KR100721591B1 - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR100721591B1
KR100721591B1 KR1020050057110A KR20050057110A KR100721591B1 KR 100721591 B1 KR100721591 B1 KR 100721591B1 KR 1020050057110 A KR1020050057110 A KR 1020050057110A KR 20050057110 A KR20050057110 A KR 20050057110A KR 100721591 B1 KR100721591 B1 KR 100721591B1
Authority
KR
South Korea
Prior art keywords
film
semiconductor device
buffer oxide
manufacturing
forming
Prior art date
Application number
KR1020050057110A
Other languages
Korean (ko)
Other versions
KR20070001551A (en
Inventor
남기원
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050057110A priority Critical patent/KR100721591B1/en
Publication of KR20070001551A publication Critical patent/KR20070001551A/en
Application granted granted Critical
Publication of KR100721591B1 publication Critical patent/KR100721591B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 게이트전극의 상부에 중첩되어 있는 하드마스크층과 반사방지막이 경사진 측벽을 가지게 되는데, 단차피복성이 떨어지는 버퍼산화막을 형성하여 측벽 부분에 산화막이 더 많이 증착되도록하여 수직한 프로파일을 가지도록 형성하고 후속 공정을 진행하였으므로, 후속 식각 공정시 식각장벽층인 질화막이 손상되어 배선간 단락이 발생되는 것을 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, the hard mask layer and the anti-reflection film overlapping the gate electrode have inclined sidewalls. Since it is formed to have a vertical profile to be deposited more and proceeded to the subsequent process, the nitride film, which is an etch barrier layer, is damaged during the subsequent etching process to prevent the occurrence of short circuit between wires to improve the process yield and device operation reliability Can be.

단차피복성, 버퍼산화막 Step coating, buffer oxide

Description

반도체소자의 제조방법 {Manufacturing method for semiconductor device}Manufacturing method for semiconductor device

도 1a 및 도 1b는 종래 기술에 따른 반도체소자의 제조 공정도. 1A and 1B are a manufacturing process diagram of a semiconductor device according to the prior art.

도 2는 종래 기술에 따른 반도체소자의 단면 SEM 사진. Figure 2 is a cross-sectional SEM photograph of a semiconductor device according to the prior art.

도 3a 및 도 3b는 본 발명에 따른 반도체소자의 제조 공정도.3a and 3b is a manufacturing process diagram of a semiconductor device according to the present invention.

도 2는 본 발명에 따른 반도체소자의 단면 SEM 사진. 2 is a cross-sectional SEM photograph of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명>         <Explanation of symbols for the main parts of the drawings>

10, 30 : 반도체기판 12, 32 : 게이트절연막10, 30: semiconductor substrate 12, 32: gate insulating film

14, 34 : 다결정실리콘층 16, 36 : 금속실리사이드층 14, 34 polysilicon layer 16, 36 metal silicide layer

18, 38 : 하드마스크층 20, 40 : 반사방지막 18, 38: hard mask layer 20, 40: antireflection film

22, 42 : 버퍼산화막 24, 44 : 질화막 22, 42: buffer oxide film 24, 44: nitride film

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 게이트전극과 중첩되어 있는 하드마스크층의 상부가 식각되어 랜딩플러그 콘택 공정시 발생되는 버퍼 산화막의 손상을 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, an upper portion of a hard mask layer overlapping a gate electrode is etched to prevent damage to a buffer oxide film generated during a landing plug contact process, thereby improving process yield and device operation reliability. It relates to a method for manufacturing a semiconductor device that can be made.

최근의 반도체 장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체 장치의 제조 공정 중에서 식각 또는 이온주입 공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다. The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, are essential in the manufacturing process of semiconductor devices.

이러한 감광막 패턴의 분해능(R)은 감광막 자체의 재질이나 기판과의 접착력 등과도 밀접한 연관이 있으나, 일차적으로는 사용되는 축소노광장치의 광원 파장(λ)에 비례한다. 따라서 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 된다. The resolution R of the photoresist pattern is closely related to the material of the photoresist itself or the adhesion to the substrate, but is primarily proportional to the light source wavelength λ of the reduction exposure apparatus used. Therefore, the wavelength of the light source is reduced to improve the light resolution of the reduced exposure apparatus.

또한 공정 상의 방법으로는 위상반전마스크를 사용하거나, 이미지 콘트라스트를 향상시키는 박막을 웨이퍼 상에 형성하는 방법이나, 삼층레지스트 방법 또는 실리레이션 방법 등이 개발되어 장비나 공정상의 분해능 한계치를 낮추고 있다. In addition, as a process method, a method of using a phase inversion mask or forming a thin film for improving image contrast on a wafer, a three-layer resist method, or a silicide method has been developed to lower the resolution limit in equipment and processes.

또한 소자가 고집적화되어 콘택의 신뢰성을 높이고, 공정상의 안정성을 높이기 위하여 하드마스크층과 랜딩플러그를 사용하는 자기정렬 콘택 방법이 사용되고 있다. In addition, a self-aligned contact method using a hard mask layer and a landing plug is used in order to increase the reliability of the contact and increase the stability of the process because the device is highly integrated.

도 1a 및 도 1b는 종래 기술에 따른 반도체소자의 제조공정도이다. 1A and 1B are manufacturing process diagrams of a semiconductor device according to the prior art.

도 1a를 참조하면, 반도체기판(10)상에 게이트절연막(12)을 형성하고, 상기 게이트절연막(12)상에 다결정실리콘층(14)과 금속실리사이드층(16)의 중첩 구조로된 게이트전극을 형성하되, 상기 금속실리사이드층(16)의 상부에는 질화막 재질의 하드마스크층(18)과 산화질화막 재질의 반사방지막(20) 패턴이 중첩되도록 형성한 다. 이때 상기 반사방지막(20)과 하드마스크층(18)의 상부가 일정 부분 제거되어 경사진 측벽을 가지게된다. Referring to FIG. 1A, a gate insulating film 12 is formed on a semiconductor substrate 10, and a gate electrode having an overlapping structure of a polysilicon layer 14 and a metal silicide layer 16 is formed on the gate insulating film 12. The metal silicide layer 16 may be formed on the upper surface of the metal silicide layer 16 such that the hard mask layer 18 of the nitride film material and the antireflection film 20 material of the oxynitride film overlap. At this time, the upper portion of the anti-reflection film 20 and the hard mask layer 18 is removed to have an inclined sidewall.

도 1b를 참조하면, 상기 구조의 전표면에 버퍼산화막(22)과 자기정렬콘택용 질화막(24) 및 평탄화 층간절연막(도시되지 않음)을 순차적으로 형성하고, 랜딩플러그 마스크를 사용하여 상기 반도체기판(10)에서 콘택으로 예정되어 있는 부분상의 층간절연막을 사진식각하여 랜딩플러그용 콘택홀을 형성한다.Referring to FIG. 1B, a buffer oxide film 22, a nitride film 24 for self-aligned contact, and a planarization interlayer insulating film (not shown) are sequentially formed on the entire surface of the structure, and the semiconductor substrate is formed using a landing plug mask. A contact hole for a landing plug is formed by photolithography of the interlayer insulating film on the portion scheduled for contact in (10).

상기와 같은 종래 기술에 따른 반도체소자의 제조방법은 하드마스크층과 반사방지막이 게이트전극 패터닝 공정시 상부가 식각되어 경사진 측벽을 가지게 되며, 버퍼산화막의 단차피복성이 우수하여 전면에 균일한 두께로 증착되는 산화막으로 형성하게되어 질화막도 그 표면을 감싸게되며, 랜딩플러그 콘택홀 형성을 위한 식각 공정은 이방성 건식식각으로 진행하게 되는데, 이때 반사방지막과 하드마스크층의 경사진 측벽에 의해 측벽 상부의 질화막이 먼저 식각되어 버퍼산화막이 식각에 노출되어 손상되므로 상부 배선과의 단락에 의한 불량이 발생되어 공정 수율 및 소자 동작의 신뢰성을 떨어뜨리는 문제점이 있다. In the method of manufacturing a semiconductor device according to the related art as described above, the hard mask layer and the anti-reflection film have an inclined sidewall by being etched at the top during the gate electrode patterning process, and have a uniform thickness on the entire surface because of excellent step coverage of the buffer oxide film. The nitride film is also formed to surround the surface of the nitride film, and the etching process for forming the landing plug contact hole is performed by anisotropic dry etching, wherein the inclined sidewalls of the anti-reflection film and the hard mask layer are formed on the upper sidewall. Since the nitride film is first etched and the buffer oxide film is exposed and damaged, a defect occurs due to a short circuit with the upper wiring, thereby degrading process yield and reliability of device operation.

또한 도 2에 도시되어 있는 바와 같이, 게이트전극의 일부를 채널영역의 반도체기판에 매립시키는 리세스 게이트 소자의 경우 기판과의 단차에 의해 상기의 경사 부분이 더욱 심해지는 문제점이 있다. In addition, as shown in FIG. 2, in the case of the recess gate device in which a part of the gate electrode is embedded in the semiconductor substrate in the channel region, the inclined portion is further increased by the step with the substrate.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 게이트전극과 중첩되어 있는 하드마스크층의 상부가 식각되어 경사지게 형성되는 경우 버퍼산화막을 수직한 단면을 가지도록 형성하여 랜딩플러그 콘택홀 식각시 발생할 수 있는 게이트전극 오픈을 방지하여 단락에 의한 공정 수율 및 소자 동작의 신뢰성을 저하를 방지할 수 있는 반도체소자의 제조방법을 제공함에 있다. The present invention is to solve the above problems, an object of the present invention is to form a buffer oxide film having a vertical cross-section when the upper portion of the hard mask layer overlapping the gate electrode is etched to form a landing plug contact The present invention provides a method of manufacturing a semiconductor device capable of preventing the gate electrode opening that may occur during the hole etching to reduce the process yield and the reliability of the device operation due to a short circuit.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자 제조방법은, 반도체기판상에 게이트절연막을 형성하는 단계; 상기 게이트절연막 상에 게이트전극, 하드마스크층 및 반사방지막의 순서로 적층된 게이트패턴을 형성하는 단계; 상기 게이트패턴 상에 상기 게이트패턴의 하부보다 상기 하드마스크층과 반사방지막의 측벽에서 더 두꺼운 두께를 가져 수직한 프로파일을 갖는 버퍼산화막을 형성하는 단계; 상기 버퍼산화막 상에 식각장벽층으로서 질화막을 형성하는 단계; 상기 질화막 상에 층간절연막을 형성하는 단계; 및 상기 층간절연막을 식각하여 콘택홀을 형성하는 단계를 포함하는 것을 특징으로 한다.A semiconductor device manufacturing method according to the present invention for achieving the above object comprises the steps of forming a gate insulating film on a semiconductor substrate; Forming a gate pattern stacked on the gate insulating layer in the order of a gate electrode, a hard mask layer, and an anti-reflection film; Forming a buffer oxide film on the gate pattern, the buffer oxide film having a vertical profile with a thickness thicker at the sidewalls of the hard mask layer and the anti-reflection film than the bottom of the gate pattern; Forming a nitride film as an etch barrier layer on the buffer oxide film; Forming an interlayer insulating film on the nitride film; And forming a contact hole by etching the interlayer insulating layer.

삭제delete

삭제delete

삭제delete

삭제delete

또한 본 발명의 다른 특징은, 상기 버퍼산화막은 SiH4, N2 및 N2O 가스를 사용하여 200 내지 500℃에서 증착하되, 상기 SiH4의 유량은 100 내지 500sccm으로 하고, 상기 N2와 N2O는 각각 그 유량을 1000 내지 5000sccm, 5000 내지 9000sccm으로 조절하는 것을 특징으로 한다. In addition, another feature of the present invention, the buffer oxide film is deposited at 200 to 500 ℃ using SiH 4 , N 2 and N 2 O gas, the flow rate of the SiH 4 is 100 to 500sccm, the N 2 and N 2 O is characterized in that the flow rate is adjusted to 1000 to 5000sccm, 5000 to 9000sccm, respectively.

이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체소자의 제조방법에 대하여 상세히 설명을 하기로 한다. Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 3a 및 도 도 3b는 본 발명에 따른 반도체소자의 제조 공정도이다. 3A and 3B are process charts for manufacturing a semiconductor device according to the present invention.

도 3a를 참조하면, 반도체기판(30)상에 산화막이나 질화막 재질의 게이트절연막(32)을 형성하고, 상기 게이트절연막(32)상에 다결정실리콘층(34)과 금속실리사이드층(36), 질화막 재질의 하드마스크층(38)과 산화질화막(SiON) 재질의 반사방지막(40)을 순차적으로 형성한다. 이어서, 게이트전극 패터닝 마스크를 사용하여 상기 반사방지막(40)에서 다결정실리콘층(34)까지를 순차적으로 사진식각하여 게이트패턴을 형성한다. 게이트패턴은 다결정실리콘층(34)과 금속실리사이드층(36) 패턴으로 된 게이트전극 위에 하드마스크층(38)과 반사방지막(40) 패턴이 적층된 것이다. 이때 상기 식각 공정 과정에서 상기 반사방지막(40)과 하드마스크층(38)의 상부가 일정 부분 제거되어 경사진 측벽을 가지게 된다. Referring to FIG. 3A, a gate insulating film 32 made of an oxide film or a nitride film is formed on a semiconductor substrate 30, and a polysilicon layer 34, a metal silicide layer 36, and a nitride film are formed on the gate insulating film 32. The hard mask layer 38 and the anti-reflection film 40 made of oxynitride (SiON) are sequentially formed. Subsequently, a gate pattern is formed by sequentially etching the anti-reflection film 40 to the polysilicon layer 34 using a gate electrode patterning mask. In the gate pattern, a hard mask layer 38 and an anti-reflection film 40 pattern are stacked on a gate electrode formed of a polysilicon layer 34 and a metal silicide layer 36 pattern. At this time, the upper portion of the anti-reflection film 40 and the hard mask layer 38 is partially removed in the etching process to have an inclined sidewall.

도 3b를 참조하면, 상기 게이트패턴의 전표면에 버퍼산화막(42)을 증착하되, 단차피복성이 떨어지는 산화막 공정으로 형성하여 수직한 단면을 가지도록 형성한다. 즉 게이트패턴의 하부에는 산화막 소스가 적게 플로우(Flow)되어 두께가 얇게 증착되고, 반사방지막(40)과 하드마스크층(38)의 측벽 부분에는 산화막 소스가 많이 플로우되어 두께가 두껍게 증착되도록 하는 것으로서, SiH4, N2, N2O 가스를 사용하여 200 내지 500℃에서 증착하되, 각각의 유량은 산화막 소스인 SiH4는 약 100 내지 500sccm, 바람직하게는 200 내지 400sccm으로 하고, N2와 N2O는 각각 1000 내지 5000sccm, 5000 내지 9000sccm으로 조절하여 형성한다. Referring to FIG. 3B, the buffer oxide film 42 is deposited on the entire surface of the gate pattern, but is formed to have a vertical cross section by forming an oxide film process having poor step coverage. That is, as the oxide source is less flowed under the gate pattern, the thickness is deposited thinly, and the oxide source is flowed through the sidewalls of the anti-reflection film 40 and the hard mask layer 38 so that the thickness is increased. , SiH 4 , N 2 , N 2 O using a gas deposited at 200 to 500 ℃, each flow rate of SiH 4 oxide source is about 100 to 500sccm, preferably 200 to 400sccm, N 2 and N 2 O is formed by adjusting to 1000 to 5000 sccm, 5000 to 9000 sccm, respectively.

그다음 상기 구조의 전표면에 식각장벽층인 자기정렬콘택용 질화막(44)을 도포하고, 층간절연막(도시되지 않음)을 도포하여 평탄화시킨 후, 랜딩플러그 마스크를 사용하여 상기 반도체기판(30)에서 콘택으로 예정되어 있는 부분상의 층간절연막을 사진식각하여 랜딩플러그용 콘택홀을 형성한다. 이때 상기 버퍼산화막(42)이 수직한 단면을 가지도록 형성되어 있어 후속 이방성 건식식각 공정시 측벽의 질화막(44)이 보존되어 버퍼산화막(42)이나 게이트전극이 오픈되는 것을 방지한다. 이와 같이 형성된 반도체소자는 도 4에 도시된 것과 같은 수직한 단면 프로파일을 가지게되어 배선간의 단락을 방지할 수 있다. Then, a nitride film 44 for self-aligned contacts, which is an etch barrier layer, is applied to the entire surface of the structure, and an interlayer insulating film (not shown) is applied and planarized, and then a landing plug mask is used in the semiconductor substrate 30. A contact hole for a landing plug is formed by photolithography of the interlayer insulating film on the portion intended as the contact. In this case, the buffer oxide film 42 is formed to have a vertical cross section, so that the nitride film 44 on the sidewall is preserved during the subsequent anisotropic dry etching process to prevent the buffer oxide film 42 or the gate electrode from being opened. The semiconductor device formed as described above has a vertical cross-sectional profile as shown in FIG. 4, thereby preventing short circuits between wirings.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은 게이트전극의 상부에 중첩되어 있는 하드마스크층과 반사방지막이 경사진 측벽을 가지게 되는데, 단차피복성이 떨어지는 버퍼산화막을 형성하여 측벽 부분에 산화막이 더 많이 증착되도록 하여 수직한 프로파일을 가지도록 형성하고 후속 공정을 진행하였으므로, 후속 식각 공정시 식각장벽층인 질화막이 손상되어 배선간 단락이 발생되는 것을 방지하여 공정 수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 이점이 있다. As described above, in the method of manufacturing a semiconductor device according to the present invention, the hard mask layer and the anti-reflection film overlapping the upper portion of the gate electrode have inclined sidewalls. Since the oxide film was deposited to have a vertical profile, and the subsequent process was performed, the nitride film, which is an etch barrier layer, was damaged during the subsequent etching process, thereby preventing short circuits between wirings, thereby improving process yield and device operation reliability. There is an advantage that can be improved.

Claims (3)

삭제delete 반도체기판상에 게이트절연막을 형성하는 단계;Forming a gate insulating film on the semiconductor substrate; 상기 게이트절연막 상에 게이트전극, 하드마스크층 및 반사방지막의 순서로 적층된 게이트패턴을 형성하는 단계;Forming a gate pattern stacked on the gate insulating layer in the order of a gate electrode, a hard mask layer, and an anti-reflection film; 상기 게이트패턴 상에 상기 게이트패턴의 하부보다 상기 하드마스크층과 반사방지막의 측벽에서 더 두꺼운 두께를 가져 수직한 프로파일을 갖는 버퍼산화막을 형성하는 단계;Forming a buffer oxide film on the gate pattern, the buffer oxide film having a vertical profile having a thickness thicker at sidewalls of the hard mask layer and the anti-reflection film than the bottom of the gate pattern; 상기 버퍼산화막 상에 식각장벽층으로서 질화막을 형성하는 단계;Forming a nitride film as an etch barrier layer on the buffer oxide film; 상기 질화막 상에 층간절연막을 형성하는 단계; 및Forming an interlayer insulating film on the nitride film; And 상기 층간절연막을 식각하여 콘택홀을 형성하는 단계Etching the interlayer insulating layer to form a contact hole 를 포함하는 반도체소자의 제조 방법. Method for manufacturing a semiconductor device comprising a. 제2항에 있어서, The method of claim 2, 상기 버퍼산화막은 SiH4, N2 및 N2O 가스를 사용하여 200 내지 500℃에서 증착하되, 상기 SiH4의 유량은 100 내지 500sccm으로 하고, 상기 N2와 N2O는 각각 그 유량을 1000 내지 5000sccm, 5000 내지 9000sccm으로 조절하는 반도체소자의 제조 방법.The buffer oxide film is deposited at 200 to 500 ° C. using SiH 4 , N 2 and N 2 O gases, and the flow rate of SiH 4 is 100 to 500 sccm, and the N 2 and N 2 O are respectively 1000 Method of manufacturing a semiconductor device to be adjusted to 5000sccm, 5000 to 9000sccm.
KR1020050057110A 2005-06-29 2005-06-29 Manufacturing method for semiconductor device KR100721591B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050057110A KR100721591B1 (en) 2005-06-29 2005-06-29 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050057110A KR100721591B1 (en) 2005-06-29 2005-06-29 Manufacturing method for semiconductor device

Publications (2)

Publication Number Publication Date
KR20070001551A KR20070001551A (en) 2007-01-04
KR100721591B1 true KR100721591B1 (en) 2007-05-23

Family

ID=37868925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050057110A KR100721591B1 (en) 2005-06-29 2005-06-29 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR100721591B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040007991A (en) * 2002-07-15 2004-01-28 주식회사 하이닉스반도체 Bit line forming method of semiconductor device
KR20050065147A (en) * 2003-12-24 2005-06-29 주식회사 하이닉스반도체 Method for manufacturing semiconductor davice

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040007991A (en) * 2002-07-15 2004-01-28 주식회사 하이닉스반도체 Bit line forming method of semiconductor device
KR20050065147A (en) * 2003-12-24 2005-06-29 주식회사 하이닉스반도체 Method for manufacturing semiconductor davice

Also Published As

Publication number Publication date
KR20070001551A (en) 2007-01-04

Similar Documents

Publication Publication Date Title
KR100780944B1 (en) Method for etching carbon-containing layer and method for manufacturing semiconductor device
US7943498B2 (en) Method of forming micro pattern in semiconductor device
US20050280113A1 (en) Semiconductor device capable of threshold voltage adjustment by applying an external voltage
KR100576463B1 (en) A method for forming a contact of a semiconductor device
KR100875653B1 (en) Method of forming fine pattern of semiconductor device
KR100721591B1 (en) Manufacturing method for semiconductor device
KR100744682B1 (en) Manufacturing method for semiconductor device
KR20090045754A (en) Method for forming pattern in semiconductor device using hardmask
US20010034136A1 (en) Method for improving contact resistance of silicide layer in a semiconductor device
JPH09120990A (en) Formation of connecting hole
KR100866123B1 (en) Bit line forming method of semiconductor device
KR100906642B1 (en) Method for fabricating gate electrode in semiconductor device
KR100597090B1 (en) Method for fabricating gate electrode of semiconductor device
KR100333543B1 (en) Method for forming gate electrode of semiconductor device
KR100657083B1 (en) Method for fabricating semiconductor devices
KR100721590B1 (en) Manufacturing method for semiconductor device
KR100609234B1 (en) Method for forming shallow trench isolation of bottom antireflective coating
KR100386454B1 (en) Method for forming the semiconductor device
KR100701425B1 (en) Method for fabrication of semiconductor device
KR100539447B1 (en) Method of forming a metal line in semiconductor device
JPH08316313A (en) Formation of contact hole
KR20120064841A (en) Method for manufcaturing the semiconductor device
KR100548564B1 (en) method for forming bit line
KR100661237B1 (en) Method of manufacturing semiconductor device
KR100547247B1 (en) Method for fabricating semiconductor memory device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20100423

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee