JP3583835B2 - Setup method in hot finish rolling - Google Patents

Setup method in hot finish rolling Download PDF

Info

Publication number
JP3583835B2
JP3583835B2 JP20277795A JP20277795A JP3583835B2 JP 3583835 B2 JP3583835 B2 JP 3583835B2 JP 20277795 A JP20277795 A JP 20277795A JP 20277795 A JP20277795 A JP 20277795A JP 3583835 B2 JP3583835 B2 JP 3583835B2
Authority
JP
Japan
Prior art keywords
stand
rolling
thickness
calculated
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20277795A
Other languages
Japanese (ja)
Other versions
JPH0929316A (en
Inventor
武広 中本
博之 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20277795A priority Critical patent/JP3583835B2/en
Publication of JPH0929316A publication Critical patent/JPH0929316A/en
Application granted granted Critical
Publication of JP3583835B2 publication Critical patent/JP3583835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材のホットストリップミルにおける仕上圧延において被圧延材の最先端板厚を確保すべく上下ワークロールの開度設定およびワークロールの周速度設定を決定する方法、すなわちセットアップ方法に関する。
【0002】
【従来の技術】
熱間仕上圧延において被圧延材の最先端板厚を確保すべく上下ワークロールの開度設定およびワークロールの周速度設定を決定するセットアップ方法については、圧延理論に基づく圧延荷重式、ゲージメータ板厚式により一般的に以下のフローで算出される。まず所要の最終スタンド出側目標板厚を得るための各タンデムスタンド出側板厚を決定する。次に圧延荷重式(数式モデル)を用いて各スタンド圧延荷重値を予測する。数式モデルは(1)式のように記述される。
【0003】
P=α・kfm・L ・Q ・・・・・・(1)
P :圧延荷重
α :荷重学習係数
fm:拘束変形抵抗
:接触弧長
:圧下力関数
【0004】
はロールと材料間の摩擦係数μ、偏平ロール半径R′、入側材料厚H、圧下率rおよび前・後方張力t 、t の関数式(2)で表される。
=Q (μ,R′,H,r,t ,t ) ・・・(2)
【0005】
例えば公知のHillの式では(3)式となる。
=(1.08+1.79rμ(R′/H)1/2 −1.02r)・Q (T ,T ) ・・・(3)
【0006】
次にゲージメータ板厚式は(4)式により表され、すでに(1)式で求められた圧延荷重予測値Pおよび下式の出側材料厚hを代入することによって所要の出側材料厚を得るために必要な上下ロール開度Sとして算出される。
h=S+P/M+GMERR ・・・・・・(4)
h:出側材料厚
S:上下ロール開度
M:ミルストレッチ
GMERR:ロールサーマル・摩耗分に相当する誤差値
【0007】
次に回転設定V は(5)式により算出される。
=V /(1+f) ・・・・・・(5)
:ワークロール回転数
:材料速度
f :先進率
【0008】
先進率fは、特開昭60−15010号公報のごとく(6)式にて予測され、(6)式で得られる先進率予測値fを(5)式に代入することにより各スタンドごとにマスフローバランスの保たれた回転設定が実施される。
f=(0.455−0.233/μ(ΔH/R′)1/2 r/(1−r)・・・(6)
r:圧下率
【0009】
一方、圧延荷重等の数式モデルは不確定要素を含むため、一般的に実操業においては圧延荷重等の数式モデルによる計算値を圧延荷重等の実績値(実測値)にもとづき修正することを行っている。例えば特公平5−66203号公報に示されるように前記荷重予測(1)、(3)式において値の不確定な摩擦係数μと変形抵抗kfmが存在するため(6)式を用いた圧延荷重と摩擦係数を分離して学習する方法が提案されている。またそのさい用いられる計算実績板厚は最終スタンド出側またはいずれかのスタンド間にて測定された板厚実績より算出される計算実績マスフロー板厚を用いることを前提としており、当該材における板厚設定誤差は削除される。
【0010】
しかしながら、タンデムスタンドにおいては各スタンド間に一定の張力が作用しているため(6)式を用いて先進率実績から摩擦係数を学習する場合に、制御遅れ等による張力の変動により先進率が変化して摩擦係数に誤差を生じることになる。また各スタンド間の絶対張力設定値の圧延材料ごとの変化に応じても同様の現象を生じる。また各スタンド出側計算板厚実績の算出のための板厚実績により算出されるマスフロー板厚についても先進率実績値を用いれば推定精度は格段に向上するが、この場合は各スタンド出側計算板厚実績を求める目的でマスフロー則に先進率実績を用いるものであり張力実績の影響は含まれねばならない。さらには前記の圧延荷重および摩擦係数学習に際して、ここで得られた各スタンド出側計算板厚実績を使用しなければ、先進率およびスタンド間張力実績の取込み効果を最大限に発揮されているとは言えず推定の誤差分は出側板厚の誤差となる。
【0011】
【発明が解決しようとする課題】
本発明は、上記のような課題を解決すべくなされたものであって、先進率およびスタンド間張力実績を取り込み、圧延荷重および摩擦係数学習の効果を最大限に発揮して、当該材においては好適となる熱間仕上圧延におけるセットアップ方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らはホットストリップミルの仕上圧延機後段3スタンド間にレーザー方式の板速度計を設置し、セットアップ精度を高めるべく研究を行った結果、先進率実績取り込みにおけるミル前方後方の張力の影響を把握すると同時に圧延荷重および摩擦係数学習の精度を向上させる手法を見出し,本発明を完成させるに至った。すなわち、本発明は、熱間タンデム仕上圧延において被圧延材の最先端板厚を確保すべくセットアップに際し、
(a)少なくとも1スタンドにおいて、その出側に非接触式の速度計を配置して出側の圧延材板速度を測定し得られる板速度と前記スタンドの圧延ロール周速度とから先進率実績を求める第1の工程、
(b)第1の工程で得られる先進率実績とマスフロー則とにより各スタンド出側計算板厚実績を求める第2の工程、
(c)前記スタンドの前後のルーパー装置に張力計を設置して測定されるスタンド前後の圧延材張力測定値と、予め試験により求めた、スタンド間の前方・後方張力の先進率への影響係数と、前記先進率実績と前記第2の工程にて得られる各スタンド出側計算板厚実績とから圧延ロールと被圧延材間の計算実績摩擦係数を算出する第3の工程、
(d)第3の工程にて得られる計算実績摩擦係数を各圧延条件区分ごとにそれぞれ記憶させ、記憶ごとに指数平滑処理による修正を行い、圧延荷重予測においては修正後の計算実績摩擦係数および第2の工程で得られる各スタンド出側計算板厚実績から算出した荷重学習係数を圧延荷重予測に用いる第4の工程、
(e)予測された圧延荷重から上下ワークロール開度設定値を求める第5の工程、
(f)第4の工程の過程で得られる修正後の計算実績摩擦係数を用いて先進率の予測を行い回転設定する第6の工程
とからなることを特徴とする熱間仕上圧延におけるセットアップ方法である。
【0013】
【発明の実施の形態】
図1に示すように、最終スタンドnとその上流側に隣接するスタンドn−1のそれぞれの下流側に例えばレーザードップラー方式などの非接触式の板速度計1,2を設置した場合の本発明による作用を説明する。それぞれの圧延ロールにはロール周速度計3,4が取り付けられており、板速度計信号とロール周速度計信号と、さらに板速度計1のように上流側圧延ロールとの間にルーパー装置を介している場合はルーパー高さ検出器5の実績信号とを先進率演算器6,7に入力する。先進率演算器6,7では微小時間ごとの先進率実績を演算する。
【0014】
次に、被圧延材8の先端が最終スタンドnの出側の板厚計9を通過した時点での板厚計9の測定板厚と、その時点でのスタンドn−1およびnのそれぞれのロール周速度と先進率演算器6,7で演算された先進率実績を上位計算機10に入力する。上位計算機10では圧延荷重の学習に必要な被圧延材8の各スタンド出側先端板厚を先進率実績を用いて下記(7)式のマスフロー則にて算出する。
【0015】
=(1+f )・V ・h /{(1+f )・V } ・・・(7)
:iスタンド出側板厚
:iスタンドロール周速度
:iスタンド先進率
:最終スタンド出側板厚
:最終スタンドロール周速度
:最終スタンド先進率
【0016】
次にデータを入力した前記時点にて最終スタンドnとその上流側に隣接するスタンドn−1のそれぞれの上流側に配置されたルーパー張力計11,12とコイラー側で設定される仕上最終スタンド出側張力信号13を上位計算機10に入力する。上記計算機10では(8)式より摩擦係数μを逆算する。すなわち入出側張力実績とすでに求められた各スタンド出側先端板厚計算実績と先進率実績とから張力の影響を考慮した先進率モデル(8)式にそれぞれ代入することにより、摩擦係数μを求めることができる。
【0017】
f={0.455−0.233/μ(ΔH/R′)1/2 r/(1−r)・(K ・σ +K ・σ ) ・・・(8)
:前方張力の先進率への影響係数
:後方張力の先進率への影響係数
σ :前方単位張力実績
σ :後方単位張力実績
R′:偏平ロール半径
ΔH:圧下量(=hi−1 −h
r :圧下率(=(hi−1 −h )/hi−1
なお、K は事前のインコイルにおける張力変更試験により同定される。ここで得られた摩擦係数実績はスタンドNo.、圧延ロール種別、圧下率、油圧延使用状況等の圧延条件によって変化するため、圧延条件を層別して各区分ごとに指数平滑処理による修正を行い摩擦係数実績を保存する。
【0018】
次に予測圧延荷重P と実測圧延荷重P とから下記(9)式により荷重学習係数αを求める。
α=P /P ・・・(9)
【0019】
そして(9)式で求められた荷重学習係数αを用いて、下記(10)式により次の圧延材の圧延荷重P を推定する。
=α・P ・・・・(10)
【0020】
このとき予測および実測の圧延荷重P 、P 算出は例えば前記(3)式および(1)式の数式モデルを用いて行われ、出側先端板厚計算実績h および、摩擦係数μに張力を含めた実測値に基づき求められた前記出側先端板厚計算h および、摩擦係数μを基本に用いることにより、正確な圧延荷重の予測値を得ることができ、得られた圧延荷重の予測値を公知の(4)式に代入することにより所要の圧下設定値が得られる。一方、回転設定についても前記の張力を含めた実測値に基づき求められ、各区分ごとに保存された摩擦係数実績を前記(6)式および(5)式に用いることによって正確な回転設定を得ることができる。
【0021】
【実施例】
7台の仕上タンデム圧延機を配置したホットストリップミルにおいて後段3スタンド間にドップラー式の非接触板速計を、また最終スタンド出側にX線厚み計を設置し、コイル厚2mm、コイル幅900mm、材質SS400クラスの被圧延材を圧延するさい、本発明法を仕上セットアップに適用し、張力実績と先進率実績から得られる摩擦係数を学習して圧下・回転設定を行った。そのときのマスフロー板厚とゲージメータ板厚の差であるゲージメータエラーの変動推移状況を図2に示した。なお、比較のため従来法によるゲージメータエラーの変動推移状況もあわせて示した。この図から明らかなように本発明法のゲージメータエラーは安定的でありハンチングがない。
【図面の簡単な説明】
【図1】本発明の方法の実施例を模式的に示す構成図
【図2】ゲージメータエラーの変動推移を本発明法と従来法とを比較して示すグラフ
【符号の説明】
1,2 板速度計
3,4 ロール周速度計
5 ルーパー高さ検出器
6,7 先進率演算器
8 被圧延材
9 最終スタンド出側板厚計
10 上位計算機
11,12 張力計
13 最終スタンド出側張力信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of determining the opening degree setting of the upper and lower work rolls and the peripheral speed setting of the work rolls in order to secure the leading-edge sheet thickness of the material to be rolled in finish rolling in a hot strip mill of a steel material, that is, a setup method.
[0002]
[Prior art]
In hot finish rolling, the setup method to determine the opening degree of the upper and lower work rolls and the peripheral speed setting of the work rolls in order to secure the cutting edge thickness of the material to be rolled is as follows: rolling load formula based on rolling theory, gauge meter plate In general, the thickness is calculated according to the following flow. First, the tandem stand exit plate thickness for obtaining the required final stand exit target plate thickness is determined. Next, the rolling load value of each stand is predicted using a rolling load formula (mathematical model). The mathematical model is described as in equation (1).
[0003]
P = α · k fm · L d · Q p (1)
P: rolling load α: load learning coefficient k fm : constraint deformation resistance L d : contact arc length Q p : rolling force function
Q p is expressed by the friction coefficient μ between the rolls and the material, the flat roll radius R ', the entry side material thickness H, reduction ratio r and the front-rear tension t f, t b of the function formula (2).
Q p = Q p (μ, R ′, H, r, t f , t b ) (2)
[0005]
For example, in the known Hill's equation, equation (3) is obtained.
Q p = (1.08 + 1.79rμ ( R '/ H) 1/2 -1.02r) · Q t (T r, T b) ··· (3)
[0006]
Next, the gauge meter thickness equation is expressed by equation (4), and by substituting the predicted rolling load value P already determined by equation (1) and the exit material thickness h in the following equation, the required exit material thickness is obtained. Is calculated as the upper and lower roll opening S required to obtain.
h = S + P / M + GMERR (4)
h: Outgoing material thickness S: Upper and lower roll opening M: Mill stretch GMERR: Error value corresponding to roll thermal wear
Then rotation set V R is calculated by the equation (5).
V R = V S / (1 + f) ······ (5)
V R : Work roll rotation speed V S : Material speed f: Advance rate
The advance rate f is predicted by equation (6) as disclosed in Japanese Patent Application Laid-Open No. S60-15010, and the advanced rate predicted value f obtained by equation (6) is substituted into equation (5) for each stand. The rotation setting with the mass flow balance maintained is performed.
f = (0.455−0.233 / μ (ΔH / R ′) 1/2 ) 2 r / (1-r) (6)
r: Reduction rate
On the other hand, since a mathematical model such as a rolling load includes an uncertain element, generally, in an actual operation, a value calculated by the mathematical model such as a rolling load is corrected based on an actual value (actually measured value) such as a rolling load. ing. For example, as shown in Japanese Patent Publication No. 5-66203, since the friction coefficient μ and the deformation resistance k fm whose values are uncertain in the load prediction equations (1) and (3) exist, the rolling using the equation (6) is performed. There has been proposed a method of learning by separating the load and the coefficient of friction. The calculated actual thickness used in this case is based on the assumption that the calculated actual mass flow thickness calculated from the actual thickness measured on the exit side of the final stand or between any stands is used. Setting errors are deleted.
[0010]
However, in the tandem stand, a constant tension acts between each stand, and when the friction coefficient is learned from the actual result of the advance rate using the equation (6), the advance rate changes due to a change in the tension due to a control delay or the like. As a result, an error occurs in the friction coefficient. The same phenomenon occurs even when the absolute tension set value between the stands changes for each rolling material. The calculation accuracy of the mass flow thickness calculated from the actual thickness of each stand is calculated by using the actual value of the advanced rate. The purpose of obtaining the sheet thickness is to use the advance rate result in the mass flow law, and the effect of the tension result must be included. Furthermore, when learning the rolling load and the coefficient of friction, unless the obtained stand-side calculated thickness of each stand obtained here is used, the effect of taking in the advance rate and the stand-to-stand tension result is maximized. It cannot be said, however, that the error of the estimation is an error of the exit side plate thickness.
[0011]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems, incorporates the advance rate and the stand-to-stand tension results, maximizes the effects of rolling load and friction coefficient learning, and in the material, It is an object of the present invention to provide a set-up method in hot finish rolling that is suitable.
[0012]
[Means for Solving the Problems]
The present inventors installed a laser type speedometer between the three stands of the finishing mill of the hot strip mill and conducted research to increase the setup accuracy. As a result, the influence of the tension in front and rear of the mill on the achievement of the advanced rate was measured. At the same time, the present inventors have found a method for improving the accuracy of the rolling load and friction coefficient learning, and have completed the present invention. That is, the present invention, in the setup in order to ensure the most advanced plate thickness of the material to be rolled in hot tandem finish rolling,
(A) In at least one stand, a non-contact type speedometer is arranged on the outlet side, and the roll speed of the rolled material on the outlet side is measured by measuring the sheet speed on the outlet side, and the rolling rate peripheral speed of the stand is used to calculate the advanced rate result. The first step to be sought,
(B) a second step of calculating the stand-side exit-side calculated plate thickness results from the advanced rate results and the mass flow law obtained in the first step;
(C) A measured value of the rolled material tension before and after the stand measured by installing a tension meter on a looper device before and after the stand, and an influence coefficient of the forward and backward tension between the stands on the advance rate, which was obtained in advance by a test. And a third step of calculating a calculated actual friction coefficient between the rolling roll and the material to be rolled from the advanced rate result and each stand exit side calculated plate thickness result obtained in the second step,
(D) The calculated actual friction coefficient obtained in the third step is stored for each rolling condition category, and is corrected by exponential smoothing processing for each storage. A fourth step of using the load learning coefficient calculated from each stand exit side calculated plate thickness result obtained in the second step for rolling load prediction,
(E) a fifth step of obtaining the upper and lower work roll opening set values from the predicted rolling load,
(F) a sixth step of predicting the advanced ratio using the corrected calculated actual friction coefficient obtained in the course of the fourth step and setting the rotation, and setting up a rotation in the hot finish rolling. It is.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the present invention in the case where a non-contact type plate speed meter 1, such as a laser Doppler system, is installed on each downstream side of a final stand n and a stand n-1 adjacent to the upstream side thereof. The effect of the above will be described. Roll peripheral speedometers 3 and 4 are attached to each of the rolling rolls, and a looper device is provided between the sheet speedometer signal, the roll peripheral speedometer signal, and the upstream rolling roll like the sheet speedometer 1. If it is, the result signal of the looper height detector 5 is input to the advanced rate calculators 6 and 7. The advanced rate calculators 6 and 7 calculate the advanced rate results for each minute time.
[0014]
Next, the measured thickness of the thickness gauge 9 at the time when the tip of the material 8 to be rolled passes through the thickness gauge 9 on the exit side of the final stand n, and the respective stands n-1 and n at that time. The roll peripheral speed and the advanced rate result calculated by the advanced rate calculators 6 and 7 are input to the host computer 10. The host computer 10 calculates the thickness of the leading end of each stand 8 of the material 8 to be rolled, which is necessary for learning the rolling load, by using the advanced rate result in accordance with the mass flow rule of the following equation (7).
[0015]
h i = (1 + f n ) · V n · h n / {(1 + f i ) · V i } (7)
h i : i stand exit side plate thickness V i : i stand roll peripheral speed f i : i stand advance ratio h n : final stand exit side plate thickness V n : final stand roll peripheral speed f n : final stand advance ratio
Next, at the time when the data is input, the final stand n and the finisher final stand set by the coiler side and the looper tensiometers 11 and 12 arranged on the upstream side of the stand n-1 adjacent to the upstream side of the final stand n, respectively. The side tension signal 13 is input to the host computer 10. In the computer 10, the friction coefficient μ is calculated backward from the equation (8). That is, the friction coefficient μ is determined by substituting the actual entry / exit side tension and the already calculated results of the stand-side exit side thickness of each stand and the actual advance rate into the advance rate model (8) in consideration of the influence of tension. be able to.
[0017]
f = {0.455−0.233 / μ (ΔH / R ′) 1/22 r / (1−r) · (K 1 · σ f + K 2 · σ b ) (8)
K 1 : Influence coefficient of forward tension on advanced rate K 2 : Influence coefficient of backward tension on advanced rate σ f : Actual front unit tension σ b : Actual rear unit tension R ': Flat roll radius ΔH: Reduction amount (= h i-1 -h i)
r: the reduction ratio (= (h i-1 -h i) / h i-1)
Note that K 1 and K 2 are identified by a tension change test in the in-coil in advance. The friction coefficient results obtained here are the results of the stand No. Since the rolling conditions change depending on the rolling conditions, such as the type of rolling roll, the rolling reduction, and the state of use of oil rolling, the rolling conditions are stratified, corrected by exponential smoothing for each section, and the friction coefficient results are stored.
[0018]
Obtaining a load learning coefficient α from then the predicted rolling load P * and the measured rolling load P M by the following equation (9).
α = P M / P * (9)
[0019]
Then, by using the load learning coefficient α obtained by the equation (9), the rolling load P S * of the next rolled material is estimated by the following equation (10).
P S * = α · P * (10)
[0020]
Rolling load P * prediction and the actually measured this time, P M calculated is carried out using a mathematical model, for example, the (3) and (1), outlet-side tip thickness calculation results h i and, on the coefficient of friction μ the outlet-side tip thickness calculating h i and determined on the basis of the measured values, including tension, by using a friction coefficient μ on the base, it is possible to obtain an estimate of correct rolling load, resulting rolling force Is substituted into the known equation (4) to obtain a required rolling reduction value. On the other hand, the rotation setting is also obtained based on the actually measured value including the above-mentioned tension, and an accurate rotation setting is obtained by using the friction coefficient results stored for each section in the above equations (6) and (5). be able to.
[0021]
【Example】
In a hot strip mill in which seven finishing tandem rolling mills are arranged, a non-contact Doppler plate speed meter is installed between the latter three stands, and an X-ray thickness gauge is installed on the exit side of the final stand. The coil thickness is 2 mm and the coil width is 900 mm When rolling a material to be rolled of SS400 class, the method of the present invention was applied to a finish setup, and the friction coefficient obtained from the actual tension and the advance rate was learned to set the rolling and rotation. FIG. 2 shows the change in the gauge meter error, which is the difference between the mass flow plate thickness and the gauge meter plate thickness. For comparison, the change in gauge meter error according to the conventional method is also shown. As is clear from this figure, the gauge meter error of the method of the present invention is stable and there is no hunting.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing an embodiment of the method of the present invention. FIG. 2 is a graph showing the change transition of a gauge meter error by comparing the present invention method and the conventional method.
1, 2 Sheet speed meter 3, 4 Roll peripheral speed meter 5 Looper height detector 6, 7 Advanced rate calculator 8 Rolled material 9 Final stand exit side thickness gauge 10 High-level computer 11, 12 Tension meter 13 Final stand exit side Tension signal

Claims (1)

熱間タンデム仕上圧延において被圧延材の最先端板厚を確保すべく上下ワークロールの開度設定およびワークロールの周速度設定を決定する(以下、セットアップという)に際し、
少なくとも1スタンドにおいて、その出側に非接触式の速度計を配置して出側の圧延材板速度を測定し得られる板速度と前記スタンドの圧延ロール周速度とから先進率実績を求める第1の工程、
任意のスタンドの板厚実測値と第1の工程で得られる先進率実績とマスフロー則とにより、出側板厚実測スタンド以外の各スタンド出側計算板厚実績を求める第2の工程、
前記スタンドの前後のルーパー装置に張力計を設置して測定されるスタンド前後の圧延材張力測定値と、予め試験により求めた、スタンド間の前方・後方張力の先進率への影響係数と、前記先進率実績と前記第2の工程にて得られる各スタンド出側計算板厚実績とから圧延ロールと被圧延材間の計算実績摩擦係数を算出する第3の工程、
第3の工程にて得られる計算実績摩擦係数を各圧延条件区分ごとにそれぞれ記憶させ、記憶ごとに指数平滑処理による修正を行い、圧延荷重予測においては修正後の計算実績摩擦係数および第2の工程で得られる各スタンド出側計算板厚実績から荷重学習係数を算出して、次材のセットアップにおいてこの荷重学習係数を用いて圧延荷重予測する第4の工程、
予測された圧延荷重から上下ワークロール開度設定値を求める第5の工程、
第4の工程の過程で得られる修正後の計算実績摩擦係数を用いて先進率の予測を行い回転設定する第6の工程
とからなることを特徴とする熱間仕上圧延におけるセットアップ方法。
In determining the opening degree of the upper and lower work rolls and the peripheral speed of the work rolls in order to secure the leading edge thickness of the material to be rolled in hot tandem finish rolling (hereinafter referred to as setup)
In at least one stand, a non-contact type speedometer is arranged on the outlet side, and the roll speed of the rolled material on the outlet side is measured and the roll rate peripheral speed of the stand is used to obtain the advanced rate result. Process,
A second step of calculating the actual output thickness of each stand other than the actual output thickness measurement stand, based on the actual thickness value of an arbitrary stand, the advanced rate result obtained in the first step, and the mass flow law;
Rolled material tension measurement values before and after the stand measured by installing a tension meter in the looper device before and after the stand, and the coefficient of influence on the advance rate of the forward and backward tension between the stands, obtained by a test in advance, and A third step of calculating the calculated actual friction coefficient between the rolling roll and the material to be rolled from the advanced rate result and the stand-out side calculated plate thickness result obtained in the second step;
The calculated actual friction coefficient obtained in the third step is stored for each rolling condition category, and corrected by exponential smoothing processing for each storage. In the rolling load prediction, the corrected calculated actual friction coefficient and the second corrected A fourth step of calculating a load learning coefficient from each stand exit-side calculated plate thickness result obtained in the step, and predicting a rolling load using the load learning coefficient in the setup of the next material;
A fifth step of calculating the upper and lower work roll opening set values from the predicted rolling load,
A setup step in hot finish rolling, comprising: a sixth step of predicting an advanced ratio using the corrected calculated actual friction coefficient obtained in the course of the fourth step and setting rotation.
JP20277795A 1995-07-18 1995-07-18 Setup method in hot finish rolling Expired - Fee Related JP3583835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20277795A JP3583835B2 (en) 1995-07-18 1995-07-18 Setup method in hot finish rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20277795A JP3583835B2 (en) 1995-07-18 1995-07-18 Setup method in hot finish rolling

Publications (2)

Publication Number Publication Date
JPH0929316A JPH0929316A (en) 1997-02-04
JP3583835B2 true JP3583835B2 (en) 2004-11-04

Family

ID=16463019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20277795A Expired - Fee Related JP3583835B2 (en) 1995-07-18 1995-07-18 Setup method in hot finish rolling

Country Status (1)

Country Link
JP (1) JP3583835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604945B2 (en) * 2010-04-06 2014-10-15 新日鐵住金株式会社 Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium
CN110860566A (en) * 2019-07-31 2020-03-06 中冶华天工程技术有限公司 Self-adaptive speed measuring device with counterweight steel sheet pile (H-shaped steel)

Also Published As

Publication number Publication date
JPH0929316A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3607029B2 (en) Rolling mill control method and control apparatus
JP3583835B2 (en) Setup method in hot finish rolling
JP2968637B2 (en) Strip width control method in hot rolling
JP2968647B2 (en) Strip width control method in hot rolling
JPH0569021A (en) Method and device for controlling rolling mill
KR100780423B1 (en) Tension operation control system of hot strip mill and its control method
JP3205130B2 (en) Strip width control method in hot rolling
JP3205175B2 (en) Strip width control method in hot rolling
JP3403330B2 (en) Strip width control method in hot rolling
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
JP3553552B2 (en) On-line identification method of strip width deformation model in hot finishing mill
JPH07164031A (en) Device for estimating and controlling warp caused by rolling
JPH0847706A (en) Estimating method and learning method of forward slip in continuous rolling mill
JPH07214124A (en) Device for controlling rolling mill
JP3443974B2 (en) Roll gap setting method
JP2751275B2 (en) How to determine rolling parameters
JPH082457B2 (en) Tandem mill control method and apparatus
JP2697723B2 (en) Hot continuous rolling method
JPH05285517A (en) Method for controlling plate width in hot rolling
JPH0818059B2 (en) Plate width controller for tandem rolling mill
JPH0636929B2 (en) Method for controlling strip width of rolled material
JP3467559B2 (en) Strip width control method in hot continuous rolling
JP2968645B2 (en) Strip width control method in hot rolling
JPH11104718A (en) Rolling method of reversible rolling mill
JPH0685930B2 (en) Plate thickness control method in rolling mill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees