iron of Table 2, the above-mentioned wind-breaking slag and general converter slag were added according to the method of Table 3.

구분 division                                              조업방법Operation method 종래방법Conventional method 탈류장 도착→샘플링→랜스하강 및 탈류제 분체 취입→취입완료 및 랜스상승→샘플링→탈류장 출발Arrive at the depot → Sampling → Lower the lance and blow the desorbent powder → Complete the blow up and raise the lance → Sampling → Departure 발명예Inventive Example 1One 탈류장 도착→샘플링→풍쇄슬라그를 토페도카 상부에 투입→랜스하강 및 탈류제 분체 취입→취입완료 및 랜스상승→샘플링→탈류장 출발Arrival at the depot → Sampling → Blowing slag into the upper part of Topedo → Lowering the lance and blowing the desorbent powder → Complete the blow and raise the lance → Sampling → Departure 22 탈류장 도착→샘플링→풍쇄슬라그를 토페도카 상부에 투입→랜스하강 및 전버블링(2~3분)→탈류제 분체 취입→취입완료 및 랜스상승→샘플링→탈류장 출발Arrival at the depot → Sampling → Blowing slag into the top of Topedoca → Lance descent and total bubbling (2 ~ 3 min) → Blowing out the desorbent powder → Blowing up and lance rise → Sampling → Departure 33 탈류장 도착→샘플링→풍쇄슬라그를 토페도카 상부에 투입→랜스하강 및 전버블링(5~6분)→탈류제 분체 취입→취입완료 및 랜스상승→샘플링→탈류장 출발Arrival at the depot → Sampling → Blowing slag into the top of Topedoca → Lance descent and total bubbling (5-6 minutes) → Deodorant powder injection → Blow up and lance rise → Sampling → Departure

표 3의 방법에 따라 표 1의 용선 1톤당 1.0kg의 풍쇄슬라그를 투입한 다음에 CaO계 탈류제를 투입하고 그 결과를 표 4에 나타내었다. According to the method of Table 3, 1.0kg of the wind-chain slag per ton of molten iron of Table 1 was added, followed by CaO-based desorbent and the results are shown in Table 4.

구분division 탈류전[S]Before desulfurization [S] 탈류후[S]After degassing [S] 탈류제 원단위Desorbent Unit 탈류율Discharge rate 탈류제 반응효율Desorbent Reaction Efficiency 종래Conventional 205ppm205 ppm 55ppm55 ppm 9.09kg/용선-톤9.09 kg / melt-ton 73.0%73.0% 2.90%2.90% 발명예1Inventive Example 1 212ppm212 ppm 43ppm43 ppm 8.84kg/용선-톤8.84 kg / melting-ton 79.7%79.7% 3.34%3.34% 발명예2Inventive Example 2 210ppm210 ppm 35ppm35 ppm 7.88kg/용선-톤7.88kg / melt-ton 83.3%83.3% 3.89%3.89% 발명예3Inventive Example 3 198ppm198 ppm 32ppm32 ppm 7.44kg/용선-톤7.44kg / melt-ton 83.8%83.8% 3.90%3.90%

Figure 112001014311207-pat00001
여기서, Mx(x의 분자량), Wsteel(용선 선출량, kg), Wcax(CaO 또는 CaC2 투입량, kg), [%S]i,f(탈류전, 후 [S] 농도, %)
Figure 112001014311207-pat00001
Where M x (molecular weight of x), W steel ( melting elect, kg), W cax (CaO or CaC 2 dose, kg), [% S] i, f (concentration before and after [S],% )

표 4에 나타난 바와 같이, 발명예 1 특히 발명예 2, 3에서는 종래 대비 우수한 탈류율과 탈류제 반응효율을 보이고 있다.
As shown in Table 4, Inventive Example 1, particularly Inventive Examples 2, 3 shows excellent dehydration rate and desorbent reaction efficiency compared to the prior art.

[실시예 2]Example 2

실시예 1의 표 3의 발명예 2의 방법과 같이 풍쇄슬라그를 투입할 때 풍쇄슬라그 투입량과 탈류후 슬라그의 염기도 변화 및 CaO 탈류제 반응효율을 조사하여 도 6에 나타내었다.
In the same manner as in the method of Inventive Example 2 of Table 3 of Example 1, the input amount of the air chain slag, the basicity change of the slag after dehydration, and the reaction efficiency of CaO desorbent were shown in FIG. 6.

도 6에서 알 수 있는 바와 같이, 풍쇄슬라그를 투입함에 따른 탈류후의 염기도는 증가하지만, 탈류제 반응효율은 풍쇄슬라그량이 증가하였다가 점차 감소하였다. 이것은 풍쇄슬라그 투입량이 많아지면 용선 슬라그의 점도를 낮추거나 염기도를 증가시키는 효과 보다 오히려 온도를 하락시켜 탈류효율을 저감시키기 때문에 탈류효율측면에서 풍쇄슬라그의 투입량은 1.0~2.0kg/용선-톤이 가장 유리하다.
As can be seen in Figure 6, the basicity after degassing with the addition of the air-chain slag increases, but the degassing agent reaction efficiency increased and then gradually decreased the amount of the air-chain slag. This is because, when the amount of blown slag is increased, the amount of blown slag is 1.0 ~ 2.0kg / melter-ton in terms of the efficiency of dewatering, since the temperature is reduced to reduce the degassing efficiency rather than lowering the viscosity of molten iron slag or increasing the basicity. Most advantageous.

[실시예 3]Example 3

종래의 방법으로 탈류처리하였을 때 탈류제 반응효율과 표 1에 있는 2가지 종류의 슬라그를 탈류제 투입전에 투입하고 버블링할 때의 반응효율을 비교하여 표 5에 나타내었다. When the dehydration treatment by the conventional method, the desorbent reaction efficiency and the two types of slag in Table 1 were compared before the desorbent input and the reaction efficiency when bubbling is shown in Table 5.

용선탈류제Molten iron 일반용선(비탈규용선)General charter ships 탈규용선Degreasing Charter 종래예Conventional example 발명예4Inventive Example 4 발명예5Inventive Example 5 종래예Conventional example 발명예6Inventive Example 6 발명예7Inventive Example 7 CaC2사용Use CaC 2 TLC 수TLC number 5252 2121 77 1616 88 66 탈류전[S](10-3%)Before desulfurization [S] (10-3%) 21.021.0 20.020.0 18.718.7 20.020.0 19.119.1 20.020.0 탈류후[S](10-3%)After degassing [S] (10-3%) 3.13.1 3.43.4 3.33.3 4.34.3 3.43.4 4.44.4 탈류제 원단위(KG/T-P)Desorbent Unit (KG / T-P) 5.695.69 4.594.59 4.674.67 5.785.78 5.475.47 5.595.59 탈류제 반응효율(%)Desorbent Reaction Efficiency (%) 5.575.57 6.166.16 5.695.69 4.744.74 4.984.98 4.884.88 CaO사용CaO use TLC 수TLC number 8282 1010 1010 6868 1414 1010 탈류전[S](10-3%)Before desulfurization [S] (10-3%) 20.620.6 20.720.7 21.721.7 19.519.5 19.219.2 19.819.8 탈류후[S](10-3%)After degassing [S] (10-3%) 4.24.2 4.54.5 4.74.7 4.64.6 4.14.1 4.54.5 탈류제 원단위(KG/T-P)Desorbent Unit (KG / T-P) 9.369.36 7.597.59 8.928.92 10.3210.32 8.298.29 8.678.67 탈류제 반응효율(%)Desorbent Reaction Efficiency (%) 3.053.05 3.673.67 3.343.34 2.532.53 3.143.14 3.093.09

표 5에 나타난 바와 같이, 발명예(4, 6)의 경우에는 풍쇄슬라그를 사용한 경우이고, 발명예(5, 7)의 경우에는 일반 슬라그를 사용한 경우이다. As shown in Table 5, in the case of invention examples (4, 6), it is a case where a wind-chain slag is used, and in the case of invention examples (5, 7), it is a case where a general slag is used.

발명예(4~7)의 경우 모두 종래의 방법 보다는 우수한 탈류제 반응효율을 보이고 있으며, 크기가 작고 구형의 풍쇄슬라그 즉, 발명예(4, 7)의 경우일 때 CaC2탈류제나 CaO탈류제를 사용할 때 모두 우수하였다. 용선조건으로 볼 때도 일반용선이나 고로에서 탈규한 용선 모두에서 탈류율 향상 효과가 있었다. 이는 도 5에서 보는 바와 같이 크기가 작고 구형일수록 용선슬라그의 반응계면적이 넓어서 기존 고점도, 저염기도의 용선슬라그 개질효과가 크기 때문이다.
In the case of Inventive Examples (4-7), all showed better desorbent reaction efficiency than the conventional method, and in case of small and spherical wind-chain slag, that is, in the case of Inventive Examples (4, 7), CaC 2 desorbent or CaO dehydration All were excellent when using the agent. In terms of the molten iron condition, the degassing rate was improved in both the molten iron and the molten iron from the blast furnace. This is because the smaller the size and the more spherical, the larger the reaction surface area of the molten iron slag is, the larger the effect of modifying the molten iron slag of the existing high viscosity and low base air.

도 7에서 보는 바와 같이, 풍쇄슬라그 투입에 의한 탈류제 반응효율 향상으로 탈류제 투입원단위는 기존 대비 감소하였으며, 동시에 동등한 탈류율을 확보할 수 있었다. 그리고, 탈류제 투입원단위 감소 즉, 취입시간 감소에 따른 처리시간도 CaO계 탈류제는 4~6분 감소, CaC2계 탈류제는 2~4분 감소하였다.
As shown in FIG. 7, the desorbent input unit was reduced compared to the conventional unit due to the improvement of the desorbent reaction efficiency by the input of the wind-chain slag, and at the same time, it was possible to secure an equal deflow rate. In addition, the treatment time according to the reduction of the input unit of the desorbent, that is, the reduction of the blowing time, also decreased the CaO-based desorbent by 4-6 minutes, and the CaC 2- based desorbent by 2-4 minutes.

상술한 바와 같이, 본 발명에서는 탈류제 투입전에 풍쇄슬라그 투입에 의하여 용선슬라그의 점도개선과 염기도 향상으로 탈류제 반응효율을 향상시킴으로 탈류효율을 증대시킬 뿐만 아니라, 전로에서 발생되는 슬라그를 재활용에 의해 폐기물 발생량의 저감, 탈류제 사용량의 저감으로 원가절감이 가능할 수 있다.  As described above, the present invention not only increases the degassing efficiency by improving the degassing agent reaction efficiency by improving the viscosity of the molten iron slag and improving the basicity of the molten iron slag by adding the wind-chain slag before the desorbing agent, but also recycles the slag generated in the converter. As a result, the cost can be reduced by reducing the amount of waste generated and the amount of desorbent used.

Claims (4)

고로의 용선을 토페도카로 출선하여 예비처리하는 방법에 있어서, In the method of preliminary treatment of the molten iron of the blast furnace with topedoca, 상기 토페도카에 출선된 용선슬라그에 전로슬라그를 용선톤당 1.0~2.0kg 투입하는 단계, Injecting converter slag 1.0 to 2.0kg per ton of molten iron in the molten iron slag to the toppedo, 상기 용선에 탈류제를 투입하여 탈류하는 단계를 포함하여 이루어지는 탈류효율향상을 위한 용선의 예비처리방법. Method of preliminary treatment of the molten iron for improving the degassing efficiency comprising the step of injecting a desorbing agent to the molten iron. 제 1항에 있어서, 상기 전로슬라그를 투입하고 용선을 2~3분 버블링함을 특징으로 하는 탈류효율향상을 위한 용선의 예비처리방법. The method of claim 1, wherein the converter slag is injected and the molten iron is bubbled for 2-3 minutes. 제 1항 또는 제 2항에 있어서, 상기 전로슬라그는 전로 풍쇄슬라그임을 특징으로 하는 탈류효율향상을 위한 용선의 예비처리방법. The method according to claim 1 or 2, wherein the converter slag is a converter blow-off slag. 삭제delete
KR1020010033758A 2001-06-15 2001-06-15 Hot metal pretreatment for improving desulfurizing efficiency KR100775240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010033758A KR100775240B1 (en) 2001-06-15 2001-06-15 Hot metal pretreatment for improving desulfurizing efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010033758A KR100775240B1 (en) 2001-06-15 2001-06-15 Hot metal pretreatment for improving desulfurizing efficiency

Publications (2)

Publication Number Publication Date
KR20020095615A KR20020095615A (en) 2002-12-28
KR100775240B1 true KR100775240B1 (en) 2007-11-12

Family

ID=27709326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010033758A KR100775240B1 (en) 2001-06-15 2001-06-15 Hot metal pretreatment for improving desulfurizing efficiency

Country Status (1)

Country Link
KR (1) KR100775240B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928999B1 (en) 2007-12-28 2009-11-26 주식회사 포스코 Sulfur removal method in molten iron desulfurization slag

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121216A (en) * 1978-03-14 1979-09-20 Sumitomo Metal Ind Ltd Desulfurization of molten iron
JPS61261415A (en) * 1985-05-15 1986-11-19 Mitsubishi Heavy Ind Ltd Continuous production of steel
JPH032308A (en) * 1989-05-31 1991-01-08 Nkk Corp Method for pre-treating molten iron
JPH04120209A (en) * 1990-09-10 1992-04-21 Sumitomo Metal Ind Ltd Slag forming agent reutilizing converter slag
KR100265006B1 (en) * 1996-12-20 2000-09-01 이구택 The wet desuphurization method for used converter slag
KR20010036627A (en) * 1999-10-11 2001-05-07 이구택 Method for improving desulfurization ratio of desiliconized molten pig iron in hot metal pretreatment
KR20010104526A (en) * 2000-05-15 2001-11-26 이구택 Process for desulfurizing desiliconized molten iron by using ladle slag
KR100413823B1 (en) * 1999-12-28 2003-12-31 주식회사 포스코 Desulphurization method of desiliconized hot metal in mechanical stirrer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121216A (en) * 1978-03-14 1979-09-20 Sumitomo Metal Ind Ltd Desulfurization of molten iron
JPS61261415A (en) * 1985-05-15 1986-11-19 Mitsubishi Heavy Ind Ltd Continuous production of steel
JPH032308A (en) * 1989-05-31 1991-01-08 Nkk Corp Method for pre-treating molten iron
JPH04120209A (en) * 1990-09-10 1992-04-21 Sumitomo Metal Ind Ltd Slag forming agent reutilizing converter slag
KR100265006B1 (en) * 1996-12-20 2000-09-01 이구택 The wet desuphurization method for used converter slag
KR20010036627A (en) * 1999-10-11 2001-05-07 이구택 Method for improving desulfurization ratio of desiliconized molten pig iron in hot metal pretreatment
KR100413823B1 (en) * 1999-12-28 2003-12-31 주식회사 포스코 Desulphurization method of desiliconized hot metal in mechanical stirrer
KR20010104526A (en) * 2000-05-15 2001-11-26 이구택 Process for desulfurizing desiliconized molten iron by using ladle slag

Also Published As

Publication number Publication date
KR20020095615A (en) 2002-12-28

Similar Documents

Publication Publication Date Title
CN101660021B (en) Method for desulfurizing ultra-low carbon pure steel in circulating vacuum degassing method
KR100775240B1 (en) Hot metal pretreatment for improving desulfurizing efficiency
KR20080059226A (en) Method of hot metal dephosphorization treatment
KR100749022B1 (en) Method for desulfurization of hot metal
KR100476808B1 (en) A method of operating converter without slopping
JP2976852B2 (en) Manufacturing method of low sulfur steel with reduced killing time.
US6015448A (en) Process for pig iron desulphurization
KR100896641B1 (en) Method for Desulphurization-Refining Molten Pig Iron
KR100391908B1 (en) Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality
KR100402011B1 (en) Method for improving desulfurization ratio of desiliconized molten pig iron in hot metal pretreatment
JP4406142B2 (en) Hot phosphorus dephosphorization method
CN109735684A (en) A method of improving Tempered Steel Containing Sulphur castability and transverse impact toughness
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
JP4701752B2 (en) Hot metal pretreatment method
KR20010104526A (en) Process for desulfurizing desiliconized molten iron by using ladle slag
JP7468567B2 (en) Method for denitrification of molten steel
JP3823877B2 (en) Method for producing low phosphorus hot metal
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
KR101091956B1 (en) Method for desulfurizing molten metal
JPH0665625A (en) Desulphurization method for molten steel
JP4205818B2 (en) Dephosphorization method for hot metal using decarburized slag
JPH11217623A (en) Method for refining molten steel in refluxing type vacuum degassing apparatus
KR19990048928A (en) Desulfurization Method of Cryogenic Cryogenic Carbon
CN114737024A (en) Method for desulfurizing semisteel through vanadium extraction in converter
CN118326117A (en) Preparation process of low-carbon clean steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161027

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181102

Year of fee payment: 12