KR950001935B1 - Process for improvement of rolling load in steel sheet - Google Patents

Process for improvement of rolling load in steel sheet Download PDF

Info

Publication number
KR950001935B1
KR950001935B1 KR1019920026524A KR920026524A KR950001935B1 KR 950001935 B1 KR950001935 B1 KR 950001935B1 KR 1019920026524 A KR1019920026524 A KR 1019920026524A KR 920026524 A KR920026524 A KR 920026524A KR 950001935 B1 KR950001935 B1 KR 950001935B1
Authority
KR
South Korea
Prior art keywords
correction
stand
model
coefficient
learning coefficient
Prior art date
Application number
KR1019920026524A
Other languages
Korean (ko)
Other versions
KR940013642A (en
Inventor
문영훈
한석영
이준정
Original Assignee
포항종합제철 주식회사
박득표
재단법인 산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 박득표, 재단법인 산업과학기술연구소, 백덕현 filed Critical 포항종합제철 주식회사
Priority to KR1019920026524A priority Critical patent/KR950001935B1/en
Publication of KR940013642A publication Critical patent/KR940013642A/en
Application granted granted Critical
Publication of KR950001935B1 publication Critical patent/KR950001935B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • B21B37/20Automatic gauge control in tandem mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

The method improves the estimation of the plate roll load, a factor influencing a most sensitive effect on working conditions of FSU model of continuous hot rolling equipment, so that it can enhance a precision and a reliability of the estimation. The method comprises the steps of : obtaining an average learning coefficient of each stand from overall data; obtaining a calibration coefficient in order to make a group learning coefficient, obtained via classification of working conditions, approach the average value; obtaining a calibration function by use of the group learning coefficient; calibrating a transformation resistance model by use of the calibration model.

Description

판재의 압연하중 예측정도 개선방법Improvement method for predicting rolling load of sheet

제1도는 보정전의 조업분류별 학습계수의 분포도.1 is a distribution chart of learning coefficients according to classifications before operation.

제2도는 보정후의 조업분류별 학습계수의 분포변화도.2 is a distribution change chart of learning coefficients by operation classification after correction.

제3도는 스탠드 보정후의 학습계수 분포변화도.3 is a variation of learning coefficient distribution after stand correction.

제4도는 모델 적중편차 감소효과를 나타내는 막대그래프.4 is a bar graph showing the effect of reducing the model hit deviation.

본 발명은 철강의 연속 열간압연 설비중 탄뎀(tandem)방식으로 배열된 사상압연 설비의 압하설정모델(FSU model)중 조업조건에 가장 민감한 영향을 미치는 판재의 압연하중 예측정도를 개선하는 방법에 관한 것이다. 열간 압연시 사상압연 압하설정모델은 사상압연공정에서 일어나는 형상, 온도, 재질의 변화를 예측가능한 공정인자로부터 예측하고 각 목표치에 맞는 조업을 하기위해 조업조건을 제어하는 것을 기본목표로 한다.The present invention relates to a method for improving the rolling load prediction accuracy of a plate having the most sensitive effect on the operating conditions of the FSU model of the filamentary rolling mill arranged in tandem method among continuous hot rolling mills of steel. will be. The hot rolling reduction setting model during hot rolling has a basic goal of predicting the change of shape, temperature, and material in the finishing rolling process from predictable process factors and controlling the operating conditions in order to operate according to each target value.

종래에는 압연하중을 시험을 통해 구한 후 이로부터 시험변수의 함수로 압연하중 예측식을 유도하였다.Conventionally, the rolling load was obtained through a test, and then the rolling load prediction equation was derived as a function of the test variable.

하지만 각 영향인자들은 독립적으로 혹은 상호작용을 통해 압연하중에 영향을 미치게 되므로 각 조업변수들의 효과를 수식화시켜 압연하중모델에 정확히 반영하기가 용이하지 않았다. 따라서 압연하중 예측모델의 적중정도는 한계를 갖게되며, 모델로 표현키 어려운 미세변수나 오차요인은 학습을 통해 조정함으로써 최적화 되어왔다. 압연하중과 관련한 특허(일본국 특허 JP58084606:가와사끼 제철)에서는 압연온데 따른 압연재의 금속학적 변화를 고려한 수식을 사용하여 압연하중의 개선을 시도한 바 있으나 압연중의 복잡한 금속학적 변화를 단순화된 식으로 해석하고 있다는 점에서 실기적용에서의 정밀도 향상에 의문점을 갖게 한다.However, since each influencer influences the rolling load independently or through interaction, it is not easy to formulate the effect of each operation variable and accurately reflect it in the rolling load model. Therefore, the hit accuracy of the rolling load prediction model has a limit, and fine variables or error factors that are difficult to express in the model have been optimized by adjusting through learning. Japanese patent JP58084606: Kawasaki Steel Co., Ltd. has attempted to improve the rolling load by using a formula that takes into account the metallurgical change of the rolled material due to rolling on. This raises the question of improving the accuracy in practical application.

유럽의 압연하중과 관련한 특허(유럽 특허 EP0289064:후고밴스 제철)에서는 압연하중 예측을 변형저항값에 가중인자(multiflication factor)를 곱한 값을 사용하여 실적 대비 예측정도의 개선을 시도하였는데, 각 조업변수들의 효과를 실험을 통해 정확히 수식화하여야만 효과를 기대할 수 있다는 점에서는 기존모델과 별 차이를 보이고 있지 않다.In European patents related to rolling loads (European Patent EP0289064: Fugo Vance Steel), the rolling load prediction was attempted to improve the prediction accuracy compared to the performance by using the multiplication factor multiplied by the deformation resistance. These effects do not show much difference from the existing model in that they can be expected only if they are accurately formulated through experiments.

본 발명은 실험을 통하지 않고 압연실적을 이용하여 압연하중 예측정도를 향상시킴으로써, 실험을 통한 시간 및 경비부담의 절감은 물론 실험에 비해 예측의 정도 및 신뢰도가 훨씬 높은 압연하중 예측정도 개선법을 제공하고자 하는데, 그 목적이 있다.The present invention improves the rolling load prediction accuracy by using the rolling results without going through the experiment, to reduce the time and cost burden through the experiment, as well as to provide a method of improving the prediction accuracy of the rolling load with much higher accuracy and reliability than the experiment There is a purpose.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은, 철강의 연속 열간압연설비중 탄뎀(tandem)방식으로 배열된 사상 압연 설비의 압하설정 모델 중 판재의 압연하중을 예측하는 방법에 있어서, 전체 데이타로부터 스탠드별 학습계수(α)값의 평균치를 구하는 단계; 조업조건 그룹별 분류를 통해 구한 그룹별 학습계수(2) 값이 전체 데이타로부터 구한 학습계수(2)값에 근접하도록 하기 식(16)과 같이 보정계수(mi)를 구하는 단계;The present invention relates to a method for predicting the rolling load of a plate in a rolling reduction setting model of a finishing rolling mill arranged in a tandem method of a continuous hot rolling mill of steel, wherein the learning coefficient (α) value of each stand is determined from all the data. Obtaining an average value; Calculating a correction coefficient mi as shown in Equation (16) so that the learning coefficient for each group (2) obtained through the classification of the operating condition groups is close to the learning coefficient (2) value obtained from the entire data;

여기서, mi : 보정계수Where mi is the correction factor

αij : 조업조건 및 해당 스탠드별 학습계수αij: Operating conditions and learning coefficients for each stand

= Kma/Kmc]ij-1.0= Km a / Km c ] ij-1.0

αTj : 전체 코일로부터 스탠드별로 얻어진 학습계수α T j: Learning coefficient obtained by each stand from all coils

Kmc]ij:조업조건 및 해당 스탠드별 계산 변형저항Km c ] ij: Operating conditions and calculated strain resistance for each stand

Kmc m]ij:보정후의 Kmc]ijKm c m ] ij: Km c ] ij after correction

상기 식(16)에 의해 구해진 보정계수(mi)를 해당 그룹별 분류조건의 함수로 하여 보정함수(fi)를 구하는 단계; 상기 보정함수(fi)를 이용하여 하기 식(3)과 같이 변형저항 모델로 보정하는 단계;Obtaining a correction function (fi) by using the correction coefficient (mi) obtained by Equation (16) as a function of the classification condition for each group; Correcting with a deformation resistance model using the correction function fi as shown in Equation (3);

Km(new)=f1,f2…fi. Km(old)Km (new) = f 1 , f 2 ... fi. Km (old)

여기서, Km(old) : 개선 전의 변형저항 모델, Km(new) : 개선 후의 변형저항 모델, f1: 보정함수Where Km (old): strain resistance model before improvement, Km (new): strain resistance model after improvement, f 1 : correction function

상기와 같이 보정한 후, 실제 데이타로 검정하여 학습계수(α)값의 감소정도를구한 다음, 최저편차를 주는 조건을 선택하는 단계; 상기 단계들을 반복적으로 행하는 단계를 포함하여 구성되는 판재의 압연하중 예측정도 개선방법에 관한 것이다.After correcting as described above, verifying the degree of reduction of the value of the learning coefficient by verifying the data using real data, and then selecting a condition giving the lowest deviation; The present invention relates to a method for improving the predicted rolling load of a plate comprising the steps of repeatedly performing the above steps.

즉, 본 발명은 예측압연하중과 실측압연하중의 편차량을 조업조건별, 스탠드별로 보상할 수 있는 보정함수를 사용하여 모델 적중정도를 향상시키게 하는 판재의 압연하중 예측모델 개선방법에 관한 것이다.That is, the present invention relates to a method for improving a rolling load prediction model of a plate to improve the accuracy of model hitting by using a correction function capable of compensating the deviation between the predicted rolling load and the measured rolling load for each operating condition and for each stand.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 가변적이고 여러 변수에 좌우되는 압연하중을 통계학적 이론 및 회귀 분석에 근거하여 조업조건별로 예측오차 요인들을 제거함으로써 압연하중 예측 정도를 개선시키고자 한 것이다. 이를 위해 사용중인 압연하중 예측모델의 오차요인을 분석하고 이를 통해 예측오차를 감소시켜 줄 수 있는 보정함수를 도입하여 기존 모델을 수정한 것이다. 보정함수는 기존 모델의 오차요인들로부터 문제점 해결을 위해 얻어진 정량적 표현이라 할 수 있다. 여기서는 압연하중의 예측정도 향상을 위해, 압연하중을 결정짓는 모델인 변형저항 예측모델을 대항으로 보정함수의 개념을 설명한다.The present invention aims to improve the accuracy of rolling load prediction by removing predictive error factors for each operating condition based on statistical theory and regression analysis. To this end, the error factors of the used rolling load prediction model are analyzed and the existing model is modified by introducing a correction function that can reduce the prediction error. The correction function is a quantitative representation obtained to solve the problem from the error factors of the existing model. Here, the concept of the correction function will be explained against the deformation resistance prediction model, which is a model for determining the rolling load, in order to improve the accuracy of the rolling load.

모델에서 예측(계산)된 변형저항과 실적 변형저항의 적중정도를 표시하기 위해 다음에 나타낸 학습계수(α)를 예측정도의 척도(parameter)로 지정하여 수식모델을 해석한다.In order to display the accuracy of the predicted (resisted) strain resistance and the performance strain resistance, the mathematical model is analyzed by designating the learning coefficient α as a parameter of the predicted accuracy.

α=(Kma/Kmc-1.0).100α = (Km a / Km c -1.0). 100

여기서 α : 예측정도(parameter)(%)Where α is the parameter (%)

Kma : 실적 변형저항(kg/mm2)Kma: Performance Strain Resistance (kg / mm 2 )

Kmc : 계산 변형저항(kg/mm2)Kmc: Calculated strain resistance (kg / mm 2 )

즉, α가 0(zero)이면 예측치와 실적치가 동일함을 의미하고, 양(positivie)의 값을 가지면 예측치가 실적치보다 작음을, 음(negative)의 값을 가지면 예측치가 실적치보다 큼을, 절대값이 크면 클수록 그에 비례해서 예측치와 실적치의 차이가 증가하도록 한다. 실적 변형저항(Kma)은 압연시 얻어진 스탠드별 압연력(P)으로부터 심스(Sims)식을 통하여 다음과 같이 구한다.In other words, if α is 0 (zero), the predicted value and the performance value are the same.If the value is positive, the forecast value is smaller than the performance value.If the value is negative, the predicted value is larger than the performance value, the absolute value The larger the value, the proportionately increase the difference between the forecast value and the performance value. Performance deformation resistance Kma is calculated | required from the rolling force P by stand obtained at the time of a rolling through the Sims formula as follows.

Kma(kg/mm2)=P/(BmLdQp)Km a (kg / mm 2 ) = P / (B m L d Q p )

여기서, P : 압연하중(kg)Where P: rolling load (kg)

Bm : 평균판폭(mm)Bm: Average plate width (mm)

Ld : 접촉장(mm)Ld: Contact field (mm)

Qp : 기하학적 인자 (geometric factor)Qp: geometric factor

계산 변형저항(Kmc)은 기존 모델에서 사용하고 있는 시다(Shida)식을 이용하여 계산한다. 열간변형저항 수식모델의 해석은, 공정실적을 두께, 폭, 탄소당량,밴더(bender)력 등의 주요 조업변수로 분류한 뒤, 분류된 데이타를 여러 변수범위의 그룹으로 나누어, 각 그룹별 α값의 평균치와 표준편차를 구함으로써 각 분류 그룹별 특성을 파악하였고, 이들 값을 최소화시키는 수식모델로 단계적 수정을 가한다. 이러한 일련의 과정을 반복함으로써 α값의 평균치를 0(zero)에 근접케 함으로써 모델의 정도가 향상됨은 물론 학습의존도가 줄고, 학습편차가 감소되어 모델의 학습효율이 향상되는 효과가 얻어진다. 즉, 현재 사용중인 변형저항수식, Km(old)을 기본꼴로 하고 현 수식에서 생겨나는 오차요인을 식에 직접 보정해주기 위해 보정함수를 도입하여 새로운 변형저항수식, Km(new)을 만든다.The calculated strain resistance (Kmc) is calculated using the Shida equation used in the existing model. The analysis of the hot deformation resistance mathematical model is to classify the process performance into major operating variables such as thickness, width, carbon equivalent and bender force, and then divide the classified data into groups of various variable ranges, and The characteristics of each classification group were identified by obtaining the mean and standard deviation of the values, and a stepwise correction was made with a mathematical model to minimize these values. By repeating this series of processes, the average value of α is approached to zero, thereby improving the accuracy of the model, reducing the learning dependence, and reducing the learning deviation, thereby improving the learning efficiency of the model. In other words, the strain resistance equation, Km (old) currently in use, is the basic form, and the correction function is introduced to directly correct the error factors generated by the current equation, thereby creating a new strain resistance equation, Km (new).

Km(new)=f1,f2…fi. Km(old) (3)Km (new) = f 1 , f 2 ... f i . Km (old) (3)

여기서, fi : 보정함수Where fi: correction function

상기 보정함수(fi)는 다음의 과정을 거쳐 구한다.The correction function fi is obtained through the following process.

여기서, i=조업조건분류번호Where i = operation condition classification number

j=스탠드번호j = stand number

ni=조업분류별 해당코일갯수ni = coil number per job classification

n=전체 코일갯수(nT=Σni)n = total number of coils (n T = Σni)

αij,Kma]ij,Kmc]ij=조업조건 및 해당 스탠드별 학습계수, 실적, 계산변형저항αij, Kma] ij, Kmc] ij = Operating Condition and Learning Factor, Performance, and Calculation Strain Resistance by Stand

αTj,Kma]Tj,Kmc]Tj=전체코일로부터 스탠드별로 얻어진 학습계수, 실적, 계산변형저항αTj, Kma] Tj, Kmc] Tj = learning coefficient, performance, and calculated strain resistance obtained by each stand from all coils

조업조건 그룹별 분류를 통해 구한 그룹별 α값이 전체 데이터로부터 구한 α값에 근접토록 하는 보정계수를 구한다.The correction coefficient is calculated so that the α value for each group obtained through the classification of the operating conditions is close to the α value obtained from the entire data.

(1+αij)·Kmc]ij=Kma]ij(1 + αij) Kmc] ij = Kma] ij

전체 data로부터 구한 학습계수(αij)에 그룹별 학습계수값(αij)이 근접케하기 위해서는 다음식의 우변항이 얻어져야 한다.In order for the learning coefficient value αij to be close to the learning coefficient αij obtained from the entire data, the right side term of the following equation should be obtained.

따라서 Kmc]ij에만큼의 보정이 이루어지면 다음과 같이 조업조건그룹별 분류를 통해 구한 그룹별 학습계수값이 전체 데이터로부터 구한 학습계수에 근접하게 된다.Thus in Kmc] ij After the correction is made, the learning coefficient value of each group obtained through the classification of the working condition group is as close to the learning coefficient obtained from the entire data as follows.

여기서, mi =보정계수Where mi = correction factor

여기서, Kmcm]ij : 보정후의 Kmc]ijWhere Kmc m ] ij: Kmc] ij after correction

즉, 식(7)과 식(8)은 보정후 동일 학습계수를 갖게된다.That is, equations (7) and (8) have the same learning coefficient after correction.

이와 같은 과정을 거쳐 구하여진 보정계수는 해당 그룹별 분류조선의 함수로 보정함수(fi)를 구하고 구하여진 보정함수들을 실제 조업실적으로 검정하여 최저 편차를 주는 보정함수를 선택한다.The correction coefficient obtained through the above process is obtained by calculating the correction function (fi) as a function of the classification ship for each group and selecting the correction function that gives the lowest deviation by testing the obtained correction functions in actual operation.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

실제 열간압연시 조업변수는 동일 스탠드내에서도 넓은 범위에 걸쳐 산포하고, 스탠드 별로 압연하중 예측정도 또한 많은 차이를 보이고 있어 간단한 모델의 계수조정만으로 열간변형저항의 정도향상이 용이하지 않다. 따라서 이러한 차이의 원인을 규명하기 위해 주요조건조견별로 작업 실적을 하기 표 1과 같이 분류하여 조업조건별, 스탠드 별로 보정함수를 구했다.In the case of actual hot rolling, the operating variables are scattered over a wide range within the same stand, and there are also many differences in the prediction of rolling load for each stand. Therefore, it is not easy to improve the degree of hot deformation resistance by simply adjusting the coefficient of the model. Therefore, in order to investigate the cause of the difference, the work performance was classified by main condition survey as shown in Table 1, and the correction function was calculated for each operation condition and stand.

[표 1]TABLE 1

제1도는 보정전의 조업분류별 학습계수(α)분포를 나타내고 있는데, 두께가 얇아질수록, 탄소당량이 클수록, 그리고 밴더(bender)력이 클수록 예측변형저항이 실적보다 낮아짐을 보여주고 있다.Figure 1 shows the distribution of learning coefficients (α) by each classification before the correction, which shows that the thinner the thickness, the larger the carbon equivalent, and the higher the bending force, the lower the predictive strain resistance.

각 스탠드별, 조업조건별 분류를 통해 나타낸 학습계수의 편차를 줄이기 위해 제1도의 네가지 분류중 분류별 경향이 뚜렸하지 않은 폭을 제외한 두께, 탄소당량, 밴더(bender)력에 관한 보정함수를 구하였다. 계산을 거쳐 두께 그룹별로 식(1)을 통해 얻어진 학습계수들로부터 모델 수정을 위한 보정계수를 식(6)으로부터 구하고 이를 회귀분석함으로써 보정함수를 얻었다. 회귀분석을 통해 얻어진 보정함수는 아래와 같다.In order to reduce the variation of the learning coefficient indicated by the classification of each stand and the operating condition, the correction function for the thickness, carbon equivalent, and bender force except for the width of each classification among the four classifications of FIG. . From the learning coefficients obtained through equation (1) for each thickness group, the correction factor for model modification was obtained from equation (6), and the correction function was obtained by regression analysis. The correction function obtained through the regression analysis is as follows.

f(t)=2.19-0.93.t+0.24t2-0.02.t3 f (t) = 2.19-0.93.t + 0.24t 2 -0.02.t 3

여기서, f(t)=두께보정함수 앞의 두께분류와 동일한 방법으로 화학조성 및 밴더(bender)력 보정작업을 실시한 후 얻어진 보정함수는 아래와 같다.Here, f (t) = thickness correction function The correction function obtained after performing chemical composition and bender force correction in the same manner as the thickness classification before is as follows.

f(Ceq)=1.14-7Ceq+78.4.Ceq2 f (Ceq) = 1.14-7Ceq + 78.4.Ceq 2

f(PB)=1.52-0.016.PB+8.38%·10-5.PB 2 f (P B ) = 1.52-0.016.P B + 8.38% · 10 -5 .P B 2

여기서, f(Ceq)=탄소당량 보정함수Where f (Ceq) = carbon equivalent correction function

f(PB)=밴더(bender) 보정함수f (P B ) = bender correction function

이상의 과정을 통해 얻어진 세가지 보정함수는 동시에 하나 이상 사용되어질 수 없다.Three correction functions obtained through the above procedure cannot be used more than one at the same time.

즉, 세가지중 편차를 가장 크게 감소시키는 하나의 보정함수가 실제 모델에 적용되고 나면 나머지 두 보정함수는 더 이상 유효하지 않다. 편차감소에 가장 효과적인 보정함수를 선정하기 위해 위 세가지 보정함수를 독립적으로 적용시킨 후 현장 실적을 이용해 오프-라인(off-line)검정을 실시하였다. 하기 표 2에 세가지 보정함수를 적용한 결과를 나타내었는데, 탄소당량 보정식이 학습계수의 편차감소에 가장 효과적인 것으로 판명되었다.That is, after one of the three correction functions is applied to the actual model, the two remaining correction functions are no longer valid. In order to select the correction function that is most effective in reducing the deviation, the above three correction functions were applied independently and then off-line test was performed using the field results. Table 2 shows the results of applying the three correction functions, the carbon equivalent correction formula was found to be the most effective in reducing the deviation of the learning coefficient.

[표 2]TABLE 2

따라서 1차 보정후의 새로운 모델식은 다음과 같다.Therefore, the new model equation after the first correction is as follows.

Km1(new)=f1.Km(old)Km 1 (new) = f 1 .Km (old)

f1=f(Ceq)=1.14-7Ceq+78.4Ceq2 f 1 = f (Ceq) = 1.14-7Ceq + 78.4Ceq 2

1차 보정과 같은 방법으로 2,3차 보정후 결과적으로 얻어진 결과를 아래에 나타내었다.The results obtained after the 2nd and 3rd corrections in the same way as the 1st correction are shown below.

Km(new)=f2.Km1(new)=f1.f2.Km(old)Km (new) = f 2 .Km 1 (new) = f 1 .f 2 .Km (old)

P=Pc+f3.x.PB P = Pc + f 3 .xP B

여기서 f1=f(Ceq)=1.14-7Ceq+78.4Ceq2 Where f 1 = f (Ceq) = 1.14-7Ceq + 78.4Ceq 2

f2=f(Ceq)=1.09-1.445Ceqf 2 = f (Ceq) = 1.09-1.445Ceq

f3=f(PB)=1.036-0.0015PB+9.555·10-6.PB 2 f 3 = f (P B ) = 1.036-0.0015P B + 9.555 · 10 -6 .P B 2

앞에서 구한 보정함수, 식(13)을 적용한 재차 얻어진 조업조건법 학습계수의 분포를 제2도에 나타내었다. 스탠드별 학습계수의 절대치 분포를 고려하지 않은 상태에서 볼때 주어진 조건하에서 산포의 정도가 상당량 줄었으므로 스탠드 보정을 실시하여 스탠드별 실적대비 예측정도를 증가시키고자 하였다.Figure 2 shows the distribution of the learning condition coefficients obtained by applying the correction function and equation (13). Since the degree of dispersion was considerably reduced under the given conditions without considering the absolute distribution of the learning coefficients for each stand, the stand correction was performed to increase the predicted performance.

각 스탠드별로 앞절의 보정을 통해 얻어진 학습계수의 평균으로부터 학습계수의 평균이 0(zero)에 근접할 수 있도록 앞의 보정과 동일한 방법으로 스탠드 보정함수를 구했다.For each stand, the stand correction function was calculated in the same way as the previous correction so that the mean of the learning coefficient could be close to zero from the mean of the learning coefficient obtained through the correction of the previous section.

회귀분석을 통해 얻어진 보정함수는 다음과 같다.The correction function obtained through the regression analysis is as follows.

f(s)=0.933-0.013.COS(s)+0.105.SIN(s)-0.041.COS(2s)+0.00237.SIN(2s)f (s) = 0.933-0.013.COS (s) + 0.105.SIN (s) -0.041.COS (2s) + 0.00237.SIN (2s)

여기서, f(s)=스탠드 보정함수Where f (s) = stand correction function

s=스탠드 번호s = stand number

따라서, 최종 보정식은 다음과 같이 나타내어진다.Therefore, the final correction equation is expressed as follows.

Km(new)=f1.f2.f4.Km(old)Km (new) = f 1 .f 2 .f 4 .Km (old)

P=Pc+f3.x.PB=Km.B.Ld.Qp+f3.x.PB P = Pc + f 3 .xP B = Km.B.Ld.Qp + f 3 .xP B

여기서, P=압연하중, tonWhere P = rolling load, ton

PB=밴더(bender)력,TonP B = ender force, T on

Pc=계산압연하중,TonPc = calculated rolling load, T on

x=밴더(bender)효과함수x = bender effect function

f1=f(Ceq)=1.14-7·Ceq+78.4Ceq2 f 1 = f (Ceq) = 1.14-7Ceq + 78.4Ceq 2

f2=f(Ceq)=1.09-1.445.Ceqf 2 = f (Ceq) = 1.09-1.445.Ceq

f3=f(PB)=1.036-0.0015.PB+9.955×10-6.PB 2 f 3 = f (P B ) = 1.036-0.0015.P B + 9.955 × 10 -6 .P B 2

f4=f(s)=0.933-0.013·Cos(s)+0.105·Sin(s)-0.041 Cos(2s)+0.00237Sin(2s)f 4 = f (s) = 0.933-0.013Cos (s) + 0.105Sin (s) -0.041 Cos (2s) + 0.00237Sin (2s)

제3도에 스탠드 보정후의 학습계수 분포를 나타내었는데, 스탠드별로 큰폭으로 변화하면 학습계수가 0(zero)에 상당히 근접하였음을 알 수 있는데 이는 스탠드별 실적대비 예측정도가 크게 향상되었음을 의미한다. 단계별로 모델 수정을 통해 얻어진 극저탄소강의 모델적중 편차 감소효과가 제4도에 나타나 있는데, 전체적으로 평균 편차량이 28.5% 감소하는 효과를 보였다. 이는 모델의 예측정도가 크게 향상되었음을 의미하며 조업조건 변화에 따른 모델의 응답이 적은 편차내에서 보다 일관성있게 이루어지게 되었음을 의미한다.Figure 3 shows the distribution of learning coefficients after the correction of the stand. If the scale is greatly changed for each stand, it can be seen that the learning coefficient is very close to zero, which means that the prediction accuracy of the performance of each stand is greatly improved. In Figure 4, the reduction of the model-fitting deviation of the ultra low carbon steel obtained through the model modification is shown in FIG. 4, and the average deviation is reduced by 28.5%. This means that the prediction accuracy of the model has been greatly improved, and that the model's response to changes in operating conditions is more consistent with less variation.

Claims (1)

철강의 연속열간압연 설비중 탄뎀(tandem)방식으로 배열된 사상압연 설비의 압하설정 모델중 판재의 압연하중을 예측하는 방법에 있어서, 전체 데이타로부터 스탠드별 학습계수(2)값의 평균치를 구하는단계; 조업조건 그룹별 분류를 통해 구한 그룹별 학습계수(2) 값이 전체 데이타로부터 구한 학습계수(2)값에 근접하도록 하기 식(16)과 같이 보정계수(mi)를 구하는 단계;A method for estimating the rolling load of a sheet in a rolling reduction setting model of a filament rolling mill arranged in tandem method in a continuous hot rolling mill of steel, the method comprising: calculating average values of learning coefficients (2) for each stand from all data ; Calculating a correction coefficient mi as shown in Equation (16) so that the learning coefficient for each group (2) obtained through the classification of the operating condition groups is close to the learning coefficient (2) value obtained from the entire data; ·································································16 ···························· ... ············ 16 여기서, mi : 보정계수Where mi is the correction factor aij : 조업조건 및 해당 스탠드별 학습계수aij: operating conditions and learning coefficient for each stand =Kma/Kmc]ij-1.0= Kma / Kmc] ij-1.0 αTj : 전체코일로부터 스탠드별로 얻어진 학습계수α T j: Learning coefficient obtained for each stand from the whole coil Kmc]ij : 조업조건 및 해당 스탠드별 계산 변형저항Kmc] ij: Operating conditions and calculated strain resistance for each stand Kmcm]ij : 보정후의 Kmc]ijKmc m ] ij: Kmc] ij after correction 상기 식(16)에 의해 구해진 보정계수(mi)를 해당 그룹별 분류조건의 함수로 하여 보정함수(fi)를 구하는 단계; 상기 보정함수(fi)를 이용하여 하기 식(3)과 같이 변형저항 모델을 보정하는 단계;Obtaining a correction function (fi) by using the correction coefficient (mi) obtained by Equation (16) as a function of the classification condition for each group; Correcting the deformation resistance model using the correction function fi as shown in Equation (3); Km(new)=f1.f2.…fi.Km(old)Km (new) = f 1 .f 2 ... fi.Km (old) 여기서, Km(old) : 개선 전의변형저항 모델, Km(new) : 개선 후의 변형저항 모델, fi : 보정함수Where Km (old): strain resistance model before improvement, Km (new): strain resistance model after improvement, fi: correction function 상기와 같이 보정한 후, 실제 데이타로 검정하여 학습계수(α)값의 감소정도를 구한 다음, 최저편차를 주는 조건을 선택하는 단계; 및 상기 단계들을 반복적으로 행하는 단계를 포함하여 구성됨을 특징으로 하는 판재의 압연하중 예측정도 개선방법.After correcting as described above, obtaining a degree of reduction of the value of the learning coefficient by verifying the data using real data, and then selecting a condition giving the lowest deviation; And repeatedly performing the above steps.
KR1019920026524A 1992-12-30 1992-12-30 Process for improvement of rolling load in steel sheet KR950001935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920026524A KR950001935B1 (en) 1992-12-30 1992-12-30 Process for improvement of rolling load in steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920026524A KR950001935B1 (en) 1992-12-30 1992-12-30 Process for improvement of rolling load in steel sheet

Publications (2)

Publication Number Publication Date
KR940013642A KR940013642A (en) 1994-07-15
KR950001935B1 true KR950001935B1 (en) 1995-03-07

Family

ID=19347665

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920026524A KR950001935B1 (en) 1992-12-30 1992-12-30 Process for improvement of rolling load in steel sheet

Country Status (1)

Country Link
KR (1) KR950001935B1 (en)

Also Published As

Publication number Publication date
KR940013642A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP2014038595A (en) Material prediction device and material control method for steel material
US3713313A (en) Computer controlled rolling mill
JP2017120640A (en) Magnetic characteristic prediction device and magnetic characteristic control device of electromagnetic steel plate
Morris et al. Some fundamental considerations for the control of residual flatness in tension levelling
KR100499165B1 (en) A process and device for identification or pre-caculation of parameters of a time-variant industrial process
JP5962290B2 (en) Steel heat transfer coefficient prediction apparatus and cooling control method
JP5195331B2 (en) Quality prediction apparatus, prediction method, program, and computer-readable recording medium in manufacturing process
KR0160184B1 (en) Flatness control in the rolling of strip
KR950001935B1 (en) Process for improvement of rolling load in steel sheet
WO2019102791A1 (en) Shape control method, computation device, information processing program, and recording medium
Schulte et al. High precision thickness control in a cold rolling mill using a non-linear roll stand deflection model
KR19990057388A (en) Determination of the correction function to improve the prediction accuracy of the final pass rolling load during steel sheet rolling
KR100711402B1 (en) Method for predicting of deformation resistance in heavy plate rolling process
JPH08132108A (en) Method for estimating rolling condition by rolling condition estimating model
KR20020002044A (en) A method of controlling roll gap in a rolling machine
JP3883086B2 (en) Correction method of sheet width change prediction formula and sheet width control method in hot rolling
KR100402923B1 (en) Measurement process for determining the biaxial deformation behavior of metal materials, particularly sheet metal
Terčelj et al. Neural network analysis of the influence of chemical composition on surface cracking during hot rolling of AISI D2 tool steel
KR100931453B1 (en) Method for predicting the thermal deformation resistance of stainless steel ferritic stainless steels
JPH08192205A (en) Method for measuring rigidity of plate rolling mill
KR100531145B1 (en) Sheet width control method in hot rolling
Lee et al. A Machine Learning Program for Impact Fracture Analysis
Finucane Black-Scholes approximations of call option prices with stochastic volatilities: a note
JP3987482B2 (en) Correction method of plate crown prediction model
US6571134B1 (en) Method and device for determining an intermediary profile of a metal strip

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030304

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee