KR100711402B1 - Method for predicting of deformation resistance in heavy plate rolling process - Google Patents

Method for predicting of deformation resistance in heavy plate rolling process Download PDF

Info

Publication number
KR100711402B1
KR100711402B1 KR1020050129067A KR20050129067A KR100711402B1 KR 100711402 B1 KR100711402 B1 KR 100711402B1 KR 1020050129067 A KR1020050129067 A KR 1020050129067A KR 20050129067 A KR20050129067 A KR 20050129067A KR 100711402 B1 KR100711402 B1 KR 100711402B1
Authority
KR
South Korea
Prior art keywords
rolling
deformation resistance
equation
strain
thick steel
Prior art date
Application number
KR1020050129067A
Other languages
Korean (ko)
Inventor
문창호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020050129067A priority Critical patent/KR100711402B1/en
Application granted granted Critical
Publication of KR100711402B1 publication Critical patent/KR100711402B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/22Lateral spread control; Width control, e.g. by edge rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 후강판 압연공정중 가역식 폭내기압연/길이내기 압연설비에서, 소재의 두께, 온도 및 성분 등의 공정인자, 변형율 및 변형율속도를 이용하여, 압연하중 예측에 필요한 열간변형저항을 간단한 과정을 통해 보다 정확하게 예측할 수 있는 후강판 압연공정에서의 열간변형저항 예측방법에 관한 것으로,The present invention provides a simple hot deformation resistance for rolling load prediction by using process factors such as material thickness, temperature, and component, strain and strain rate in a reversible breadboard / rolling equipment during thick steel plate rolling process. The present invention relates to a method of predicting hot deformation resistance in a thick steel sheet rolling process that can be more accurately predicted through a process.

본 발명의 후강판 압연공정에서의 열간변형저항 예측방법은, 압연패스 스케쥴 전반에 걸쳐 측정된 실측 압연하중을 사용하고, 압연중 이전 패스의 변형율이 현 패스에 축적되는 현상에 따른 누적 압하율을 고려하기 위해 압연하중 계산에 사용되는 변형저항의 수식중 변형율, 변형율속도의 상수지수항을 조성함수, 온도 등으로 표현된 함수들로 나타내어 변형저항을 예측하여, 변형저항 측정실험에 따른 시간과 경비를 절감함은 물론, 실험에 비해 신뢰도가 높은 실측치를 사용하여 압연하중의 설정정도 향상을 기하고, 누적압하율 계산 필요성을 줄임으로써 온라인상에서의 압연하중 예측력 향상을 달성할 수 있다.      The hot deformation resistance prediction method in the thick steel plate rolling process of the present invention uses the measured rolling load measured throughout the rolling pass schedule, and calculates the cumulative reduction rate according to the phenomenon that the strain of the previous pass accumulates in the current pass during rolling. In order to take into account, the constant index term of strain, strain rate is represented by functions expressed as composition function, temperature, etc. It is possible to achieve the improvement of the rolling load predictive power on-line by improving the accuracy of the setting of the rolling load by using the actual measurement value which is more reliable than the experiment, and reducing the necessity of calculating the cumulative pressure reduction rate.

후강판, 압연공정, 열간 변형저항, 예측  Thick steel plate, rolling process, hot deformation resistance, prediction

Description

후강판 압연공정에서의 열간변형저항 예측방법{METHOD FOR PREDICTING OF DEFORMATION RESISTANCE IN HEAVY PLATE ROLLING PROCESS}Prediction method of hot deformation resistance in thick steel plate rolling process {METHOD FOR PREDICTING OF DEFORMATION RESISTANCE IN HEAVY PLATE ROLLING PROCESS}

도 1은 본 발명을 수행하기 위한 후강판 압연공정의 압연 제어 시스템의 구성도.1 is a block diagram of a rolling control system of a thick steel plate rolling process for carrying out the present invention.

도 2는 본 발명에 따른 후강판 압연공정에서의 열간변형저항 예측방법을 보이는 플로우챠트.2 is a flowchart showing a method for predicting hot deformation resistance in a thick steel sheet rolling process according to the present invention.

도 3은 본 발명 및 종래의 강종별 압연하중 적중률 도표.Figure 3 is a rolling load hit ratio chart of the present invention and conventional steel.

도 4는 본 발명 및 종래의 강종별 측정하중-예측하중 상관 그래프.Figure 4 is a graph of measurement load-predictive load correlation between the present invention and conventional steel.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100 : 제어부100: control unit

200 : 압연하중 조절기200: rolling load regulator

300 : 후강판 압연기300: thick steel plate rolling mill

본 발명은 제철소의 후강판 압연공정에 적용되는 열간변형저항 예측방법에 관한 것으로, 특히 후강판 압연공정중 가역식 폭내기압연/길이내기 압연설비에서, 압연하중 예측에 필요한 열간변형저항을 간단한 과정을 통해 보다 정확하게 예측할 수 있도록 구현함으로서, 소재의 변형저항 측정 시간 및 경비를 절감할 수 있고, 실제 조업시 압연하중의 학습의존성을 저감시킬 수 있는 후강판 압연공정에서의 열간변형저항 예측방법에 관한 것이다.The present invention relates to a method for predicting hot deformation resistance applied to a thick steel sheet rolling process of a steel mill, and in particular, in a reversible type rolling / rolling length rolling facility during a thick steel sheet rolling process, a simple process for the hot deformation resistance required for rolling load prediction is required. By implementing to more accurately predict through the present invention, it is possible to reduce the time and cost of measuring the deformation resistance of the material, and to predict the method of hot deformation resistance in the thick steel rolling process to reduce the learning dependence of the rolling load during actual operation will be.

일반적으로, 열간압연중인 소재의 표면, 형상 및 기계적 성질은 변형온도, 변형량 및 변형속도, 변형저항 등과 같은 열간 가공 변수에 크게 영향을 받는다. 이러한 열간 가공변수중 변형저항은 재료를 소성 변형시킬 때 변형에 따른 유동응력을 의미하므로, 이는 설비의 기계적, 전기적 용량에서 어느 정도의 고온 변형이 가능한지를 판단하여 패스별 압하율을 설정하는 데 중요한 자료가 된다.In general, the surface, shape and mechanical properties of the material being hot rolled are greatly influenced by hot processing parameters such as deformation temperature, amount of deformation and speed of deformation, deformation resistance and the like. Among these hot processing variables, deformation resistance means flow stress due to deformation when plastic deformation of the material, which is important for determining the reduction ratio for each pass by determining how much high temperature deformation is possible in the mechanical and electrical capacity of the facility. It becomes data.

한편, 열간 압연공정에서, 소재의 두께는 중요한 관리목표가 되며, 원하는 두께로 만들어 주는 것은 길이내기 압연공정의 주요 기능중 하나이다. 이때 압연하중을 예측하는 것은 목표두께의 압연강판을 제조하기 위하여 롤갭을 설정하는데 사용되며, 압연하중은 변형저항과 비례관계에 있으므로, 변형저항을 예측함으로써 압연하중을 예측할 수 있다. 이에 따라, 정확한 압연하중을 예측하기 위해서는 정확한 변형저항을 예측하여야 한다.On the other hand, in the hot rolling process, the thickness of the material becomes an important management goal, and making the desired thickness is one of the main functions of the length rolling process. At this time, predicting the rolling load is used to set the roll gap in order to produce a rolled steel sheet of the target thickness, the rolling load is in proportion to the deformation resistance, it is possible to predict the rolling load by predicting the deformation resistance. Accordingly, in order to predict the accurate rolling load, it is necessary to predict the accurate deformation resistance.

종래, 후강판 압연에서는, 일반강에 근거한 기준강도값(Kref), 온도함수(CT), 압연속도함수(CV), 압하율(r), 롤편평 반경함수(Lrf)에 두께보정항(CH)을 곱한 형태인 하기 수학식 1을 이용하여 압연하중(F)을 설정하였다.Conventionally, in thick steel plate rolling, the thickness correction term is based on the reference strength value (Kref), the temperature function (C T ), the rolling speed function (C V ), the reduction ratio (r), and the roll flat radius function (Lrf) based on the general steel. Rolling load (F) was set using the following equation (1) multiplied by (C H ).

Figure 112005075904273-pat00001
Figure 112005075904273-pat00001

한편, 최근 고급강(API재, TMCP재)으로의 강종변화 및 다양한 압연조건 변화 등으로 인하여 압연하중을 결정하는 수식모델의 정확도가 떨어져서, 이를 보상하기 위해서 과도한 학습계수를 사용하는 실정이다.On the other hand, the accuracy of the mathematical model for determining the rolling load is poor due to the change in steel grade and various rolling conditions of high grade steels (API materials, TMCP materials), and the situation of using excessive learning coefficients to compensate for this.

그런데, 압연재의 길이가 비교적 짧고 두께가 두꺼운 경우, 동일 길이간격에 따라 수집되는 압연하중 측정 데이터수가 적어지므로, 측정 평균치의 신뢰성확보가 어려우며, 압연하중 학습계수를 이러한 측정치를 토대로 재보정할 때 설정 압연하중과 측정 압연하중의 편차는 줄어들지 않으며, 이로 인해 작업자에 의한 수동개입 증가에 따른 패스수 증가의 요인이 되고 있다.However, when the length of the rolled material is relatively short and the thickness is thick, since the number of rolling load measurement data collected according to the same length interval is small, it is difficult to secure the reliability of the measured average value, and when recalibrating the rolling load learning coefficient based on these measurements The deviation between the set rolling load and the measured rolling load does not decrease, which causes the increase in the number of passes due to the manual intervention by the operator.

이에 따라, 압연하중의 설정정도를 실제 하중에 근사하게 예측하기 위해서는 다양한 소재의 변형저항의 변화 및 압연조건의 변화를 고려할 수 있는 기술이 필요하게 된다.Accordingly, in order to predict the setting accuracy of the rolling load close to the actual load, a technique capable of considering the change in deformation resistance and the change in rolling conditions of various materials is required.

그러나, 전술한 바와 같은 종래의 방법에서는, 일반강의 변형저항곡선에 단순히 기준강도값만을 조정하여 고급강 등의 변형저항을 기술하는 것으로, 이는 탄소(C)외의 다른 원소들의 변형저항곡선에 대한 영향을 무시하였다는 문제점을 갖는다.However, in the conventional method as described above, the deformation resistance curve of ordinary steel is described simply by adjusting only the reference strength value to the deformation resistance curve of general steel, which affects the deformation resistance curve of elements other than carbon (C). There is a problem in that it is ignored.

또한, 고온 유동응력과 변형율의 관계로부터 후강판 압연시 변형저항을 예측하는 기존의 기술은 압연구간에서 단순히 압하 변형율로 변형저항을 예측하기 때문에, 압연온도가 낮아서 압연패스사이에 변형율축적현상이 발생할 경우에 압연하중을 정확히 예측하기 어렵다는 문제점이 있다. In addition, the existing technique for predicting the deformation resistance in the thick steel sheet rolling from the relationship between the high temperature flow stress and the strain rate predicts the deformation resistance by simply reducing the rolling strain in the rolling section, so that the strain accumulation phenomenon occurs between the rolling passes due to the low rolling temperature. In this case, there is a problem that it is difficult to accurately predict the rolling load.

뿐만 아니라, 압연중 발생한 변형율축적에 의한 누적변형율을 온라인상에서 계산한다는 것은 누적변형율을 계산하기 위해 사용되는 다양한 식들의 타당성 검증이 거의 불가능하며, 이를 계산하기 위해서는 많은 시간이 소요되는 문제점도 있다.In addition, it is almost impossible to verify the validity of the various equations used to calculate the cumulative strain rate online to calculate the cumulative strain due to the strain accumulation occurred during rolling, there is a problem that takes a long time to calculate this.

본 발명은 상기한 문제점을 해결하기 위해 제안된 것으로, 그 목적은, 후강판 압연공정중 가역식 폭내기압연/길이내기 압연설비에서, 소재의 두께, 온도 및 성분 등의 공정인자, 변형율 및 변형율속도를 이용하여, 압연하중 예측에 필요한 열간변형저항을 간단한 과정을 통해 보다 정확하게 예측할 수 있도록 구현함으로서, 소재의 변형저항 측정 시간 및 경비를 절감할 수 있고, 실제 조업시 압연하중 의 학습의존성을 저감시킬 수 있는 후강판 압연공정에서의 열간변형저항 예측방법을 제공하는데 있다.The present invention has been proposed to solve the above problems, the object of which is, in the reversible width rolling mill / length rolling equipment during the thick steel sheet rolling process, process factors, such as the thickness, temperature and components of the material, strain and strain By using the speed, it is possible to more accurately predict the hot deformation resistance required for rolling load prediction through a simple process, thereby reducing the time and cost of measuring the deformation resistance of the material, and reducing the learning dependence of the rolling load during actual operation. The present invention provides a method for predicting hot deformation resistance in a thick steel sheet rolling process.

상기한 본 발명의 목적을 달성하기 위해서, 본 발명의 후강판 압연공정에서의 열간변형저항 예측방법은, 후판 압연조건의 기하학적인 변화에 관계된 유효인자인 압하율(r), 마찰계수(μ) 및 형상비(s)를 이용하는 하기 수학식 2를 통해 압하력함수(Qp)를 구하는 제1 단계; 상기 제1 단계에서 구해진 압하력함수(Qp)와, 기설정된 접촉투영길이(ℓ sub d), 평균판폭(Wm) 및 기측정된 실적 압연하중(F(actual))을 하기 수학식 3에 대입하여 실측 변형저항(Km(actual))을 구하는 제2 단계; 상기 제2 단계에서 구해진 실측 변형저항(Km(actual)), 변형율(ε), 변형율속도(DOT ε) 및 압연온도(T)를 하기 수학식 4에 대입한 후 통계 해석하여, 하기 수학식 4에서의 계수를 구하는 제3 단계; 및 상기 수학식 4의 계수 및 미사카의 식을 하기 수학식 5에 대입하여 열간변형저항(Km)을 구하는 제4 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object of the present invention, the hot deformation resistance prediction method in the thick steel plate rolling process of the present invention, the reduction factor (r), the coefficient of friction (μ) which is an effective factor related to the geometric change of the thick plate rolling conditions And a first step of obtaining a reduction force function Qp through Equation 2 using the aspect ratio s; Substituting the reduction force function (Qp), the predetermined contact projection length (L sub d), the average sheet width (Wm) and the measured actual rolling load (F (actual)) obtained in the first step into Equation 3 Obtaining a measured strain resistance (Km (actual)) by a second step; The measured strain resistance (Km (actual)), strain (ε), strain rate (DOT ε) and rolling temperature (T) obtained in the second step is substituted into Equation 4 and then statistically analyzed, Obtaining a coefficient at; And a fourth step of obtaining a hot deformation resistance Km by substituting the coefficient of Equation 4 and the equation of Misaka into Equation 5 below.

상기 후강판 압연시 열간변형저항 예측방법은, 상기 제4단계에서 구한 열간변형저항(Km)을 하기 수학식 6에 대입하여 열간압연하중(F)을 예측하는 제5 단계를 더 포함하는 것을 특징으로 한다.The method of predicting hot deformation resistance at the time of rolling the thick steel sheet further includes a fifth step of predicting the hot rolling load (F) by substituting the hot deformation resistance (Km) obtained in the fourth step into Equation 6 below. It is done.

이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한 다. 본 발명에 참조된 도면에서 실질적으로 동일한 구성과 기능을 가진 구성요소들은 동일한 부호를 사용할 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings referred to in the present invention, components having substantially the same configuration and function will use the same reference numerals.

도 1은 본 발명을 수행하기 위한 후강판 압연공정의 압연 제어 시스템의 구성도이다.1 is a block diagram of a rolling control system of a thick steel plate rolling process for carrying out the present invention.

도 1을 참조하면, 본 발명을 수행하기 위한 후강판 압연공정의 압연 제어 시스템은, 본 발명에 따라 열간 변형저항(Km)을 예측하여 압연하중(F)를 구하여 압연을 제어하는 제어부(100)와, 상기 제어부(100)의 압연제어에 따라 압연하중을 조절하는 압연하중 조절기(200)와, 상기 압연하중 조절기(200)에 의해 압연하중이 조절되어 후강판 압연을 수행하는 후강판 압연기(300)로 이루어진다.Referring to Figure 1, the rolling control system of the thick steel plate rolling process for carrying out the present invention, the control unit 100 to predict the hot deformation resistance (Km) according to the present invention to obtain the rolling load (F) to control the rolling And, the rolling load regulator 200 for adjusting the rolling load according to the rolling control of the control unit 100, and the rolling load is adjusted by the rolling load regulator 200, the thick steel plate rolling mill 300 to perform a thick steel plate rolling )

도 2는 본 발명에 따른 후강판 압연공정에서의 열간변형저항 예측방법을 보이는 플로우챠트이다. S100은, 후판 압연조건의 기하학적인 변화에 관계된 유효인자인 압하율(r), 마찰계수(μ) 및 형상비(s)를 이용하는 하기 수학식 2를 통해 압하력함수(Qp)를 구하는 제1 단계이다. S200은, 상기 제1 단계에서 구해진 압하력함수(Qp)와, 기설정된 접촉투영길이(ℓ sub d), 평균판폭(Wm) 및 기측정된 실적 압연하중(F(actual))을 하기 수학식 3에 대입하여 실측 변형저항(Km(actual))을 구하는 제2 단계이다. S300은, 상기 제2 단계에서 구해진 실측 변형저항(Km(actual)), 변형율(ε), 변형율속도(DOT ε) 및 압연온도(T)를 하기 수학식 4에 대입한 후 통계 해석하여, 하기 수학식 4에서의 계수를 구하는 제3 단계이다. S400은, 상기 수 학식4의 계수 및 미사카의 식을 하기 수학식 5에 대입하여 열간변형저항(Km)을 구하는 제4 단계이다.2 is a flowchart showing a method for predicting hot deformation resistance in a thick steel sheet rolling process according to the present invention. S100 is a first step of obtaining a reduction force function Qp through Equation 2 below using a reduction factor r, a friction coefficient μ and a shape ratio s, which are effective factors related to the geometrical change of the thick plate rolling condition. to be. S200, the reduction force function (Qp) obtained in the first step, the predetermined contact projection length (L sub d), the average plate width (Wm) and the measured actual rolling load (F (actual)) Substituting 3, the second step is to find the actual deformation resistance Km (actual). S300, by substituting the measured strain resistance (Km (actual)), strain (ε), strain rate (DOT ε) and rolling temperature (T) obtained in the second step into the following equation 4 and statistical analysis, A third step of obtaining coefficients in Equation (4). S400 is a fourth step of obtaining a hot deformation resistance Km by substituting the coefficient of Equation 4 and the equation of Misaka into Equation 5 below.

도 3은 본 발명 및 종래의 강종별 압연하중 적중률 도표이고, 도 4는 본 발명 및 종래의 강종별 측정하중-예측하중 상관 그래프이다.Figure 3 is a rolling load hit ratio chart of the present invention and conventional steel, Figure 4 is a measurement load-predictive load correlation graph of the present invention and conventional steel.

도 3 및 도 4에서는, 본 발명에 의한 방법에 의하면, 종래에 비해 압연하중 적중률이 매우 높다는 것을 알 수 있다. 3 and 4, it can be seen that according to the method of the present invention, the rolling load hit ratio is much higher than in the related art.

이하, 본 발명의 작용 및 효과를 첨부한 도면에 의거하여 상세히 설명한다.Hereinafter, the operation and effects of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 4를 참조하면, 먼저, 제1 단계(S100)에서는, 후판 압연조건의 기하학적인 변화에 관계된 유효인자인 압하율(r), 마찰계수(μ) 및 형상비(s)를 이용하는 하기 수학식 2를 통해 압하력함수(Qp)를 구한다.1 to 4, first, in the first step (S100), using the reduction factor (r), the friction coefficient (μ) and the shape ratio (s) which are effective factors related to the geometric change of the thick plate rolling conditions The reduction force function Qp is obtained through Equation 2.

Figure 112005075904273-pat00002
Figure 112005075904273-pat00002

상기 수학식2에서, 상기 형상비(s)는

Figure 112007004139930-pat00003
이고, 여기서, Hin은 압연패스의 입측 두께이고, R은 압연롤의 반지름이다. 상기 압하율(r)은
Figure 112007004139930-pat00004
이고, 여기서, Hout는 압연패스의 출측 두께이다. 상기 마찰계수(μ)는 μ = 0.84-0.0005T이고, 여기서, T는 압연패스의 입측평균온도이다. 또한,
Figure 112007004139930-pat00036
는 압하력 P 함수를 의미하고, a는 하기의 다른 수학식에 사용되는 a와 구분되어 사전에 설정되는 상수이고, b와 c는 상수가 아닌 r과 u로 이루어진 함수이다. 그리고, 압하력 함수내에 사용된 a,b,c는 s로 표현된 압하력함수의 2차계수항, 1차계수항, 상수항을 나타내기 위해 사용된 것입니다. In Equation 2, the shape ratio s is
Figure 112007004139930-pat00003
Where Hin is the side thickness of the rolling pass and R is the radius of the rolling roll. The reduction ratio (r) is
Figure 112007004139930-pat00004
Where Hout is the exit thickness of the rolling pass. The coefficient of friction (μ) is μ = 0.84-0.0005T, where T is the measured average temperature of the rolling pass. Also,
Figure 112007004139930-pat00036
Denotes a reduction force P function, a is a constant which is set in advance by being separated from a used in other equations below, and b and c are functions of r and u, not constants. And, a, b, c used in the reduction function is used to represent the quadratic coefficient, the first coefficient term, and the constant term of the reduction function expressed as s.

다음, 제2 단계(S200)에서는, 상기 제1 단계(S100)에서 구해진 압하력함수(Qp)와, 기설정된 접촉투영길이(ℓ sub d), 평균판폭(Wm) 및 기측정된 실적 압연하중(F(actual))을 하기 수학식 3에 대입하여 실측 변형저항(Km(actual))을 구한다.Next, in the second step (S200), the reduction force function (Qp) obtained in the first step (S100), the predetermined contact projection length (L sub d), the average plate width (Wm) and the measured performance rolling load Substituting (F (actual)) into Equation 3 below, the actual strain resistance Km (actual) is obtained.

Figure 112005075904273-pat00005
Figure 112005075904273-pat00005

상기 수학식 3은 열간압연하중(F)을 구하는 하기 수학식 6으로부터 유도되며, 상기 수학식 3에서, 상기 접촉투영길이(

Figure 112005075904273-pat00006
)는
Figure 112005075904273-pat00007
이다. 상기 평균판폭(Wm)은
Figure 112005075904273-pat00008
이고, 여기서, Win은 압연패스의 입력판폭이고, Wout는 압연패스의 출측판폭이다. 상기 실적 압연하중(F(actual))은 로드셀(Load Cell)등의 하중계로부터 측정된다.Equation 3 is derived from Equation 6 to obtain a hot rolling load (F), and in Equation 3, the contact projection length (
Figure 112005075904273-pat00006
)
Figure 112005075904273-pat00007
to be. The average plate width (Wm)
Figure 112005075904273-pat00008
Where Win is the input plate width of the rolling pass and Wout is the exit plate width of the rolling pass. The actual rolling load F (actual) is measured from a load meter such as a load cell.

그 다음, 제3 단계(S300)에서는, 상기 제2 단계에서 구해진 실측 변형저항(Km(actual)), 변형율(ε), 변형율속도(DOT ε) 및 압연온도(T)를 하기 수학식 4에 대입한 후 통계 해석하여, 강종 그룹별 분류에 따른 상수(a,Q), 변형율 지수함수(m), 변형율 속도의 지수함수(n) 및 강종 그룹별 분류에 따른 조성함수(

Figure 112005075904273-pat00009
)의 각 계수를 구한다.Next, in the third step (S300), the measured deformation resistance (Km (actual)), the strain rate (ε), the strain rate (DOT ε) and the rolling temperature (T) obtained in the second step is expressed by Equation 4 below. After substituting the data, statistical analysis was performed to determine the constant (a, Q), strain index function (m), strain rate index (n), and composition function according to class of steel group.
Figure 112005075904273-pat00009
Find each coefficient of

Figure 112005075904273-pat00010
Figure 112005075904273-pat00010

상기 수학식 4에서, 상기 변형율(ε)은

Figure 112007004139930-pat00011
이고, 여기서, δ는
Figure 112007004139930-pat00012
이다. 상기 변형율속도(DOT ε)는
Figure 112007004139930-pat00013
이고, 여기서, V는 압연속도이고, θ는 판과 롤의 접촉각(contact angle)으로
Figure 112007004139930-pat00014
로 정의된다. 또한, m은 변형율 지수 함수로서
Figure 112007004139930-pat00037
으로 정의되고, n은 변형유속도 지수함수로서,
Figure 112007004139930-pat00016
로 정의된다. 상기
Figure 112007004139930-pat00017
는 강종그룹별 분류에 따른 조성함수이다.In Equation 4, the strain ε is
Figure 112007004139930-pat00011
Where δ is
Figure 112007004139930-pat00012
to be. The strain rate (DOT ε) is
Figure 112007004139930-pat00013
Where V is the rolling speed and θ is the contact angle of the plate and the roll
Figure 112007004139930-pat00014
Is defined as M is also a strain index function
Figure 112007004139930-pat00037
N is the strain velocity index function,
Figure 112007004139930-pat00016
Is defined as remind
Figure 112007004139930-pat00017
Is the composition function according to the classification of steel group.

그 다음, 제4 단계(S400)에서는, 상기 각 계수(a,Q,m,n 및

Figure 112007004139930-pat00018
및 기설정된 미사카의 식(
Figure 112007004139930-pat00019
)을 하기 수학식 5에 대입하여 열간변형저항(Km)을 구한다.
상기 수학식 4에서,
Figure 112007004139930-pat00038
은 변형율 지수함수 m 함수를 의미하고,
Figure 112007004139930-pat00039
은 변형율 속도 지수함수 n 함수를 의미하며,
Figure 112007004139930-pat00040
Figure 112007004139930-pat00041
식내 포함된
Figure 112007004139930-pat00042
Figure 112007004139930-pat00043
중의 계수 m과 n은 각각
Figure 112007004139930-pat00044
Figure 112007004139930-pat00045
식에 사용된다는 것을 표현하기 위해 나타낸 것이다.Next, in the fourth step S400, each of the coefficients a, Q, m, n and
Figure 112007004139930-pat00018
And the preset formula of Misaka (
Figure 112007004139930-pat00019
) Is substituted into the following Equation 5 to obtain the hot deformation resistance (Km).
In Equation 4,
Figure 112007004139930-pat00038
Denotes the strain index function m,
Figure 112007004139930-pat00039
Is the strain rate exponential function n function,
Figure 112007004139930-pat00040
and
Figure 112007004139930-pat00041
Included in the meal
Figure 112007004139930-pat00042
and
Figure 112007004139930-pat00043
Coefficients m and n are respectively
Figure 112007004139930-pat00044
And
Figure 112007004139930-pat00045
It is used to express that it is used in an expression.

Figure 112005075904273-pat00020
Figure 112005075904273-pat00020

여기서,

Figure 112005075904273-pat00021
Figure 112005075904273-pat00022
이고, 여기서, f는 예를 들어, f=0.963+0.161Mn+4.388Nb+0.86V+4.03Ti+0.29Mo+0.022Ni+0.028Cr)이다. 그리고, C,Si,Mn,P,S,Cu,Nb,V,Ni,Mo,Cr,Al,Ti는 후강판에 사용되는 조정(weight percent)을 보이고 있다.here,
Figure 112005075904273-pat00021
Is
Figure 112005075904273-pat00022
Where f is, for example, f = 0.963 + 0.161Mn + 4.388Nb + 0.86V + 4.03Ti + 0.29Mo + 0.022Ni + 0.028Cr). In addition, C, Si, Mn, P, S, Cu, Nb, V, Ni, Mo, Cr, Al, Ti show a weight percent used for thick steel sheets.

한편, 본 발명의 후강판 압연시 열간변형저항 예측방법에 의하면, 상기 제4단계에서 구한 열간변형저항(Km)을 하기 수학식 6에 대입하여 열간압연하중(F)을 예측할 수 있다.On the other hand, according to the method of predicting the hot deformation resistance during the rolling of the thick steel sheet of the present invention, the hot rolling load (F) can be predicted by substituting the hot deformation resistance (Km) obtained in the fourth step into Equation 6 below.

Figure 112005075904273-pat00023
Figure 112005075904273-pat00023

다른 한편, 변형율(ε), 변형율속도(DOT ε) 및 압연온도(T)에 의존하는 평균변형저항을 예측하기 위한 수식은 하기 수학식 7과 같다.On the other hand, the equation for predicting the average strain resistance depending on the strain (ε), strain rate (DOT ε) and rolling temperature (T) is as shown in Equation 7.

Figure 112005075904273-pat00024
Figure 112005075904273-pat00024

여기서, here,

σ : 유동응력, σ = flow stress,

Km : 평균변형저항,Km: average strain resistance,

T : 압연온도(℃), T: rolling temperature (° C.),

Figure 112005075904273-pat00025
Figure 112005075904273-pat00025

이때, 상기 수학식 7을 조성 및 온도의 함수로 정리하면, 상기 수학식 5와 같이 된다.At this time, if Equation 7 is summarized as a function of composition and temperature, Equation 5 is obtained.

도 3을 참조하면, 본 발명에 따른 압연하중 적중률은 종래에 비해 상당히 높다는 것을 알 수 있다. 여기서, 강종별 압연하중 적중률은 기술된 조성함수 및 상수들을 강종그룹별 분류로 구분하여 구하고, 이로부터 예측된 변형저항값을 이용하여 구한 압연하중 예측치와 압연하중 실측치와의 차이를 압연하중 실측치로 나눈 값의 백분율을 오차율로 정의된다.Referring to Figure 3, it can be seen that the rolling load hit ratio according to the present invention is significantly higher than in the prior art. Here, the rolling load hit ratio for each steel type is obtained by classifying the compositional functions and constants described by the steel type group, and the difference between the rolling load prediction value and the rolling load actual value calculated using the predicted deformation resistance is calculated as the rolling load actual value. The percentage of division is defined as the error rate.

도 4a, 도 4b를 참조하면, 도 4a는 종래 예측하중-측정하중 상관 그래프이고, 도 4b는 본 발명에 따른 예측하중-측정하중 상관 그래프이다.4A and 4B, FIG. 4A is a conventional predicted load-measured load correlation graph, and FIG. 4B is a predicted load-measured load correlation graph according to the present invention.

도 4a 및 도 4b를 참조하면, 본 발명의 방법에 의하면, 종래 방법에 비해 예측하중이 측정하중과 상당한 비례상관에 있음을 알 수 있으며, 이는 또한 도 3에서 보인 바와 같이 본 발명에 의하면 압연하중 적중률이 높다는 것과 의미한다. 4A and 4B, it can be seen that according to the method of the present invention, the predicted load is significantly proportional to the measured load compared to the conventional method, which is also shown in FIG. 3 according to the present invention. That means the hit rate is high.

이상에서 설명한 본 발명은 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니고 특허청구범위에 의해 한정되며, 본 발명의 장치는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백하다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, but is defined by the claims, and the apparatus of the present invention may be substituted, modified, and modified in various ways without departing from the spirit of the present invention. It is apparent to those skilled in the art that modifications are possible.

상술한 바와 같은 본 발명에 따르면, 제철소의 후강판 압연공정에 적용되는 열간변형저항 예측방법에서, 후강판 압연공정중 가역식 폭내기압연/길이내기 압연설비에서, 소재의 두께, 온도 및 성분 등의 공정인자, 변형율 및 변형율속도를 이용하여, 압연하중 예측에 필요한 열간변형저항을 간단한 과정을 통해 보다 정확하게 예측할 수 있도록 구현함으로서, 소재의 변형저항 측정 시간 및 경비를 절감할 수 있고, 실제 조업시 압연하중의 학습의존성을 저감시킬 수 있으며, 보다 정밀한 두께제어가 가능하여, 실수율 향상 및 조업의 안정성을 확보할 수 있는 효과가 있다.According to the present invention as described above, in the method of predicting the hot deformation resistance applied to the thick steel plate rolling process of steel mill, in the reversible breadboard rolling / lengthening rolling equipment during the thick steel plate rolling process, the thickness, temperature and components of the material, etc. By using the process factor, strain rate and strain rate of, by implementing a simple process to more accurately predict the hot deformation resistance required for rolling load prediction, it is possible to reduce the time and cost of measuring the deformation resistance of the material, The learning dependence of the rolling load can be reduced, more precise thickness control is possible, and the effect of improving the error rate and securing the operation stability can be obtained.

Claims (2)

후판 압연조건의 기하학적인 변화에 관계된 유효인자인 압하율(r), 마찰계수(μ) 및 형상비(s)를 이용하는 하기 수학식 2를 통해 압하력함수(Qp)를 구하는 제1 단계;A first step of obtaining a reduction force function (Qp) through Equation (2) using a reduction factor (r), a friction coefficient (μ), and a shape ratio (s) which are effective factors related to the geometrical change of the thick plate rolling condition; [수학식 2][Equation 2]
Figure 112005075904273-pat00026
Figure 112005075904273-pat00026
상기 제1 단계에서 구해진 압하력함수(Qp)와, 기설정된 접촉투영길이(ℓ sub d), 평균판폭(Wm) 및 기측정된 실적 압연하중(F(actual))을 하기 수학식 3에 대입하여 실측 변형저항(Km(actual))을 구하는 제2 단계;Substituting the reduction force function (Qp), the predetermined contact projection length (L sub d), the average plate width (Wm) and the measured actual rolling load (F (actual)) obtained in the first step into the following equation (3): Obtaining a measured strain resistance (Km (actual)) by a second step; [수학식 3][Equation 3]
Figure 112005075904273-pat00027
Figure 112005075904273-pat00027
상기 제2 단계에서 구해진 실측 변형저항(Km(actual)), 변형율(ε), 변형율속도(DOT ε) 및 압연온도(T)를 하기 수학식 4에 대입한 후 통계 해석하여, 하기 수학식의 계수를 구하는 제3 단계; 및The measured deformation resistance (Km (actual)), strain (ε), strain rate (DOT ε) and rolling temperature (T) obtained in the second step were substituted into the following Equation 4, and statistical analysis was performed. Obtaining a coefficient; And [수학식 4][Equation 4]
Figure 112005075904273-pat00028
Figure 112005075904273-pat00028
상기 수학식 4에서의 계수 및 기설정된 미사카의 식(
Figure 112005075904273-pat00029
)를 하기 수학식 5에 대입하여 열간변형저항(Km)을 구하는 제4 단계
The coefficient of Equation 4 and the formula of preset Misaka (
Figure 112005075904273-pat00029
Step 4) to obtain the hot deformation resistance (Km) by substituting
[수학식 5][Equation 5]
Figure 112005075904273-pat00030
Figure 112005075904273-pat00030
를 포함하는 후강판 압연시 열간변형저항 예측방법.Hot deformation resistance prediction method during thick steel sheet rolling comprising a.
제1항에 있어서, 상기 후강판 압연시 열간변형저항 예측방법은,The method of claim 1, wherein the method of predicting hot deformation resistance during rolling of the thick steel sheet 상기 제4단계에서 구한 열간변형저항(Km)을 하기 수학식 6에 대입하여 열간압연하중(F)을 예측하는 제5 단계A fifth step of predicting the hot rolling load F by substituting the hot strain resistance Km obtained in the fourth step into Equation 6 below; [수학식 6][Equation 6]
Figure 112005075904273-pat00031
Figure 112005075904273-pat00031
를 더 포함하는 후강판 압연시 열간변형저항 예측방법.Hot deformation resistance prediction method when the thick steel sheet further comprises a.
KR1020050129067A 2005-12-23 2005-12-23 Method for predicting of deformation resistance in heavy plate rolling process KR100711402B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050129067A KR100711402B1 (en) 2005-12-23 2005-12-23 Method for predicting of deformation resistance in heavy plate rolling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050129067A KR100711402B1 (en) 2005-12-23 2005-12-23 Method for predicting of deformation resistance in heavy plate rolling process

Publications (1)

Publication Number Publication Date
KR100711402B1 true KR100711402B1 (en) 2007-04-30

Family

ID=38182292

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050129067A KR100711402B1 (en) 2005-12-23 2005-12-23 Method for predicting of deformation resistance in heavy plate rolling process

Country Status (1)

Country Link
KR (1) KR100711402B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107520259A (en) * 2016-06-22 2017-12-29 上海梅山钢铁股份有限公司 A kind of cold rolling new steel grade resistance of deformation coefficient rapid correction method
CN110802114A (en) * 2019-10-30 2020-02-18 中冶陕压重工设备有限公司 Rolling force method for cold-rolled plate strip
CN114472546A (en) * 2020-10-27 2022-05-13 宝山钢铁股份有限公司 Method and system for optimizing rolling force based on big data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137013A (en) 1981-02-16 1982-08-24 Kawasaki Steel Corp Rolling load predicting method for steel plate in hot rolling
JPH08243619A (en) * 1995-03-08 1996-09-24 Kobe Steel Ltd Method for predicting rolling load
KR20020051248A (en) * 2000-12-22 2002-06-28 이구택 method of roll force prediction in hot plate rolling of stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137013A (en) 1981-02-16 1982-08-24 Kawasaki Steel Corp Rolling load predicting method for steel plate in hot rolling
JPH08243619A (en) * 1995-03-08 1996-09-24 Kobe Steel Ltd Method for predicting rolling load
KR20020051248A (en) * 2000-12-22 2002-06-28 이구택 method of roll force prediction in hot plate rolling of stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107520259A (en) * 2016-06-22 2017-12-29 上海梅山钢铁股份有限公司 A kind of cold rolling new steel grade resistance of deformation coefficient rapid correction method
CN107520259B (en) * 2016-06-22 2019-07-19 上海梅山钢铁股份有限公司 A kind of cold rolling new steel grade resistance of deformation coefficient rapid correction method
CN110802114A (en) * 2019-10-30 2020-02-18 中冶陕压重工设备有限公司 Rolling force method for cold-rolled plate strip
CN110802114B (en) * 2019-10-30 2021-08-03 中冶陕压重工设备有限公司 Method for calculating rolling force of cold-rolled strip
CN114472546A (en) * 2020-10-27 2022-05-13 宝山钢铁股份有限公司 Method and system for optimizing rolling force based on big data
CN114472546B (en) * 2020-10-27 2023-06-13 宝山钢铁股份有限公司 Method and system for optimizing rolling force based on big data

Similar Documents

Publication Publication Date Title
JP4383493B2 (en) Material information providing method and material information using method of high-tensile steel sheet with TS of 780 MPa or more
US7617709B2 (en) Apparatus for controlling materials quality in rolling, forging, or leveling process
JP2013150990A (en) Apparatus and method of controlling hot rolling mill for thin plate
KR100711402B1 (en) Method for predicting of deformation resistance in heavy plate rolling process
EP3195945B1 (en) Rolling control method for metal plate, rolling control device, and method for manufacturing rolled metal plate
KR101749018B1 (en) Flatness control device
KR20040043911A (en) Apparatus and method for prediction rolling force using neural network
KR100851200B1 (en) Method for forecasting roll force of roughing mill considering width reduction
JP6036857B2 (en) Rolling mill control method, rolling mill control device, and rolled material manufacturing method
KR100349139B1 (en) Method for predicting coefficient of friction in cold rolling
EP1322433B1 (en) Sheet width control method in hot rolling
JP2003311326A (en) Steel plate manufacturing method
JP3583835B2 (en) Setup method in hot finish rolling
KR101060954B1 (en) Rolling Load Prediction Method in Steel Sheet Rolling Process
KR100376475B1 (en) Prediction of thickness shrinkage during cooling after rolling
JPH067819A (en) Camber and meandering control method in rolling mill
KR101105900B1 (en) Method of roll force prediction in hot plate rolling
JP2719215B2 (en) Edge drop control method for sheet rolling
JP4926883B2 (en) Method for providing material information of shipped steel plate and method for using material information of shipped steel plate
JP6597565B2 (en) Thickness control method in cold rolling
JP2003035530A (en) Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet
JPH08117824A (en) Method for predicting rolling operation condition and set controlled rolling method using teh same
KR950001935B1 (en) Process for improvement of rolling load in steel sheet
JP2719216B2 (en) Edge drop control method for sheet rolling
JPH0847706A (en) Estimating method and learning method of forward slip in continuous rolling mill

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 13