KR100751600B1 - 변형 임피던스를 구비한 전송 라인 - Google Patents

변형 임피던스를 구비한 전송 라인 Download PDF

Info

Publication number
KR100751600B1
KR100751600B1 KR1020067014730A KR20067014730A KR100751600B1 KR 100751600 B1 KR100751600 B1 KR 100751600B1 KR 1020067014730 A KR1020067014730 A KR 1020067014730A KR 20067014730 A KR20067014730 A KR 20067014730A KR 100751600 B1 KR100751600 B1 KR 100751600B1
Authority
KR
South Korea
Prior art keywords
section
impedance
slot section
slot
transmission line
Prior art date
Application number
KR1020067014730A
Other languages
English (en)
Other versions
KR20060128934A (ko
Inventor
데이빗 엘. 브런커
빅터 자데레
Original Assignee
몰렉스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 몰렉스 인코포레이티드 filed Critical 몰렉스 인코포레이티드
Publication of KR20060128934A publication Critical patent/KR20060128934A/ko
Application granted granted Critical
Publication of KR100751600B1 publication Critical patent/KR100751600B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/047Strip line joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09981Metallised walls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

고주파 차동 신호용의 변형 임피던스를 가지는 전송 라인이 기판 내부에 형성된다. 전송 라인은 제1 슬롯을 포함하며, 그 대향 표면은 전기 신호를 이송할 수 있는 전도성 표면을 지지한다. 그들의 치수, 간격 및 유전 충전제로 인해서, 전도성 표면은 전송 라인을 형성한다. 또한, 제2 슬롯은 대향 표면을 가지며, 그 각각은 또한 전도성 표면을 지지하지만, 이는 제1 슬롯의대향 표면과 상이하게 이격되고, 상이한 임피던스를 가지는 제2 전송 라인을 제공한다. 2개의 전송 라인 사이의 임피던스는 2개의 상이한 전송 라인 세그먼트의 상이한 슬롯 치수에 맞게 테이퍼 지는 치수를 가지는 슬롯 섹션인 전송 라인의 임피던스 전이 섹션에 의해 변형된다.
유전 기판, 슬롯 섹션, 전도성 표면, 변형 임피던스, 측벽

Description

변형 임피던스를 구비한 전송 라인 {TRANSMISSION LINE HAVING A TRANSFORMING IMPEDANCE}
본 발명은 다회로 전자 통신 시스템에 관한 것이고, 더욱 구체적으로 전송 시스템, 칩 패키징, 인쇄 회로 보드 구성, 상호 연결 장치, 전술된 부품 중 어느 하나로부터의 연결부의 모든 분야에서 이용될 수 있는 전용 전송 채널 구조물에 관한 것이다.
전자 전송의 다양한 수단이 기술 분야에 공지되어 있다. 대부분, 전부는 아니지만 이러한 전송 수단은 주파수 상한과, 일반적으로 전파 지연으로 불리는 신호가 시스템 내의 하나의 지점으로부터 다른 지점으로 이동하는데 요구되는 실제 시간과 같은 고유한 속도 제한을 겪는다. 이는 단순히 주로 그의 구조에 의해, 부수적으로 그의 재료 조성에 의해 그의 전자 성능이 제한된다. 한 가지 전통적인 접근은 도1에 도시된 바와 같은 에지 카드 커넥터 내에서 발견되는 것과 같은 전도성 핀을 이용한다. 이러한 유형의 구조에서, 복수의 전도성 핀 또는 단자(20)가 플라스틱 하우징(21) 내에 배열되고, 이러한 배열은 약 800 내지 900 MHz의 작동 속도를 제공한다. 이러한 표준 구조에 대한 개선은 시스템이 절연 커넥터 하우징(27) 내에 배치된 대형 접지 접속부(25) 및 소형 신호 접속부(26)를 포함하는 도2에 도 시된, 기술 분야에서 "하이-스펙(Hi-Spec)"으로 공지될 수 있는 에지 카드 커넥터에 의해 제시된다. 소형 신호 접속부(26)는 대형 접지 접속부(25)에 결합된다. 이러한 구조의 신호 접속부는 차동 신호 접속부가 아니고, 단순히 전원 직렬 신호이며, 이는 모든 신호 접속부가 접지 접속부에 의해 접속되는 것을 의미한다. 이러한 유형의 시스템에 대한 작동 속도는 약 2.3 GHz인 것으로 믿어진다.
이러한 분야의 또 다른 개선은 전도성 단자들이 삼각형 패턴으로 플라스틱 하우징(28) 내에 배치되고, 단자들은 도3에 도시되고 미국 특허 제6,280,209호에 상세하게 설명된 바와 같이 하나의 대형 접지 단자(29) 및 2개의 소형 차동 신호 단자(30)를 포함하는 "삼각" 또는 "삼중" 커넥터로 불린다. 이러한 삼각/삼중 구조는 약 4GHz의 확실한 상한 속도를 갖는다. 모든 이러한 3가지 접근은 가장 간단한 측면에서, 전자 신호를 위한 전송 라인을 제공하기 위해 플라스틱 하우징 내의 전도성 핀을 사용한다.
각각의 이러한 유형의 구성에서, 회로 보드(들), 정합 인터페이스, 및 시스템의 전원 및 부하를 포함한, 시스템의 전체 송달 경로를 통해 기능적인 전송 구조를 유지하는 것이 필요하다. 전송 시스템이 개별 핀으로부터 구성될 때 시스템 내의 원하는 균일성을 달성하는 것은 어렵다. 분리된 점 대 점 연결은 이러한 커넥터 내에서 신호, 접지, 및 전력을 위해 사용된다. 각각의 이러한 도체는 전기적 연속성을 제공하는 도체 또는 수단으로서 설계되었고, 보통은 전송 라인 효과를 고려하지 않았다. 대부분의 도체는 모든 핀 또는 단자들이 그들의 지정된 전기적 기능에 관계없이 동일하도록 표준 핀 필드로서 설계되었고, 핀들은 또한 표준 피치, 재료 유형 및 길이로 배열되었다. 낮은 작동 속도에서의 성능은 만족스럽지만, 높은 작동 속도에서, 이러한 시스템은 도체를 그의 작동 및 속도에 영향을 주는 시스템 내의 불연속부로서 고려한다.
이러한 시스템 내의 많은 신호 단자 또는 핀은 동일한 접지 복귀 도체에 연결되었고, 따라서 높은 신호 대 접지비를 생성했으며, 이는 대역폭을 감소시키고 시스템의 혼선을 증가시켜서 시스템 성능을 저하시킬 수 있는 큰 전류 루프가 신호와 접지 사이에서 형성되기 때문에 고속 신호 전송에 사용되지 않았다.
대역폭("BW")은 1/√(LC)에 비례하고, 여기서 L은 시스템 구성요소들의 인덕턴스이고, C는 시스템 구성요소들의 커패시턴스이고, BW는 대역폭이다. 신호 송달 시스템의 유도성 및 용량성 구성요소들은 불연속성이 없는 완전히 균일한 시스템 내에서도, 시스템의 대역폭을 감소시키는 작용을 한다. 이러한 유도성 및 용량성 구성요소들은 주로 시스템을 통한 전류 경로의 면적을 제한하고 시스템 요소들의 전체 판 면적을 감소시킴으로써, 시스템을 통한 전체 경로 길이를 감소시킴으로써 최소화될 수 있다. 그러나, 전송 주파수가 증가함에 따라, 크기의 감소는 유효 물리 길이가 작은 크기로 감소되는 점에서 고유한 문제점을 생성한다. 10 GHz 범위 이상의 높은 주파수는 계산된 시스템 경로 길이의 대부분을 허용 불가능하게 한다.
성능 인자를 제한하는 시스템을 가로지른 인덕턴스 및 커패시턴스를 결집시키는 것 이외에, 임의의 불균일 기하학적 및/또는 재료 전이가 불연속성을 생성한다. 초당 약 12.5 GB(Gbps)로 작동하는 저전압 차동 신호 시스템 내의 최소 차단 주파수로서 약 3.5 GHz를 사용하면, 약 3.8의 유전 상수를 갖는 유전체의 사용은 약 0.25 인치의 임계 경로 길이를 산출할 것이고, 이러한 길이에 걸쳐 불연속성이 허용될 수 있다. 이러한 치수는 공급원, 전송 부하, 및 주어진 평방 인치당 부하를 포함하는 시스템을 구성하는 것을 불가능하게 한다. 따라서, 전자 전송 구조물의 발달은 시도된 단일 구조 인터페이스에 대한 균일한 구조의 핀 배열로부터 기능적으로 전용인 핀 배열로 진보되었지만, 경로 길이 및 다른 인자들은 여전히 이러한 구조를 제한한다는 것을 알 수 있다. 전술한 종래 기술의 구조에서, 이러한 시스템의 물리적인 구속 및 그러한 전송을 위해 필요한 짧은 임계 경로 길이로 인해 고주파 신호를 운반하는 것이 불가능했다.
효과적인 전송 시스템을 얻기 위해, 공급원으로부터 인터페이스를 통해 부하로의 전체 송달 경로에 걸쳐 일정한 전용의 전송 라인을 유지해야 한다. 이는 정합 가능한 상호 연결부 및 인쇄 회로 보드, 인쇄 회로 보드에 대한 상호 연결 신호 접속부 또는 케이블과 같은 다른 전송 매체, 및 반도체 장치 칩 패키징을 포함한다. 이는 송달 시스템이 다른 개별 전도성 핀과 상호 연결되도록 설계된 개별 전도성 핀으로부터 구성되면, 핀/단자들의 크기, 형상, 및 서로에 대해 위치의 잠재적으로 요구되는 변화 때문에, 달성하기가 매우 어렵다. 예를 들어, 직각 커넥터에서, 핀/단자의 열들 사이의 관계는 길이 및 전기 결합에 있어서 변한다. 칩 패키징, 인쇄 회로 보드, 보드 커넥터 및 케이블 조립체를 포함하는 시스템의 공급원과 부하 사이의 모든 영역을 포함하는 고속 상호 연결 설계 원리는 2.5 Gbps까지의 공급원을 갖는 전송 시스템에서 사용되고 있다. 한 가지 그러한 원리는 결합이 신호 및 접지 경로 사이에서 향상되고 전원 직렬 작동이 제공되는 점에서 표준 핀 필 드에 대해 추가의 성능을 제공하는 설계에 의한 접지의 원리이다. 그러한 시스템에서 사용되는 다른 원리는 불연속성을 최소화하기 위한 임피던스 조정을 포함한다. 또 다른 설계 원리는 신호 및 복귀 경로가 성능을 최대화하기 위해 핀 필드 내의 특정 핀에 할당되는 핀 출력 최적화이다. 이러한 유형의 시스템은 모두 전술한 임계 경로 길이를 획득하는 것에 대해 제한된다.
본 발명은 전술한 단점을 극복하고 고속으로 작동하는 개선된 전송 또는 송달 시스템에 관한 것이다.
그러므로, 본 발명은 전술한 단점을 극복하고, 한 가지 관점에서 광섬유 시스템과 유사한 완전한 전자 전송 채널을 제공하는 단일 기계식 구조물을 형성하기 위해 그룹화된 전기 전도성 요소들을 이용하는 개선된 전송 구조물에 관한 것이다. 본 발명의 초점은 전송 채널로서 구리 도체를 갖는 개별 전도성 핀 또는 분리 가능한 인터페이스를 이용하기 보다는 완전한 설계된 구리계 전자 전송 채널을 제공하는 것이고, 본 발명의 전송 채널은 더욱 예측 가능한 전기적 성능 및 작동 특징의 더 큰 제어를 산출한다. 본 발명의 그러한 개선된 시스템은 0.25 인치보다 훨씬 더 큰 연장된 경로 길이에서 적어도 12.5 GHz까지의 디지털 신호 전송을 위한 작동 속도를 제공하는 것으로 믿어진다.
따라서, 본 발명의 일반적인 목적은 그룹화 요소 채널 링크로서 기능하는 설계된 도파관을 제공하는 것이고, 여기서 링크는 신장된 유전 본체부와, 그의 외부 표면을 따라 배치된 적어도 2개의 전도성 요소를 포함한다.
본 발명의 다른 목적은 주어진 단면의 신장된 본체부를 갖는 고속 채널 링크 (또는 전송 라인)을 제공하는 것이고, 본체부는 선택된 유전 상수를 갖는 유전체로부터 형성되고, 링크는 그의 가장 기본적인 구조에 있어서, 그의 외부 표면 상에 배치된 2개의 전도성 요소를 갖고, 요소들은 유사한 크기 및 형상이며, 2개의 전도성 요소들 사이에 특정 전기장 및 자장을 확립하고 이러한 장을 채널 링크의 길이 전체에 걸쳐 유지함으로써 링크를 통해 이동하는 전기 에너지파를 조향하도록 그 위에서 서로 대향하여 배향된다.
본 발명의 다른 목적은 균형 또는 불균형 전기장 및 자장을 유지하기 위해 신장된 본체의 외부 표면 상의 전도성 요소들 및 그들 사이의 갭의 크기를 선택적으로 결정함으로써 채널 링크의 임피던스를 제어하는 것이다.
본 발명의 또 다른 목적은 편평 기판과, 기판 내에 형성된 복수의 홈을 포함하는 개선된 전기 전송 채널을 제공하는 것이고, 홈은 대향 측벽들을 갖고, 홈들은 기판의 개재 랜드에 의해 이격되고, 홈의 측벽은 도금 또는 적층에 의해 그 위에 적층된 전도성 재료를 가져서 홈 내에 전자 전송 채널을 형성한다.
본 발명의 또 다른 목적은 적어도 한 쌍의 전도성 요소들이 차동 신호 전송, 즉 신호 입력("+") 및 신호 출력("-")을 제공하도록 이용되는 미리 설계된 도파관을 제공하는 것이고, 전도성 요소 쌍은 단위 길이당 커패시턴스, 단위 길이당 인덕턴스, 단위 길이당 임피던스 감쇄 및 전파 지연의 확립을 허용하도록 유전 본체의 외부 상에 배치되고, 전도성 요소에 의해 형성된 채널 내에서 이러한 미리 결정된 성능 파라미터를 확립한다.
본 발명의 또 다른 목적은 양호하게는 균일한 원형 단면의 중실 링크의 형태의 개선된 전송 라인을 제공하는 것이고, 링크는 그 위에 배치되어 전기파를 안내하도록 역할하는 적어도 한 쌍의 전도성 요소를 포함하고, 링크는 그 위에 배치된 2개의 전도성 표면을 갖는 유전 재료의 적어도 하나의 얇은 필라멘트를 포함하고, 전도성 표면들은 필라멘트의 길이 방향으로 연장되며 2개의 원주방향 아치형 연장부들에 의해 분리되고, 전도성 표면들은 전류 루프를 감소시키며 신호 도체들이 더욱 타이트하게 정렬되는 분리된 2-요소 전송 채널을 형성하도록 서로로부터 분리된다.
본 발명의 또 다른 목적은 적어도 4개의 개별 섹터들이 위에 배치된 외부 표면을 갖는 신장된 사각형 또는 정사각형 유전 부재를 포함하는 고속용 비원형 전송 라인을 제공하는 것이고, 유전 부재는 서로 정렬되고 2개의 섹터 상에 배치되면서 개재 섹터에 의해 분리된 한 쌍의 전도성 요소를 포함한다.
본 발명은 그의 고유한 구조에 의해 상기 및 다른 목적을 달성한다. 하나의 주요 태양에서, 본 발명은 사전 선택된 유전 상수 및 사전 선택된 단면 형상을 구비한 유전체로 형성된 전송 라인을 포함한다. 한쌍의 전도성 표면이 상기 유전 라인 또는 링크 상에 배치되고, 양호하게 이는 서로 정렬되고 서로 분리된다. 상기 전도성 표면은 전송 링크를 따라서 전기파를 안내하기 위한 도파관으로서 기능을 한다.
본 발명의 다른 주요 태양에서, 전도성 요소는 단일 요소 상의 쌍으로써 함께 그룹화되고, 따라서, 후속하는 인쇄 회로 보드들 사이를 연결하고 이들에 어려움 없이 접속될 수 있는 결합된 도파관을 한정한다. 유전 본체의 외부 표면을 도금하여, 또는 실재 도체를 본체에 몰딩 또는 그렇지 않으면 부착하는 등과 같이, 전도성 표면은 위에 전도성 재료를 선택적으로 증착함으로써 형성될 수 있다. 이러한 방식에서, 유전체는 굽힘에 의해 형성될 수 있고, 그 표면 상에 존재하는 전도성 표면은 유전 본체의 전체 굽힘부를 따라서 그룹화된 채널 도체의 이격된 배열을 유지한다.
본 발명의 또 다른 주요 태양에서, 전송 라인의 외부는 보호 외부 자켓 또는 슬리브에 의해 덮일 수 있다. 전도성 표면은 동일한 폭을 가지는 균형 배열 또는 상이한 폭을 가지는 하나 이상의 쌍의 전도성 요소를 구비한 불균형 배열로 유전 본체 상에 배치될 수 있다. 차동 신호 도체의 쌍 및 관련 접지 도체를 사용하는 전송 라인 상의 상이한 삼중 커넥터을 지지하기 위해, 3개의 전도성 요소가 유전 본체 상에 배치될 수 있다. 전도성 표면의 수는 단지 유전 본체의 크기에 의해서만 한정되고, 4개의 그러한 분리된 도전성 요소가 2개의 차동 신호 채널 또는 이중 접지를 구비한 단일의 상이한 쌍을 지지하기 위해 사용될 수 있다.
본 발명의 또 다른 주요 태양에서, 통합 전송 라인이 하나의 공동, 또는 기판 내부에 형성된 복수개의 선택적인 치수를 가지는 금속화된 공동 내부에 형성된다. 상기 기판은 공동을 형성하기 위해 홈이 형성되며, 상기 홈의 측벽은 전도성 재료로써 도금될 수 있다. 본 예에서 공동의 측벽들 또는 홈들 사이의 공기 간극은 전송 채널의 유전체로서 기능한다. 본 구조에서, 공기의 유전 상수는 상이하며 유전 본체의 유전 상수 보다 작으므로, 전송 속도를 증가시키면서, 전송 라인의 인접 신호 전송 채널들 사이가 아니라 특히, 홈들 내의 전도성 요소들 사이의 전기적 친화력에 영향을 준다.
본 발명의 또 다른 주요 태양에서, 전술된 전송 라인이 전력을 이송하는데 사용될 수 있다. 이러한 상황에서, 기저 전송 라인은, 즉, 홈의 측벽 및 기부를 덮기 위해, 홈들 내부에 형성되는 연속 접촉 영역을 구비하는, 홈 형성된 유전체를 포함할 것이다. 홈의 길이에 대해 이들 3개 표면 상에 존재하는 연속 접촉 영역은 구조물의 전류 이송 능력을 확장시킨다. 접지 평면이 전력 채널 사이를 결함하는 전기 용량을 증가시키기 위해 사용될 수 있고, 접지 평면은 전체 구조물의 소스 임피던스를 감소시킨다. 전송 라인은 돌출 리지 또는 랜드와 함께 형성될 수 있으며, 이들은 이들 사이에 골을 형성한다. 전도성 표면은 선택적 도금과 같은 연속 프로세스에 의해 상기 골 내에 형성되어, 전송 라인의 길이에 대해 연장하는 연속 도금된 골, 즉, 2개의 측벽 및 상호 연결 기부가 형성된다. 이는 전송 라인의 전류 이송 능력을 증가시킨다. 이후 시스템의 소스 임피던스를 감소시키기 위해 2개의 신호 도체 사이의 유전체를 가로질러 높은 커패시턴스가 생성될 수 있다.
본 발명의 전력 이송 태양은 시스템 내부에 고밀도 접촉 세트의 형성에 의해 더욱 보강될 수 있다. 홈 형성된 전송 라인에서, 홈의 대향하는 측벽들은 전송 라인의 길이로 연장하는 연속 접촉부를 형성하기 위해 전도성 재료로 도금될 수 있고, 대향 극성 신호(즉, "+" 및 "-")가 이들 접촉부를 따라서 이송될 수 있다. 플러그 조립체가 개별적으로 또는 대향된 접촉 쌍을 절연 및 격리시키는 2개 이상의 그러한 홈을 포함하는 조립체로서 홈 내로의 삽입 몰딩에 의해 몰드될 수 있고, 이는 증가된 전압 고립(voltage standoff)을 초래한다. 또한, 유사한 목적을 달성하기 위해 등각 코팅(conformal coating)이 사용될 수 있다.
본 발명의 전송 라인은 신호와 전력을 모두 이송할 수 있으며, 따라서 신호 채널과 전력 채널로 용이하게 분할될 수 있다. 신호 채널은 사전 선택된 폭의 전도성 스트립 또는 경로로써 만들어질 수 있는 한편, 전력 채널은 높은 전류를 이송하기 위해 더욱 넓은 스트립 또는 확대된 연속 도체 스트립 중 어느 하나를 포함할 수 있다. 더욱 넓은 스트립은 신호 스트립에 비하면 확대된 판 영역이며, 높은 커패시턴스를 가진다. 신호 및 전력 채널은 격리 구역으로서 기능하는 전송 구조물의 넓은 비전도성 영역에 의해 분리될 수 있다. 상기 격리 구역이 기저 유전 기부의 형성 중에 형성될 수 있고, 격리 구역은 교차 오염 또는 전기적 간섭을 최소화하기 위해 용이하게 한정될 수 있다.
본 발명의 상기 및 다른 목적, 특징 및 이점이 이하의 상세한 설명의 고찰을 통해 명확하게 이해될 것이다.
이러한 상세한 설명 중에, 첨부된 도면이 자주 참조될 것이다.
도1은 종래의 커넥터의 종결면의 개략적인 평면도이다.
도2는 고속 커넥터 내에서 사용되는 에지 카드의 개략적인 평면도이다.
도3은 삼각 또는 삼중 단자를 이용하는 고속 커넥터의 개략적인 입면도이다.
도4는 본 발명의 원리에 따라 구성된 그룹화 요소 채널 링크의 사시도이다.
도5는 전도성 요소들의 아치형 연장부 및 그들 사이의 간격을 도시하는 도4 의 그룹화 요소 채널 링크의 개략적인 단부도이다.
도6은 본 발명의 원리에 따라 구성된 그룹화 요소 채널 링크의 다른 실시예의 사시도이다.
도7은 전송 링크 상에 중간 부하를 갖는 부하와 공급원을 연결하도록 사용되는 본 발명의 전송 링크의 개략도이다.
도8은 각각의 시스템 내의 인덕턴스의 발생을 도시하는, 종래의 접속부("A") 및 본 발명의 전송 링크("B")를 모두 이용하는 커넥터 요소의 개략도이며, "A" 및 "B"의 세부가 확대되어 있다.
도9는 내부에 형성된 직각 굽힘부를 갖는 본 발명의 링크의 다른 구성의 사시도이다.
도10은 본 발명의 링크를 이용하는 전송 라인의 개략도이다.
도11은 본 발명의 링크의 다른 매체 조성을 도시하는 사시도이다.
도12는 다른 전도성 표면 배열을 도시하는 상이한 형상의 유전 본체들의 어레이의 사시도이다.
도13은 본 발명의 링크를 형성하도록 사용될 수 있는 비원형 단면 유전 본체들의 어레이의 사시도이다.
도14는 본 발명의 링크로서 사용하기에 적합한 비원형 단면 유전 본체들의 다른 어레이의 사시도이다.
도15는 2개의 커넥터들 사이에 전송 라인을 제공하는데 사용되는 본 발명의 다요소 링크를 통합한 커넥터 조립체의 분해도이다.
도16은 도15의 전송 링크에 의해 상호 연결된 2개의 커넥터 하우징을 갖는 커넥터 조립체의 사시도이다.
도17은 채널의 대향 단부들에 형성된 2개의 상호 연결 블록을 갖는 본 발명의 전송 채널의 모식도이며, 본 발명의 잠재적인 가요성 특성을 도시한다.
도18은 상이한 렌즈 특징을 갖는 링크로서 사용될 수 있는 상이하게 구성된 유전 본체들의 어레이의 사시도이다.
도19는 차동 신호 채널들이 그 위에 형성된 다중 전송 링크 압출물의 사시도이다.
도20은 본 발명에서 사용되는 다중 전송 라인 압출물의 사시도이다.
도21은 정합 인터페이스가 중공 단부 캡의 형태를 취하는, 본 발명의 분리된 전송 링크와 함께 사용되는 정합 인터페이스의 사시도이다.
도22는 전송 링크의 단부를 내부에 수납하는 중심 개방부를 도시하는, 도21의 단부 캡의 후방 사시도이다.
도23은 외부 접속부의 배향을 도시하는, 도21의 단부 캡의 전방 사시도이다.
도24는 다중 전송 링크 직각 만곡 커넥터 조립체의 평면도이다.
도25는 커넥터 조립체의 종결 단부들 중 하나의 다른 구성의 사시도이다.
도26은 본 발명의 전송 채널 링크를 회로 보드에 연결하는데 사용하기에 적합한 커넥터의 사시도이다.
도27a는 커넥터의 내부 접속부들 중 일부를 점선으로 도시하는 도26의 커넥터의 골격의 사시도이다.
도27b는 측벽이 제거되고 그 위의 결합 스테플의 구조 및 배치를 도시하는, 도27a의 커넥터의 내부 접속 조립체의 사시도이다.
도28은 선 28-28을 따라 취한, 도26의 커넥터의 단면도이다.
도29는 고주파 신호를 위한, 변형 임피던스를 가지는 전송 라인의 사시도이다.
도30a는 도29에 도시된 전송 라인의 평면도이다.
도30b는 도29에 도시된 전송 라인의 단부도이다.
도31a는 변형 임피던스를 가지지만, 세그먼트 사이에 매끄러운 천이부를 가지는 전송 라인의 대체 실시예의 평면도이다.
도31b는 도31a에 도시된 전송 라인의 단부도이다.
도32는 도29에 도시된 전송 라인에 사용된 측벽의 상이한 실시예를 도시한 도면이다.
도33a는 도29에 도시된 전송 라인에 사용된 바닥부의 대체 실시예를 도시한 도면이다.
도33b는 도29에 도시된 전송 라인에 사용된 바닥부의 대체 실시예를 도시한 도면이다.
도34는 공기가 아닌 유전체로 채워진 슬롯의 단면도이다.
도35는 밀봉식 채널 회로 보드 배열의 사시도이다.
도36은 도35에 도시된 구조물의 단부도이다.
도4는 본 발명의 원리에 따라 구성된 그룹화 요소 채널 링크(50)를 도시한다. 링크(50)는 양호하게는 길다란 광섬유 재료와 유사한 원통형 필라멘트인 신장된 유전 본체(51)를 포함한다는 것을 알 수 있다. 이는 링크(50)가 미리 설계된 도파관 및 전용 전송 매체로서 작용한다는 점에서 광섬유와 다르다. 이에 대해, 본체(51)는 특정 유전 상수를 갖는 전용 유전체 및 그에 도포된 복수의 전도성 요소(52)로 형성된다. 도4 및 도5에서, 전도성 요소(52)는 전도성 재료의 신장된 연장부, 트레이스, 또는 스트립(52)으로서 도시되어 있고, 이와 같이 링크(50)의 유전 본체에 성형되거나 접착제 또는 다른 수단에 의해 달리 부착될 수 있는 한정된 단면을 갖는 전통적인 구리 또는 귀금속 연장부일 수 있다. 이는 또한 적합한 도금 또는 진공 증착 공정에 의해 본체(51)의 외부 표면(55) 상에 형성될 수 있다. 전도성 트레이스(52)는 외부 표면 상에 배치되고, 유전 본체의 주연부를 따라 연장되는 폭을 갖는다.
적어도 2개의 그러한 도체가 각각의 링크 상에서 사용되고, 전형적으로 +0.5 볼트 및 -0.5 볼트와 같은 차동 신호의 신호 이송을 위해 사용된다. 그러한 차동 신호 배열의 사용은 본 발명의 구조를 신호 송달 경로의 대체로 전체 길이에 걸쳐 유지되는 미리 설계된 도파관으로서 특징짓게 한다. 유전 본체(51)의 사용은 링크 내에서 발생하는 양호한 결합을 제공한다. 가장 간단한 실시예에서, 도5에 도시된 바와 같이, 전도성 요소들은 두 대향 면상이 배치되어, 각각의 전도성 요소의 전기적 친화성은 서로에 대해 그들이 지지되는 유전 본체를 통하거나, 다음에서 더욱 상세하게 설명되며 도29 및 도30에 도시된 바와 같은 전도성 채널의 경우에, 전도 성 요소들은 공동/공동들의 둘 이상의 내부 면 상에 배치되어 공동 갭을 가로질러 공기 유전체를 통해 1차 결합 모드를 확립한다. 이러한 방식으로, 본 발명의 링크는 광섬유 채널 또는 연장부에 전기적으로 상응하는 것으로 고려될 수 있다.
본 발명은 전기 도파관에 관한 것이다. 본 발명의 도파관은 약 1.0 GHz 내지 적어도 12.5 GHz 및 양호하게는 그 이상의 고주파에서 원하는 수준의 전기적 친화성으로 전기 신호들을 유지하기 위한 것이다. 2002년 4월 23일자로 허여된 미국 특허 제6,377,741호에 설명된 바와 같은 광학 도파관은 전형적으로 선택된 방향으로 이동하는 광 에너지를 유지하기 위해 거울형 반사 특성을 갖는 단일 외측 코팅 또는 클래딩에 의존한다. 외측 코팅/클래딩 내의 개방부는 도파관을 통해 이동하는 광의 분산을 생성할 것이고, 이는 도파관의 광선에 악영향을 준다. 마이크로파 도파관은 마이크로파 도파관이 오븐의 중심부에서 마이크로파를 유도하도록 사용되는, 2002년 9월 5일자로 허여된 미국 특허 제6,114,677호에 의해 예시된 바와 같이 마이크로파 비임의 에너지를 전송하기보다는 유도하도록 매우 높은 주파수에서 사용된다. 그러한 유도 목적은 또한 마이크로파 안테나 기술에서 이용된다. 각각의 경우에, 이러한 유형의 마이크로파는 광 또는 그를 통해 이동하는 마이크로파의 에너지를 포커싱하고 유도하도록 사용되지만, 본 발명에서 전체 도파관 구조물은 일관된 임피던스 및 감소된 감쇄에서 전기 신호의 전파를 고속의 전파로 유지하도록 설계된다.
본 발명의 링크의 유효성은 전기 누출 방지부의 둘 이상의 전도성 표면을 이용함으로써, 채널 링크를 통한 디지털 신호의 안내 및 유지에 의존한다. 이는 신 호의 무결성을 유지하고, 방출을 제어하고, 링크를 통한 손실을 최소화하는 것을 포함할 것이다. 본 발명의 채널 링크는 양호한 장 커플링이 제공되도록 채널 링크의 재료 및 시스템 구성요소의 기하학적 형상을 제어함으로써 그를 통해 전송되는 신호의 전자기장을 포함한다. 간단히 말하면, 본 발명은 전기적 친화성의 영역을 한정함으로써 설계된 전송 라인, 즉 반대 전하, 즉 음과 양의 차동 신호의 도체, 즉 전도성 표면(52)에 의해 한정된 유전 본체(51)를 생성한다.
도5에 더 잘 도시된 바와 같이, 2개의 전도성 표면(52)들은 서로에 대해 대향하도록 유전 본체(51) 상에 배열된다. 도4에 도시된 유전 본체(51)는 원통형 로드의 형태를 취하지만, 도5에 도시된 유전 본체는 타원형 구성을 갖는다. 각각의 그러한 경우에, 전도성 표면 또는 트레이스(52)는 다른 아크 길이로 연장된다. 도4 및 도5는 본 발명의 "균형" 링크를 나타내고, 2개의 전도성 표면(52)들의 원주방향 연장부 또는 아크 길이(C)는 동일하고 유전 본체(51)의 비전도성 외부 표면(55)들의 원주방향 연장부 또는 아크 길이(C1)도 동일하다. 이러한 길이는 전도성 표면들 사이의 총 분리(D)를 한정하는 것으로 고려될 수 있다. 아래에서 설명될 바와 같이, 링크는 전도성 표면들 중 하나가 다른 하나보다 더 큰 아크 길이를 갖는 "불균형"일 수 있고, 그러한 경우에 전송 라인은 전원 직렬 또는 비차동 신호 용도에 대해 가장 적합하다. 유전 본체 및 링크가 원형인 경우에, 링크는 접속 핀으로서 역할할 수 있으며, 따라서 커넥터 용도에서 이용될 수 있다. 이러한 원형 단면은 종래의 둥근 접속 핀과 동일한 유형의 구성을 나타낸다.
도6에 도시된 바와 같이, 본 발명의 링크는 전체 시스템 전송 매체의 일부인 다중 전도성 요소를 제공하도록 변형될 뿐만 아니라, 광 및 광학 신호의 전송을 위해 일치하는 동축의 광섬유 도파관을 내부에 포함할 수도 있다. 이에 대해, 유전 본체(51)는 광섬유(58)가 연장되는 중심 개방부(57)를 생성하도록 코링(coring)된다. 광 신호(60)는 물론 전기 신호가 이러한 링크를 통해 전송될 수 있다.
도7은 공급원(71)과 부하(72) 사이에서 연장되는 본 발명의 링크(50)를 포함하는 전송 라인(70)을 개략적으로 도시한다. 링크의 전도성 표면(52)은 공급원 및 부하와, 공급원 및 부하 중간의 다른 2차 부하(73)를 상호 연결하도록 역할한다. 그러한 2차 부하는 시스템을 통한 임피던스를 제어하기 위해 시스템에 추가될 수 있다. 라인 임피던스는 공급원에서 확립되고, 전송 라인에 2차 부하를 추가함으로써 변형될 수 있다.
도8은 유전 블록(76)에 의해 지지되는 것으로 도시된 본 발명의 링크와 종래의 도체 사이의 차이를 개략적으로 도시한다. 2개의 분리된 종래의 도체(77)는 구리 또는 다른 전도성 재료로 형성되고, 핀의 방식으로 블록(76)을 통해 연장된다. 확대부("A")에 도시된 바와 같이, 2개의 분리된 도체는 확대된 전류 루프 때문에 큰 인덕턴스(L)를 갖는 개방 셀 구조를 제공한다. 매우 다르게, 본 발명의 링크는 유전 본체(51) 상에 위치된 전도성 표면들의 서로에 대한 근접성으로 인해 일정한 임피던스에서 더 작은 인덕턴스(L)를 갖는다. 이러한 링크(50)의 치수는 제조 공정에서 제어될 수 있고, 압출이 유전 본체와 함께 압출되거나 결과적인 구성이 다양한 도금된 플라스틱이도록 선택적인 도금 공정에 의해 별도로 압출되는 전도성 표면에서 양호한 제조 공정일 수 있다. 유전 본체(51)의 체적 및 그 위에 배치된 전도성 요소들 사이의 간격은 그러한 압출 공정에서 쉽게 제어될 수 있다. 전도성 표면들은 양호하게는 유전 본체의 길이로 연장되고, 전송 라인을 커넥터, 회로 보드 또는 유사한 구성요소에 대해 종결시키는 것이 필요한 위치에서 그의 단부 직전에 종료될 수 있다.
도9가 도시하는 바와 같이, 유전 본체는 도시된 90° 굽힘부의 형태로 또는 임의의 다른 각도 배향으로 그의 전방에 굽힘부(80)를 가질 수 있다. 도시된 바와 같이, 전도성 표면(52)들은 그들 사이의 동일한 분리 간격과 전도성 표면들이 시작되고 종료되는 동일한 폭으로 굽힘부(80)를 통해 연장된다. 유전 본체(51) 및 전도성 표면(52)은 임의의 전위 손실을 제거하기 위해 굽힘부를 통한 그들의 간격 및 분리에 있어서 쉽게 유지된다.
도10은 본 발명의 링크를 사용하는 전송 라인을 도시한다. 링크(50)는 하나 이상의 단일 유전 본체(51)로부터 형성된 전송 케이블로서 고려되고, 그의 일 단부(82)는 인쇄 회로 보드(83)로 종결된다. 이러한 종결은 회로 보드에서 임의의 불연속성을 최소화하기 위해 직접적일 수 있다. 임의의 불연속성을 최소로 유지하는 짧은 이송 링크(84)도 제공된다. 이러한 링크(84)는 전송 링크의 그룹화 태양을 유지한다. 종결 인터페이스(85)는 링크가 커넥터로 종결되는 곳에서 최소의 기하학적 불연속성 또는 임피던스 불연속성을 가지고 제공될 수 있다. 이러한 방식으로, 전도성 표면들의 그룹화는 전송 라인의 길이에 걸쳐 유지되어, 기하학적 및 전기적 균일성을 생성한다.
도11은 본 발명의 전송 링크(50)의 다양한 상이한 단면을 도시한다. 최우측 링크(90)에서, 중심 도체(93)는 양호하게는 유전 본체(94)의 부분으로 충전된 개재 공간에 의해 분리된 다중 전도성 표면(95)을 지지하는 중공 유전 본체(94)에 의해 둘러싸인다. 이러한 구성은 전력이 중심 도체(93)에 의해 운반되는 전력 용도에서 사용하기에 적합하다. 도11의 중간 링크(91)에서, 중심 커버(96)는 양호하게는 선택된 유전체로 만들어지며, 그 위에 지지되는 전도성 표면(97)을 갖는다. 외측 보호 절연 자켓(98)이 양호하게는 내측 링크를 보호하고 그리고/또는 절연하도록 제공된다. 도11의 최좌측 링크(92)는 전도성 또는 절연 코어(101)를 둘러싸는 도금 가능한 중합체 링(100)을 둘러싸는 외측 보호 자켓(99)을 갖는다. 링(100)의 부분(101)은 전도성 재료로 도금되고, 링의 본체 상에 원하는 둘 이상의 전도성 표면을 한정하도록 도금되지 않은 부분에 의해 분리된다. 또는, 코어를 둘러싸는 링크(92)의 하나 이상의 요소들은 공기로 충전될 수 있고, 적합한 절연기에 의해 내측 부재로부터 멀리 이격될 수 있다.
도12는 상이한 유형의 전송 링크를 형성하기 위해 유전 본체(51)와 조합된 외측 영역을 갖는 링크(110 내지 113)들의 어레이를 도시한다. 링크(110)는 링크(110)가 전원 직렬 신호 작동을 제공할 수 있도록 유전 본체(51)의 외측 표면 상에 배치된 상이한 아크 길이의 (즉, 불균형한) 2개의 전도성 표면(52a, 52b)을 갖는다. 링크(111)는 효과적인 차동 신호 작동을 제공하기 위해 2개의 동일 간격 및 크기 (또는 "균형된") 전도성 요소(52)를 갖는다.
링크(112)는 2개의 차동 신호 도체(115a) 및 분류된 접지 도체(115b)를 지지하기 위한 3개의 전도성 표면(115)을 갖는다. 링크(113)는 유전 본체(51) 상에 배 치된 4개의 전도성 표면(116)을 갖고, 전도성 표면(116)은 2개의 차동 신호 채널 (또는 쌍) 또는 한 쌍의 분류된 접지부를 갖는 단일 차동 쌍을 포함할 수 있다.
도13은 링크(120)에서와 같은 정사각형 구성 또는 링크(121 및 122)에서와 같은 사각형 구성과 같은, 다각형 구성을 갖는 비원형 링크(120 내지 122)의 한 가지 유형의 어레이를 도시한다. 유전 본체(51)는 전도성 재료로 도금되거나 달리 덮인 돌출 랜드부(125)를 구비하여 압출될 수 있다. 개별 전도성 표면은 유전 본체의 개별 측면 상에 배치되고, 양호하게는 전도성 표면의 차동 신호 쌍은 본체의 대향 측면들 상에 배열된다. 이러한 랜드부(125)는 (도시되지 않은) 커넥터 단자와 전도성 면(125) 사이의 접속이 쉽게 이루어지는 방식으로 종결 커넥터의 커넥터 슬롯 내로 "키이 결합"되도록 사용될 수 있다.
도14는 본 발명에서 이용될 수 있는 몇몇의 추가적인 유전 본체를 도시한다. 하나의 본체(130)는 볼록하게 도시되어 있고, 다른 2개의 본체(131, 132)는 대체로 오목한 구성으로 도시되어 있다. 유전 본체의 원형 단면은 전도성 표면의 진입부에 전기장 강도를 집중시키는 경향을 갖지만, 본체(130)에서 도시된 바와 같은 약간의 볼록 형태는 전기장 강도를 균일하게 집중시키는 경향을 가져서 감쇄를 낮춘다. 유전 본체(131, 132)에 의해 도시된 바와 같은 오목 본체는 전기장을 내측으로 포커싱하기 때문에 유익한 혼선 감소 태양을 가질 수 있다. 도14에 도시된 바와 같은 이러한 전도성 표면의 폭 또는 아크 길이는 그를 지지하는 각각의 본체측의 폭 또는 아크 길이보다 더 작다.
중요하게는, 전송 링크는 그 위에 다중 신호 채널을 보유하는 단일 압출 물(200, 도15, 도16)로서 형성될 수 있고, 각각의 그러한 채널은 한 쌍의 전도성 표면(202, 203)을 포함한다. 이러한 전도성 표면(202, 203)들은 그들을 지지하는 개재된 유전 본체(204) 및 그들을 서로 상호 연결하는 웨브 부분(205)에 의해 서로로부터 분리된다. 이러한 압출물(200)은 전체 커넥터 조립체(220)의 일부로서 사용될 수 있고, 압출물은 커넥터 하우징(211) 내에 형성된 상보적인 형상의 개방부(210) 내로 수납된다. 개방부(210)의 내측벽은 선택적으로 도금될 수 있거나, 접속부(212)가 전도성 표면과 접속하고 필요하다면 표면 장착부 또는 관통 구멍 테일부를 제공하기 위해 하우징(211) 내로 삽입될 수 있다.
도17은 도시된 바와 같이 배열되고, 일 단부에서 커넥터 블록(180)으로 종결되고, 도시된 바와 같이 전송 채널 링크를 수납하는 일련의 내부에 형성된 직각 통로(183)를 포함하는 직각 블록(182)을 통과하는 2개의 전송 채널(50)의 배열을 도시한다. 도17에 도시된 것과 같은 배열에서, 전송 채널 링크는 압출과 같은 연속 제조 공정으로 제조될 수 있으며, 각각의 그러한 채널은 내재 또는 일체형 전도성 요소(52)를 구비하여 제조될 수 있다는 것이 이해될 것이다. 이러한 요소의 제조 시에, 전송 채널 자체의 기하학적 특징은 물론, 유전 본체 상의 전도성 요소들의 간격 및 위치가 전송 채널이 신호 채널 또는 신호 (통신) 이동 "경로"를 지지하는 일관된 단일 전자 도파관으로서 작동하도록, 제어될 수 있다. 전송 채널 링크의 유전 본체가 가요성으로 만들어질 수 있기 때문에, 본 발명의 시스템은 시스템의 전기적 성능을 현저하게 희생하지 않고서 연장된 길이에 걸쳐 다양한 경로에 대해 쉽게 상응할 수 있다. 하나의 커넥터 단부 블록(180)은 전송 채널들을 수직으로 정렬시켜 유지할 수 있고, 블록(182)은 전송 채널 링크의 단부를 다른 구성요소로의 종결을 위해 직각 배향으로 유지할 수 있다.
도18은 분리 거리(L)가 변하고 블록의 외부 표면(306)의 만곡부(305)가 링크(300 내지 302)들 사이에서 상승하는 볼록한 유전 블록 또는 본체(300 내지 302)의 세트를 도시한다. 이러한 방식으로, 본체의 형상은 전도성 요소들이 급전될 때 전개되는 전기장을 포커싱하기 위한 상이한 렌즈 특징을 제공하도록 선택될 수 있다.
도19는 전도성 표면(403)들이 본질적으로 다중이거나 복합적인, 웨브(402)에 의해 상호 연결된 일련의 유전 본체 또는 블록(401)을 구비한 다중 채널 압출물(400)을 도시한다. 도13에 도시된 구성에서와 같이, 그러한 압출물(400)은 다중 신호 채널을 지지하고, 각각의 채널은 양호하게는 한 쌍의 차동 신호 전도 요소를 포함한다.
도20은 도15 및 도16에 도시된 것과 같은 표준 압출물(200)을 도시한다. 본 발명의 링크는 커넥터 또는 다른 하우징 내로 종결될 수 있다. 도21 내지 도23은 중심 개방부(502)를 구비한 중공 본체(501)를 갖는 어느 정도 원추형인 단부 캡인 하나의 종결 인터페이스를 도시한다. 본체는 유전 본체(51)의 전도성 표면(52)과 정합하는 한 쌍의 단자(504)를 지지할 수 있다. 단부 캡(500)은 커넥터 하우징 또는 회로 보드 내의 다양한 개방부 내로 삽입될 수 있고, 이와 같이 양호하게는 원추형 삽입 단부(510)를 포함한다. 단부 캡(500)은 도21 내지 도23에 도시된 바와 같이 단일 전송 라인만을 종결시키도록 구성될 수 있거나, 또는 도24 및 도25에 도 시된 바와 같이 다중 종결 인터페이스의 일부이며 복수의 개별 전송 라인을 종결시킬 수 있다.
도24는 단부 블록(521)이 (도시되지 않은) 회로 보드에 부착될 수 있도록, 표면 장착 단자(522)를 갖는 단부 블록(521)으로 종결되는 일련의 링크(520) 상의 제 위치의 단부 캡(500)을 도시한다. 단부 캡은 도면에 도시된 원추형 구조를 취할 필요는 없지만, 아래에서 설명되고 도시되는 것과 유사한 다른 형상 및 구성을 취할 수 있다.
도25는 단부 블록(570)의 다른 구성을 도시한다. 이러한 배열에서, 전송 라인 또는 링크(571)는 유전체로부터 형성되고, 그의 외부 표면 상에 형성된 한 쌍의 전도성 연장부(572)를 포함한다 (연장부(572)는 명확하게 하기 위해 일 측면 상에서만 도시되어 있고, 그의 대응하는 연장부는 도25의 지면 내로 향하는 링크(571)의 표면 상에 형성된다). 이러한 전도성 연장부(572)는 회로 보드(574)의 내부 상에 형성된 전도성 관통부(575)에 의해 회로 보드(574) 상의 트레이스(573)에 연결된다. 그러한 관통부는 필요하다면 단부 블록(570)의 본체 내에 구성될 수도 있다. 관통부(575)는 양호하게는 도시된 바와 같이 분할되고, 그의 2개의 전도성 섹션들은 개재된 갭(576)에 의해 분리되어 보드의 수준에서 2개의 전도성 전송 채널의 분리를 유지한다.
도26은 인쇄 회로 보드(601)에 장착된 단부 캡 또는 블록(600)을 도시한다. 이러한 스타일의 단부 캡(600)은 커넥터로서 역할하고, 따라서 전송 링크의 돌출부를 수용하는 다양한 키이 홈(604)을 갖는 중심 슬롯(603)을 구비한 하우징(602)을 포함한다. 단부 캡 커넥터(600)는 회로 보드(601) 상의 대응하는 대향 트레이스에 접속부(607)의 전도성 테일부(606)를 납땜하기 위한 접근을 위해 복수의 창(620)을 가질 수 있다. 도시된 바와 같은 표면 장착 테일의 경우에, 테일(606)은 필요한 회로 보드 패드 크기와 회로 보드에서의 시스템의 커패시턴스를 감소시키기 위해 단부 캡 하우징의 본체를 아래로 밀어 넣어지는 수평 부분(609)을 가질 수 있다.
도27a는 단부 캡 커넥터(600)의 부분 골격도를 도시하고, 접속부 또는 단자(607)가 어떻게 커넥터 하우징(602) 내에서 지지되며 그를 통해 연장되는 지를 도시한다. 단자(607)는 풍부한 접속을 위해 (그리고 평행한 전기 경로를 제공하기 위해) 이중 와이어 접속 단부(608)를 포함할 수 있고, 커넥터(600)는 뒤집힌 U-형상을 가지며 하우징을 가로지른 단자들의 결합을 향상시키는 결합 스테플(615)을 포함할 수 있다. 결합 스테플(615)은 커넥터 하우징(602)을 통해 길이방향으로 연장되는 신장된 골격을 갖는 것으로 보일 수 있다. 결합 스테플의 길이를 따른 공간에 의해 서로로부터 이격된 복수의 레그가 회로 보드를 향해 아래로 연장되고, 각각의 그러한 레그는 그가 대향한 단자의 대응하는 폭보다 더 큰 폭을 갖는다. 도면에 도시된 바와 같이, 결합 스테플은 단자와 정렬되어 위치된다. 이러한 이중 와이어 단자(607)의 테일부는 커넥터의 안정성을 향상시킨다. 이에 대해, 이는 또한 하우징 슬롯(601)을 가로질러 (측방향으로) 채널을 구성하는 단자에 대한 제어를 제공한다. 이중 접속 경로는 풍부한 경로를 제공할 뿐만 아니라 단자를 통한 시스템의 인덕턴스를 감소시킨다. 도27B는 도26 및 도27A의 단부 캡 커넥터(600) 내에서 사용되는 내부 접속 조립체의 도면이다. 단자(607)들은 커넥터의 대향 측 면들 상에 배열되고, 각각의 지지 블록(610) 내에 장착된다. 이러한 지지 블록(610)들은 단자 접속부(608)들을 이격시키는 것을 돕는 소정의 거리로 서로로부터 이격된다.
전체적으로 U-형상 또는 블레이드 형상을 갖는 전도성 결합 스테플(615)이 제공되어 단자(607)들 사이의 결합을 향상시키기 위해 단자(607)와 지지 블록(610) 사이에 삽입될 수 있다. 결합 스테플(615)은 개재된 공간(621)에 의해 이격되고 대향 접속부(608, 도28)의 쌍 사이에 삽입되어 회로 보드의 표면을 향해 하방으로 연장되는 일련의 블레이드(620)를 갖는다. 스테플(615)은 커넥터 블록(610)들 사이에서 커넥터 본체를 통해 길이방향으로 연장된다. 커넥터 블록(610) 및 커넥터 하우징(602) (특히 그의 측벽)은 2개의 부재를 서로 정합되게 유지하기 위해 맞물림 플러그(617)를 내부에 수납하는 내부에 형성된 개방부(616)를 가질 수 있다. 다른 부착 수단도 이용될 수 있다.
도28은 한 쌍의 대향 접속부(608) 사이로의 결합 스테플의 개재와, 커넥터 블록(610) 및 커넥터 하우징(602)의 맞물림을 도시하는, 커넥터(600)의 단부도이다.
상기 내용에도 불구하고, 도29는 본 발명의 원리에 따라 구성된 전송 채널 링그의 다른 실시예를 도시한다. 도29에서 평탄 유전 기판(700)에, 회로 보드 도는 심지어 집적 회로 기판과 같은 유전 기판 내에 절단 또는 다른 방식으로 형성된 슬롯의 대향 표면 상에 금속화를 통해 형성된 다중 세그먼트 전송 라인이 제공된다. 대향 표면 상의 금속화는 전기적으로 서로 격리된다. 상기 대향 표면 상에 형성된 2개의 개별적인 도체 상에 고주파 신호가 인가될 때, 이들은 전송 라인으로서 작용한다. 도29에 도시된 바와 같이, 전송 라인의 상이한 세그먼트는 측벽 사이에 상이한 간격을 가진다. 다른 전송 라인 세그먼트는 수렴 또는 발산하는 측벽을 가진다. 고정 간격 측벽을 가지는 세그먼트는 전도성 측벽의 분포 인덕턴스 및 커패시턴스에 의해 결정되는 일정한 특성 임피던스를 가질 것이다. 대향 표면 상의 전도성 재료의 면적 및 두께는 인덕턴스를 결정할 것이며, 대향 측벽들 사이의 면적 및 간격은 분포 커패시턴스를 결정할 것이다. 테이퍼 형태의 측벽 간격을 가지는 세그먼트는 이러한 세그먼트의 길이를 따른 변형 커패시턴스 때문에 변형 특성 임피던스를 가질 것이다.
상이한 전송 라인 세그먼트는 용이하게 인쇄 회로 보드 및 집적 회로 기판과 같은 유전 기판으로 형성된다. 이들의 소형 크기는 전송 라인 세그먼트 상에 이송된 신호를 상이한 특성 입력 또는 출력 임피던스를 가지거나 필요로 하는 장치로 전달하기 위한 그러한 기판 주위로 고주파 신호를 유도할 수 있게 하여, 이러한 장치의 내부 또는 외부로의 신호 전달을 개선한다.
특히 도29는 고정된 특성 임피던스를 가질, 고정 간격이며, 금속화된 측벽(712, 714)의 제1 전송 라인 세그먼트(704)를 도시한다. 전송 라인(704)의 제1 길이의 말단에서, 금속화된 측벽(712, 714) 상의 신호는 수렴하는 간격을 가지므로 제2 전송 라인 세그먼트(720)의 길이를 따라 변형하는 특성 임피던스를 제공하는 측벽(722)을 가지는 제2 전송 라인 세그먼트(720)로 이송된다.
변형 임피던스를 가지는 전송 라인(720)의 섹션은 그 길이를 따라서 고정 특 성을 가지는 고정 간격의 금속화된 측벽 전송 라인(740)의 제2 길이 내로 이송되는 신호를 공급한다. 고정 폭 측벽 간격은 제2 특성 임피던스를 가진다.
도29에 도시된 바와 같이, 전송 라인(704)의 제1 섹션은 기판(702)의 표면(703) 내로 형성된 제1 슬롯 섹션(706)으로 이루어진다. 기판(702)이 유리, 파이버 글라스, 다양한 플라스틱, 인쇄 회로 보드 재료, 또는 집적 회로 기판 재료(도핑되지 않은 비정질 실리콘 또는 다른 공지의 등가물 등)와 같은 다양한 적절한 유전 재료로부터 만들어 질 수 있기 때문에, 슬롯이 형성되는 프로세스가 기판 재료에 따라서 변경될 수 있다. 슬롯 섹션(706)이 유리 기판 내로 몰드될 수 있고, 이는 실리콘 내로 에칭될 수 있고, 이는 파이버 글라스, G-10, FR4, 또는 다른 인쇄 회로 보드 재료 내로 마이크로 기계 가공, 레이저 에칭 또는 다른 방식으로 절단될 수 있다.
제1 슬롯 섹션(706)을 포함하는 제1 전송 라인 섹션(704)은 도29에서 도면 부호 708 및 710으로 지시된 2개의 대향 단부를 가진다. 전송 라인 분야의 통상의 기술을 가진 자는 단부(708) 및 단부(710) 중 하나가 "입력" 또는 "출력" 단부가 될 수 있다는 것을 알 것이다.
제1 슬롯 섹션(706)은 2개의 대향 벽 또는 "표면"(712 및 714)를 가지며, 이들 사이에 슬롯 섹션(706)의 실질적으로 평탄한 바닥부(716)을 가진다. 제1 슬롯 섹션(706)의 대향 표면(712, 716)은 기판(702)를 형성하는 유전 재료의 표면이다. 상기 2개의 표면은 도29에서 도면 부호 W1으로 지시된 제1 개재 간격 또는 "공간"에 의해 서로 이격된다. 이들은 유전체이기 때문에, 상기 표면 자체는 전기적으로 전도성이 없을 것이다. 그러므로, 전기적 신호를 이송하는 전도성 재료(718)의 박막은 일 대향 표면(예컨대, 712 또는 714)에 인가되는 전도성 재료(718)는 대향 표면(예컨대, 714 또는 712)에 인가되는 전도성 재료로부터 전기적으로 이격되는 한 상기 기판 재료에 적절한 프로세스에 의해 각각의 대향 표면(712 및 716)에 "부착"된다. 대향 표면(즉, 714 또는 712) 상의 전도성 재료로부터 전기적 및 공간적으로 이격된 일 대향 표면(예컨대, 712 또는 714) 상의 전도성 재료(718)는 함께 2개의 대향 도체 상의 고주파 신호에 대한 전송 라인으로서 작용할 것이다.
통상의 기술을 가진 자들에게 이해될 수 있는 바와 같이, 대향 표면(712 및 714) 상의 전도성 재료(718)의 분포 인덕턴스는 재료의 조성, 표면(712 또는 714) 상의 전도성 재료(718)의 표면적 및 두께의 함수일 것이며, 루프 인덕턴스의 경우에, "전진" 및 "복귀" 전류에 의해 형성되는 루프의 인덕턴스는 전류 경로에 의해 형성되는 루프의 면적에 관계될 것이다. 유사하게, 대향 표면(712 및 714) 상의 전도성 재료(718) 사이의 분포 커패시턴스는 재료의 조성, 전도성 재료의 표면적, 표면(712 및 714) 사이의 간격 및 각 표면에 인가된 전도성 재료(718)의 두께의 함수일 것이다. 각 표면(712 및 714) 상의 전도성 재료(718)가 가까와질수록, 및/또는 전도성 재료 표면 중 하나 또는 모두의 면적이 증가할 수록, 2개의 도체(각 표면 712 및 714 상의)들 사이의 전기 용략 효과는 증가할 것이다. 잘 알려진 바와 같이, 전송 라인의 임피던스 "Z"는 √L/C로서 연산될 수 있고, 여기서, "L"은 전송 라인의 단위 길이당 인덕턴스이며, "C"는 전송 라인의 단위 길이당 커패시턴스이 다.
이상으로부터, 전송 라인 분야의 통상의 기술을 가진 자는 슬롯 전송 라인(704)의 제1 섹션의 임피던스가 전도성 재료(718)의 두께와 마찬가지로 슬롯 전송 라인의 치수를 조정함으로써 용이하게 결절될 수 있다는 것을 이해할 수 있을 것이다. 슬롯 치수를 조정하는 것에 덧붙여, 임피던스 역시 슬롯 섹션(706) 내부의 공간을 채우는 재료의 유전 상수에 의해 조정될 수 있다.
표면(712 및 714)을 분리하는 개재 공기 간격 또는 공간(W1)이 감소할수록, 전송 라인의 커패시턴스는 증가할 것이다. 공기 간격 또는 공간을 감소시킴으로써 "C"가 증가할수록, 전송 라인 섹션(704)의 임피던스는 수식 Z=1/√(L/C)에 따라서 감소할 것이다. 역으로, 공기 간격의 증가에 따라 "C"가 감소할수록, 임피던스 "Z"는 증가할 것이다. 그렇지만 공기 간격 내부의 유전 상수를 증가시키면 "C"도 역시 증가될 것이다.
소정의 예에서 본 발명의 전송 구조물의 공기 간격을 유전 재료, 양호하게는 매우 낮은 유전 상수를 유지하면서 채널 내의 충진 체적을 유지하는 낮은 유전 상수를 가지는 것으로 "충진"시키거나 다른 방식으로 점유시키는 것이 바람직할 것이다. 이러한 유형의 구조물은 회로 보드 환경 내에서 본 발명의 전송 구조물을 구현할 때 유용하며, 충진 재료는 회로 보드 재료의 인접 층에 의한 채널 내로의 진입에 저항할 수 있다.
이러한 체적 충진용 낮은 유전 상수 재료는 전송 구조물을 내장하는 회로 보 드층 바로 위에 있는 층 내에 적층식 재료를 추가하는 동안 수지 침투 재료의 진입을 방지하면서 채널의 전체적인 일체화를 유지함으로써 회로 보드 내의 실시된 전송 라인 채널의 제조 프로세스에서 이점을 가질 수 있을 것이다. 충진제 재료는 공기 간격의 유전 상수를 더욱 높은 수준으로 증가시킬 수 있지만 유전체를 구성하는 회로 보드의 양호한 유전 상수는 유지될 것이다. 이러한 방식으로, 적절한 충진 재료는 회로 보드 수지 침투 재료에 의한 전송 채널 간격의 충진을 방지하기 위해 가공되고 첨가될 수 있다.
충진된 구조물의 예는 도35 및 도36에 도시되며, 여기서 기판(650)은 그 일 표면(652) 내로 절단되는 홈(651)을 가진다. 채널(651)의 측벽은 전도성 재료(655)과 일렬로 정렬되며, 채널(651)은 기판(650)의 표면 상에 층(659)을 형성할 수 있으며 채널 내로 다리부 또는 핑거부(660)로서 연장할 수 있는 재료(658)로써 충진된다.
도29에 도시된 바와 같이, 제1 슬롯 섹션(706)의 제2 단부(710)에서, 대향 표면들 사이의 간격(W1)이 좁아지는 제2 단부(710)에는 굴곡 지점이 있다. 대향 측벽들 사이의 간격의 좁아지는 것은 전송 라인의 임피던스 전이 섹션의 시작으로 고려되며, 도29에서 도면 부호 720으로 지시된다. 제1 슬롯 섹션(706)과 같이, 임피던스 전이 섹션(720)은 제1 및 제2 대향 벽 또는 "표면"을 가지며 간결함을 위해 이들은 모두 도면 부호 722로 지시된다. 임피던스 전이 섹션은 역시 바닥부를 가지며, 이는 양호한 실시예에서 제1 슬롯 섹션(706)의 바닥부와 동일 평면상에 있 다.
2개 표면들(722) 사이의 개재 간격(W1)이 임피던스 전이 섹션(720)에서 감소할 수록, 2개 표면(722) 상의 전도성 재료(718)의 표면 사이의 개재 간격 또한 감소할 것이다. 2개의 금속화된 표면들 사이의 커패시턴스의 증가의 결과로서, 라인을 따른 임피던스도 점진적으로 감소될 것이며, 전송 라인 임피던스 변형 섹션(720)의 길이를 따라서 라인의 특성 임피던스가 감소하는 것을 야기시킨다.
대향 표면(720)의 물리적 치수가 대향 표면(714 및 720)과 일치할 때, 및 대향 표면(722) 상의 전도성 표면 면적이 대향 표면(712 및 714) 상의 전도성 표면 면적과 일치할 때, 전이 섹션(720)의 "입력" 임피던스는 제1 슬롯 섹션의 제2 단부(710)의 "출력" 임피던스와 일치할 것이다. 따라서, 입력 단부(708)로부터 전파되는 신호는 제1 전송 라인 섹션(704)으로부터 제2 임피던스 변형/전이 섹션(720) 내로 진행하면서 갑작스런 임피던스 상승 또는 하락을 "보이지" 않을 것이며, 오히려, 임피던스의 매끄러운 또는 점진적인 변화를 보일 것이다. 대향 표면(722) 사이의 간격이 임피던스 전이 섹션(720)의 길이를 따라서 감소할수록, 신호에 의해 "보이는" 임피던스는 대향 표면(722) 상의 전도성 재료(718) 사이의 커패시턴스의 증가로 인해 점진적으로 감소할 것이다. 여기에 임피던스 교정을 이루기 위해 전송 라인에 임피던스 변화를 이루거나 비균일 부하를 정합시키기 위한 이유가 있으며, 본원 발명의 구조물은 이것이 판 및 회로 보드 등과 같은 기판들 내에서 용이하게 수행될 수 있게 한다.
도29에 도시된 바와 같이, 임피던스 전이 섹션(720)의 측벽(722) 사이의 간격은 제2 굴곡 지점(724)에 이르기까지 섹션(722)의 길이를 따라서 연속적으로 좁아진다. 제1 굴곡 지점(710)은 제1 전송 라인 섹션(704)의 "제2" 또는 "출력" 단부이면서 제1 임피던스 전이 섹션(720)의 "제1" 또는 "입력" 단부로서 고려된다. 제2 굴곡 지점(724)은 임피던스 전이 섹션(720)의 "제2" 또는 "출력" 단부이면서, 마찬가지로 도면 부호 740으로 지시된 제2 전송 라인/제2 슬롯 섹션의 "제1" 또는 "입력" 단부로서 고려된다.
제1 고정식 측벽 간격 슬롯 섹션(704)와 같이, 제2 고정식 측벽 간격 슬롯 섹션(740)도 역시 2개의 단부를 가진다. 전술된 바와 같이, 제2 슬롯 섹션(740)의 "제1" 단부는 도29에서 도면 부호 724로 지시되는 한편, 제2 슬롯 섹션(740)의 "제2" 단부는 도면 부호 726으로 지시된다. 제1 슬롯 섹션(704) 및 임피던스 전이 섹션(720)과 같이, 제2 슬롯 섹션(730)도 역시 바닥부를 가지지만, 도29에서는 잘 보이지 않는다. 양호한 실시예에서, 제2 슬롯 섹션(740)의 바닥부는 임피던스 전이 섹션의 바닥부(716)와 동일 평면 상에 있다.
제1 슬롯 섹션(704)과 같이, 제2 슬롯 섹션(730)도 역시 제1 및 제2 대향 벽 또는 "표면"을 가지며, 이는 도29에서 도면 부호 728 및 732로 지시된다. 도29에 도시된 바와 같이, 제2 슬롯 섹션(730)의 대향 표면(728 및 732) 사이에 "개재"되는 공기 간격 또는 공간(W1)은 제1 슬롯 섹션(706)의 개재 공기 간격 또는 공간(W1)보다 현저하게 작다.
도29에 도시된 바와 같이, 제1 슬롯 섹션(706)의 대향 표면(712 및 714) 상의 전도성 제료(718)은 제2 슬롯 섹션(740)의 대향 표면(728 및 730)과 마찬가지로 임피던스 전이 섹션(720)의 전체 길이를 통해 존재한다. 전도성 표면 사이의 간격이 상이한 세그먼트를 따라서 변화하기 때문에, 전도성 표면 사이의 분포 커패시턴스도 변화한다. 제2 슬롯 섹션(740)에서, 대향 측(728 및 730) 상의 전도성 재료(718) 사이에 존재하는 커패시턴스는 제1 슬롯 섹션(706)의 분포 커패시턴스보다 클 것이다. 결과로서, 제2 슬롯 섹션(740)의 특성 임피던스는 제1 슬롯 섹션(704)의 특성 임피던스보다 작을 것이다.
양호한 실시예에서, 인접 슬롯 섹션(704/720, 720/740, 740/750, 750/760)의 물리적 치수 및 전도성 재료(718)는 정확하게 일치된다. 상이한 슬롯 섹션의 결합 단부에서 물리적 치수 및 전도성 재료(718)을 일치시킴으로써, 전송 라인을 따fms임피던스 불연속에 의해 야기되는 전송 라인 상의 신호 반사는 비균일 부하에 대한 임피던스 교정을 가지는 결과에 따라서 감소 또는 제거될 것이다.
신호가 입력 단부(708)에서 전송 라인 섹션(704) 내로 유도될 때, 이는 제1 전송 라인 섹션(704)을 통해 최소 파장 반사를 가지는 임피던스 전이 섹션(720) 내로 진행할 것이다. 일단, 임피던스 전이 섹션을 통과하면, 신호는 다시 최소 반사를 가지는 제2 전송 라인 섹션 내로 이송될 것이다. 제1 전송 라인 섹션, 임피던스 전이 섹션, 및 제2 전송 라인/ 제2 라인 섹션을 이루는 슬롯 섹션들의 치수의 변화는 신호가 상이한 섹션(704, 720 및 740)을 통해 전파되므로써 특성 임피던스를 변형 또는 변경시키게 된다. 이와 같이 슬롯 치수의 변동은 회로 보드 또는 집 적 회로 등의 기판 상에 그 길이를 따른 변형 임피던스를 가지는 전송 라인을 제공하는 장치 및 방법을 제공한다.
계속 도29를 참조하면, 제2 슬롯 섹션(740)의 "제2" 또는 출력 단부(726)에 제2 임피던스 전이 섹션(750)이 도시된다. 상기 제2 임피던스 전이 섹션(750)도 역시 대향 벽 또는 표면을 가진다. 이는 또한 제1 슬롯 섹션(704), 제1 임피던스 전이 섹션(720) 및 제2 슬롯 섹션(740)의 바닥부와 동일 평면을 이루는 바닥부를 가진다. 제2 임피던스 전이 섹션의 대향 벽/표면은 전도성 재료(718)로 코팅되어 제1 슬롯 섹션(704)의 입력 단부(708)로 복귀하는 연속적인 전도성 경로를 형성한다.
신호가 제2 임피던스 전이 섹션(750) 내로 전파될 때, 제2 임피던스 전이 섹션(750)의 특성 임피던스는 대향 벽/표면 사이의 개재 공간의 증가에 따라서 증가되고, 이로 인해 대향 표면 상의 전도성 재료(718) 사이의 커패시턴스가 감소된다.
제2 임피던스 전이 섹션(750)의 출력 또는 제2 단부는 도29에서 도면 부호 752로 지시된다. 제2 임피던스 전이 섹션(750)의 출력 또는 제2 단부(752)는 또한 제3 슬롯 섹션(760)의 입력 또는 제1 단부이다. 도29에 도시된 바와 같이, 제3 슬롯 섹션(760)의 폭은 제2 슬롯 섹션(740)의 폭보다 크며, 이는 제3 슬롯 섹션(760)의 특성 임피던스의 증가를 야기할 것이다. 2개의 섹션(750 및 760)의 연결부에서 특성 임피던스는 그들의 치수가 일치됨으로써, 따라서 일치되기 때문에, 제2 임피던스 전이 섹션(750)을 통해 전파되는 신호는 제3 슬롯 섹션(760) 내로 이송될 것이다.
회로 보드 또는 집적 회로와 같은 기판 내에 형성된 전송 라인의 임피던스가 유전 기판 상에 역시 형성된 슬롯의 대향측 상에 증착된 전도성 재료에 의해 형성된 대향 도체의 지리적 형상을 변화시킴으로써 간단하게 변형될 수 있다는 것이 본 기술 분야의 당업자에게 명백할 것이다. 일치되는 입력 또는 부하 임피던스를 요구하는 회로 보드 또는 집적 회로 상의 전자 장치는 본 발명에 따라서 매끄럽고 제어되는 임피던스 전이를 통해 개선된 성능을 초래할 것이다.
계속 도29를 참조하여, 전자 장치(770 및 780)가 기판(702)의 상부 표면(703)에 장착된 상태가 도시된다. 하나의 장치(770)는 제2 전송 라인/슬롯 세그먼트(740)에 전기적으로 접속된 상태로 도시되고, 제2 장치(80)는 제1 전송 라인 섹션(704)에 전기적으로 접속된 상태로 도시된다. 만일 제1 장치(770)가 제2 장치(780)와 싱이한 입력 또는 출력 임피던스를 필요로 한다면, 둘 중 한 장치가 접속되는 전송 라인 세그먼트의 임피던스는 장치가 접속되는 슬롯의 치수를 변동시킴으로써 제1 장치(770) 내의 신호 발생원 또는 부하와 일치되도록 용이하게 조정될 수 있다.
도30a 및 도30b는 각각 내부에 금속화된 측벽을 구비한 슬롯이 형성된 유전 기판의 평면도 및 단부도를 도시한다. 도30a에도시된 도파관은 4개의 개별 섹션을 가지며, 이들 중 2개는 임피던스 변형 섹션이다. 도30a에 도시된 바와 같이, 전도성 표면 또는 층(718)은 대향 유전 벽/표면(712 및 714) 상에 증착되고, 이들 사이에 슬롯 바닥부(716)가 있다.
섹션(S1)은 대향 측벽(712 및 714)들 사이의 일정한 간격으로 인해 일정 임 피던스 섹션이다. 섹션(S1)이 섹션(S2)을 만날때, 2개의 인접 섹션의 금속화 및 측벽 간격은 일치되어 섹션(S1 및 S2) 사이의 무반사 신호 전달을 제공한다.
섹션(S2)은 그 길이를 따라서 간격이 좁아지는 측벽을 가진다. 대향 표면(712 및 714) 상에 증착된 전도성 재료(718) 사이의 간격은 감소하고, 이로 인해 제2 섹션(S2)의 길이를 따라서 특성 임피던스가 감소된다. 제2 섹션(S2)이 제3 섹션(S3)을 만나면서, 제2 및 제3 섹션(S2/S3)의 교차부에서의 특성 임피던스는 일치될 것이며, 섹션들(S1, S2 및 S3) 사이의 신호 전달이 개선될 것이다. 도시된 바와 같이, 제4 섹션(S4)은 그 측벽 간격이 증가되고, 이로 인해 제4 섹션(S4)의 특성 임피던스가 증가된다.
도31a 및 도31b는 변형 임피던스 전송 라인 섹션의 대체 실시예를 도시한다. 도31a 및 도31b에서, 슬롯 섹션들(S1, S2 및 S3) 사이의 전이부는 매끄럽고, 측벽 간격의 변화 급격한 변화에 의해 야기될 수 있는 전송 라인 세그먼트 사이의 가능한 임피던스 불연속을 감소시킨다.
도29에 도시된 실시예는 실질적으로 슬롯 섹션의 바닥부(718)에 수직인 대향 측벽을 도시하는 반면에, 도32는 슬롯 "A"에 도시된 바와 같이 슬롯 섹션의 측벽이 경사진 선형 섹션일 수 있으며, 뿐만 아니라, 슬롯 "B", 및 "C"에 도시된 바와 간이 곡선형 또는 비선형벽일 수도 있다는 것을 보여준다. 도32의 슬롯 "A"의 측벽(712, 714)은 바닥부(716)의 평면에 대해서 경사진다. 반면에, 슬롯 "B"의 측벽 (712 및 714)은 오목형 및 포물선형이며, 타원형이 될 수도 있다. 측벽을 경사지게 하거나 오목 또는 볼록 단면으로 만듬으로써, 슬롯은 보다 용이하게 전도성 재 료(718)로써 코팅될 수 있고, 이로 인해 회로 보드 또는 집적 회로 기판을 제조하는 비용을 줄일 수 있다. 청구항 구조를 위해, "선형" 측벽은 도32의 "A"로 도시된 바와 같이 경사진 벽과 마찬가지로 슬롯 바닥부에 수직인 측벽을 포함하는 것으로 해석되어야 한다. "비선형" 측벽은 포물선, 타원 또는 다른 선형이 아닌 기하학적 형상을 가지는 측벽을 의미하는 것으로 해석되어야 한다.
비록 도29에 도시된 실시예는 평면 또는 거의 평면인 슬롯 섹션 바닥부(716)를 도시하지만, 본 발명의 대체 실시예는 비평면인 슬롯 바닥부(716)를 가질 수 있다. 도33a 및 도33b는 볼록 또는 오목(도면의 관찰자 시점에 따라서)인 따라서 비평면인 슬롯 섹션 바닥부의 단부도를 도시한다. 슬롯 바닥부(716)를 비평면으로 만드는 것은 대향 측벽(712 및 714)에 대한 전도성 재료 스트립(718)의 등록을 개선할 수 있고, 이로 인해 대향 측벽(712 및 714)에 전도성 스트립을 인가하는 것을 보다 용이하게 한다.
양호한 실시예는 공기 유전체를 계획한 반면, 도29 내지 도33b에도시된 슬롯 내의 빈 체적은 고체 또는 액체 유전 재료로 채워질 수 있다. 임의의 섹션 내에 부분적 또는 완전히 충진된 슬롯은 대향 도체 사이에 실현되는 커패시턴스를 증가시킬 것이고, 이는 부수적인 특성 임피던스의 증가를 야기시킨다. 대향 표면 사이의 유전체가 커패시턴스를 증가시킬 것이기 때문에, 특정 분포 커패시턴스를 얻기 위해 표면(712 및 714) 상에 사용되어야 할 전도성 재료(718)의 면적이 감소될 수 있다. 그러므로, 만일 다양한 전송 라인 슬롯 섹션을 충진하기 위해 공기가 아닌 유전체가 사용된다면, 특정 임피던스를 산출하기 위해 사용되는 슬롯의 깊이는 감 소될 수 있다.
전술된 바와 같이, 전송 라인의 다양한 섹션의 대향 표면 상에 증착된 전도성 재료(718)는 전기적으로 분리된 도체를 형성한다. 이들 도체가 전기적으로 분리된 만큼, 이들은 본 기술 분야의 숙련자들에게 교번 극성 신호를 이송하는 도체 쌍으로 알려진 "차동 신호 쌍"으로 고려될 것이며, 상기 2개의 도체 상에는 D.C. 신호 평균이 존재하지 않는다. 차동 신호는 본 기술 분야의 숙련자들에게 잘 얄려져 있으며, 전술된 실시예의 도체는 차동 신호 쌍으로서 유용할 것으로 고려되어야 한다.
도35 및 도36은 인쇄 회로 보드 구성에 사용하기 적합한 밀봉 채널 유형의 배열을 다루는 실시예를 도시한다. 이는 높은 전압 및 전류를 고밀도 접촉 간격으로 이송하기에 특히 적합한 그룹화된 요소 채널 전송 구조물(650)을 사용한다. 전송 라인(650)의 본체는 유전체로 형성될 수 있고, 또는 회로 보드층 내에 통합될 수 있으며, 이는 그 표면(652)으로부터 본체 내로 연장하는 식으로 그 내부에 형성된 일련의 홈 또는 슬롯(651)을 가진다. 이들 슬롯의 측벽(654)은 도금 등에 의해 전도성 재료로 코팅되고, 사실상 서로 대향하고 개재 공간 또는 통상적으로 슬롯(651)을 점유하는 공기에 의해 분리되는 일련의 "판"(655)을 한정한다. 도35 및 도36의 좌측에, 채널을 채우는 플러그(658)가 도시되며, 상기 플러그는 캡부96590 및 상기 캡부(659)에 의존하며 슬롯(651)의 공간 내로 연장하여 완전히 점유하는 하나 이상의 설부 또는 충진부(66)을 포함한다. 플러그(658) 특히 그 충진부(660)는 대향 전도성 표면 사이로 연장하며 이들을 절연하여 이들 사이에 발생할 수 있 는 아크를 방지할 수 있다. 상기 플러그는 도체 사이의 결합에 영향을 주도록 선택된 유전 상수를 가지는 유전 재료로 채워지는 것이 양호하며, 통상적으로 유전 상수는 유전 본체의 유전 상수보다 크거나 같은 것일 것이다. 그라운드 면(659)은 증가된 전기 용량의 결합을 제공하기 위해 도35 및 도36의 전송 라인의 보다 낮은 표면 상에 증착될 수 있다.
이러한 방식에서, 도36에 개략적으로 잘 도시된 바와 같이, 접촉부의 대향 극성(즉, "+" 또는 "-") 전도성 쌍은 서로 전기적으로 이격되지만, 완전한 회로를 한정하지는 않는다. 본 발명의 전송 요소와 관계된 치수는 특히 많은 수의 공통 평행 전류 경로에 기인하는 낮은 인덕턴스 이송 모드로써 달성되는 매우 높은 밀도를 허용한다. 도36의 우측은 양호하게 신호 전송 전도성 표면으로써 이러한 이격을 달성하는 다른 수단, 즉, 2개의 전도성 표면 사이에 전기적 절연 또는 이격을 제공하는 전체 슬롯 및 랜드 구성에 순응하는 등각 코팅(661)의 사용을 도시한다. 도금된 표면(654, 655) 사이의 공간은 0.4 mm 등의 수준으로 매우 작을 것이며 절연 코팅 또는 필름(661)은 전도성 요소의 쌍 사이의 아크 또는 쇼트를 방지한다. 그 2개의 대향 표면 상에 가로질러 전류가 횡단하는 전송 라인 내의 대향 쌍의 사용은 전송 라인 시스템의 낮은 루프 인덕턴스를 초래할 것이다. 등각 코팅 또는 필름(661)은 양호하게 유전 본체보다 낮은 유전 상수 및 공기와 근접한 유전 상수를 가지는 것이 양호하며, 1.0이 가장 양호하다.
이상으로부터 소형의 고주파 전송 라인이 유전 기판내로 절단하는 슬롯의 대향 측벽을 금속화함으로써 유전 기판 내로 형성될 수 있다는 것이 숙련자들에게 명 백할 것이다. 측벽 사이의 공간(및 유전체)는 전송 라인의 임피던스를 결정하고, 전송 라인의 임피던스는 측벽 간격, 측벽 사이의 유전체의 유형 및 양과 마찬가지로 측벽상의 금속화를 변화시킴으로써 그 길이를 따라서 변형될 수 있다. 특정 입력 또는 출력 임피던스를 가지는 전자 부품에 임피던스가 일치하는 전송 라인으로부터 신호를 제공할 수 있다.

Claims (20)

  1. 삭제
  2. 전송 라인을 따라 변위된 변형 임피던스를 구비하는 고주파수 차동 신호용 전송 라인이며,
    유전 본체부와,
    제1 및 제2 단부를 구비하는 상기 유전 본체부 내의 제1 슬롯 섹션과,
    제1 및 제2 단부를 또한 구비하는 상기 유전 본체부 내의 제2 슬롯 섹션과,
    테이퍼진 도전성 대향 표면을 갖는 상기 유전 기판 내의 슬롯을 포함하는 임피던스 전이 섹션을 포함하고,
    상기 제1 슬롯 섹션은 제1 및 제2 대향 표면과, 제1 대향 표면과 제2 대향 표면 사이의 바닥을 구비하고, 상기 제1 슬롯 섹션의 상기 대향 표면은 제1 개재 공간에 의해 서로로부터 이격되고, 상기 제1 및 제2 대향 표면의 일부는 각각 전기 신호들을 운반할 수 있는 도전성 표면을 구비하고, 상기 제1 슬롯 섹션은 그 제1 단부와 제2 단부 사이에 제1 특성 임피던스를 구비하고,
    상기 제2 슬롯 섹션은 또한 제1 및 제2 대향 표면과, 상기 제1 대향 표면과 제2 대향 표면 사이의 바닥을 구비하고, 상기 제2 슬롯 섹션의 상기 대향 표면들은 제2 개재 공간에 의해 서로로부터 이격되고, 상기 제2 슬롯 섹션의 상기 제1 및 제2 대향 표면의 일부는 각각 전기 신호들을 운반할 수 있는 도전성 표면을 구비하고, 상기 제2 슬롯 섹션은 그 제1 단부와 제2 단부 사이에 제2 특성 임피던스를 구비하고,
    상기 임피던스 전이 섹션은 상기 제1 슬롯 섹션의 제2 단부에 연결된 제1 단부를 구비하고, 상기 제2 슬롯 섹션의 제1 단부에 연결된 제2 단부를 더 구비하고, 상기 임피던스 전이 섹션의 상기 제1 단부는 상기 제1 특성 임피던스와 동일한 임피던스를 구비하고, 상기 임피던스 전이 섹션의 상기 제2 단부는 상기 제2 특성 임피던스와 동일한 임피던스를 구비하는 고주파수 차동 신호용 전송 라인.
  3. 제2항에 있어서, 상기 제1 및 제2 슬롯 섹션과 상기 임피던스 전이 섹션 내의 상기 도전성 표면들은 차동 신호 쌍인 고주파수 차동 신호용 전송 라인.
  4. 제2항에 있어서, 도전성 표면들은 금속 도금된 플라스틱, 증착된 금속, 에칭된 금속 중 적어도 하나를 포함하는 고주파수 차동 신호용 전송 라인.
  5. 제2항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나는 적어도 부분적으로 유전 물질로 채워지고, 상기 유전 물질은 또한 특성 임피던스를 결정하는 고주파수 차동 신호용 전송 라인.
  6. 제2항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나는 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션의 대응 바닥에 대체로 직교하는 대향 표면들을 구비하는 고주파수 차동 신호용 전송 라인.
  7. 제2항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나의 대향 표면들은 선형인 고주파수 차동 신호용 전송 라인.
  8. 제2항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나의 표면들은 비선형인 고주파수 차동 신호용 전송 라인.
  9. 제2항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나의 바닥은 비평면인 고주파수 차동 신호용 전송 라인.
  10. 두께 T를 갖는 평면 유전 기판을 포함하는 회로 보드이며,
    유전 기판 내의 제1 슬롯 섹션과,
    유전 기판 내의 제2 슬롯 섹션과,
    제1 단부와 제2 단부 사이에 제1 및 제2 대향 측벽을 구비하는 임피던스 전이 섹션을 포함하고,
    상기 제1 슬롯 섹션은 제1 단부, 제2 단부 및 T보다 작은 깊이를 구비하고, 상기 제1 슬롯 섹션은 제1 및 제2 대향, 및 도전성 측벽과, 제1 대향 측벽과 제2 대향 측벽 사이의 바닥을 구비하고, 상기 제1 슬롯 섹션의 상기 측벽들은 제1 개재 공간에 의해 서로로부터 이격되고, 도전성 측벽들은 차동 전기 신호들을 운반할 수 있고, 도전성 표면들 사이의 공간, 상기 제1 개재 공간 내의 유전체 및 도전성 표면들의 영역은 상기 제1 슬롯 섹션의 제1 특성 임피던스를 결정하고,
    상기 제2 슬롯 섹션은 또한 제1 단부, 제2 단부 및 T보다 작은 깊이를 구비하고, 상기 제2 슬롯 섹션은 또한 제1 및 제2 대향, 및 도전성 측벽과, 제1 대향 측벽과 제2 대향 측벽 사이의 바닥을 구비하고, 상기 제2 슬롯 섹션의 상기 측벽들 은 제2 개재 공간에 의해 서로로부터 이격되고, 도전성 측벽들은 차동 전기 신호들을 운반할 수 있고, 도전성 표면들 사이의 공간, 상기 제2 개재 공간 내의 유전체 및 도전성 표면들의 영역은 상기 제1 슬롯 섹션의 제2 특성 임피던스를 결정하고,
    상기 임피던스 전이 섹션의 상기 제1 단부로서의 대향 측벽들은 제1 슬롯 섹션의 측벽들과 정합하여 연결되고, 상기 임피던스 전이 섹션의 상기 제2 단부로서의 대향 측벽들은 제2 슬롯 섹션의 측벽들과 정합하여 연결되고, 상기 임피던스 전이 섹션은 그 제1 단부에서 상기 제1 특성 임피던스를 구비하고, 그 제2 단부에서 상기 제2 특성 임피던스를 구비하고, 상기 임피던스 전이 섹션의 대향 측벽들은 그 제1 단부와 제2 단부 사이에서 임피던스 전이 섹션의 특성 임피던스를 변형하도록 테이퍼진 회로 보드.
  11. 제10항에 있어서, 상기 도전성 표면들은 차동 신호 쌍인 회로 보드.
  12. 제10항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나는 적어도 부분적으로 유전 물질로 채워지는 회로 보드.
  13. 제10항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나의 측벽들은 선형인 회로 보드.
  14. 제10항에 있어서, 상기 제1 슬롯 섹션, 상기 임피던스 전이 섹션 및 상기 제2 슬롯 섹션 중 적어도 하나의 측벽들은 비선형인 회로 보드.
  15. 제10항에 있어서, 상기 도전성 표면들은 금속 도금된 플라스틱, 스퍼터링된 진공 증착 금속 또는 에칭된 금속인 회로 보드.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020067014730A 2003-12-24 2004-12-23 변형 임피던스를 구비한 전송 라인 KR100751600B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53271603P 2003-12-24 2003-12-24
US60/532,716 2003-12-24

Publications (2)

Publication Number Publication Date
KR20060128934A KR20060128934A (ko) 2006-12-14
KR100751600B1 true KR100751600B1 (ko) 2007-08-22

Family

ID=34794229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067014730A KR100751600B1 (ko) 2003-12-24 2004-12-23 변형 임피던스를 구비한 전송 라인

Country Status (6)

Country Link
US (1) US7157987B2 (ko)
EP (1) EP1698018A1 (ko)
JP (1) JP2007517479A (ko)
KR (1) KR100751600B1 (ko)
CN (1) CN1922756A (ko)
WO (1) WO2005069428A1 (ko)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE10143173A1 (de) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafersonde
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
WO2005065258A2 (en) 2003-12-24 2005-07-21 Cascade Microtech, Inc. Active wafer probe
WO2005065000A1 (en) * 2003-12-24 2005-07-14 Molex Incorporated Electromagnetically shielded slot transmission line
US20050151604A1 (en) * 2003-12-24 2005-07-14 Brunker David L. Triangular conforming transmission structure
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR100836968B1 (ko) 2003-12-24 2008-06-10 몰렉스 인코포레이티드 변형 임피던스 및 납땜 랜드를 구비한 전송 라인
US20070188261A1 (en) * 2003-12-24 2007-08-16 Brunker David L Transmission line with a transforming impedance and solder lands
US7116190B2 (en) * 2003-12-24 2006-10-03 Molex Incorporated Slot transmission line patch connector
US7448909B2 (en) * 2004-02-13 2008-11-11 Molex Incorporated Preferential via exit structures with triad configuration for printed circuit boards
US20050201065A1 (en) * 2004-02-13 2005-09-15 Regnier Kent E. Preferential ground and via exit structures for printed circuit boards
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
EP1808010A2 (en) * 2004-10-25 2007-07-18 Intrado, Inc. System and method for unilateral verification of caller location information
WO2006050202A1 (en) 2004-10-29 2006-05-11 Molex Incorporated Printed circuit board for high-speed electrical connectors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
DE102005005706B4 (de) * 2005-01-31 2010-07-08 Leibnitz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. Magnetschwebevorrichtung
WO2006091595A1 (en) * 2005-02-22 2006-08-31 Molex Incorporated Differential signal connector with wafer-style construction
US6975802B1 (en) * 2005-05-26 2005-12-13 The United States Of America As Represented By The Secretary Of The Air Force Damascene optical waveguides
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US20080252348A1 (en) * 2006-12-28 2008-10-16 Hannah Eric C Apparatus and method for high speed signals on a printed circuit board
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
WO2010059247A2 (en) 2008-11-21 2010-05-27 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US8663806B2 (en) 2009-08-25 2014-03-04 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
CN102333413A (zh) * 2010-07-12 2012-01-25 鸿富锦精密工业(深圳)有限公司 印刷电路板
CN102791181B (zh) * 2010-07-30 2014-12-31 奥林巴斯医疗株式会社 内窥镜系统
TWI455654B (zh) * 2010-08-09 2014-10-01 Hon Hai Prec Ind Co Ltd 印刷電路板
JP6097974B2 (ja) * 2012-11-27 2017-03-22 矢崎総業株式会社 伝送路
EP2897217A1 (de) * 2014-01-21 2015-07-22 Delphi Technologies, Inc. Vorrichtung zur Impedanzanpassung
US10440814B2 (en) 2016-05-06 2019-10-08 Alpha Networks Inc. Impedance matching structure of transmission line in multilayer circuit board
TWI619302B (zh) * 2016-05-06 2018-03-21 明泰科技股份有限公司 傳輸線的阻抗匹配架構
US10200105B2 (en) 2017-06-29 2019-02-05 Apple Inc. Antenna tuning components in patterned conductive layers
US10886607B2 (en) 2017-07-21 2021-01-05 Apple Inc. Multiple-input and multiple-output antenna structures
KR102475701B1 (ko) * 2017-12-15 2022-12-09 삼성전자주식회사 차동 비아 구조물, 이를 구비하는 회로기판 및 이의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034377A2 (de) * 1978-02-15 1981-08-26 Focke & Co. (GmbH & Co.) Verfahren und Vorrichtung zum Einführen von Gegenständen, insbesondere Packungen, in die Umlaufbahn eines kontinuierlichen Förderers
US20020033744A1 (en) * 2000-04-20 2002-03-21 Sengupta Louise C. Waveguide-finline tunable phase shifter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700553B2 (ja) 1988-03-31 1998-01-21 株式会社 潤工社 伝送回路
JP2669066B2 (ja) 1989-08-17 1997-10-27 日本電信電話株式会社 インピーダンス変換回路
US20040113711A1 (en) * 2001-12-28 2004-06-17 Brunker David L. Grouped element transmission channel link
US7116190B2 (en) 2003-12-24 2006-10-03 Molex Incorporated Slot transmission line patch connector
WO2005065000A1 (en) 2003-12-24 2005-07-14 Molex Incorporated Electromagnetically shielded slot transmission line
KR100836968B1 (ko) 2003-12-24 2008-06-10 몰렉스 인코포레이티드 변형 임피던스 및 납땜 랜드를 구비한 전송 라인
US20050151604A1 (en) 2003-12-24 2005-07-14 Brunker David L. Triangular conforming transmission structure
US20050201065A1 (en) 2004-02-13 2005-09-15 Regnier Kent E. Preferential ground and via exit structures for printed circuit boards
US7448909B2 (en) 2004-02-13 2008-11-11 Molex Incorporated Preferential via exit structures with triad configuration for printed circuit boards
US20060139117A1 (en) 2004-12-23 2006-06-29 Brunker David L Multi-channel waveguide structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034377A2 (de) * 1978-02-15 1981-08-26 Focke & Co. (GmbH & Co.) Verfahren und Vorrichtung zum Einführen von Gegenständen, insbesondere Packungen, in die Umlaufbahn eines kontinuierlichen Förderers
US20020033744A1 (en) * 2000-04-20 2002-03-21 Sengupta Louise C. Waveguide-finline tunable phase shifter

Also Published As

Publication number Publication date
KR20060128934A (ko) 2006-12-14
JP2007517479A (ja) 2007-06-28
US20050174191A1 (en) 2005-08-11
WO2005069428A1 (en) 2005-07-28
US7157987B2 (en) 2007-01-02
CN1922756A (zh) 2007-02-28
EP1698018A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
KR100751600B1 (ko) 변형 임피던스를 구비한 전송 라인
JP4629125B2 (ja) 要素をグループ化した伝送チャネルリンク用終端組立体
JP2009043731A (ja) ペデスタル外観を有するグループ化要素伝送チャネルリンク
KR100744209B1 (ko) 삼각형 일체형 전송 구조물
US20060139117A1 (en) Multi-channel waveguide structure
KR100836968B1 (ko) 변형 임피던스 및 납땜 랜드를 구비한 전송 라인
KR100836967B1 (ko) 다채널 도파관 구조물
US20070188261A1 (en) Transmission line with a transforming impedance and solder lands
EP1698015A1 (en) Slot transmission line patch connector

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100809

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee