KR100664006B1 - 디지털 신호 처리 장치 및 방법 - Google Patents

디지털 신호 처리 장치 및 방법 Download PDF

Info

Publication number
KR100664006B1
KR100664006B1 KR1019990064482A KR19990064482A KR100664006B1 KR 100664006 B1 KR100664006 B1 KR 100664006B1 KR 1019990064482 A KR1019990064482 A KR 1019990064482A KR 19990064482 A KR19990064482 A KR 19990064482A KR 100664006 B1 KR100664006 B1 KR 100664006B1
Authority
KR
South Korea
Prior art keywords
metric
digital signal
partial response
pass
target
Prior art date
Application number
KR1019990064482A
Other languages
English (en)
Other versions
KR20010064314A (ko
Inventor
안성근
김형남
김진용
박경찬
홍대식
옹성환
안종회
조한규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1019990064482A priority Critical patent/KR100664006B1/ko
Publication of KR20010064314A publication Critical patent/KR20010064314A/ko
Application granted granted Critical
Publication of KR100664006B1 publication Critical patent/KR100664006B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6331Error control coding in combination with equalisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • G11B20/10092Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom partial response PR(1,1,1,1)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • G11B20/10277Improvement or modification of read or write signals bit detection or demodulation methods the demodulation process being specifically adapted to partial response channels, e.g. PRML decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/31Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining coding for error detection or correction and efficient use of the spectrum
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4107Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors implementing add, compare, select [ACS] operations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1833Error detection or correction; Testing, e.g. of drop-outs by adding special lists or symbols to the coded information
    • G11B2020/1863Error detection or correction; Testing, e.g. of drop-outs by adding special lists or symbols to the coded information wherein the Viterbi algorithm is used for decoding the error correcting code

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Error Detection And Correction (AREA)

Abstract

본 발명은 광디스크 등의 기록매체에 기록된 디지털신호를 비터비 디코딩 방법을 이용하여 재생하는 디지털신호 처리 장치 및 방법에 관한 것이다.
본 발명의 디지털 신호 처리 방법은 파셜응답 타겟으로 PR(1, 1, 1, 1) 및 PR (1, 1, 1, 1, 1) 중 어느 하나를 이용하여 비터비 복호하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 의하면, 20Gbyte 이상의 고밀도 디스크의 채널특성에 가장 적합한 PR 타겟을 선정하고 그 PR 타겟에 적합한 비터비 디코더를 구현함으로써 고밀도 디스크 시스템에서도 PRML 기술의 적용이 가능하게 된다.

Description

디지털 신호 처리 장치 및 방법{Apparatus Of Processing Digital Signal And Method Thereof}
도 1은 고밀도 디스크 채널의 전달함수와 종래의 PR(1, 1)의 주파수 특성도.
도 2는 고밀도 디스크 채널의 전달함수와 본 발명의 실시예에 따른 PR(1, 1, 1, 1)의 주파수 특성도.
도 3은 고밀도 디스크 채널의 전달함수와 본 발명의 다른 실시예에 따른 PR (1, 1, 1, 1, 1)의 주파수 특성도.
도 4는 본 발명의 실시 예에 따른 PR 타겟을 이용한 디스크 기록/재생 장치의 구성을 나타낸 블록도.
도 5는 도 4에 도시된 비터비 디코더에 적용되는 트레리스 다이어그램.
도 6은 도 4에 도시된 비터비 디코더의 구성을 나타낸 블록도.
도 7은 도 6에 도시된 브랜치 매트릭 유닛의 상세구성도.
도 8은 도 6에 도시된 패스 매트릭 유닛의 상세구성도.
도 9는 도 6에 도시된 서바이버 메모리 유닛의 상세구성도.
도 10은 도 6에 도시된 NRZ 변환부의 상세구성도.
<도면의 주요부분에 대한 부호의 간단한 설명>
2 : 소오스 코딩부 4 : 채널 코딩부
6 : 데이터변조부 8 : NRZI 변환부
10 : 광디스크 12 : 신호처리부
14 : A/D 변환부 16 : 등화기
18 : 비터비 디코더 22 : 브랜치 매트릭 유닛
24 : 패스 매트릭 유닛 26 : 서바이버 메모리 유닛
28 : NRZ 변환부 30A 내지 30E : 감산기
32A 내지 32E : 승산기 34A 내지 34E : 비트조정기
36A 내지 36H : 가산기 38A, 38B, 54 : 비교기
40A 내지 40F, 56 : 딜레이 42 : 랩퍼
44 : 메모리부 46 : 데이터 검출부
48 : 임시 메모리 50A 내지 50F : 서바이버 메모리
52 : 멀티플렉서 58 : XOR 게이트
본 발명은 광디스크 등의 기록매체에 기록된 디지털신호를 비터비 디코딩 방법을 이용하여 재생하는 디지털신호 처리 장치 및 방법에 관한 것이다.
파장이 짧은 광빔을 발생하는 광원이 등장하고 고용량에 대한 요구가 커지면 서 광디스크의 기록밀도가 증대되고 있다. 기록밀도가 증대되면서 기록마크 간의 간섭에 의해 기존의 간단한 비트 바이 비트(Bit-by-Bit) 검출 방법으로 원하는 재생 성능을 얻기는 힘들게 되었다. 이에 따라, 최근에는 자기 기록 시스템에서 성능이 입증된 PRML(Partial Response Maximum Likelihood)을 광 기록/재생 장치에 도입하려는 시도가 계속되고 있다. PR은 고밀도 디스크 기록/재생 장치들에서 디스크들의 물성 특성에 대한 대역 차단 효과를 극복하기 위하여 ML 검출 방법과 결합되어 사용되게 되었다. 광 기록/재생 장치에 적용되는 PR은 단위길이(1T)의 펄스(피트)에 대한 광디스크 채널의 응답 특성을 나타내는 것으로 응답파형의 형태에 따라 PR(1, 1), PR(1, 2, 1) 등으로 분류되고 있다. 광 기록/재생 장치에서는 저장매체의 전달 함수 특성과 비슷한 주파수 특성을 갖는 PR, 즉 PR(1, 1), PR(1, 2, 1) 등을 타겟 신호로 선정하게 된다. 그리고, 비교적 간단한 등화기에 의해 재생신호를 PR 타겟에 맞추어 등화시킴으로써 유한한 신호레벨을 갖는 PR 신호로 만들어 준 뒤 ML 검출 방법을 사용하여 기록신호를 재생 검출하게 된다.
종래의 4.7Gbyte 급까지의 DVD 시스템의 광학전달특성은 저역통과 여파기의 특성을 가지고 있기 때문에 이와 비슷한 특성을 가지는 PR(1, 1) 또는 PR(1, 2, 1)과 같은 PR 타겟을 선정하고, PR 타겟에 맞추어 채널을 등화하였다. 그러나, 광디스크의 기록밀도가 증가함에 따라 광 기록/재생 시스템의 광학 전달 특성, 즉 광디스크의 채널의 특성이 달라지게 됨으로써 종래의 PR 타겟을 고용량의 시스템에 그대로 사용하는 것이 불가능하게 되었다.
도 1은 20Gbyte급의 고밀도 디스크의 실제 채널의 광학 전달함수와 종래의 PR 타겟으로 사용된 PR(1, 1)과 PR(1, 2, 1)의 주파수 특성을 비교하여 나타낸 특성도이다. 도 1에 있어서, 고밀도 디스크의 실제 채널의 광학 전달함수의 주파수 특성과 PR(1, 1)과 PR(1, 2, 1)의 주파수 특성이 고주파영역 뿐만 아니라 저주파 영역에서도 다르게 나타남을 알 수 있다. 따라서, 종래의 PR(1, 1) 또는 PR(1, 2, 1)을 고밀도 디스크 시스템의 PR 타겟으로 사용하는 경우 노이즈 증가에 의해 재생데이터의 에러율이 증가되게 된다.
이에 따라, 고밀도 광 기록/재생 시스템의 광학 전달 특성과 비슷한 주파수 특성을 가지는 새로운 PR 타겟이 요구되고 있다.
따라서, 본 발명의 목적은 고밀도 디스크 시스템의 재생 채널 특성에 적합한 PR 타겟을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 PR 타겟을 적용하여 비터비 디코딩 방법으로 데이터를 복원함으로써 데이터 에러율을 감소시킬 수 있는 디지털 신호 처리 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 PR 타겟을 적용하여 비터비 디코딩 방법으로 데이터를 복원함으로써 데이터 에러율을 감소시킬 수 있는 디지털 신호 처리 장치를 제공하는 것이다.
상기 목적들을 달성하기 위하여, 본 발명에 따른 디지털 신호 처리 방법은 파셜응답 타겟으로 PR(1, 1, 1, 1) 및 PR (1, 1, 1, 1, 1) 중 어느 하나를 이용하여 비터비 복호하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 디지털신호 재생 장치는 파셜응답 타겟으로 PR(1, 1, 1, 1) 및 PR (1, 1, 1, 1, 1) 중 어느 하나를 이용하여 비터비 복호하는 비터비 복호 수단을 구비하는 것을 특징으로 한다.
상기 목적 외에 본 발명의 다른 목적 및 이점들은 첨부 도면을 참조한 본 발명의 바람직한 실시 예에 대한 설명을 통하여 명백하게 드러나게 될 것이다.
이하, 본 발명의 바람직한 실시 예를 도 2 내지 도 10을 참조하여 상세하게 설명하기로 한다.
도 2는 20Gbyte급의 고밀도 디스크의 실제 채널의 광학 전달함수와 PR(1, 1, 1, 1)의 주파수 특성을 비교하여 나타낸 특성도이다. 여기서, PR(1, 1, 1, 1)은 본 발명자의 다양한 실험에 의해 얻어진 PR 타겟이다. 도 2에 있어서, PR(1, 1, 1, 1)의 주파수 특성이 종래의 PR(1, 1) 또는 PR(1, 2, 1)에 비하여 실제 채널의 주파수 특성과 매우 유사함을 알 수 있다. 특히, 파워의 대부분을 차지하는 저주파 대역에서 주파수 특성이 매우 흡사함을 알 수 있다.
도 3은 20Gbyte급의 고밀도 디스크의 실제 채널의 광학 전달함수와 PR(1, 1, 1, 1, 1)의 주파수 특성을 비교하여 나타낸 특성도이다. 도 3에서 PR(1, 1, 1, 1, 1) 또한 본 발명자의 다양한 실험에 의해 얻어진 PR 타겟으로서 저주파 대역에서의 주파수 특성이 상기 PR(1, 1, 1, 1) 보다 더욱 흡사함을 알 수 있다.
이에 따라, 고밀도 디스크의 실제 채널의 광학 전달함수와 주파수 특성이 유사한 PR(1, 1, 1, 1) 또는 PR(1, 1, 1, 1, 1)을 고밀도 디스크 시스템을 위한 PR 타겟으로 선택함으로써 재생성능을 향상시킬 수 있게 된다.
도 4는 본 발명에 따른 PR 타겟을 이용하는 광디스크의 기록/재생 장치의 구성을 개략적으로 나타내는 블록도이다. 도 4에서 소오스 코딩부(2)는 기록될 데이터를 코딩하여 데이터의 리던던시(Redundancy)를 줄이게 된다. 채널코딩부(4)는 소오스 코딩부(2)로부터의 데이터에 일정한 블록단위로 에러정정코드(Error Correction Code; ECC)를 부가하여 섹터단위로 분할함으로써 데이터채널 형태로 변환한다. 데이터변조부(6)는 채널코딩부(4)로부터의 데이터채널을 EFM+ 변조방법을 이용하여 변조하게 된다. EFM+ 변조방법에서는 심볼간의 간섭을 줄이기 위하여 RLL(Run Length Limitation)(2, 10)의 제한조건을 주어 데이터와 주파수 특성이 채널의 저주파 특성에 적합하게 만들어주게 된다. NRZI(Non-Return-to-Zero-Inverted) 변환부(8)는 데이터변조부(6)로부터의 변조데이터는 기록용량을 증대시키기 위하여 NRZI 변환하여 광픽업(도시하지 않음)을 통해 광디스크(10)에 기록되게 한다. 이렇게 광디스크(10)에 기록되어진 데이터는 광픽업(도시하지 않음)을 통해 독취되어진다. 신호처리부(12)는 광픽업으로부터의 독취신호를 신호처리하여 고주파 재생신호를 발생하게 된다. A/D(Analog to Digital) 변환부(14)는 신호처리부(12)로부터의 고주파 재생신호를 디지탈신호로 변환하게 된다. 등화기(16)는 A/D 변환부(14)로부터의 데이터를 미리 선정된 PR 타겟에 맞게 등화하게 된다. 본 발명에 따른 PR(1, 1, 1, 1)을 PR 타겟으로 선정한 경우에도 도 2 에 도시된 바와 같이 디스크의 채널 특성과의 차이는 분명 존재하게 된다. 이러한 차이를 최대한 줄이기 위하여 등화기(16)는 PR(1, 1, 1, 1)과 실제 채널 차이의 주파수 특성상의 차이를 보상하게 된다. 반면에, PR(1, 1, 1, 1, 1)을 PR타겟으로 선정한 경우에는 도 3에 도시된 바와 같이 PR(1, 1, 1, 1, 1)의 주파수 특성이 디스크의 채널 특성과 거의 같으므로 상기 등화기(16)가 필요없게 된다. 비터비 디코더(18)는 PR(1, 1, 1, 1) 또는 PR(1, 1, 1, 1, 1)과 ML 기법을 이용하여 재생 데이터를 복원하게 된다.
도 5를 참조하면, PR(1, 1, 1, 1)에 맞추어 설계된 비터비 디코더(18)에 적용되는 트레리스 다이어그램(Trellis Diagram)이 도시되어 있다. 도 5의 트레리스 다이어그램에서는 EFM+ 코드에서 연속되는 데이터에 대한 제한조건인 RLL(2, 10)을 만족시키는 6개의 상태(a=000, b=001, c=011, d=100, e=110, f=111)와, 이 6개 상태 각각에서 천이가 가능한 다음 상태와 연결하는 8개의 브랜치와, 그 8개의 브랜치에 해당하는 입출력값이 도시되어 있다. 이러한 트레리스 다이어그램에 따라 하나의 심볼이 입력될 때마다 각 브랜치에 대한 브랜치 매트릭을 계산하게 된다. 브랜치 매트릭은 입력심볼과 각 브랜치에서 PR(1, 1, 1, 1)에 의해 예측되는 기대치(출력치){0, 1, 2, 3, 4}와의 차를 제곱하여 산출하게 된다. 이어서, 산출된 브랜치 매트릭과 이전단의 패스 매트릭과 가산하여 출력되는 값들 중 가장 작은 값을 해당 상태의 패스 매트릭으로 결정하게 된다. 그리고, 그 상태의 패스 매트릭이 다음의 브랜치 매트릭들과 더해져 출력되는 값들 중 가장 작은 값을 다음 상태의 패스 매트릭으로 결정하게 된다. 이러한 과정을 PR(1, 1, 1, 1)의 제한조건인 4의 5배만큼 반복하여 가장 작은 패스 매트릭을 가지는 상태를 검출한 후, 그 상태를 검출하기 위한 경로를 경과된 시간 즉, 결정 깊이(Decision Depth)만큼 거슬러 올라가 그 시각에서의 상태를 결정하게 된다. 여기서 결정된 상태가 a, d, e 이면 입력은 0으로 결정되고 b, c, f이면 입력은 1로 결정되게 된다.
이를 위하여, 비터비 디코더(18)는 도 6에 도시된 바와 같이 브랜치 매트릭(Branch Metric)을 계산하는 브랜치 매트릭 유닛(BMU; 22)과, 브랜치 매트릭 유닛(22)으로부터 브랜치 매트릭을 받아 이전의 패스 매트릭(Path Metric)과 더하여 다음 패스 매트릭을 계산하는 패스 매트릭 유닛(PMU; 24)과, 패스 매트릭 유닛(24)으로부터 패스 매트릭을 받아 가장 근사한 데이터를 검출하는 서바이버 메모리 유닛(Survivor Memory Unit; SMU)(26)과, 서바이버 메모리 유닛(26)에서 검출된 데이터를 NRZ 변환하여 출력하는 NRZ 변환부(28)를 구성으로 한다.
브랜치 매트릭 유닛(22)은 도 4에 도시된 등화기(16)로부터 입력된 디지털데이터와 PR(1, 1, 1, 1)을 적용하여 산출해낸 기대치들과의 차를 제곱함으로써 브랜치매트릭을 계산하게 된다. 이를 위하여, 브랜치 매트릭 유닛(22)은 도 7에 도시된 바와 같이 입력 데이터(y)와 외부로부터의 기대치들 4, 3, 2, 1, 0 각각의 차를 계산하기 위한 제1 내지 제5 감산기(30A 내지 30E)와, 제1 내지 제5 감산기(30A 내지 30E)로부터의 출력값을 각각 제곱연산하기 위한 제1 내지 제5 승산기(32A 내지 32E)를 구비하게 된다. 그리고, 브랜치 매트릭 유닛(22)은 입력되는 데이터가 8비트로서 제1 내지 제5 승산기(32A 내지 32E) 각각에서 제곱하는 과정에서 16비트가 되는데, 이를 그대로 사용하게 되면 하드웨어의 복잡도만 증가하게 되므로 실제 정 보를 잃지 않는 범위에서 비트수를 줄이기 위한 제1 내지 제5 비트수 조정부(34A 내지 34E)를 더 구비하게 된다. 제1 내지 제5 비트수 조정부(34A 내지 34E) 각각은 입력되는 데이터 16비트 중 상위비트 8비트만을 취하여 브랜치 매트릭(BM4 내지 BM0)으로 출력하게 된다.
패스 매트릭 유닛(24)은 브랜치 매트릭 유닛(22)으로부터의 브랜치 매트릭(BM4 내지 BM0)과 이전의 패스 매트릭(PMak-1 내지 PMfk-1)을 브랜치에 따라 가산하고 그들 중 작은 값을 선택하여 다음의 패스 매트릭(PMak 내지 PMfk)으로 결정하게 된다. 이를 위하여, 패스 매트릭 유닛(24)은 도 8에 도시된 바와 같이 도 5에 도시된 트레리스 다이어그램의 각각의 상태 ak, bk, ck, dk, ek, fk로 들어오는 브랜치에 따른 패스 매트릭을 각각 계산하기 위한 제1 내지 제8 가산기(36A 내지 36H)와, 제1 및 제2 가산기(36A, 36B)의 출력값을 비교하기 위한 제1 비교기(38A), 제7 및 제8 가산기(36G, 36H)의 출력값을 비교하기 위한 제2 비교기(38B)와, 제2 내지 제5 가산기(36B 내지 36E)의 출력값과 제1 및 제2 비교기(38A, 38B)의 출력값을 임시 저장하기 위한 제1 내지 제6 딜레이(40A 내지 40F)와, 제1 내지 제6 딜레이(40A 내지 40F)에 접속된 랩퍼(Wrapper; 42)를 구비한다.
제1 내지 제8 가산기(36A 내지 36H)는 트레리스 다이어그램에서 k시점에서의 각각의 상태 ak, bk, ck, dk, ek, fk로 들어오는 브랜치에 대한 패스 매트릭들을 각각 계산하게 된다. 상세히 하면, 도 5에서 상태 bk, ck, dk, ek는 각각 이전 상태 ak-1, bk-1, ek-1, fk-1에서 오게 됨을 알 수 있다. 이에 따라, 제3 내지 제6 가산기(36C 내지 36F) 각각은 이전 상태 ak-1, bk-1, ek-1, fk-1 각각의 패스 매트릭 PMak-1, PMbk-1, PMek-1, PMfk-1과 브랜치매트릭 BM3, BM2, BM2, BM1 각각을 가산하여 상태 bk, ck, dk, ek 각각에 해당하는 패스매트릭 PMbk, PMck, PMdk, PMk을 산출하게 된다. 이렇게, 산출된 패스매트릭(PMbk, PMck, PMdk, PMk)은 제2 내지 제4 딜레이(40B 내지 40D)를 통해 랩퍼(42)로 입력된다. 반면에, 도 5에서 상태 ak는 이전상태 dk-1, ak-1에서 오게 되므로 제7 가산기(36G)는 이전상태 dk-1의 패스매트릭 PMdk-1과 브랜치매트릭 BM1를 가산하여 출력하고, 제8 가산기(36H)는 이전상태 ak-1의 패스매트릭 PMak-1과 브랜치 매트릭 BM0를 가산하여 출력하게 된다. 그리고, 제2 비교기(38B)는 제7 및 제8 가산기(34G, 34H)의 출력값 중 작은 값을 상태 ak의 패스매트릭 PMak으로 선택하여 제6 딜레이(40F)를 통해 랩퍼(42)로 출력하게 된다. 더불어, 제2 비교기(38B)는 이전상태 dk-1에서 상태 ak로 오는 브랜치에 대한 패스 매트릭과 ak-1에서 상태 ak로 오는 브랜치에 대한 패스 매트릭 중 어느 것이 작은가를 나타내는 1비트의 제2 제어신호(CS2)(0 또는 1)를 발생하게 된다. 한편, 상태 fkk는 이전상태 fk-1, ck-1에서 오게 되므로 제1 가산기(36A)는 이전상태 fk-1의 패스매트릭 PMfk-1과 브랜치매트릭 BM4를 가산하고, 제2 가산기(36B)는 이전상태 ck-1의 패스매트릭 PMck-1과 브랜치매트릭 BM3를 가산하여 출력하게 된다. 그리고, 제1 비교기(38A)는 제1 및 제2 가산기(34A, 34B)의 출력값 중 작은 값을 상태 fk의 패스매트릭 PMfk으로 선택하여 제1 딜레이(40A)를 통해 랩퍼(42)로 출력하게 된다. 더불어, 제1 비교기(38A)는 이전상태 fk-1에서 상태 fk로 오는 브랜치에 대한 패스 매트릭과 ck-1에서 상태 fk로 오는 브랜치에 대한 패스 매트릭 중 어느 것이 작은가를 나타내는 1비트의 제1 제어신호(CS1)(0 또는 1)도 발생하게 된다. 랩퍼(42)는 제1 내지 제6 딜레이(40A 내지 40F)로부터의 패스매트릭(PMak 내지 PMfk) 각각이 표현할 수 있는 범위를 넘어설 때 일정한 값을 빼서 패스 매트릭이 표현할 수 있는 범위를 넘어서지 못하도록 제한하게 된다. 이렇게, 랩퍼(42)가 패스 매트릭(PMak 내지 PMfk)을 제한하는 이유는 다음과 같다. 패스 매트릭은 기본적으로 브랜치 매트릭과 이전 상태의 패스 매트릭을 더하는 것을 무한히 반복하여 산출되는 것이므로 이러한 패스 매트릭을 저장하기 위해서는 무한대의 메모리가 필요하게 된다. 그러나, 실제 하드웨어로 구현하는 경우 메모리는 유한하며 저장하는 수의 값이 커질수록 계산속도는 느려지게 된다. 그런데, 패스 매트릭은 절대값이 중요한 것이 아니고 서바이버 메모리 유닛(26)에 어떤 패스 매트릭이 다른 패스 매트릭 보다 작은지 큰지를 알려주기만 하면되므로 상대적인 크기가 중요하게 된다. 따라서, 랩퍼(42)는 각 상태의 패스 매트릭(PMak 내지 PMfk)이 표현할 수 있는 크기를 넘어서기 전에 그들의 상대적인 크기는 변하지 않게 일정한 값을 빼낸 다음 서바이버 메모리 유닛(26)으로 출력하게 된다.
서바이버 메모리 유닛(26)은 패스 매트릭 유닛(24)으로부터의 패스 매트릭(PMak 내지 PMfk)과, 제1 및 제2 제어신호(CS1, CS2)를 입력하여 가장 근사한 데이터를 검출하게 된다. 서바이버 메모리 유닛(26)은 가장 근사한 경로인 서바이버 패스를 매 사이클마다 저장하면서 쉬프트시키기 위하여 임시 메모리(48)와 서바이버 메모리(50A 내지 50F)로 구성된 메모리부(44)와, 메모리부(44)로부터 가장 근사한 데이터를 검출하기 위하여 비교기(54) 및 멀티플렉서(52)로 구성된 데이터 검출부(46)를 구성으로 한다. 여기서, PR(1, 1, 1, 1)의 제한조건(Constraint)이 4이고 통상 디코딩을 위한 서바이버 패스의 깊이(Depth)는 제한조건(Constraint)의 5배 정도이므로 깊이를 20으로 한다. 즉, 서바이버 메모리(50A 내지 50F)는 각각 20개의 쉬프터 레지스터로 구성하게 된다.
도 5의 트레리스 다이어그램에서 k시점에서 상태 ak로 오는 패스에 대해서 입력된 데이터는 0이므로 매 사이클마다 제1 서바이버 메모리(50A)의 첫번째 단에 0을 넣게 된다. 상태 bk로 오는 패스에 대해서 입력된 데이터는 1이므로 매 사이클마다 제2 서바이버 메모리(50B)의 첫번째 단에 1을 넣게 된다. 상태 ck로 오는 패스에 대해서 입력된 데이터는 1이므로 매 사이클마다 제3 서바이버 메모리(50C)의 첫번째 단에 1을 넣게 된다. 상태 dk로 오는 패스에 대해서 입력된 데이터는 0이므로 매 사이클마다 제4 서바이버 메모리(50D)의 첫번째 단에 0을 넣게 된다. 상태 ek로 오는 패스에 대해서 입력된 데이터는 0이므로 매 사이클마다 제5 서바이버 메모리(50E)의 첫번째 단에 0을 넣게 된다. 상태 fk로 오는 패스에 대해서 입력된 데이터는 1이므로 매 사이클마다 제6 서바이버 메모리(50F)의 첫번째 단에 1을 넣게 된다. 또한, 패스 매트릭 유닛(24)으로부터 패스 매트릭(PMak 내지 PMfk)과 제어신호(CS1, CS2)가 들어올 때 마다 각 서바이버 메모리(50A 내지 50F)에 저장된 값들은 쉬프트되어 첫번째 단을 제외한 두번째 단부터 마지막 단가지 19개의 레지스터의 내용을 임시 메모리(48)에 저장하게 된다. 여기서, 임시 메모리(48)는 제1 내지 제6 서바이버 메모리(50A 내지 50F)에 각각 대응되는 임시 메모리 A 내지 F(도시하지 않음)로 구성된다. 그리고, 제1 제어신호(CS1)에 의해 이전 패스 매트릭 PMak-1와 브랜치 매트릭 BM0의 합이 작은 것이면 제1 서바이버 메모리(50A)에는 임시메모리 A에 저장된 내용을 쓰게 되고, 이전 패스 매트릭 PMdk-1와 브랜치 매트릭 BM1의 합이 작은 것이면 제1 서바이버 메모리(50A)에는 임시 메모리 D의 내용을 쓰게 된다. 제2 제어신호(CS2)에 의해 이전 패스 매트릭 PMfk-1와 브랜치 매트릭 BM4의 합이 더 작은 것이면 제6 서바이버 메모리(50F)에는 임시 메모리 F에 저장되 내용을 쓰게 되고, 이전 패스 매트릭 PMck-1와 브랜치 매트릭 BM3의 합이 더 작은 것이면 제6 서바이버 메모리(50F)에는 임시 메모리 C에 저장된 내용을 쓰게 된다. 이와 같이 제1 및 제2 제어신호(CS1, CS2)는 제1 및 제6 서바이버 메모리(50A, 50F)가 각각 서버이버 패스 A,D 와 서바이버 패스 C, F 중 어디에서 오는 것인가를 결정하는 것으므로 나머지들 서바이버 메모리들(50B 내지 50E)은 단순히 패스 매트릭이 들어올 때마다 업데이트하게 된다. 다시 말하여, 제2 서바이버 메모리(50B)에는 임시 메모리 A의 내용을 쓰게 되고 제3 서바이버 메모리(50C)에는 임시 메모리 B의 내용을 쓰게 된다. 제4 서바이버 메모리(50D)에는 임시 메모리 E를 쓰게 되고, 제5 서바이버 메모리(50E)에는 임시 메모리 F의 내용을 쓰게 된다. 이러한 방식으로 각 서바이버 메모리(50A 내지 50F)들에는 가장 근사한 서바이버 패스들이 들어있게 되고, 깊이 20이 지난 후 각각의 서바이버 메모리들(50A 내지 50F)에는 가장 근사한 데이터들이 들어있게 된다. 데이터 검출부(46)의 비교기(54)는 패스 매트릭 유닛(24)으로부터 입력되는 패스 매트릭들(PMak 내지 PMfk)을 비교하여 멀티플렉서(52)에서 가장 작은 값의 서바이버 패스를 저장하고 있는 서바이버 메모리(50A 내지 50F)를 선택하여 그 서바이버 메모리(50A 내지 50F)로부터 출력되는 데이터를 가장 근사한 데이터로 검출하여 출력하게 된다.
NRZ 변환부(28)는 도 10에 도시된 바와 같이 서바이버 메모리 유닛(26)으로부터의 데이터를 딜레이시키기 위한 딜레이(56)와, 입력데이터 및 딜레이된 데이터를 XOR 연산하여 출력하는 XOR 게이트(58)로 구성으로 하여 최종적인 재생 데이터를 검출하게 된다.
이와 같이, 본 발명에서는 고밀도 디스크의 채널 특성에 가장 적합한 PR(1, 1, 1, 1) 또는 PR(1, 1, 1, 1, 1)을 PR 타겟으로 선정하고, 그 PR 타겟에 맞추어 비터비 디코더를 구현함으로써 신뢰성 있게 데이터를 재생할 수 있게 된다.
상술한 바와 같이, 본 발명에 따른 디지털 신호 처리 장치 및 방법에 의하면 20Gbyte 이상의 고밀도 디스크의 채널특성에 가장 적합한 PR 타겟을 선정하고 그 PR 타겟에 적합한 비터비 디코더를 구현함으로써 고밀도 디스크 시스템에서도 PRML 기술의 적용이 가능하게 된다. 이에 따라, 고밀도 디스크에 저장되어 있는 데이터의 재생시 에러율을 감소시킬 수 있게 된다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.

Claims (8)

  1. 디스크로부터 재생된 디지털신호를 파셜응답(PR) 타겟을 이용한 비터비 디코딩 방법으로 복호하는 디지털 신호 처리 방법에 있어서,
    상기 파셜응답 타겟으로 PR(1, 1, 1, 1) 및 PR (1, 1, 1, 1, 1) 중 어느 하나를 이용하여 비터비 복호하는 단계를 포함하고,
    상기 비터비 복호하는 단계는, 상기 파셜응답 타겟을 고려하여 상기 디지털 신호와 상기 파셜응답 타겟에 의해 예측되는 기대치와의 차를 제곱하여 브랜치 매트릭을 산출하는 단계와, 상기 브랜치 매트릭과 귀환되어진 이전 상태의 패스 매트릭을 가산하고 그 중 가장 작은 값을 선택하여 현재 상태의 패스 매트릭을 결정하는 단계와, 상기 패스 매트릭을 결정하는 단계를 상기 파셜응답 타겟의 제한길이를 고려한 결정깊이만큼 반복하여 최종적으로 결정된 패스 매트릭 중 가장 작은 패스 매트릭을 가지는 상태에 대한 입력 데이터를 검출하는 단계로 이루어진 것을 특징으로 하는 디지털 신호 처리 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 패스 매트릭을 결정하는 단계는
    상기 패스 매트릭이 소정의 임계치를 넘어서는 경우 그 패스 매트릭의 상대의 상대적인 크기만 남게 일정값을 빼내는 단계를 더 포함하는 것을 특징으로 하는 디지털신호 처리 방법.
  4. 제 1 항에 있어서,
    상기 파셜응답 타겟으로 PR(1, 1, 1, 1)을 이용하는 경우 상기 비터비 복호 단계전에 상기 디지털신호를 그 파셜응답 타겟의 주파수 특성에 맞게 등화하는 단계를 더 포함하는 것을 특징으로 하는 디지털신호 처리 방법.
  5. 디스크로부터 재생된 디지털신호를 파셜응답(PR) 타겟을 이용한 비터비 디코딩 방법으로 복호하는 디지털 신호 처리 장치에 있어서,
    상기 파셜응답 타겟으로 PR(1, 1, 1, 1) 및 PR (1, 1, 1, 1, 1) 중 어느 하나를 이용하여 비터비 복호하는 비터비 복호 수단을 구비하고,
    상기 비터비 복호수단은, 상기 파셜응답 타겟을 고려하여 상기 디지털 신호와 상기 파셜응답 타겟에 의해 예측되는 기대치와의 차를 제곱하여 브랜치 매트릭을 산출하는 브랜치 매트릭 유닛과, 상기 브랜치 매트릭과 귀환되어진 이전 상태의 패스 매트릭을 가산하고 그 중 가장 작은 값을 선택하여 현재 상태의 패스 매트릭으로 출력하는 패스 매트릭 유닛과, 상기 패스 매트릭이 입력될 때마다 그 패스 매트릭에 대한 패스에 따라 예측되는 입력데이터를 업데이트하여 쉬프트시키고 상기 패스 매트릭들 중 가장 작은 값에 해당하는 상태의 데이터를 선택하여 출력하는 서바이버 메모리 유닛으로 구성된 것을 특징으로 하는 디지털 신호 처리 장치.
  6. 삭제
  7. 제 5 항에 있어서,
    상기 패스 매트릭 유닛은
    상기 패스 매트릭이 소정의 임계치를 넘어서는 경우 그 패스 매트릭의 상대의 상대적인 크기만 남게 일정값을 빼내어 출력하기 위한 랩퍼를 더 구비하는 것을 특징으로 하는 디지털신호 처리 장치.
  8. 제 5 항에 있어서,
    상기 파셜응답 타겟으로 PR(1, 1, 1, 1)을 이용하는 경우 상기 디지털신호를 그 파셜응답 타겟의 주파수 특성에 맞게 등화하여 상기 비터비 복호수단으로 출력하기 위한 등화수단을 더 구비하는 것을 특징으로 하는 디지털신호 처리 장치.
KR1019990064482A 1999-12-29 1999-12-29 디지털 신호 처리 장치 및 방법 KR100664006B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990064482A KR100664006B1 (ko) 1999-12-29 1999-12-29 디지털 신호 처리 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990064482A KR100664006B1 (ko) 1999-12-29 1999-12-29 디지털 신호 처리 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20010064314A KR20010064314A (ko) 2001-07-09
KR100664006B1 true KR100664006B1 (ko) 2007-01-03

Family

ID=19631768

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064482A KR100664006B1 (ko) 1999-12-29 1999-12-29 디지털 신호 처리 장치 및 방법

Country Status (1)

Country Link
KR (1) KR100664006B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691126B1 (ko) * 2005-09-20 2007-03-09 엘지전자 주식회사 Pr 타겟 선택 기능을 갖는 광디스크 재생장치 및 그를이용한 pr 타겟 선택방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211447A (ja) * 1991-09-13 1993-08-20 Sony Corp ビタビ復号装置およびその方法
JPH0964756A (ja) * 1995-08-25 1997-03-07 Sharp Corp ビタビ復号回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211447A (ja) * 1991-09-13 1993-08-20 Sony Corp ビタビ復号装置およびその方法
JPH0964756A (ja) * 1995-08-25 1997-03-07 Sharp Corp ビタビ復号回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문

Also Published As

Publication number Publication date
KR20010064314A (ko) 2001-07-09

Similar Documents

Publication Publication Date Title
US7440522B2 (en) Method of evaluating a readout signal, and optical disc apparatus
US6934233B2 (en) Waveform equalizer for a reproduction signal obtained by reproducing marks and non-marks recorded on a recording medium
US6678862B1 (en) Detection apparatus
US6807137B2 (en) Encoding method and apparatus therefor, and optical-disk recording method and apparatus therefor
EP0802634B1 (en) Viterbi decoding method and circuit therefor
KR100661761B1 (ko) 데이터 디코딩 장치 및 데이터 디코딩 방법
JPH11126438A (ja) ディジタル信号再生装置
JP4099730B2 (ja) ディジタル信号再生装置
JPH08116275A (ja) ディジタル信号復号化処理装置
JP2002298518A (ja) フルレスポンスチャネルシステムに用いられるデータエラー訂正方法
KR100664006B1 (ko) 디지털 신호 처리 장치 및 방법
KR19990018221A (ko) 고밀도 데이타 저장기기를 위한 피알엠엘 코드의 부호화 및복호화 방법
JP4501960B2 (ja) ビタビ検出器、及び、情報再生装置
US6163517A (en) Signal detection method of data recording/reproducing apparatus and device therefor
JP4261334B2 (ja) ディスク装置及びディスク再生方法
KR100238322B1 (ko) 비터비 검출방법 및 장치
KR100664007B1 (ko) 디지털 신호 처리 장치 및 방법
JPH09330564A (ja) ディジタル情報再生装置
JP3301691B2 (ja) デジタル情報再生装置
US20050138534A1 (en) Maximum likelihood encoding apparatus, maximum likelihood encoding method, program and reproduction apparatus
KR100269436B1 (ko) 광 디스크의 정보 재생방법
KR0156190B1 (ko) 기록매체의 재생신호 판정회로 및 그 방법
KR100202545B1 (ko) 기록매체의 재생신호 판정 장치 및 방법
JP2007273016A (ja) 再生信号処理装置
Verboom Selective inter-symbol-interference cancellation (SISIC) for high-density optical recording using d= 1 channel code

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee