KR100658057B1 - Method for fabricating tft - Google Patents

Method for fabricating tft Download PDF

Info

Publication number
KR100658057B1
KR100658057B1 KR1020000029772A KR20000029772A KR100658057B1 KR 100658057 B1 KR100658057 B1 KR 100658057B1 KR 1020000029772 A KR1020000029772 A KR 1020000029772A KR 20000029772 A KR20000029772 A KR 20000029772A KR 100658057 B1 KR100658057 B1 KR 100658057B1
Authority
KR
South Korea
Prior art keywords
layer
nickel
source
depositing
patterning
Prior art date
Application number
KR1020000029772A
Other languages
Korean (ko)
Other versions
KR20010108833A (en
Inventor
이승준
전승익
Original Assignee
비오이 하이디스 테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비오이 하이디스 테크놀로지 주식회사 filed Critical 비오이 하이디스 테크놀로지 주식회사
Priority to KR1020000029772A priority Critical patent/KR100658057B1/en
Publication of KR20010108833A publication Critical patent/KR20010108833A/en
Application granted granted Critical
Publication of KR100658057B1 publication Critical patent/KR100658057B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Abstract

본 발명은 박막 트랜지스터의 제조 방법에 관한 것으로, 게이트 금속을 퇴적하고 사진 인쇄를 한 다음, 습식 또는 건식 에칭을 하는 단계, 비정질 실리콘 및 도핑된 비정질 실리콘으로 구성된 활성화층을 퇴적하고 사진 인쇄를 한 다음, 에칭을 하는 단계, 니켈/알루미늄/니켈로 구성된 소스/드레인 전극을 퇴적하고 사진 인쇄를 한 다음, 에칭을 하는 단계, 실리콘 질화물로 구성된 불활성화층을 퇴적하고 사진 인쇄를 한 다음, 에칭을 하는 단계, ITO 퇴적을 하고 사진 인쇄를 한 다음, 에칭을 하는 단계, 최종 어닐링을 수행하는 단계를 포함함을 특징으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor, comprising depositing a gate metal and performing photo printing, followed by wet or dry etching, depositing an active layer composed of amorphous silicon and doped amorphous silicon and performing photo printing. , Etching, depositing a source / drain electrode composed of nickel / aluminum / nickel and performing photo printing, then etching, depositing an inactivation layer made of silicon nitride, performing photo printing, and then etching And ITO deposition and photo printing, followed by etching and final annealing.

Description

박막 트랜지스터의 제조 방법{METHOD FOR FABRICATING TFT}Manufacturing method of thin film transistor {METHOD FOR FABRICATING TFT}

도 1은 종래의 박막 트랜지스터의 제조 방법의 공정 순서를 도시한 흐름도.1 is a flowchart showing a process sequence of a conventional method for manufacturing a thin film transistor.

도 2는 본 발명에 따른 박막 트랜지스터의 구조를 나타낸 단면도.2 is a cross-sectional view showing the structure of a thin film transistor according to the present invention.

도 3은 본 발명에 따른 박막 트랜지스터의 제조 방법의 공정 순서를 도시한 흐름도.3 is a flowchart illustrating a process sequence of a method of manufacturing a thin film transistor according to the present invention.

본 발명은 박막 트랜지스터의 제조 방법에 관한 것으로, 특히 니켈/알루미늄 /니켈(Ni/Al/Ni) 다층을 박막 트랜지스터의 배열 공정에 응용한 박막 트랜지스터의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor, and more particularly, to a method for manufacturing a thin film transistor in which a nickel / aluminum / nickel (Ni / Al / Ni) multilayer is applied to an array process of a thin film transistor.

도 1은 종래의 박막 트랜지스터의 제조 방법의 공정 순서를 도시한 흐름도이다.1 is a flowchart illustrating a process procedure of a conventional method for manufacturing a thin film transistor.

도 1에 도시된 바대로, 종래의 박막 트랜지스터 액정표시장치의 제조방법은 절연 기판 상부에 금속막을 증착하고, 제 1 사진 식각 공정으로 게이트 전극 및 스토리지 전극을 형성하는 단계(S10), 상기 게이트 전극 배선이 형성된 절연 기판 상부에 게이트 절연막, 채널용 비정질 실리콘층, 도핑된 반도체층을 적층하는 단계(S 12), 상기 도핑된 반도체층과 비정질 실리콘층을 제 2 사진 식각 공정으로 패터닝하여, 박막 트랜지스터 영역을 한정하는 단계(S14), 상기 절연 기판 결과물 상부에 소스, 드레인용 금속막을 증착하는 단계(S16), 상기 소스, 드레인용 금속막을 제 3 사진 식각 공정에 의하여 비정질 실리콘층의 양측에 배치되도록 패터닝하여, 소스, 드레인 전극을 형성하는 단계(S18), 상기 소스, 드레인 전극을 마스크로 하여, 노출된 도핑된 반도체층을 식각하는 단계(S20), 상기 노출된 비정질 실리콘층을 1차 어닐링하는 단계(S22), 상기 소스, 드레인 전극이 형성된 절연 기판 상부에 패시베이션막을 증착하는 단계(S24), 상기 드레인 전극의 소정 부분이 노출되도록 제 4 사진 식각 공정에 의하여 패시베이션막을 식각하여, 비어홀을 형성하는 단계(S26), 상기 노출된 드레인 전극과 콘택되도록 투명 도전 물질을 증착하는 단계(S28), 상기 투명 도전 물질을 제 5 사진 식각 공정을 통하여 패터닝하여, 화소 전극을 형성하는 단계(S30), 상기 절연 기판 결과물을 2차 어닐링하는 단계(S32)를 포함한다.As shown in FIG. 1, a conventional method of manufacturing a thin film transistor liquid crystal display device includes depositing a metal film on an insulating substrate, and forming a gate electrode and a storage electrode by a first photolithography process (S10). Stacking a gate insulating layer, an amorphous silicon layer for a channel, and a doped semiconductor layer on the insulating substrate on which the wiring is formed (S 12), and patterning the doped semiconductor layer and the amorphous silicon layer by a second photolithography process to form a thin film transistor. Defining a region (S14), depositing a source and drain metal film on the insulating substrate resultant (S16), and disposing the source and drain metal film on both sides of an amorphous silicon layer by a third photolithography process. Patterning to form a source and a drain electrode (S18), using the source and drain electrodes as a mask, and exposing the exposed doped semiconductor layer (S20), first annealing the exposed amorphous silicon layer (S22), depositing a passivation film on an insulating substrate on which the source and drain electrodes are formed (S24), and a predetermined portion of the drain electrode is exposed. Etching the passivation layer by a fourth photolithography process to form a via hole (S26), depositing a transparent conductive material to contact the exposed drain electrode (S28), and etching the transparent conductive material to a fifth photolithography process Patterning through a process to form a pixel electrode (S30); and performing a second annealing of the insulating substrate result (S32).

그런데, 종래에는, 건식 에칭 공정시, Mo/Al/Mo 데이터 라인을 사용할 경우, SF6 가스에 대한 상부 몰리브덴(Mo) 과 불활성화인 SiNx 의 선택도가 좋지 않아 배열 및 셀 공정시 다량의 결함이 발생할 가능성이 있다. However, conventionally, when the Mo / Al / Mo data line is used in the dry etching process, the selectivity of the upper molybdenum (Mo) and the inert SiNx to SF 6 gas is not good, so that a large amount of defects during the arrangement and cell processes This is likely to occur.

또한, SiNx 의 선택도가 우수한 알루미늄을 단일 층으로 사용할 경우, 힐럭 (hillock) 이나 일렉트로 마이그레이션 (electromigration) 등이 발생하여 소자 특성을 저하시키게 된다.In addition, when aluminum having excellent selectivity of SiNx is used as a single layer, hillock, electromigration, or the like occurs, thereby degrading device characteristics.

그리고, 종래에는, n+a-Si 상에 매우 낮은 오옴 접촉 저항을 갖는 니켈-실리사이드(Ni-siliClde)를 생성시키기 위하여 n+a-Si 상에 별도의 극박막(수∼수십 Å)의 니켈을 증착한후, 열처리하여 니켈-실리사이드를 형성시켰다.In the related art, in order to produce nickel-silicide (Ni-siliClde) having a very low ohmic contact resistance on n + a-Si, a separate ultrathin film (tens of tens of kPas) of nickel is formed on n + a-Si. After deposition, heat treatment was performed to form nickel-silicide.

하지만, 이 종래 방법은 추가적으로 잔여 니켈을 제거하여 후속 공정을 진행해야 하므로 차후의 니켈 잔여물이 남는등 많은 문제점을 안고 있다.However, this conventional method has many problems, such as the need for further removal of residual nickel, and subsequent nickel residues.

또한, 현재의 역 스태거드 TFT 배열(Staggered TFT Array) 공정에서의 데이터 라인(Mo/Al/Mo) 은 각각 하부로는 n+a-Si 과, 상부로는 인듐 주석 산화막(Indiu -m Tin Oxide, 이하, ITO 막이라 함)과 접촉한 구조이다. 이 데이터 라인의 스택에서 n+a-Si 은 몰리브덴(Mo) 과 접촉하게 되어 비교적 높은 오옴 접촉 저항을 갖게 된다.In addition, in the current staggered TFT array process, the data lines (Mo / Al / Mo) are respectively n + a-Si at the bottom and indium tin oxide (Indiu-m Tin) at the top. Oxide, hereinafter referred to as ITO film). In this stack of data lines, n + a-Si comes into contact with molybdenum (Mo), resulting in a relatively high ohmic contact resistance.

그리고, 이 계면에 미세한 결함이 존재할 경우, 더 높은 오옴 접촉 저항값을 갖게 되어 화소의 결함등을 야기시켜 생산율을 저하시키는 원인이 되기도 한다.In addition, when a minute defect exists in this interface, it will have higher ohmic contact resistance value, causing a defect of a pixel, etc., and it may become a cause which lowers a production rate.

본 발명은 상기 문제점을 해소하기 위해 안출된 것으로, 니켈/알루미늄/니켈 (Ni/Al/Ni) 다층을 박막 트랜지스터의 배열 공정에 응용한 박막 트랜지스터의 제조 방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a method of manufacturing a thin film transistor in which a nickel / aluminum / nickel (Ni / Al / Ni) multilayer is applied to an array process of a thin film transistor.

상기 목적을 달성하기 위한 본 발명에 따른 박막 트랜지스터의 제조 방법은 기판 상에 게이트 금속을 퇴적하고 패터닝하여 게이트 전극을 하는 단계, 상기 기판 상에 게이트 전극을 덮도록 게이트 절연막을 형성하고 상기 게이트 절연막 상에 불순물이 도핑되지 않은 비정질 실리콘과 불순물이 도핑된 비정질 실리콘으로 구성된 활성화층을 적층하고 상기 게이트 전극과 대응하는 부분이 잔류하도록 사진 인쇄 및 에칭에 의해 패터닝하여 채널층과 반도체층을 형성하는 단계, 상기 게이트 절연막 상에 상기 반도체층과 접촉되며 상층 및 하층에 니켈을 포함하는 다층의 소스/드레인 금속을 증착하고 패터닝하여 소스/드레인 전극을 형성하는 단계, 상기 게이트 절연막 상에 실리콘질화물로 구성된 불활성화층을 상기 소스/드레인 전극을 덮도록 증착하고 패터닝하여 상기 드레인 전극을 노출시키는 접촉홀을 형성하는 단계, 상기 불활성화층 상에 상기 접촉홀을 통해 상기 드레인 전극과 접촉되게 ITO막을 증착하고 패터닝하여 화소전극을 형성하는 단계, 최종 어닐링을 300℃ 정도의 온도로 수행하여 상기 소스/드레인 전극을 이루는 상기 하층의 니켈과 상기 반도체층 사이에 오옴 접촉을 이루도록 실리사이드층을 형성하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a thin film transistor, in which a gate electrode is formed by depositing and patterning a gate metal on a substrate, forming a gate insulating film to cover the gate electrode on the substrate, and forming a gate electrode on the gate insulating film. Forming a channel layer and a semiconductor layer by laminating an activating layer composed of amorphous silicon not doped with impurities and amorphous silicon doped with impurities, and patterning by photo printing and etching so that a portion corresponding to the gate electrode remains; Depositing and patterning a plurality of source / drain metals including nickel on and in contact with the semiconductor layer on the gate insulating layer to form a source / drain electrode, and inactivating silicon nitride on the gate insulating layer A layer is deposited to cover the source / drain electrodes Patterning to form a contact hole exposing the drain electrode, depositing and patterning an ITO film in contact with the drain electrode through the contact hole on the inactivation layer to form a pixel electrode, and final annealing at 300 ° C. And forming a silicide layer to form ohmic contact between the lower layer of nickel forming the source / drain electrode and the semiconductor layer.

이하, 본 발명의 바람직한 실시예를 첨부 도면들을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 박막 트랜지스터의 구조를 나타낸 단면도이다.2 is a cross-sectional view showing the structure of a thin film transistor according to the present invention.

도 3은 본 발명에 따른 박막 트랜지스터의 제조 방법의 공정 순서를 도시한 흐름도이다.3 is a flowchart illustrating a process sequence of a method of manufacturing a thin film transistor according to the present invention.

본 발명에 따라 제안된 니켈/알루미늄/니켈(Ni/Al/Ni) 다층을 박막 트랜지스터의 배열 공정에 응용할 경우, 그 공정 순서는 다음과 같다.When the nickel / aluminum / nickel (Ni / Al / Ni) multilayer proposed according to the present invention is applied to an array process of a thin film transistor, the process sequence is as follows.

도 3에 도시된 바대로, 본 발명에 따른 박막 트랜지스터의 제조 방법은 유리기판(11) 상에 게이트 금속을 퇴적하고 습식 또는 건식 에칭을 포함하는 포토리쏘그래피 방법으로 패터닝하여 게이트전극(21)을 형성하는 단계(S10), 상기 유리기판(11) 상에 게이트전극(21)을 덮도록 게이트절연막(31), 식각 보호막(41), 채널용 비정질 실리콘층(61) 및 도핑된 비정질 실리콘층(81)을 순차적으로 적층하고 게이트전극(21)과 대응하는 부분에 잔류되게 게이트절연막(31)이 노출되도록 포토리쏘그래피 방법으로 패터닝하여 박막 트랜지스터의 활성 영역을 한정하는 단계(S20), 상기 게이트절연막(31) 상에 도핑된 비정질 실리콘층(81)과 접촉되는 소스 및 드레인용 금속막을 증착하고 게이트 전극(21)과 대응하는 부분이 이격되게 패터닝하여 소스 및 드레인전극(71)을 형성하면서 이 소스 및 드레인 전극(71)을 마스크로 하여 노출된 도핑된 비정질 실리콘층(81)을 식각하는 단계(S30), 게이트 절연막(31) 상에 소스 및 드레인전극(71)을 덮는 패시베이션막(91)을 증착하고 드레인 전극(71)의 소정 부분이 노출되도록 포토리쏘그래피 방법으로 패터닝하여 비어홀을 형성하는 단계(S40), 상기 패시베이션막(91) 상에 비어홀에 의해 노출된 드레인 전극(71)과 콘택되도록 투명 도전 물질을 증착하고 포토리쏘그래피 방법으로 패터닝하여 화소 전극(51)을 형성하는 단계(S30), 최종 어닐링을 수행하는 단계(S60)를 포함한다.As shown in FIG. 3, in the method of manufacturing the thin film transistor according to the present invention, the gate electrode 21 is formed by depositing a gate metal on the glass substrate 11 and patterning the photolithography method including wet or dry etching. In step S10, the gate insulating layer 31, the etching protection layer 41, the channel amorphous silicon layer 61, and the doped amorphous silicon layer are formed on the glass substrate 11 to cover the gate electrode 21. 81 is sequentially stacked and patterned by photolithography such that the gate insulating film 31 is exposed to remain in the portion corresponding to the gate electrode 21 to define an active region of the thin film transistor (S20). When the source and drain metal films in contact with the doped amorphous silicon layer 81 are deposited on the 31 and the portions corresponding to the gate electrodes 21 are spaced apart from each other, the source and drain electrodes 71 are formed. Etching the exposed doped amorphous silicon layer 81 using the source and drain electrodes 71 as a mask (S30), the passivation layer 91 covering the source and drain electrodes 71 on the gate insulating layer 31. And depositing a via hole by photolithography to expose a portion of the drain electrode 71 (S40), and drain electrode 71 exposed by the via hole on the passivation layer 91. Depositing a transparent conductive material to be contacted and patterning the photoconductive method to form the pixel electrode 51 (S30), and performing final annealing (S60).

상기한 바와 같이 구성되는 본 발명의 작용을 상세히 설명하면 다음과 같다.Referring to the operation of the present invention configured as described in detail as follows.

먼저, 단계(S10)을 참조하면, 유리기판(11) 상에 게이트 금속을 퇴적하고 습식 또는 건식 에칭을 포함하는 포토리쏘그래피 방법으로 패터닝하여 게이트 전극(21)을 형성한다. 이 경우, 게이트 금속으로 니켈/알루미늄/니켈(Ni/Al/Ni) 또는 알루미늄/니켈(Al/Ni) 을 사용할 수 있다.First, referring to step S10, the gate metal is deposited on the glass substrate 11 and patterned by a photolithography method including wet or dry etching to form the gate electrode 21. In this case, nickel / aluminum / nickel (Ni / Al / Ni) or aluminum / nickel (Al / Ni) may be used as the gate metal.

그 다음으로, 단계(S20)을 참조하면, 유리기판(11) 상에 게이트전극(21)을 덮도록 산화막 및 질화막을 연속 증착하여 게이트절연막(31) 및 식각 보호막(41)을 형성한다. 그리고, 식각 보호막(41) 상에 채널로 사용되는 비정질 실리콘층(61)과 오믹접촉층으로 사용되는 도핑된 비정질 실리콘층(81)을 순차적으로 적층하고 게이트전극(21)과 대응하는 부분에 잔류되게 게이트절연막(31)이 노출되도록 식각 보호막(41)과 함께 포토리쏘그래피 방법으로 패터닝하여 박막 트랜지스터 영역을 한정한다.Next, referring to step S20, an oxide film and a nitride film are continuously deposited on the glass substrate 11 to cover the gate electrode 21 to form a gate insulating film 31 and an etch protective film 41. In addition, an amorphous silicon layer 61 used as a channel and a doped amorphous silicon layer 81 used as an ohmic contact layer are sequentially stacked on the etch passivation layer 41 and remain in a portion corresponding to the gate electrode 21. In order to expose the gate insulating layer 31, the thin film transistor region is defined by the photolithography method together with the etch protection layer 41.

단계(S30)을 참조하면 게이트 절연막(31) 상에 도핑된 비정질 실리콘층(81)을 덮도록 소스 및 드레인 금속을 증착하고 패터닝하여 비정질 실리콘층(81)과 오믹 접촉을 이루는 소스 및 드레인전극(71)을 형성한다. 이 때, 소스 및 드레인전극(71)은 게이트 전극(21)과 대응하는 부분이 이격되게 패터닝하면서 이 부분의 도핑된 비정질 실리콘층(81)도 식각한다.
상기에서 소스 및 드레인 금속으로 Ni/Al/Ni를 사용한다. 여기서, 소스 및 드레인 전극(71)을 형성하기 위한 에칭 공정은 상온 50℃ 에서 습식 에칭 공정이나 Cl 계열의 가스를 사용한 건식 에칭 공정이 모두 가능하다.
Referring to step S30, the source and drain electrodes are deposited and patterned to cover the doped amorphous silicon layer 81 on the gate insulating layer 31 to form ohmic contact with the amorphous silicon layer 81. 71). At this time, the source and drain electrodes 71 also pattern the portions corresponding to the gate electrodes 21 to be spaced apart, and the doped amorphous silicon layer 81 of the portions is also etched.
Ni / Al / Ni is used as the source and drain metal. Here, the etching process for forming the source and drain electrodes 71 may be either a wet etching process or a dry etching process using a Cl-based gas at room temperature 50 ℃.

단계(S40)을 참조하면, 게이트 절연막(31) 상에 소스 및 드레인전극(71)을 덮는 패시베이션막(91)을 증착하고 드레인 전극(71)의 소정 부분이 노출되도록 건식 에칭을 포함하는 포토리쏘그래피 방법으로 패터닝하여 비어홀을 형성한다. 이때, 비어홀을 형성하기 위한 패시베이션막(91)의 건식 에칭시 소스 가스로는 주로 SF6를 사용하는데, 소스 및 드레인전극(71)을 이루는 니켈은 SF6 가스에 에칭 또는 어택(attack)을 받지 않으므로 우수한 건식 에칭 선택도를 얻게 되어 충분한 공정 마진을 얻을 수 있다.Referring to step S40, a photolithography comprising a passivation film 91 covering the source and drain electrodes 71 is deposited on the gate insulating layer 31 and a dry etching is performed to expose a predetermined portion of the drain electrode 71. The via hole is formed by patterning by a graphing method. In this case, SF 6 is mainly used as a source gas in the dry etching of the passivation film 91 for forming the via hole. Nickel forming the source and drain electrodes 71 is not etched or attacked by the SF 6 gas. Good dry etch selectivity is achieved to achieve sufficient process margin.

삭제delete

삭제delete

단계(S50)를 참조하면, 상기 패시베이션막(91) 상에 비어홀에 의해 노출된 드레인 전극(71)과 콘택되도록 ITO 등의 투명 도전 물질을 증착하고 포토리쏘그래피 방법으로 패터닝하여 화소 전극(51)을 형성한다. 이 때, 드레인 전극(71)을 구성하는 니켈은 투명 도전 물질인 ITO의 식각액에 대한 화학적 내구성이 높으므로 ITO 에칭시 어택에 기인하는 데이터 개방 등의 결함을 방지할 수 있다.Referring to step S50, a transparent conductive material such as ITO is deposited on the passivation layer 91 to be in contact with the drain electrode 71 exposed by the via hole, and patterned by photolithography to form the pixel electrode 51. To form. At this time, the nickel constituting the drain electrode 71 has high chemical durability to the etching liquid of ITO, which is a transparent conductive material, so that defects such as data opening due to attack during ITO etching can be prevented.

그후, 단계(S60)을 참조하면, 최종 어닐링을 수행한다. 그 결과, 소스 및 드레인 전극(71)의 하층인 니켈과 도핑된 비정질 실리콘층(81)의 계면의 오믹 특성을 향상시킨다. 상기에서 최종 어닐링 공정시 온도가 300℃ 정도로 수행할 수 있는 데, 이 경우, 소스 및 드레인 전극(71)의 하층인 니켈과 도핑된 비정질 실리콘층(81)의 계면에 매우 낮은 오옴 접촉 저항을 갖는 니켈-실리사이드(Ni-siliClde)가 형성된다.Thereafter, referring to step S60, final annealing is performed. As a result, the ohmic characteristics of the interface between the nickel, which is the lower layer of the source and drain electrodes 71, and the doped amorphous silicon layer 81 are improved. In the final annealing process, the temperature may be about 300 ° C., in this case, having a very low ohmic contact resistance at the interface between the nickel and the doped amorphous silicon layer 81 below the source and drain electrodes 71. Nickel-silicide (Ni-siliClde) is formed.

삭제delete

본 발명의 다른 실시예를 간략하게 설명하면 다음과 같다.Briefly described another embodiment of the present invention.

F 계열의 가스를 에칭 가스로 사용하는 건식 에칭 공정에서, SiNx, Si, SiON 등과 금속 전극의 우수한 선택도의 구현을 위해 니켈(Ni) 박막 전극을 사용한다.In a dry etching process using an F-based gas as an etching gas, a nickel (Ni) thin film electrode is used to realize excellent selectivity of SiNx, Si, SiON and the like.

그리고, 데이터 라인 건식 에칭, 건식 에칭시 우수한 선택도를 이용하여 4 마스크 공정에 적용될 수 있다. 또한, TFT 또는 반도체 공정에서 우수한 전기 전도도와 오옴 접촉, 우수한 선택도를 갖는 대체 전극 물질로 사용될 수 있다. In addition, the data line may be applied to a four mask process using excellent selectivity in dry etching and dry etching. It can also be used as a substitute electrode material with good electrical conductivity, ohmic contact, and good selectivity in TFT or semiconductor processes.

상기한 바와 같이, 본 발명은 건식 에칭시 에칭 마진과 최적의 에칭 비법을 확보함으로써, 공정 기술의 축적, 생산율등 다양한 효과를 얻을 수 있고, 4 마스크 공정에서 우수한 에칭 공정 마진의 확보가 가능한 효과가 있다.As described above, according to the present invention, by securing the etching margin and the optimal etching method in dry etching, various effects such as accumulation and production rate of the process technology can be obtained, and the effect of securing excellent etching process margin in the four mask process is obtained. have.

그리고, 본 발명은 반도체 공정에서 SF6 를 에칭 가스로 사용하는 공정에서 Ni/Al/Ni 박막 전극을 사용함으로써 매우 우수한 선택도와 전기 전도도를 얻을 수 있고, 반도체 공정에서 실리콘/금속 전극의 계면 특성의 향상과 저저항의 전극의 구현을 위하여 사용될 수 있는 효과가 있다.In addition, the present invention can obtain very good selectivity and electrical conductivity by using Ni / Al / Ni thin film electrode in the process using SF 6 as the etching gas in the semiconductor process, and the interface characteristics of the silicon / metal electrode in the semiconductor process There is an effect that can be used for the improvement and implementation of low resistance electrodes.

Claims (6)

기판 상에 게이트 금속을 퇴적하고 패터닝하여 게이트 전극을 하는 단계,Depositing and patterning a gate metal on the substrate to form a gate electrode, 상기 기판 상에 게이트 전극을 덮도록 게이트 절연막을 형성하고 상기 게이트 절연막 상에 불순물이 도핑되지 않은 비정질 실리콘과 불순물이 도핑된 비정질 실리콘으로 구성된 활성화층을 적층하고 상기 게이트 전극과 대응하는 부분이 잔류하도록 사진 인쇄 및 에칭에 의해 패터닝하여 채널층과 반도체층을 형성하는 단계,A gate insulating film is formed on the substrate to cover the gate electrode, and an activation layer composed of amorphous silicon not doped with impurities and amorphous silicon doped with impurities is stacked on the gate insulating film, and a portion corresponding to the gate electrode remains. Patterning by photo printing and etching to form a channel layer and a semiconductor layer, 상기 게이트 절연막 상에 상기 반도체층과 접촉되며 상층 및 하층에 니켈을 포함하는 다층의 소스/드레인 금속을 증착하고 패터닝하여 소스/드레인 전극을 형성하는 단계,Depositing and patterning a plurality of source / drain metals including nickel on and in contact with the semiconductor layer on the gate insulating layer, thereby forming source / drain electrodes; 상기 게이트 절연막 상에 실리콘질화물로 구성된 불활성화층을 상기 소스/드레인 전극을 덮도록 증착하고 패터닝하여 상기 드레인 전극을 노출시키는 접촉홀을 형성하는 단계,Depositing and patterning an inactivation layer made of silicon nitride to cover the source / drain electrodes on the gate insulating layer to form a contact hole exposing the drain electrode; 상기 불활성화층 상에 상기 접촉홀을 통해 상기 드레인 전극과 접촉되게 ITO막을 증착하고 패터닝하여 화소전극을 형성하는 단계,Depositing and patterning an ITO film on the inactivation layer to be in contact with the drain electrode through the contact hole to form a pixel electrode; 최종 어닐링을 300℃ 정도의 온도로 수행하여 상기 소스/드레인 전극을 이루는 상기 하층의 니켈과 상기 반도체층 사이에 오옴 접촉을 이루도록 실리사이드층을 형성하는 단계를 포함하는 박막 트랜지스터의 제조 방법.And performing a final annealing at a temperature of about 300 ° C. to form a silicide layer to form ohmic contact between the lower layer of nickel forming the source / drain electrode and the semiconductor layer. 제1항에 있어서, 상기 게이트 금속으로 니켈/알루미늄/니켈(Ni/Al/Ni) 또는 알루미늄/니켈(Al/Ni) 이 사용되는 박막 트랜지스터의 제조 방법.The method of claim 1, wherein nickel / aluminum / nickel (Ni / Al / Ni) or aluminum / nickel (Al / Ni) is used as the gate metal. 제1항에 있어서, 상기 소스/드레인 금속을 상온 50℃에서 습식 에칭이나 Cl 계열의 가스를 사용한 건식 에칭하여 패터닝하는 박막 트랜지스터의 제조 방법.The method of claim 1, wherein the source / drain metal is wet-etched or dry-etched and patterned using a Cl-based gas at room temperature of 50 ° C. 3. 제1항에 있어서, 상기 불활성화층에 접촉홀을 형성할 때 소스 가스로 SF6를 포함하는 식각 가스로 에칭하는 박막 트랜지스터의 제조 방법. The method of claim 1, wherein when the contact hole is formed in the passivation layer, the thin film transistor is etched with an etching gas including SF 6 as a source gas. 삭제delete 삭제delete
KR1020000029772A 2000-05-31 2000-05-31 Method for fabricating tft KR100658057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000029772A KR100658057B1 (en) 2000-05-31 2000-05-31 Method for fabricating tft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000029772A KR100658057B1 (en) 2000-05-31 2000-05-31 Method for fabricating tft

Publications (2)

Publication Number Publication Date
KR20010108833A KR20010108833A (en) 2001-12-08
KR100658057B1 true KR100658057B1 (en) 2006-12-15

Family

ID=41756100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000029772A KR100658057B1 (en) 2000-05-31 2000-05-31 Method for fabricating tft

Country Status (1)

Country Link
KR (1) KR100658057B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927585B1 (en) * 2008-03-05 2009-11-23 삼성모바일디스플레이주식회사 Organic light emitting display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217422A (en) * 1988-02-26 1989-08-31 Seikosha Co Ltd Amorphous silicon thin film transistor array substrate
JPH0456136A (en) * 1990-06-22 1992-02-24 Nippon Telegr & Teleph Corp <Ntt> Forming method of thin film for wiring
JP2000101091A (en) * 1998-09-28 2000-04-07 Sharp Corp Thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217422A (en) * 1988-02-26 1989-08-31 Seikosha Co Ltd Amorphous silicon thin film transistor array substrate
JP2740813B2 (en) * 1988-02-26 1998-04-15 セイコープレシジョン株式会社 Amorphous silicon thin film transistor array substrate
JPH0456136A (en) * 1990-06-22 1992-02-24 Nippon Telegr & Teleph Corp <Ntt> Forming method of thin film for wiring
JP2000101091A (en) * 1998-09-28 2000-04-07 Sharp Corp Thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927585B1 (en) * 2008-03-05 2009-11-23 삼성모바일디스플레이주식회사 Organic light emitting display

Also Published As

Publication number Publication date
KR20010108833A (en) 2001-12-08

Similar Documents

Publication Publication Date Title
KR100225098B1 (en) Method of fabrication of thin transistor
US6329672B1 (en) Thin film transistor having a second gate metal layer preventing formation of hillocks
CN109065551B (en) Manufacturing method of TFT array substrate and TFT array substrate
US5751020A (en) Structure of a liquid crystal display unit having exposed channel region
KR20070012081A (en) Method for manufacturing thin film transistor substrate
JP5917015B2 (en) Method for manufacturing thin film transistor array panel
US20210074742A1 (en) Manufacturing method of array substrate and array substrate
JP5679397B2 (en) Method for manufacturing thin film transistor substrate
US7125756B2 (en) Method for fabricating liquid crystal display device
KR100807580B1 (en) Fabricating method of liquid crystal display
KR20110058356A (en) Array substrate and method of fabricating the same
KR100658057B1 (en) Method for fabricating tft
KR100648214B1 (en) Method of manufacturing tft-lcd
JP3358284B2 (en) Method for manufacturing thin film transistor
KR102035004B1 (en) Array substrate for liquid crystal display device and method of fabricating the same
KR100637059B1 (en) Method of Fabricating Liquid Crystal Display Device
CN110600424B (en) Array substrate preparation method and array substrate
KR100696264B1 (en) Method of Fabricating Thin Film Transistor
KR100678730B1 (en) Method for obtaining margin of etching process
KR100242946B1 (en) Thin-flim transistor and manufacturing method thereof
KR100646170B1 (en) Method of Fabricating Thin Film Transistor
KR20040046384A (en) Liquid Crystal Display and fabrication method of thereof
KR100254924B1 (en) Method of fabricating image display device
KR0172880B1 (en) Method of manufacturing liquid crystal display device
KR950003942B1 (en) Method of manufacturing thin film transistor for lcd

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151116

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171116

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 13