KR100753897B1 - 향상된 에너지효율을 갖는 유체 펌프 - Google Patents
향상된 에너지효율을 갖는 유체 펌프 Download PDFInfo
- Publication number
- KR100753897B1 KR100753897B1 KR1020027009338A KR20027009338A KR100753897B1 KR 100753897 B1 KR100753897 B1 KR 100753897B1 KR 1020027009338 A KR1020027009338 A KR 1020027009338A KR 20027009338 A KR20027009338 A KR 20027009338A KR 100753897 B1 KR100753897 B1 KR 100753897B1
- Authority
- KR
- South Korea
- Prior art keywords
- fluid
- pumping element
- outlet
- engine
- secondary pumping
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/06—Engines with means for equalising torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B63/00—Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
- F02B63/06—Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/22—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
- F04B49/24—Bypassing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Rotary Pumps (AREA)
Abstract
유체압력 목표치가 달성될 때, 재순환의 사용을 통해 하나의 펌핑요소를 언로딩함으로써 구동력소비를 감소시키는 다른 시스템 또는 엔진용 이중 펌핑요소를 갖는 유체 시스템(10). 교차포트 유체 시스템은 무부하 펌프(38)의 공동화를 방지한다. 압력이 작용되는 유동제어밸브 메카니즘은, 2차 펌프(38)로부터 통로를 패쇄 또는 개방하기 위해 사용된다. 유체 시스템은 고속에서 적절하지 않은 기어 부하를 없이하여 저속에서 기어 걸러덕거림을 제어하는 엔진 밸런스축(12, 14) 시스템과 결합하여 작동한다.
Description
본 발명은 엔진용 유체 펌프 시스템 또는 다른 시스템에 관한 것이다. 더욱 구체적으로, 본 발명은, 소정 유체압력 이상에서 엔진이 동작될 때의 시스템 외의 하나의 펌핑요소를 효과적으로 스위칭함으로써, 구동력 소비의 감소를 얻는 이중 펌핑요소를 갖는 시스템에 관한 것이다.
유체압력 시스템, 및 특히 오일펌프 시스템은 종래에 잘 알려져 있다. 통상의 오일펌프 시스템에 있어서, 오일펌프는 엔진 크랭크축에 의해 구동되고, 엔진 앞 또는 오일 팬 안에 위치한다. 오일펌프가 크랭크축에 의해 구동되기 때문에, 오일압력을 저속으로 유지시키는데 필요한 유동체적에 의해 결정되는 엔진 크랭크축에 대한 회전비는 고정되어서 작동된다. 이 비율은 과도한 유동체적을 생산하지만, 더 높은 엔진속도에서는 현저한 에너지손실을 일으킬 수 있다. 게다가, 오일펌프가 엔진 앞에 위치할 경우, 그것을 수용하기에 충분한 공간이 제공되어야만 한다.
엔진 진동에 밸런스를 유지하고 엔진 노이즈를 줄이기 위해, 어떤 엔진에 대한 이중엔진 밸런스축의 사용이 종래에 알려져 있다. 이중엔진 밸런스축의 사용의 예로서는 크리슬러 모터스 코포레이션에 의한 미국특허 제4,703,724호 및 제너럴 모터스 코포레이션에 의한 미국특허 제5,535,643호에 나타나 있다. 동작시, 밸런스 축은, 두번째에 크랭크축 속도로 회전시키기 위해 엔진 크랭크축과 연결된다. 또한 두개의 밸런스축도 서로의 측면의 언밸런스를 없애기 위해 반대방향으로 회전한다. 이 밸런스축들은 연결로드와 왕복피스톤조립체의 가속 및 감속에 의한 수직 요동력을 균형있게 한다.
상기 밸런스축의 사용에는, 점화 및 압축 스트로크가 크랭크축 회전을 가속 및 감속을 교대로 한다는 문제점이 있다. 이들 크랭크축의 각가속도는 모든 엔진속도에서 나타난다. 그러나, 저속에서 가장 큰 "강성체 운동" 각변위는, 에너지 회전 관성에 의한 운동에너지(속도의 제곱 함수)의 저장용량이 낮아지고, 가속 단계 동안 높아진다.
저속 엔진 동작에서 가장 큰 이 강성체 운동은, 두개의 반대로 회전하는 밸런스축의 입력축을 빠르게 하다가 느리게 하는 것을 교대로 함으로써, 기어흔들림을 발생시킬 수 있다. 맞물림 간극 또는 두 기어의 톱니 사이의 백래시를 개방한 후 시끄럽게 패쇄하고, 그 때문에 밸런스축은 그들 관성의 힘으로 회전속도를 일정하게 유지시키도록 한다.
이들 진동 및 노이즈문제를 줄이기 위해, 엔진 밸런스축에 대해 단일 오일펌프를 결합하는 것이 공지이다. 그러나, 이것은 연료효율을 감소시키고 더 많은 엔진동력을 사용하는 비효율적인 시스템이 얻어지게 한다. 게다가, 과잉 펌프 유동체적으로부터 엔진동력 사용이 증가되기 때문에, 엔진은, 오일펌프를 구동시키는데 바람직한 것 보다 더 많은 노이즈와 더 높은 오일온도를 일으킬 수 있다.
유체제어밸브에 의한 두개 이상의 펌프를 상호연결하는 것이 펌프기술로서 일반적으로 알려져 있지만, 한쌍의 밸런스축 시스템 내에 기어흔들림의 저속문제를 제어하기 위한 저속 보조펌프의 비용면에서 효과적인 사용은 아니다. 이러한 일반적인 펌프기술의 예로서는 미국특허 제4,306,840호, 동4,245,964호, 및 동4,832,579호에 나타나있다. 이들 일반적인 펌프기술도, 오일팬이나 오일통으로부터 오일을 들어올리는 대기압력 이하에서 동작하는 공통되는 입구 매니폴드에 일방향 밸브를 지나쳐서 교환된 펌프의 출력을 방출하기 때문에, 에너지효율을 최대로 얻는데는 실패하였다.
본 발명의 목적은 펌프시스템의 효율을 증가시키면서 노이즈를 줄이는 이중펌프 유체 펌핑 시스템을 제공하는 것이다.
본 발명의 다른 목적은, 연료절약성이 증가된 엔진을 제공하기 위해, 엔진 밸런스축과 연결되어 구동하는 용적형 펌프시스템을 제공하는 것이다.
본 발명의 또 다른 목적은, 기어 덜거덕거림 경향을 줄이고 노이즈문제를 해결하고, 더 고속에서 드래그 토크를 최소화하기 위해 시스템의 외부에서 효율적으로 스위칭할 수 있는 2차 용적형 펌프를 이용하는 것이다.
본 발명의 다른 목적은, 유동제어 시스템의 비용 및 복잡성을 최소로 하는 감지된 압력에 의존하는 시스템에서의 유체의 유동을 조절하는 신뢰성 있는 저가의 유체제어밸브를 제공하는 것이다.
본 발명에 따른 또 다른 목적은, 저속에서 톱니맞물림의 무부하를 방지하기에 충분한 기어 상에 정상 토크 부하를 제공하기 위해, 용적형 펌프를 밸런스축에 연결하여, 기어맞물림 중의 노이즈를 최소화하는 것이다.
본 발명의 목적에 따라, 이중 펌프 시스템이 제공된다. 이중 펌프 시스템의 예로서는 한쌍의 엔진 밸런스축을 갖는 엔진을 포함한다. 이 엔진 밸런스축은, 엔진이 작동할 때마다 동작하는 1차 용적형 펌프와 연결되어서 구동된다. 2차 용적형 펌프는 제2 엔진 밸런스축과 연결된다. 2차 용적형 펌프는, 낮은 엔진속도로도 그것의 가득한 출력 유동을 엔진에 공급한다. 1차 용적형 펌프 및 2차 용적형 펌프는, 엔진내의 오일압력이 소정 레벨에 도달할 때, 유체의 유동을 엔진에서 떨어져 2차 용적형 펌프로부터 딴 데로 돌리도록 동작하는 유체제어밸브에 의해 상호연결된다. 이것은, 유체제어밸브가 재순환 통로의 개방을 초기화하는 위치로 이동하도록 되는 임계치레벨에 유체의 압력이 도달할 때에, 발생하기 시작한다. 이 압력이 임계치레벨 이상의 더 높은 레벨로 증가할 때, 2차 용적형 펌프로부터의 출력이 엔진으로부터 완전히 벗어나서 그 자신의 흡입구로 재순환된다.
재순환시 2차 용적형 펌프의 공동화(cavitation)를 방지하기 위해, 유체의 소량공급은, 2차 펌프의 배출통로로부터 제어된 역류에 의해, 또는 흐름 제한된 교차포트를 통해 1차 용적형 펌프의 출구로부터 2차 용적형 펌프의 입구로 지나간다. 또한, 릴리프밸브는, 압력을 유지하면서 오일통으로 되돌리기 위해 과잉체적을 허가하는 엔진에 연결된 1차 용적형 펌프의 출력라인에서 이용할 수 있다.
첨부한 도면 및 청구항을 일치하여 보면, 본 발명의 이점 및 다른 특징들은 발명의 이하 설명으로부터 명백해 질 것이다.
도 1은 본 발명의 바람직한 실시예에 따른 에너지효율을 갖는 오일펌프 시스템의 투시도,
도 2는, 압력이 임계치레벨 이하일 경우의 본 발명에 따른 초기위치 및 유동회로에서 유체제어밸브의 개략도,
도 3은, 압력이 임계치레벨에 정확하게 도달한 경우의 제2위치에서 유체제어밸브의 바람직한 실시예에 대한 유동회로의 개략도,
도 4는, 2차 펌프의 재순환 통로를 부분적으로 개방하면서, 2차 용적형 펌프로부터 엔진에 출력되는 오일과, 2차 용적형 펌프에 입력되는 오일의 유동을 차단하기 위해 개시되는 유체제어밸브의 제3위치에서의 유체제어밸브의 바람직한 실시예에 대한 유동회로의 개략도,
도 5는, 2차 펌프의 재순환 통로가 충분히 열려 있고 릴리프밸브를 열려고 하면서, 2차 용적형 펌프로부터 엔진으로의 오일의 출력과 2차 용적형 펌프로의 오일의 입력을 완전히 차단하는 제4위치에 있어서의 유체제어밸브의 바람직한 실시예에 대한 유동회로의 개략도,
도 6은, 개방위치에서 1차 용적형 펌프에 대한 릴리프밸브를 갖는 제5위치에 있어서의 유체제어밸브의 바람직한 실시예에 대한 유동회로의 개략도,
도 7은, 본 발명에 따른 전자적으로 제어된 유체제어밸브를 사용하는 또 다른 바람직한 실시예에 대한 유동회로의 개략도,
도 8은, 본 발명에 따른 에너지효율을 갖는 펌프 시스템과 종래의 펌프에 대 한 유체 펌프의 체적 대 엔진속도를 도표로 나타낸 그래프,
도 9는, 개방위치에서 1차 용적형 펌프에 대한 릴리프밸브를 갖는 제5위치에서의 유체제어밸브의 또 다른 바람직한 실시예에 대한 유동회로의 개략도,
도 10은, 본 발명의 바람직한 실시예에 따른 방사홈과 플런저부를 갖는 유체제어밸브의 개략도,
도 11은, 본 발명의 바람직한 실시예에 따른 밸브체에 형성된 블리더 노치를 갖는 유체제어밸브의 개략도,
도 12는, 본 발명의 바람직한 실시예에 따른 노치 플런저부를 갖는 유체제어밸브의 개략도,
도 13은, 본 발명의 바람직한 실시예에 따른 플런저부를 통하여 형성된 구멍을 갖는 유체제어밸브의 개략도,
도 14는, 본 발명의 바람직한 실시예에 따라, 충분히 패쇄되지 않은 위치에서 역누출을 허가하는 유체제어밸브의 개략도이다.
본 발명의 바람직한 실시예를 도면에 나타낸다. 본 발명에 따른 오일펌프 시스템(10)의 바람직한 실시예를 나타내는 도 1 내지 도 6을 참조한다. 본 발명은 오일펌프 시스템에 한정되지 않고, 각종 유체를 사용하는 유체 펌프 시스템에 사용될 수 있다. 오일펌프 시스템의 이하 설명은 단지 실예가 되고, 이 분야의 기술 중의 하나로서 이해할 수 있다.
본 발명에 사용되는 오일펌프의 형태는 용적형 오일펌프가 바람직하다. 이런 형태의 펌프는, 내부 팁밀봉(tip-sealing)로터를 포함하고, 이제부터 "제로터"펌프, 베인펌프, 기어펌프, 및 피스톤펌프라고 한다. 본 발명의 설명의 목적을 위해, 제로터형 펌프가 본 발명의 바람직한 형태로서 사용될 수 있다. 그러나, 어떠한 펌프도 사용될 수 있고 제로터 펌프의 묘사는 간단히 설명된다. 이하, 이 요소를 간단히 "펌프"라고 할 것이다.
오일펌프 시스템(10)은 차량엔진(도시하지 않음)의 일부이다. 오일펌프 시스템(10)은 엔진 아래의 오일통내에 바람직하게 위치하는 밸런스축 시스템을 포함한다. 밸런스축 시스템은, 직렬식의 4개의 실린더 내연 피스톤 엔진의 2차 요동력에 반대로 작용하도록 하는 한쌍의 반대로 회전하는 밸런스축(12, 14)을 포함한다.
한쌍의 반대로 회전하는 밸런스축은 1차 밸런스축(12)과 2차 밸런스축(14)으로 이루어진다. 1차 밸런스축(12)은 구동축인 반면에, 2차 밸런스축(14)은 종속 또는 피동 밸런스축이다. 1차 밸런스축(12)은 입력끝부(16)와 출력끝부(18)를 갖는다. 도면에서 끝부(16, 18)의 배향은 단지 설명을 목적으로 한 것이다. 입력끝부(16, 18)는, 본 발명에 따라 반대로 또는 다르게 구성될 수 있다. 1차 밸런스축(12)의 입력끝부(16)는, 스프로킷 또는 기어(22) 및 속도증가 기어세트(27, 29)를 통해 엔진 크랭크축(20)에 의해 연결되고 구동된다. 1차 밸런스축(12)은, 1차 밸런스축(12)의 출력끝부(18)에 장치된 축이음 기어세트(30)의 기어(28) 중 적어도 하나를 가진다. 이런 배열에 의해, 크랭크축(20)은 2:1의 관계로 1차 밸런스축(12)을 구동한다.
2차 밸런스축(14)도 입력끝부(32)와 출력끝부(34)를 가진다. 2차 밸런스축(14)의 입력끝부(32)는, 그 위에 장치된 축이음 기어세트(30)의 다른 기어(36)를 가진다. 따라서, 1차 밸런스축(12)이 2차 밸런스축(14)을 구동하기 위해, 1차 밸런스축(12)의 출력끝부(18)는, 기어(36)와 맞물림 관계에 있는 기어(28)를 갖는 축이음 기어세트(30)를 통하여, 2차 밸런스축(14)의 입력끝부(32)와 소통한다. 축이음 기어세트(30)는 1차 밸런스축(12)과 2차 밸런스축(14)의 각도관계를 유지한다. 기어(28) 및 기어(36)를 포함하는 축이음 기어세트(30)는, 축(12, 14)의 한쪽 끝에 위치하도록 예시하여 나타낸다. 축이음 기어세트(30)는, 1차 밸런스축(12)과 2차 밸런스축(14)의 길이를 따라 어디든지 위치할 수 있다.
1차 밸런스축(12)은 1차 펌프(24)와 소통한다. 1차 펌프(24)는 중간축(intermediate shaft)(25) 상에 장치되어 있는 것이 바람직하다. 중간축(25)은 그 위에 장치된 기어(27)를 가지고, 중간축(25)은 1차 밸런스축(12) 상에 장치된 기어(29)와 소통하고 있다. 이러한 배열은, 1차펌프(24)의 공동화를 회피하기 위해 속도를 줄이고 시스템의 노이즈를 줄인다. 1차 펌프(24)는, 시스템내의 각종 다른 위치, 즉, 1차 밸런스축(12), 크랭크축, 또는 2차 밸런스축(14)상에 위치할 수 있다. 중간축(25)상의 1차 펌프(24)를 장치하는 것은 단지 예시이다. 2차 밸런스축(14)은 그 위에 장치된 2차 펌프(38)를 가진다. 여기에 나타낸 오일펌프로서는 종래 공지의 제로터 오일펌프가 바람직하다. 그러나, 본 발명의 요지 및 범위 내에서 있는, 어떠한 시판되는 오일펌프라도 사용할 수 있다.
각각의 펌프(24, 38)는 외륜(40)과 로터(42)로 이루어진다. 외륜(40)은, 일반적으로 원형외주(44), 중공과심 영역(46), 및 다수의 포켓(50)이 형성된 내주(48)를 가진다. 로터(42)는 외륜(40)의 중공과심 영역(46)내에 위치하고, 펌프(24, 38)가 동작할 경우 포켓(50)을 결합시키는 복수의 톱니(52)를 가진다.
이하, 도 2 내지 도 6을 통하여 더욱 상세하게 설명하는 바와 같이, 1차 펌프(24)는, 엔진이 작동할 때마다 엔진에 오일을 펌프하도록 동작한다. 반면에, 2차 펌프(38)는, 오일압력이 저속의 엔진속도에서 일반적으로 발생하는 소정 목표치 이하일 때만 이런 목적으로 동작한다. 따라서, 소정 오일압력 목표치에 도달하는 엔진속도 이하에서, 1차 펌프(24)와 2차 펌프(38)가 병렬로 작동하고, 엔진에 대해 필요한 오일유동을 공급하기 위해 그 공급출구에 들어간다. 초기 오일압력 목표치에 도달하는 엔진속도 이상에서, 두 펌프 중 하나가 점차적으로 출력오일 유동체적에 기여하지 않게 된다.
바람직한 일실시예에 있어서, 2차 펌프(38)는, 출력을 그 입구로 재순환시킴으로써 엔진에 오일을 펌프할 수 없게 되며, 이것은 펌프를 가로지르는 압력차를 최소화함으로써 동력소비를 최소화한다. 2차 펌프(38)의 스위칭기능은, 엔진오일압력에 의해서만 작동되는 유체제어밸브 메카니즘(54)의 조절된 압력에 의해 수행된다. 이러한 배열은, 유체제어 시스템의 복작성 및 비용을 최소화하고, 관련된 동력소비를 줄인다.
도 2 내지 도 6에 개략적으로 나타낸 바와 같이, 1차 펌프(24)와 2차 펌프(38)는, 소정압력에서 시스템 외의 2차 펌프(38)를 스위칭하기 위해 유체제어밸브 메카니즘(54)에 의해 상호 연결되어 있다. 1차 펌프(24)는, 오일팬 또는 오일통(60)으로부터 엔진(61)으로 오일을 펌프하기 위해 입구개구부(56) 및 출구개구부(58)를 가진다. 마찬가지로, 2차펌프는, 오일팬(60)으로부터 엔진으로 오일을 펌프하기 위해 입구개구부(62) 및 출구개구부(64)를 가진다.
오일팬(60)은 재순환용 엔진오일을 축적한다. 1차 오일픽업(66)은 오일팬(60) 내에 위치하고, 오일팬(60)으로부터 1차 펌프(24)의 입구개구부(56)에 오일을 전달하기 위해 1차 펌프 입구통로(68)와 유체 소통한다. 필요에 따라서, 2차 오일픽업(69)도 오일팬(60)으로부터 2차 펌프(38)의 2차 펌프 입구개구부(62)에 오일을 전달하기 위해 2차 펌프 입구통로(70)와 유체 소통한다. 1차 펌프(24)의 출구개구부(58)는 1차 출구통로(72)를 통해 엔진(61)과 유체 소통한다. 1차 펌프(24)의 출구개구부(58)도 밸브입구통로(74)에 의해 유체제어밸브 메카니즘(54)과 유체 소통한다. 마찬가지로, 2차 펌프(38)의 출구개구부(64)는 2차 출구통로(76)를 통해 엔진과 유체 소통한다. 또 다른 실시예에 있어서, 1차 펌프 입구개구부(56)에 공급하는 하나의 분기와 2차 펌프 입구개구부(62)에 공급하는 다른 분기로 두개의 분할 통로로 분리하는 하나의 오일픽업이 포함된다.
유체제어밸브 메카니즘(54)은, 밸브 하우징(80)내에 밀폐하여 위치하는 가동밸브 또는 피스톤부재(78)로 이루어진다. 가동밸브부재(78)는 도 2에 나타낸 개방위치에서 도 6에 나타낸 패쇄위치까지 바람직하게 가동할 수 있다. 밸브 메카니즘(54)은, 가동밸브부재(78)를 개방위치로 바이어스하는 바이어스 스프링(82)을 더 포함한다. 가동밸브부재(78)로서는 트리챔버 스풀밸브(three-chambered spool valve)가 바람직하며, 유체제어밸브 입구통로(74)와 소통하는 제1끝부(84), 제1플런저부(86), 제2플런저부(87), 및 바이어스 스프링(82)과 소통하는 제2끝부(88)로 이루어진다. 바이어스 스프링(82)은 밸브 하우징(80)내에 고정된 스프링 부착포인트(90)에 부착되어 있고, 가동밸브부재(78)의 제2끝부(88)에 힘을 가한다. 가동밸브부재(78)의 배열은 "스풀밸브"의 배열이며, 이것은, 유체통로를 정하는 플런저부의 대항하는 내면 상에 동등하게 작용하도록 2차 펌프의 압력을 허용한다. 이것은 엔진오일압력에 대응하는 밸브의 견실성을 주기 위해 밸브 플런저의 원치않는 바이어스를 피한다. 또 다른 밸브부재 배열을 채용할 수 있다. 가동밸브부재도 3가지 기능밸브가 바람직하다.
도 2에 나타낸 구성에 있어서, 1차 펌프(24)와 2차 펌프(38)는 각각 통로(68, 70)를 통하여 오일통(60)으로부터 오일을 받는다. 1차 펌프(24)와 2차 펌프(38)는 그들 각각의 입력개구부(56, 62)로 오일을 입력받고, 그들 각각의 출구개구부(58, 64)로부터 각각의 통로(72, 76)를 통하여 엔진(61)으로 오일을 배출한다. 이러한 구성에 있어서, 펌프들은 저속으로 동작하므로, 엔진내의 압력은 가동밸브부재(78)를 이동시키는데 필요한 임계치압력 이하이다.
도 3은, 엔진내의 압력이 소정압력 임계치레벨에 도달할 때의 본 발명에 따른 오일펌프 시스템(10)을 개략적으로 설명한다. 도 3에 나타낸 바와 같이, 가동밸브부재(78)는, 그 초기위치(도 2)로부터 이동범위의 끝부의 제5위치(도 6)로 이동된다. 엔진으로부터의 오일압력은, 가동밸브부재(78)의 제1끝부(84)에 작용하는 통로(74)내에 존재하는 오일압력이 가동밸브부재(78)로 하여금 스프링(82)의 바이어스힘을 극복하도록 하는 레벨에 도달하고, 따라서 그것의 제2위치에 밸브부재(78)를 이동시키지만, 두 펌프는 병렬로 그들의 출력에 계속 기여하여, 엔진베어링과 다른 구성요소에 압축된 오일유동을 제공한다.
도 4에 있어서, 증가된 오일압력 하에서, 가동밸브부재(78)는, 제1끝부(84)가 오일통(60)으로부터 2차 펌프 입구통로(70)를 통하여 2차 펌프 입구개구부(62)까지 오일의 유동을 막기 시작하는 그것의 제3위치로 이동한다. 게다가, 밸브부재(78)의 중심부(86)가 2차 펌프 출구개구부(64)로부터 2차펌프 출구통로(76)를 통하여 엔진까지 오일의 유동을 막기 시작하고, 밸브부재(78)의 제2끝부(88)는 2차 펌프 입구(62)에 재순환 통로(92)를 개방하기 시작한다.
도 5에 나타낸 바와 같이, 엔진내의 압력이 제2압력임계치를 초과할 때, 밸브부재(78)가 제4위치에 있도록, 스프링(82)의 바이어스에 대항하여 밸브부재(78)가 이동된다. 밸브부재(78)의 제1끝부(84)는 2차 펌프 입력통로(70)를 통하여 2차 펌프 입력개구부(62)로의 오일의 유동을 완전히 차단한다. 동시에, 밸브부재(78)의 중심부(86)도 2차 펌프 출구통로(76)를 통하여 엔진(61)으로의 오일의 유동을 완전히 차단하고, 제2끝부(88)는 2차 펌프(38)에 재순환 통로(92)를 완전히 개방한다.
도 5에 나타낸 배열에 있어서, 1차 펌프(24)는 엔진에 오일을 공급하는 유일한 펌프이다. 오일은 1차 펌프 출구통로(72)를 통하여 공급된다. 따라서 엔진은 더 고속으로 동작하고, 2차 펌프(38)로부터의 오일의 부가적인 공급을 억제함으로써 이 조건하에서 동력소비는 줄어든다. 이러한 배열에 있어서, 2차 펌프(38) 유동은 시스템(10) 밖에서 효과적으로 스위칭된다.
가동밸브부재(78)가 2차 펌프 출구통로(76)를 막을 때마다, 2차 펌프 입구통로(70)를 차단하고 재순환 통로(92)를 개방한다. 재순환 통로(92)는 2차 펌프 출구개구부(64)를 직접 2차 펌프 입구개구부(62)에 연결한다. 따라서, 2차펌프 입구통로(70)가 패쇄되어 오일통(60)으로부터 2차 펌프(38)까지 오일의 유출을 억제하더라도, 2차 펌프(38)는 계속해서 오일[이 오일은 통로(92)를 통하여 2차 펌프(38)로 재순환함]을 펌프한다.
고속 재순환 통로(92)도 교차포트(cross-over port)(94)에 공급된다. 교차포트(94)는 1차 펌프 출구통로(72)를 고속 재순환 통로(92)에 연결한다. 교차포트(94)는, 2차 펌프 재순환회로에 엔진오일압력을 지속적으로 공급함으로써, 고속의 2차 펌프(38)내의 오일 공동화를 방지한다. 또한, 과열을 방지하기 위해 필요에 따라서 자연적으로 또는 의도적으로 던지, 교차포트(94)는, 어떠한 누출손실에 대해서도 만회하기 위해 오일을 2차 펌프에 공급하도록 한다. 저속 서브바이패스 압력 동작시에, 교차포트(94)는 1차 펌프 출구통로(72)로부터 2차 펌프 입구통로(70)까지 누출에 의한 과잉 유동체적을 방지할 정도의 크기가 바람직하다. 이것은 중요하고, 과잉오일유동은 1차펌프(24)의 배출흐름으로부터 오일을 낭비하게 되고, 오일통(60)으로부터의 오일 빨아올림을 줄이기 위해, 2차 펌프 입구통로(70)를 불필요하게 가압한다.
게다가, 바람직한 실시예에서는 제트펌프(96)를 포함한다. 제트펌프는, 주흐름 속도가 그 주변의 압력에서 방울(drop)을 만드는 데 사용되는 구성이며, 따라서, 측부에서 흐름으로 더 많은 유체를 끌어들인다. 이 경우, 2차 펌프로부터의 중심 흐름은, 그 흐름이 측부로부터 그 흐름으로 공통 흡입구로부터 오일을 끌어들이고 충분히 공급되는 2차 펌프로 흡입구가 계속해서 역류하도록 한다. 본 발명의 바람직한 실시예에 있어서, 제트펌프(96)는 2차 펌프 입구통로(70)와 재순환 통로(92)의 결합에 의해 형성된다. 2차 펌프 입구통로(70)는 종래 공지와 같이 중심 흐름을 둘러싼 주위에 배열된다.
이 분야의 일반적인 기술에 의하면, 다른 제트펌프 구성들도 본 발명에 따라 구체화될 수 있다. 예컨대, 통로(70)는 재순환 통로(92)로부터 입구로 이어져서 제트펌프(96)를 형성할 수 있다. 도 4에 나타내는 바와 같이, 저속 체적공급과 고속 재순환회로가 부분적으로 개방할 경우, 제트펌프(96)는 서브바이패스 압력 과도 밸빙 단계 동안 고속 재순환 통로(92)로부터 2차 펌프 입구통로(70)로 오일의 어떤 역류를 최소화하거나 제거한다. 재순환 통로(92)내의 오일의 유동은, 2차 펌프 입구개구부(62)에 일정한 오일의 유동으로 유지하도록 제트로서 작용한다.
도 6은 가동밸브부재(78)를 제5위치에서 설명한다. 밸브부재(78)가, 오일통(60)으로부터 2차 펌프 입구통로(70)를 통하여 2차 펌프 입구개구부(62)로 오일의 유동을 차단하고, 또한 2차 제로터 출구통로(76)를 통하여 엔진으로 오일의 흐름을 차단함으로써, 2차 펌프(38)는 시스템의 폐쇄를 효과적으로 행한다. 그 대신 오일은 2차 펌프 출구개구부(64)로부터 2차 펌프 입구개구부(62)로 재순환 통로(92)를 통하여 다시 향한다. 이러한 완전히 패쇄된 위치에 있어서, 오일통(60)으로 되돌아가도록 고속에서 1차 펌프(24)에 의해 생성되는 과잉오일을 허가하는 릴리프포트(98)를 드러낸다. 엔진내의 압력이 감소할 때, 밸브부재(78)는 그것의 충분히 개방상태로 되돌아갈 것이고, 엔진의 RPM에 적합하도록 오일압력을 유지하기 위해 필요한 2차 펌프 오일유동체적의 부분을 다시 첨가한다.
도 7은 본 발명에 따른 또 다른 바람직한 실시예를 나타내고, 도 2 내지 도 6에 나타낸 유동제어밸브(54)는 수력으로 동작된다. 도 7의 실시예에서 나타낸 구성으로서, 엑추에이터(102)와 연결되어서 동작하는 컨트롤러(100)에 의해 유동제어밸브(54)를 전기적으로 제어할 수 있다. 엑추에이터(102)로서는 어떠한 시판되는 것 또는 피스톤, 기어, 전기자 등의 공지의 엑추에이터 장치를 사용할 수 있다.
엑추에이터(102)는 밸브부재(78)와 접촉하는 왕복요소(104)를 가진다. 엔진(61)내의 압력센서(105)에 의해 감지되는 바에 따라, 왕복요소(104)는 컨트롤러(100)로부터의 신호에 대응하여 전후로 움직이고, 적당한 통로를 통하여 시스템내의 필요한 위치로 흐름을 전환시키도록 필요에 따라 유동제어밸브(54)를 움직인다. 대응하는 흐름구성은 상술한 것을 따른다. 통로크기가 동일한 경우, 그들을 다시 설명하지 않을 것이다.
유동제어밸브(54)가 전자적으로 제어되기 때문에, 유체 유동제어밸브(54)는 밸브를 움직이게 하기 위해 그것에 어떠한 오일유동이 필요하지 않다. 따라서, 이 실시예는 유체유동밸브 입구통로(74)를 포함하지 않는다. 1차 펌프 출구개구부(58)로부터의 유체의 유동은 1차 펌프 출구통로(72)를 통하여 엔진(61)으로 직접 흐른다. 밸브 하우징(80)으로의 유체유동이 없기 때문에, 릴리프포트(98)는 밸브 하우징과 소통하지 않는다. 대신에, 릴리프포트(98)는 1차펌프 출구통로(72)와 소통한다. 릴리프포트(98)는 시스템(10)으로부터 과잉 유체를 제거하고 오일통(60)에 그것을 전달하는 동일한 기능을 제공한다. 피스톤(101) 및 스프링(103)을 갖는 릴리프밸브(99)는, 통로(106)를 통하여 1차 펌프 출구개구부(58)와 유체 소통한다. 통로(72)내의 오일압력이 충분히 크게 될 때, 유체가 오일통(60)에 유출되도록 릴리프포트(98)를 노출하기 위해 스프링(103)의 힘에 대항하여 피스톤(101)을 움직일 것이다.
도 7에 나타낸 밸브(54)는, 엔진내의 압력이 소정 임계치에 도달할 때, 그것의 초기 위치로부터 떨어져서 엑추에이터(102)에 의해 밸브부재(78)가 움직이는, 앞서 말한 실시예로서 같은 방식으로 동작한다. 통로(70)를 통한 2차 펌프 입구(62)로의 흐름이 차단되고 재순환회로(92)가 개구될 때까지 엔진내의 압력이 증가하도록, 엑추에이터(102)는 바이어스 스프링(82)의 힘에 대항하여 밸브부재(78)를 계속해서 움직이며, 따라서, 시스템으로부터 2차 펌프(38)를 단락시킨다. 양방향 엑추에이터가, 바이어스 스프링(82)에 대한 필요을 경감시키는 엑추에이터(102)를 대신할 수 있을 것이다.
발명의 모든 실시예에 있어서 2차 밸런스축(14)상의 2차 제로터펌프(38)의 동력소비 또는 드래그토크의 작용은, 1차 밸런스축(12)이 느린 만큼 2차 밸런스축(14)을 느리게 한다. 이러한 작용은, 역류하는 구동성분이 느려지는 만큼 밸런스축(12)의 회전속도를 감소시키므로, 개방, 이어지는 기어맞물림 간극 또는 백래시공간의 노이즈방지 뿐만 아니라, 구동요소들 사이의 상대적인 이동을 방지한다.
상술한 바와 같은 방식으로 2차제로터 오일펌프를 사용하는 이점은, 기어 덜거덕거림 경향이 줄어들고 노이즈문제가 없어지는 고속에서 그것의 드래그토크가 최소화되는 것이다. 이것은 기어설정의 불필요한 동력용량의 비용과, 불필요하게 더 높은 톱니기어 부하로 인한 기어노이즈를 제거한다.
도 8은 분당 회전수(RPM)에 있어서 엔진속도 대 동력소비 또는 엔진펌프 출구흐름을 설명하는 그래프이다. 라인(116)은, 2차 펌프의 단락 없이 본 발명의 두개의 펌프의 결합된 출력뿐만 아니라 종래 펌프에 대한 펌프출력흐름 대 엔진속도를 나타내고, 라인(118)은 본 발명에 따른 엔진에 대해 요구되는 최소 엔진이다. 라인(120)은, 모든 속도에서 동작하는 1차 펌프에 대해 펌프출력흐름 대 RPM을 나타낸다. 라인(122)은, 1차 펌프만이 엔진에 오일을 공급하는 지점에 2차 펌프출력이 감소된 변이부분을 나타낸다. 따라서, 본 발명에 따라서, 시스템(10)의 동력소비는 포인트(130)까지 라인(116)으로 나타낸다. 도 3에 나타낸 밸브위치에 대응하는 포인트(130)에서 밸브부재(78)가 그 초기위치로부터 막 움직이기 시작한다. 엔진속도가 증가함으로써, 시스템의 동력소비는, 1차 펌프만이 부하에 유체를 공급하기 위해, 두개의 펌프가 함께 동작하는 곳에서 변이가 있는 라인(122)에 의해 나타낸다. 도 5에 나타낸 밸브위치에 대응하는 포인트(132) 이후, 2차 펌프(38)가 단락되는 시스템(10)의 동력소비는, 라인(134)으로 설명한다.
그래프에 나타낸 바와 같이, 요구되는 최소엔진(118)은, 라인(120)으로 설명되는 1차 펌프에 의해 공급되는 흐름 보다 낮은 RPMs에서 더 높다. 라인(116)으로 나타내는 종래 펌프들은 충분한 유동체적을 제공하지만, 필요이상으로 휠씬 고속 동력소비를 요구한다. 따라서, 엔진속도가 종래 펌프와 함께 증가함으로써, 동력량이 증가하고, 라인(116, 122) 사이의 영역(124)은 본 발명의 사용에 의해 절약되는 에너지량을 나타낸다.
도 9 내지 도 14는, 2차 펌프가 바이패스할 때, 2차 펌프 재순환 회로에 엔진오일압력을 지속적으로 공급함으로써 고속으로 2차 펌프(38)내에 오일 공동화를 방지하고, 부하에 엔진유체를 공급하지 않는 각종 교대배열을 나타낸다.
교대흐름 회로와 유체제어밸브의 개략적인 도면을 나타내는 도 9와, 유동제어밸브부를 나타내는 도 11을 참조한다. 도 9 및 도 11에 나타낸 유체제어밸브 메카니즘(54)의 동작은 도 1 내지 도 8을 통해 설명한 바와 동일하다. 그러나, 도 9 및 도 11에 나타낸 어느 하나의 실시예에서, 교차포트(94)가 유동회로에서 제거되어 있다. 이 실시예에 있어서, 고속으로 2차 펌프(38)의 공동화를 제거하기 위해, 한쌍의 블리더 노치(150)가 밸브 하우징내의 2차 출구통로(76)의 입구와 2차 출구통로(76)의 출구에 형성된다. 이 블리더 노치(150)는 2차 출구통로(76)로부터 재순환 통로(92)로의 역누출을 허용하여 고속동작중의 2차 펌프(38)에서의 엔진오일의 지속적인 공급을 보장해준다.
도 10은 2차 펌프(36)의 공동화를 방지하기 위한 엔진유체의 역누출을 수행하는 바람직한 실시예를 나타낸다. 여기에서도, 교차포트(94)가 회로로부터 제거되는 것이 바람직하다. 도 10에 나타낸 바와 같이, 환형홈(152)이 제1플런저부(86)의 표면에 형성되어 필수적인 역누출 기능을 가능하게 해준다. 따라서, 제1플런저부가 2차 출구통로(76)을 통한 엔진오일의 유동을 차단하여 2차 펌프(36)를 본질적으로 폐쇄하고, 환형홈(152)은 유체가 2차 펌프(36)의 재순환 통로(92)로 역누출하도록 하여 상당한 오일손실이나 누출의 경우에도 2차 펌프(36)의 공동화를 방지한다. 환형홈(152)은 제1플런저부(86)의 중앙에 형성되지만, 그 표면을 따라 어느 곳에도 형성되어질 수 있다. 환형홈(152)은 유체 역누출을 허용할 정도의 크기이지만, 2차 출구통로(76)의 출구로부터 2차 출구통로(76)의 입구까지 유체의 과잉흐름도 방지할 정도의 크기이다. 단일 환형홈(152)을 도시하였지만, 복수의 환형홈을 채용할 수도 있다. 또한, 환형홈(152)은 원형이나 사각형등의 다양한 형태 중 어느 하나를 취할 수도 있다.
도 12는 교차포트(94)가 없는 상태로 역누출을 수행하는 다른 실시예를 나타낸다. 도 12에 나타낸 바와 같이, 블리더 노치(154)가 제1플런저부(86)의 표면에 형성된다. 블리더 노치의 형태와 위치는, 이들이 2차 출구통로(76)의 출구로부터 2차 출구통로(76)의 입구까지의 유체의 과잉흐름을 방지할 정도의 크기이라면 특정하게 정해지는 것은 아니다. 이 분야의 일반적인 기술에 의하면, 각종 블리더 노치와 다른 역누출 메카니즘의 크기는 유사한 흐름제한을 갖는다. 플런저부에 형성된 블리더 노치(154)는, 도 10에 나타낸 블리더 노치(150) 및 환형홈(152)과 동일한 역누출기능을 수행한다.
도 13은, 교차포트(94)를 사용하지 않으면서 2차 펌프(36)의 공동화를 방지하기 위해 엔진유체의 역누출을 수행하는 또 다른 실시예를 나타낸다. 도 13에 나타낸 바와 같이, 구멍 또는 통로(156)가 제1플런저부(86)을 통해 형성되어 2차 출구통로(76)의 출구로부터 2차 출구통로(76)의 입구까지 엔진흐름의 역누출을 허용한다. 이 통로(156)는 블리더 노치(150, 140) 및 환형홈(152)과 동일한 기능을 수행하고 동일한 크기제한을 받는다.
도 14는 교차포트(94)를 사용하지 않으면서 2차 펌프(36)의 공동화를 방지하기 위해 엔진유체의 역누출을 수행하는 또 다른 실시예를 나타낸다. 다른 실시예들에서, 제1플런저부(86)는 그 끝부가 2차 출구통로(76)의 전체를 덮도록 위치되어 이를 통과하는 유체의 유동을 차단한다. 각종 역누출 메카니즘이 제1플런저부와 그 주변에 형성되어 있지만, 제1플런저부(86)는 그 구성품을 사용하여 2차 출구통로(76)를 차단한다. 도 14에 나타낸 바와 같이, 밸브부재가 고속의 엔진속도에서 완전히 닫혀진 위치에 있을 때, 제1플런저부(86)가 2차 출구통로(76)의 대략 전체를 덮도록 설계된다. 2차 출구통로(76)를 대략적으로 폐쇄함으로써, 역누출용 개구부(158)가 제1플런저부(86)와 2차 출구통로(76)의 벽부 사이에 형성되어 엔진유체가 역누출하도록 허용한다. 역누출용 개구부(158)는 비교적 작고 엔진오일의 역누출을 허용할 정도의 크기이지만, 또한 2차 출구통로(76)의 출구로부터 2차 출구통로(76)의 입구까지의 유체의 과잉흐름을 방지할 정도의 크기이다.
본 발명을 전반적으로 설명하였지만, 본 발명의 취지 또는 범위에서 벗어나지 않게 각종 변형이 당업자들에 의해 이루어 질 수 있다.
Claims (24)
- 이중 펌핑요소를 갖는 유체 펌프 시스템으로서,유체 공급원으로부터 유체를 수용하는 흡입구 및 배출구를 갖는 1차 펌핑요소;유체 공급원으로부터 유체를 수용하는 흡입구 및 배출구를 갖는 2차 펌핑요소;상기 1차 펌핑요소 및 상기 2차 펌핑요소와 유체 소통하며, 상시 개방위치와 폐쇄위치 사이에서 이동가능한 밸브부재를 보유하는 유체유동제어밸브;상기 2차 펌핑요소의 배출구를 상기 2차 펌핑요소의 흡입구와 연결시키는 재순환 통로; 및상기 유체유동제어밸브가 상기 폐쇄위치 또는 실질적으로 폐쇄위치에 있을 때 유체가 상기 밸브부재를 돌아서 또는 이를 통과하여 상기 재순환 통로로 흐르게 함으로써 상기 2차 펌핑요소의 공동화 또는 과열을 방지하는 역누출 메카니즘을 구비하고;상기 시스템이 저속에서 동작할 때, 상기 유체제어밸브는 상시 개방위치에 있으며, 상기 시스템에는 상기 1차 펌핑요소의 배출구 및 상기 2차 펌핑요소의 배출구로부터 유체가 제공되며;상기 시스템이 고속에서 동작할 때, 상기 유체제어밸브는 상기 폐쇄위치로 이동하여, 상기 2차 펌핑요소의 배출구로부터의 상기 유체를 상기 재순환 통로를 통해 상기 2차 펌핑요소의 흡입구로 보내는 것을 특징으로 하는 유체 펌프 시스템.
- 제1항에 있어서, 상기 유체제어밸브는, 상기 유체제어밸브가 상기 폐쇄위치에 있을 때, 유체가 상기 유체공급원으로부터 상기 2차 펌핑요소의 흡입구로 흐르는 것을 차단하는 제1플런저부 및, 유체가 상기 2차 펌핑요소의 배출구로부터 부하로 흐르는 것을 차단하는 제2플런저부를 갖는 것을 특징으로 하는 유체 펌프 시스템.
- 제2항에 있어서, 상기 역누출 메카니즘은 밸브체에 형성된 한쌍 이상의 블리더 노치를 포함함으로써, 유체가 상기 부하로부터 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제2항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 형성된 한쌍 이상의 블리더 노치를 포함함으로써, 유체가 상기 부하로부터 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제2항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 형성된 구멍 또는 복수의 구멍을 포함함으로써, 유체가 상기 부하로부터 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제2항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 형성된 환형 홈 또는 복수의 홈을 포함함으로써, 유체가 상기 부하로부터 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제2항에 있어서, 상기 유체제어밸브는 밸브 하우징내에서 상기 개방위치로부터 상기 폐쇄위치로 이동하는 것을 특징으로 하는 유체 펌프 시스템.
- 제7항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부 둘레의 밸브체에 형성된 블리더 노치를 포함함으로써, 유체가 상기 부하로부터 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 엔진에 유체를 펌핑하는 방법으로서,흡입구 및 배출구를 갖는 1차 펌핑요소를 제공하는 단계;흡입구 및 배출구를 갖는 2차 펌핑요소를 제공하는 단계;밸브 하우징내에서 상시 개방위치와 폐쇄위치 사이를 이동할 수 있는 유동제어밸브를 제공하는 단계;엔진내의 압력이 소정 임계치 미만일 때 상기 1차 펌핑요소의 배출구와 상기 2차 펌핑요소의 배출구를 통해 유체를 엔진에 배출하는 단계;엔진내의 압력이 상기 소정 임계치에 도달했을 때 상기 유동제어밸브를 부분적으로 폐쇄된 위치로 이동시키는 단계;엔진내의 압력이 상기 소정 임계치를 초과했을 때 상기 유동제어밸브를 상기 폐쇄 위치로 이동시키는 단계;상기 유동제어밸브가 상기 폐쇄위치에 있을 때 상기 2차 펌핑요소의 흡입구를 상기 2차 펌핑요소의 배출구와 연결시키고 유체 공급원으로부터 상기 2차 펌핑요소의 흡입구로 유체가 흐르는 것을 차단함으로써, 상기 1차 펌핑요소의 배출구를 통해서만 엔진에 유체를 제공하는 단계; 및상기 유동제어밸브가 상기 폐쇄위치 또는 그 근방에 있을 때 유체가 상기 2차 펌핑요소로 흐르도록 허용하는 역누출 메카니즘을 제공하는 단계로 이루어지는 것을 특징으로 하는 유체 펌핑방법.
- 제9항에 있어서, 유체가 상기 유체공급원으로부터 상기 2차 펌핑요소의 흡입구로 흐르는 것을 차단하는, 상기 유동제어밸브의 제1플런저부를 포함하는 복수의 플런저부를 제공하는 단계를 더 포함하는 것을 특징으로 하는 유체 펌핑방법.
- 제10항에 있어서, 상기 역누출 메카니즘은 유체가 상기 2차 펌핑요소 배출구로부터 엔진으로 흐르는 것을 차단하는 제2플런저부 둘레의 역누출을 허용하도록, 상기 밸브 하우징에 블리더 노치를 제공함으로써 형성되는 것을 특징으로 하는 유체 펌핑방법.
- 제10항에 있어서, 상기 역누출 메카니즘은 유체가 상기 2차 펌핑요소 배출구로부터 엔진으로 흐르는 것을 차단하는 상기 유동제어밸브의 제2플런저부내에 블리 더 노치를 제공함으로써 형성되며, 그에 따라 상기 제2플런저부 둘레의 역누출을 허용하는 것을 특징으로 하는 유체 펌핑방법.
- 제10항에 있어서, 상기 역누출 메카니즘은 유체가 상기 2차 펌핑요소 배출구로부터 엔진으로 흐르는 것을 차단하는 제2플런저부 둘레의 역누출을 허용하도록, 상기 플런저부에 하나 이상의 환형홈을 제공함으로써 형성되는 것을 특징으로 하는 유체 펌핑방법.
- 제10항에 있어서, 상기 역누출 메카니즘은 유체가 상기 2차 펌핑요소 배출구로부터 엔진으로 흐르는 것을 차단하는 제2플런저부를 통해 역누출을 허용하도록, 상기 제2플런저부에 하나 이상의 통로가 관통되어 형성되는 것을 특징으로 하는 유체 펌핑방법.
- 제10항에 있어서, 상기 역누출 메카니즘은 유체가 상기 2차 펌핑요소 배출구로부터 엔진으로 흐르는 것을 차단하는 제2플런저부를, 상기 제2플런저부와 상기 밸브 하우징 사이에 작은 통로를 남기도록 실질적으로 폐쇄함으로써 형성되며, 그에 따라 상기 작은 통로를 통해 역누출을 허용하는 것을 특징으로 하는 유체 펌핑방법.
- 이중 펌핑요소를 갖는 유체 펌프 시스템으로서,유체 공급원으로부터 유체를 수용하는 흡입구 및 유체를 부하에 제공하는 배출구를 갖는 1차 펌핑요소;유체 공급원으로부터 유체를 수용하는 흡입구 및 배출구를 갖는 2차 펌핑요소;상기 1차 펌핑요소 및 상기 2차 펌핑요소와 유체 소통하며, 밸브 하우징내에서 개방위치와 폐쇄위치 사이를 이동할 수 있는 밸브부재를 보유하고, 상기 밸브부재에는 유체가 상기 2차 펌핑요소를 향해 유동하거나 상기 2차 펌핑요소로부터 유동하도록 하는 복수의 플런저부가 구비되어 있는 유체유동제어밸브; 및상기 유체유동제어밸브내에 또는 그 둘레에 형성됨으로써, 상기 밸브부재가 상기 폐쇄위치 또는 그 근방에 있을 때 유체가 상기 2차 펌핑요소로 흐르게 하는 역누출 메카니즘을 구비하고;상기 시스템이 저속에서 동작할 때, 상기 밸브부재는 상기 개방위치에 있으며, 상기 부하에는 상기 1차 펌핑요소의 배출구 및 상기 2차 펌핑요소의 배출구로 부터 유체가 제공되며;상기 시스템이 고속에서 동작할 때, 상기 밸브부재는 상기 폐쇄위치로 이동하여, 제1플런저부가 2차 펌핑요소의 흡입구 및 상기 유체 공급원 사이의 소통을 차단하고 제2플러저부가 상기 밸브체내의 통로를 차단하여 유체가 상기 2차 펌핑요소의 배출구로부터 상기 부하로 흐르는 것을 차단하고, 상기 유체를 재순환 통로를 통해 상기 2차 펌핑요소의 배출구로부터 상기 2차 펌핑요소의 흡입구로 보내는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 역누출 메카니즘은 상기 밸브 하우징내에 형성된 복수의 블리더 노치를 포함함으로써, 유체가 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 형성된 복수의 블리더 노치를 포함함으로써, 유체가 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 형성된 환형 홈을 포함함으로써, 유체가 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부에 관통되어 형성된 하나 이상의 통로를 포함함으로써, 유체가 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 역누출 메카니즘은 상기 제2플런저부와 상기 밸브 하우징 사이에 형성된 구멍을 포함함으로써, 유체가 상기 재순환 통로로 역누출하도록 허용하는 것을 특징으로 하는 유체 펌프 시스템.
- 제16항에 있어서, 상기 1차 펌핑요소는 밸런스축 시스템의 주축과 연동됨으로써, 저속 노이즈 제어비용이 최소화되는 것을 특징으로 하는 유체 펌프 시스템.
- 이중 펌핑요소를 갖는 유체 펌프 시스템으로서,유체 공급원으로부터 유체를 수용하는 흡입구 및 유체를 부하에 제공하는 배출구를 갖는 1차 펌핑요소;유체 공급원으로부터 유체를 수용하는 흡입구 및 배출구를 갖는 2차 펌핑요소;상기 1차 펌핑요소 및 상기 2차 펌핑요소와 유체 소통하며, 밸브 하우징내에서 개방위치와 폐쇄위치 사이를 이동할 수 있는 밸브부재를 보유하고, 상기 밸브부재에는 유체가 상기 2차 펌핑요소를 향해 유동하거나 상기 2차 펌핑요소로부터 유동하도록 하는 복수의 플런저부가 구비되어 있는 유체유동제어밸브; 및상기 유체유동제어밸브내에 또는 그 둘레에 형성됨으로써, 상기 밸브부재가 상기 폐쇄위치 또는 그 근방에 있을 때 유체가 상기 2차 펌핑요소로 흐르게 하며, 제2플런저부와 상기 밸브 하우징 사이에 형성된 개구부를 보유하는 역누출 메카니즘을 구비하고;상기 시스템이 저속에서 동작할 때, 상기 밸브부재는 상기 개방위치에 있으며, 상기 부하에는 상기 1차 펌핑요소의 배출구 및 상기 2차 펌핑요소의 배출구로 부터 유체가 제공되며;상기 시스템이 고속에서 동작할 때, 상기 밸브부재는 상기 폐쇄위치로 이동하여, 제1플런저부가 2차 펌핑요소의 흡입구 및 상기 유체 공급원 사이의 소통을 차단하고 제2플러저부가 상기 밸브체내의 통로를 차단하여 유체가 상기 2차 펌핑요소의 배출구로부터 상기 부하로 흐르는 것을 차단하고, 상기 유체를 재순환 통로를 통해 상기 2차 펌핑요소의 배출구로부터 상기 2차 펌핑요소의 흡입구로 보내는 것을 특징으로 하는 유체 펌프 시스템.
- 엔진에 유체를 펌핑하는 방법으로서,흡입구 및 배출구를 갖는 1차 펌핑요소를 제공하는 단계;흡입구 및 배출구를 갖는 2차 펌핑요소를 제공하는 단계;밸브 하우징내에서 상시 개방위치와 폐쇄위치 사이를 이동할 수 있는 유동제어밸브를 제공하는 단계;상기 유동제어밸브의 복수의 플런저부에서 제1플런저부가 상기 유체공급원으로부터 2차 펌핑요소의 흡입구로의 유체 유동을 차단하도록 하는 단계;엔진내의 압력이 소정 임계치 미만일 때 상기 1차 펌핑요소의 배출구와 상기 2차 펌핑요소의 배출구를 통해 유체를 엔진에 배출하는 단계;엔진내의 압력이 상기 소정 임계치에 도달했을 때 상기 유동제어밸브를 부분적으로 폐쇄된 위치로 이동시키는 단계;엔진내의 압력이 상기 소정 임계치를 초과했을 때 상기 유동제어밸브를 상기 폐쇄 위치로 이동시키는 단계;상기 유동제어밸브가 상기 폐쇄위치에 있을 때 상기 2차 펌핑요소의 흡입구를 상기 2차 펌핑요소의 배출구와 연결시키고 유체 공급원으로부터 상기 2차 펌핑요소의 흡입구로 유체가 흐르는 것을 차단함으로써, 상기 1차 펌핑요소의 배출구를 통해서만 엔진에 유체를 제공하는 단계;상기 유동제어밸브가 상기 폐쇄위치 또는 그 근방에 있을 때 유체가 상기 2차 펌핑요소로 흐르도록 허용하는 역누출 메카니즘을 제공하는 단계로 이루어지며,상기 역누출 메카니즘은 제2플런저부와 상기 밸브 하우징 사이에 작은 통로가 형성되도록 상기 2차 펌핑요소의 배출구로부터 엔진으로의 유체 유동을 차단하는 제2플러저부를 실질적으로 폐쇄하는 것에 의해 제공되는 것을 특징으로 하는 유체 펌핑방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/489,525 US7086366B1 (en) | 1999-04-20 | 2000-01-21 | Energy efficient fluid pump |
US09/489,525 | 2000-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020092938A KR20020092938A (ko) | 2002-12-12 |
KR100753897B1 true KR100753897B1 (ko) | 2007-08-31 |
Family
ID=23944240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020027009338A KR100753897B1 (ko) | 2000-01-21 | 2000-08-29 | 향상된 에너지효율을 갖는 유체 펌프 |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR100753897B1 (ko) |
AU (1) | AU2000280357A1 (ko) |
DE (1) | DE10085413T1 (ko) |
GB (1) | GB2378482B (ko) |
WO (1) | WO2001053678A1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200283677Y1 (ko) | 2002-04-23 | 2002-07-27 | 박창용 | 얼음가루를 이용한 얼음용기 제작장치 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4002027A (en) * | 1973-10-01 | 1977-01-11 | Tyrone Hydraulics, Inc. | Multiple pump control system |
SE390332B (sv) * | 1974-10-02 | 1976-12-13 | Stal Laval Turbin Ab | Manoverventil for att forbinda ett antal forbrukningsstellen med ett gemensamt tillopp |
US4122868A (en) * | 1975-01-24 | 1978-10-31 | International Harvester Company | Hydraulic valve assembly having an axial flow force balanced spool |
US5123628A (en) * | 1991-05-17 | 1992-06-23 | Jim Yu | Water saving valve |
US5918573A (en) * | 1997-05-02 | 1999-07-06 | Killion; David L. | Energy efficient fluid pump |
-
2000
- 2000-08-29 DE DE10085413T patent/DE10085413T1/de not_active Withdrawn
- 2000-08-29 AU AU2000280357A patent/AU2000280357A1/en not_active Abandoned
- 2000-08-29 KR KR1020027009338A patent/KR100753897B1/ko not_active IP Right Cessation
- 2000-08-29 GB GB0216675A patent/GB2378482B/en not_active Expired - Fee Related
- 2000-08-29 WO PCT/US2000/040762 patent/WO2001053678A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200283677Y1 (ko) | 2002-04-23 | 2002-07-27 | 박창용 | 얼음가루를 이용한 얼음용기 제작장치 |
Also Published As
Publication number | Publication date |
---|---|
DE10085413T1 (de) | 2003-01-16 |
AU2000280357A1 (en) | 2001-07-31 |
GB2378482B (en) | 2004-07-21 |
KR20020092938A (ko) | 2002-12-12 |
GB2378482A (en) | 2003-02-12 |
WO2001053678A1 (en) | 2001-07-26 |
GB0216675D0 (en) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5918573A (en) | Energy efficient fluid pump | |
JP3531769B2 (ja) | オイルポンプ装置 | |
US7086366B1 (en) | Energy efficient fluid pump | |
EP1529958B1 (en) | Oil supply system for an IC engine | |
EP0785361B1 (en) | Oil pump apparatus | |
US20110165010A1 (en) | Vane pump | |
JP2001317320A (ja) | 内燃機関の潤滑装置 | |
EP0875678B1 (en) | Oil pump control valve | |
JP5278775B2 (ja) | 油供給装置 | |
US5146895A (en) | Fuel injection pump for internal combustion engines | |
KR100753897B1 (ko) | 향상된 에너지효율을 갖는 유체 펌프 | |
US6478549B1 (en) | Hydraulic pump with speed dependent recirculation valve | |
JP2001165064A (ja) | オイルポンプ装置 | |
JP3371709B2 (ja) | オイルポンプ装置 | |
JP5940844B2 (ja) | 油圧ハイブリッド車両 | |
JP3608688B2 (ja) | オイルポンプ装置 | |
US6581742B2 (en) | Fluid clutch | |
JPH06221274A (ja) | 自動変速機用オイルポンプ | |
JP2003193819A (ja) | 内燃機関のオイルポンプ装置 | |
KR100410337B1 (ko) | 차량용 가변식 오일 펌프 | |
KR100359869B1 (ko) | 엔진 동력 소모 저감을 위한 오일 펌프 | |
JP3603536B2 (ja) | オイルポンプ装置 | |
JP2002256834A (ja) | 内燃機関のオイルポンプ | |
JP2591226Y2 (ja) | 内接ギアポンプ | |
JPH04194308A (ja) | 内燃機関の潤滑油供給装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120807 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130821 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140820 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |