KR100693938B1 - 고체산화물 연료전지용 고온 밀봉재 - Google Patents

고체산화물 연료전지용 고온 밀봉재 Download PDF

Info

Publication number
KR100693938B1
KR100693938B1 KR1020050087304A KR20050087304A KR100693938B1 KR 100693938 B1 KR100693938 B1 KR 100693938B1 KR 1020050087304 A KR1020050087304 A KR 1020050087304A KR 20050087304 A KR20050087304 A KR 20050087304A KR 100693938 B1 KR100693938 B1 KR 100693938B1
Authority
KR
South Korea
Prior art keywords
mol
oxide
high temperature
sealing material
cao
Prior art date
Application number
KR1020050087304A
Other languages
English (en)
Inventor
최병현
이미재
문지웅
유영성
백종후
김세기
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020050087304A priority Critical patent/KR100693938B1/ko
Application granted granted Critical
Publication of KR100693938B1 publication Critical patent/KR100693938B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 분말의 열팽창계수가 600℃에서 6.4×10-6 ~ 11.8×10-6 ppm/℃인 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리를 함유하는 고체산화물 연료전지용 밀봉재에 관한 것으로, 본 밀봉재는 연료전지의 다른 구성요소인 전해질, 전극 및 분리판과 적합한 열팽창계수를 가지며, 전이점 및 연화점도 650~800℃에 적합하여 기존 밀봉재의 문제점을 해결할 수 있으며, 수소분위기에서 안정한 특성을 보여 실제 사용시 안정한 밀봉효과와 내구성을 나타낸다.
연료전지, 밀봉재, 고체산화물, 유리

Description

고체산화물 연료전지용 고온 밀봉재{High temperature sealiong material for solid oxide fuel cell}
첨부도면은 본 발명의 바람직한 일 구현에 따르는 실시예 1에서 제조한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 고온유리밀봉재를 전해질과 스테인래스강(SUS) 사이에 넣고 밀봉한 후 수소분위기 700℃에서 1000시간 유지 전 및 후 밀봉시료의 단면을 촬영한 사진으로, 도 1은 분위기 실험전의 사진이고, 도 2는 분위기 실험후의 사진이다.
본 발명은 고체산화물 연료전지용 밀봉재에 관한 것으로, 구조 안정성이 높고, 장기간 사용시 신뢰성이 높으며, 650~800℃의 고온에서 사용하기에 적합한 고체산화물 연료전지용 고온 밀봉재에 관한 것이다.
고체산화물 연료전지 스택은 일반적으로 전해질, 음극, 양극으로 이루어진 단전지와, 단전지들을 연결하는 연결재료, 연결재료와 단전지를 밀봉하는 밀봉재로 구분되어 진다. 이러한 각각의 구성요소는 스택의 형태에 따라 그 역할이 조금씩 차이를 나타내는데, 그중에서도, 셀의 구조적 특성상 원통형과 달리 고체산화물 연료전지의 평판형의 경우에는 연료전지 운전중 양극 및 음극간 또는 단전지간의 가스흐름을 차단하며 구성층 사이를 접합 및 스택전체를 지지하기 위한 밀봉재로서 밀봉유리(sealing glass)의 개발이 필수적으로 요구된다. 밀봉재는 스택전체를 지지해 주는 역할을 해야 하므로 고온, 압력 하에서 변형이 일어나지 않아야 함과 동시에 열팽창계수의 차이에 따른 열응력을 완화시킬 수 있도록 고온 유동성과 고온강도를 동시에 보유하고 있어야 하며 전지의 가동중 발생하는 열응력을 최소화하기 위해 전지의 구성층들과의 일치되는 열팽창계수, 우수한 접합성에 따른 기밀성, 산화 및 환원분위기 가스에 대한 화학적 안정성 등이 요구되며 내열충격성 및 우수한 전기 절연성(2㏀·㎠ 이상)이 필요하다. 또한 다공성 미세구조를 갖는 전극과 접촉할 수 있으므로, 접촉시 모세관현상에 의해 미세 기공내로의 침투를 방지하기 위해, 기밀 접착시 피접착재와의 젖음각은 90°보다 큰 기밀접착재를 사용해야 하며 밀봉재의 점도는 제조온도(850∼1000℃)에서 105 Pa·s, 작동온도(650∼850℃)에서 109 Pa·s 이하 이어야한다.
이와 같은 여러 조건들에 부합하는 밀봉유리를 제조하고자 하는 연구는 SOFC의 개발과 더불어 계속해서 활발하게 진행되어 왔다. SOFC에 사용되는 기밀접착재는 일차적으로 피접착재와 기밀접합이 이루어져야 하고 또한 열팽창계수, 내열성등 앞에서 언급한 물성을 모두 만족해야 한다.
고체산화물 연료전지 개발초기에는 소다-라임 실리케이트(soda-lime silicates), 알칼리 실리케이트(alkali silicates), 알칼리토류 실리케이트(alkaline-earth silicate), 알칼리 보로실리케이트(alkali borosilicates) 유리 등을 밀봉재로 사용하였다. 그러나 이들 유리는 전지구성요소와 반응하거나 800~1000℃에서 점도가 103 Pa·s이하로 매우 점도가 낮아 기밀접착재가 누출되는 문제가 있으며 파이렉스(pyrex)와 같은 붕규산유리는 열팽창계수가 3.2×10-6/℃로 SOFC 구성요소에 비해 크게 작기 때문에 열응력이 생성된다.
이러한 문제점을 해결하고자 고체산화물 연료전지용 고온 유리 밀봉재의 현재 종래 사용하는 유리 조성으로는 SrO-La2O3-Al2O3-B2O3- SiO2, 및 BaO-Al2O3-B2O3-As2O3 등의 유리가 알려져 있고, 결정화 유리 조성으로는 CaO-Al2O3-SiO2가 있다. 그러나 이미 알려져 사용하고 있는 고온 유리밀봉재 조성으로는 장시간 사용 시 크랙, 표면 탈착, 기공형성, 중간층 형성과 같은 구조 안정성과 표면반응, 기화, 분리, 수소와의 결합과 같은 화학 안정성 등의 문제 외에 밀봉효율이 80%를 넘지 못하는 등의 문제점을 가지고 있다.
또한 일부 금속을 혼합하여 밀봉하기도 하나 그 경우 메탈이 팽창하거나, 환경적으로 안정하지 못한 등의 문제점을 가지고 있고, 마이카 형태로 금속 분리판과 단전지 사이를 밀봉하는 경우가 있으나 열사이클에 약한 문제점을 가지고 있다.
본 발명은 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리를 이용하여 기존 밀봉재 보다 밀봉재로 적용 시 크랙, 밀봉성, 기공형성, 중간층 형성과 같은 구조 안정성이 높고, 장기간 사용 시 신뢰성이 높은 밀봉재 조성을 개발하는데 그 목적이 있다.
상기한 목적을 달성한 본 발명에 의하면, 스트론튬산화물(SrO) 4~21몰%, 란탄늄산화물(La2O3) 1~8몰%, 알루미늄산화물(Al2O3) 1~18몰%, 보론산화물(B2O3) 1~18몰%, 실리카산화물(SiO2) 29~65몰%, 바륨산화물(BaO) 1~32몰%, 칼슘산화물(CaO) 7~46몰%로 되며, 용융후 분쇄하여 얻은 분말의 열팽창계수가 600℃에서 6.4×10-6 ~ 11.8×10-6 ppm/℃인 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리를 함유하는 것을 특징으로 하는 고체산화물 연료전지용 고온 밀봉재가 제공된다.
또한, 본 발명의 고체산화물 연료전지용 고온 밀봉재는 상기한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리 100중량부 기준으로 화이버 형태의 지르코니아 산화물을 5~40중량부 함유할 수도 있다.
상기한 본 발명의 고온 밀봉재는 상기한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO 계 유리 100중량부 기준으로 0.3~5㎛ 크기를 갖는 CaSiO2 결정을 1~10중량부 더 함유할 수도 있다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
본 발명에 따르는 고체산화물 연료전지용 고온 밀봉재에 사용되는 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리는 1450~1500℃에서 용융하여 분쇄한 분말의 열팽창계수가 600℃에서 6.4×10-6 ~ 11.8×10-6 ppm/℃로서 전해질 및 전극과 열팽창계수가 매우 유사하고 밀봉효과가 우수하며, 타 구성요소와 반응이 없으며 산화 및 환원분위기에서 안정하고, 650~800℃에서 사용이 가능한 고체산화물 연료전지용 고온 유리밀봉재이다.
본 발명에 따르는 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리는 스트론튬산화물(SrO)을 4~21몰%, 바람직하게 5~20몰% 함유하고, 란탄늄산화물(La2O3)을 0~8몰%, 바람직하게 1~8몰% 함유하고; 알루미늄산화물(Al2O3)을 1~18몰%, 바람직하게 1~9몰% 함유하고; 보론산화물(B2O3)을 1~18몰%, 바람직하게 4~18몰% 함유하고, 실리카산화물(SiO2) 25~65몰%, 바람직하게 29~55몰% 함유하고; 바륨산화물(BaO)을 1~32몰%, 칼슘산화물(CaO)을 7~46몰% 함유하는 것이다.
또한 본 발명의 밀봉재는 화이버 형태의 지르코니아 산화물을 상기 유리 100중량부 기준으로 5 내지 40중량부 함유할 수도 있는데, 이와 같이 하면 유리밀 봉재의 구조적 안정성을 향상시킬 수 있다.
또한 본 발명의 밀봉재는 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리 100중량부 기준으로 0.3~5㎛의 크기를 갖는 CaO-SiO2 결정을 1~10중량부의 양으로 함유할 수도 있다. 이와 같이 하면, 기존의 결정화 유리가 가지는 문제점인 열팽창계수 차이에 의한 크랙을 방지할 수 있을 뿐만 아니라, 전이점 및 연화점을 약간 상승시켜 고온에서 사용하기 위한 밀봉재에 적합하게 되고, 밀봉 효율이 높고 강도가 높아 신뢰성이 개선되는 효과를 얻을 수 있다.
상기한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명이 하기 실시예로 제한되는 것은 아니다.
[실시 예 1]
본 예에서는 고체산화물 연료전지용 고온 유리 밀봉재를 표 1의 조성을 갖는 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO 계 유리로 제조하였다.
밀봉재를 제조하기 위해 소숫점 첫째자리까지 칭량한 각 원소를 테프론 포트(pot)에 알루미나 볼(ball)을 이용하여 건식으로 4시간 혼합한 후, 몰드에 분말을 넣어 일축 가압 성형하였다. 성형한 혼합 분말은 연속 용융로를 이용하여 1450~1500℃에서 백금도가니를 이용하여 용융하고, 용융물은 글라스, 알루미나 ㅂ볼, 에탄올과 함께 조분쇄하고 분쇄기(Z-mill)를 이용하여 2~5㎛의 입도로 분쇄하여 제조하였다.
제조한 분말은 벌크밀도(bulk density) 0.61g/㏄, 탭밀도(Tap density) 1.19g/㏄, 흐름성(Flowability) 19, 분류성(Floodability) 23으로 고체산화물 연료전지용 고온 유리 밀봉재로 사용하기에 적합한 분말로, 열팽창계수가 600℃에서 6.4~11.8 × 10-6 ppm/℃를 나타내었고, 전이점이 643~840℃, 연화점이 683~840℃로 고체산화물 연료전지로 사용 온도인 650~800℃에 적합한 고온 유리 밀봉재임을 확인하였다.
시료 조 성 열팽창계수(×10-6) 전이점 (℃) 연화점 (℃)
SiO2 B2O3 Al2O3 La2O3 SrO BaO CaO 200℃ 400℃ 600℃
1 47.74 17.70 8.23 1.23 19.75 5.35 7.7 7.8 11.7 650 708
2 54.07 11.79 8.13 1.22 19.51 5.28 7.7 7.9 11.1 675 725
3 40.00 14.83 6.90 1.03 6.55 30.69 8.0 8.4 11.6 647 700
4 29.46 4.40 1.32 4.40 15.03 3.96 41.44 10.3 10.4 10.5 690 732
5 48.22 11.48 2.16 7.20 17.27 5.03 8.63 9.0 9.3 9.2 697 740
6 44.79 13.33 2.01 6.69 16.05 4.68 8.02 10.0 10.3 10.6 679 715
7 29.40 14.46 2.54 4.85 6.86 1.63 40.26 9.2 9.3 9.4 697 737
8 39.73 12.34 2.17 4.14 5.86 1.39 34.37 8.1 8.7 9.2 666 712
9 29.00 17.10 3.97 5.00 7.56 1.99 35.39 10.5 10.6 10.6 643 688
도 1은 상기 시료 조성을 이용한 고온 유리 밀봉재를 전해질과 스테인래스강(SUS) 사이에 넣고 밀봉한 시료의 단면을 촬영한 사진이고, 도 2는 상기 밀봉시료를 수소분위기 700℃에서 1000시간 유지 후의 사진으로 수소분위기에서 장시간 유지 후에도 별다른 구조의 변화가 나타나지 않음을 알 수 있었다.
[실시예 2]
본 실시예에서는 고체산화물 연료전지용 고온 유리 밀봉재를 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO 계 유리와 지르코니아 섬유를 혼합하여 제조하였다.
실시예 1에서 제조한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO 계 고온 유리 밀봉재와 1㎜ 길이를 갖는 섬유 형태의 지르코니아 산화물을 고온 유리밀봉재 : 지르코니아 섬유를 80~100wt.%:0~15wt.%로 조절하여 고속혼합기에 에탄올과 함께 30분간 혼합하여 열풍건조기에서 80℃로 건조하여 지르코니아 섬유가 들어있는 고온 유리밀봉재를 제조하였다. 이렇게 제조한 밀봉재는 실시예 1의 밀봉재보다 약 5% 가량의 열팽창계수 상승 값을 나타내어 접합능력이 더 우수하였다.
[실시예 3]
본 예에서는 고체산화물 연료전지용 고온 유리 밀봉재를 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO 계 유리와 CaSiO2 결정을 혼합하여 제조하였다.
실시예 1에서 제조한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리와 CaO와 SiO2를 소숫점 첫째자리까지 칭량하여 테프론 pot에 알루미나 ball을 이용하여 건식으로 4시간 혼합한 후 1300~1400℃에서 5시간 정도 유지하여 제조한 CaSiO2 결정을 유리와 CaSiO2 결정의 비를 70~100wt.% : 0~30wt.%로 하여 지르코니아 pot에 지르코니아 ball, 에탄올과 함께 혼합하여 고체산화물 연료전지용 밀봉재를 제조하였다. 제조한 밀봉재는 실시예 1의 밀봉재에 비해 강도가 향상되고, 전이점 및 연화점이 높아 고온 유리 밀봉효과가 뛰어나고 밀봉 효율이 90% 이상으로 매우 뛰어난 성능을 나타내었다.
이상 설명한 바와 같이, 본 발명의 밀봉재는 열팽창계수가 다른 고체산화물 연료전지의 다른 구성요소인 전해질, 전극 및 분리판과 열팽창계수가 비교적 적합하고, 전이점 및 연화점도 650~800℃에 적합하여 기존 밀봉재의 문제점을 해결할 수 있으며, 특히 고온 유리 밀봉재의 경우 수소분위기에서 안정한 특성을 보여 실제 사용 시 안정한 밀봉효과와 내구성을 나타낸다. 이러한 밀봉재는 평판형 SOFC에서의 전극지지형으로 셀을 제작하는 경우 대면적화하기 위해 한 분리판에 여러 셀을 나열하여 수십단을 적층하여 ㎾급 모듈을 구성하게 되는데 이 나열형 스택의 경우 개별 셀들간의 가스밀봉과 두께가 불균일하면 집전저항이 증가하여 크게 문제가 되므로 이의 개발이 매우 중요하다. 특히 밀봉재의 최적조성이 설계되어 제작된다면 세라믹 셀을 대면적화 할 수 있어 경제적으로 매우 유익하다. 또한 이러한 밀봉재를 사용한 고체산화물 연료전지는 수소 이외의 천연가스 및 석탄가스 등의 다양한 연료를 사용할 수 있는 장점이 있어 자동차나 가정의 소형 연료전지 등 여러 곳에 사용할 수 있는 장점이 있다.

Claims (3)

  1. 스트론튬산화물(SrO) 4~21몰%, 란탄늄산화물(La2O3) 1~8몰%, 알루미늄산화물(Al2O3) 1~18몰%, 보론산화물(B2O3) 1~18몰%, 실리카산화물(SiO2) 29~65몰%, 바륨산화물(BaO) 1~32몰%, 칼슘산화물(CaO) 7~46몰%로 되며, 용융후 분쇄하여 얻은 분말의 열팽창계수가 600℃에서 6.4×10-6 ~ 11.8×10-6 ppm/℃인 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리를 함유하는 것을 특징으로 하는 고체산화물 연료전지용 고온 밀봉재.
  2. 제 1 항에 있어서, 상기한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리 100중량부 기준으로 화이버 형태의 지르코니아 산화물을 5~40중량부 더 함유하는 것을 특징으로 하는 고체산화물 연료전지용 고온 밀봉재.
  3. 제 1 항에 있어서, 상기한 SrO-La2O3-Al2O3-B2O3-SiO2-BaO-CaO계 유리 100중량 부 기준으로 0.3~5㎛ 크기를 갖는 CaSiO2 결정을 1~10중량부 더 함유하는 것을 특징으로 하는 고체산화물 연료전지용 고온 밀봉재.
KR1020050087304A 2005-09-20 2005-09-20 고체산화물 연료전지용 고온 밀봉재 KR100693938B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050087304A KR100693938B1 (ko) 2005-09-20 2005-09-20 고체산화물 연료전지용 고온 밀봉재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050087304A KR100693938B1 (ko) 2005-09-20 2005-09-20 고체산화물 연료전지용 고온 밀봉재

Publications (1)

Publication Number Publication Date
KR100693938B1 true KR100693938B1 (ko) 2007-03-12

Family

ID=38103375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050087304A KR100693938B1 (ko) 2005-09-20 2005-09-20 고체산화물 연료전지용 고온 밀봉재

Country Status (1)

Country Link
KR (1) KR100693938B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897530B2 (en) * 2008-01-14 2011-03-01 Atomic Energy Council-Institute Of Nuclear Energy Research Glass-ceramic sealant for planar solid oxide fuel cells
KR101209983B1 (ko) * 2010-08-23 2012-12-07 한국전력공사 고체산화물 연료전지 밀봉용 결정화유리 가스켓 제조 방법 및 밀봉재
US20150038312A1 (en) * 2012-02-17 2015-02-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Composition for producing glass solders for high-temperature applications and use thereof
KR20150090339A (ko) * 2014-01-28 2015-08-06 영남대학교 산학협력단 고체산화물 연료전지용 밀봉재 및 이의 제조방법
US10917942B2 (en) 2017-07-31 2021-02-09 Samsung Electronics Co., Ltd. Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990049582A (ko) * 1997-12-13 1999-07-05 명호근 고체 전해질 연료전지용 유리 밀봉체의 조성과 제조방법 및 그 적용방법
JP2000235862A (ja) 1998-12-15 2000-08-29 Haldor Topsoe As 高温シーリング材料
US20040014582A1 (en) 2000-08-23 2004-01-22 Michael Budd Barium lanthanum silicate glass-ceramics
KR20050071887A (ko) * 2004-01-05 2005-07-08 현대자동차주식회사 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990049582A (ko) * 1997-12-13 1999-07-05 명호근 고체 전해질 연료전지용 유리 밀봉체의 조성과 제조방법 및 그 적용방법
JP2000235862A (ja) 1998-12-15 2000-08-29 Haldor Topsoe As 高温シーリング材料
US20030040420A1 (en) 1998-12-15 2003-02-27 Larsen Jorgen Gutzon High temperature sealing material
US20040014582A1 (en) 2000-08-23 2004-01-22 Michael Budd Barium lanthanum silicate glass-ceramics
KR20050071887A (ko) * 2004-01-05 2005-07-08 현대자동차주식회사 고체산화물 연료전지용 유리/세라믹 섬유 밀봉재와 이의제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897530B2 (en) * 2008-01-14 2011-03-01 Atomic Energy Council-Institute Of Nuclear Energy Research Glass-ceramic sealant for planar solid oxide fuel cells
KR101209983B1 (ko) * 2010-08-23 2012-12-07 한국전력공사 고체산화물 연료전지 밀봉용 결정화유리 가스켓 제조 방법 및 밀봉재
US20150038312A1 (en) * 2012-02-17 2015-02-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Composition for producing glass solders for high-temperature applications and use thereof
JP2015513512A (ja) * 2012-02-17 2015-05-14 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 高温用途用のガラスはんだの製造用の組成物と、その利用
US9714190B2 (en) * 2012-02-17 2017-07-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Composition for producing glass solders for high-temperature applications and use thereof
KR20150090339A (ko) * 2014-01-28 2015-08-06 영남대학교 산학협력단 고체산화물 연료전지용 밀봉재 및 이의 제조방법
KR101598268B1 (ko) 2014-01-28 2016-03-03 영남대학교 산학협력단 고체산화물 연료전지용 밀봉재 및 이의 제조방법
US10917942B2 (en) 2017-07-31 2021-02-09 Samsung Electronics Co., Ltd. Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure

Similar Documents

Publication Publication Date Title
JP5462314B2 (ja) 低アルカリ封止フリット、並びにそのようなフリットを用いたシールおよびデバイス
EP1841705B1 (en) Sealing materials and devices utilizing such materials
EP1010675B1 (en) High temperature sealing material
US7399720B1 (en) Glass and glass-ceramic sealant compositions
CN102084530B (zh) 无污染的电化学稳定的玻璃料密封材料和使用该密封材料的密封件和装置
US8658549B2 (en) Crystallizing glass solder and use thereof
EP2941405B1 (en) High temperature substrate attachment glass
KR100693938B1 (ko) 고체산화물 연료전지용 고온 밀봉재
KR101457614B1 (ko) 고체산화물 연료전지 밀봉재용 유리 조성물, 상기 유리 조성물을 이용한 밀봉재 및 그 제조방법
US8664134B2 (en) Crystallizing glass solders and uses thereof
KR101182379B1 (ko) 고체 산화물 연료 전지용 밀봉재 조성물, 이의 제조 방법 및 이를 포함하는 고체 산화물 연료 전지 스택
EP1322566B1 (en) Process for preparing barium lanthanum silicate glass-ceramics
KR100905217B1 (ko) 고체산화물 연료전지용 알루미나 입자 함유 고온 밀봉재조성물
KR102119318B1 (ko) 고체산화물 연료전지용 밀봉 유리 조성물 및 이를 포함하는 밀봉 페이스트
KR20120021924A (ko) 고체산화물 연료전지 밀봉용 고강도 결정화유리 가스켓 제조 방법 및 밀봉재
KR20090029381A (ko) 고체산화물 연료전지용 밀봉재 및 이를 이용한 가스켓 제조 방법
EP3890080A1 (en) Sealant glass composition and solid oxide fuel cell using same
CN109841868B (zh) 一种固体氧化物燃料电池复合密封剂及其应用
KR20220069213A (ko) 낮은 수축률을 갖는 고체산화물연료전지용 유리 세라믹 복합 밀봉재
AU2021218224B2 (en) Glass composition for fuel cell stack sealing
KR100838731B1 (ko) 고체전해질연료전지용 밀봉재의 제조방법
JP2024512212A (ja) 燃料電池スタック封止のためのガラス組成物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 14