KR100483482B1 - Method for manufacturing the nano powder of autimony oxides - Google Patents

Method for manufacturing the nano powder of autimony oxides Download PDF

Info

Publication number
KR100483482B1
KR100483482B1 KR10-2001-0051372A KR20010051372A KR100483482B1 KR 100483482 B1 KR100483482 B1 KR 100483482B1 KR 20010051372 A KR20010051372 A KR 20010051372A KR 100483482 B1 KR100483482 B1 KR 100483482B1
Authority
KR
South Korea
Prior art keywords
antimony
antimony pentoxide
suspension
antimony trioxide
pentoxide
Prior art date
Application number
KR10-2001-0051372A
Other languages
Korean (ko)
Other versions
KR20030017197A (en
Inventor
정진일
Original Assignee
일양화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일양화학 주식회사 filed Critical 일양화학 주식회사
Priority to KR10-2001-0051372A priority Critical patent/KR100483482B1/en
Publication of KR20030017197A publication Critical patent/KR20030017197A/en
Application granted granted Critical
Publication of KR100483482B1 publication Critical patent/KR100483482B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 합성수지 등의 소재에 난연제로 첨가되는 오산화안티몬의 제조 방법에 관한 것으로, 반응기 내에 삼산화안티몬 1몰에 대하여 증류수를 2.5∼3몰의 반응비로 투입한 다음 교반기를 이용하여 일정한 회전속도로 혼합시켜 삼산화안티몬의 현탁액을 생성시키는 용해공정; 용해공정에서 생성된 현탁액에 삼산화안티몬 1몰에 대하여 과산화수소수를 2∼3몰의 반응비로 첨가하고 40∼70℃의 온도에서 1∼2시간 동안 반응시켜 오산화안티몬의 현탁액을 생성시키는 발열공정; 발열공정에서 생성된 오산화안티몬의 현탁액을 반응기 내에서 2∼3atm상태를 유지하면서 자연환류를 통해 적어도 1.5∼2시간 동안 냉각시켜 오산화안티몬을 숙성시키는 숙성공정; 숙성공정에서 생성된 오산화안티몬의 숙성물을 건조기 내에 투입한 다음 안정제를 첨가하여 점도조정하면서 0.5∼0.7㎏/㎠의 압력으로 분무하여 오산화안티몬을 분말화시키는 분말제조공정으로 이루어져, 오산화안티몬의 분말입도가 매우 미세하면서도 비중이 낮아 회로기판과 같은 제품의 품질을 고급화시킬 있음은 물론 합성수지와 같은 제품의 난연성을 향상시킬 수 있는 효과가 있다.The present invention relates to a method for producing antimony pentoxide, which is added as a flame retardant to a material such as synthetic resin, and distilled water is added at a reaction rate of 2.5 to 3 moles with respect to 1 mole of antimony trioxide in a reactor and then mixed at a constant rotational speed using a stirrer. Dissolution step of producing a suspension of antimony trioxide; An exothermic step of adding a hydrogen peroxide solution at a reaction ratio of 2-3 mol to 1 mol of antimony trioxide to the suspension produced in the dissolution step and reacting at a temperature of 40-70 ° C. for 1-2 hours to produce a suspension of antimony pentoxide; A aging step of cooling the suspension of the antimony pentoxide generated in the exothermic process for at least 1.5 to 2 hours through natural reflux while maintaining the 2-3 atm state in the reactor; The antimony pentoxide powder is produced by injecting the aging product of the antimony pentoxide produced in the aging process into a dryer and then spraying it at a pressure of 0.5 to 0.7 kg / ㎠ while adjusting the viscosity by adding a stabilizer to powder the antimony pentoxide. Very fine and low specific gravity can improve the quality of products such as circuit boards, as well as improve the flame retardancy of products such as synthetic resins.

Description

오산화안티몬의 나노분말 제조 방법 {Method for manufacturing the nano powder of autimony oxides} Method for manufacturing nano powder of antimony pentoxide {Method for manufacturing the nano powder of autimony oxides}

본 발명은 합성수지 등의 소재에 난연제로 첨가되는 오산화안티몬의 제조 방법에 관한 것으로, 특히 삼산화안티몬에 증류수와 과산화수소수를 첨가한 다음 반응시간과 반응온도를 조절하여 미립상태의 오산화안티몬을 제조시킬 수 있도록 된 오산화안티몬의 나노분말 제조 방법에 관한 것이다. The present invention relates to a method for producing antimony pentoxide, which is added as a flame retardant to materials such as synthetic resins. Particularly, after adding distilled water and hydrogen peroxide to antimony trioxide, the reaction time and reaction temperature can be adjusted to prepare fine antimony pentoxide. The present invention relates to a method for preparing nanopowders of antimony pentoxide.

일반적으로, 현대문명이 발달함에 따라 전자기기 및 각종 소재의 품질이 기능화되면서 이에 대한 난연제의 사용이 급증하고 있다. 특히, 합성수지제나 PVC수지를 모재로하는 신소재에 있어서는 화재예방과 인명보호의 차원에서 난연화가 절실하게 요구되고 있는 실정이다. In general, as modern civilization develops, as the quality of electronic devices and various materials is functionalized, the use of flame retardants is increasing rapidly. In particular, in the case of new materials based on synthetic resins or PVC resins, flame retardancy is urgently required in order to prevent fire and protect people.

종래, 합성수지제 등의 난연제로는 삼산화안티몬이 주로 사용되며 기타 알루미나졸이나 실리카졸 등이 사용되어 왔으나, 이들의 난연효과와 분산성을 보완하기 위한 수단으로 오산화안티몬에 대한 연구가 진행중이다. Conventionally, antimony trioxide is mainly used as a flame retardant such as a synthetic resin, and other alumina sol and silica sol have been used, but researches on antimony pentoxide as a means to supplement their flame retardant effect and dispersibility are underway.

특히, 오산화안티몬의 경우, 비중이 낮으면서도 분말이 매우 미세하여 분산성이 우수하여야만 합성수지나 PVC수지 등의 투명성이나 착색성이나 난연성 등의 특성을 향상시키는 것으로 알려져 있다.In particular, antimony pentoxide is known to improve properties such as transparency, coloration, flame retardancy, etc. of synthetic resins and PVC resins only when the specific gravity is low and the powder is very fine and excellent in dispersibility.

한편, 오산화안티몬의 제조방법으로는, 이온치환법이나 무기산법 등이 개발되어 있는데, 이 중에서 이온치환법은 이온교환과정이 필수적으로 요구되어 제조공정이 복잡하며, 무기산법은 산화안티몬의 분리에 따른 여과세척의 공정이 추가되어 제조비용이 증대되는 문제점이 있었다. On the other hand, as a method for producing antimony pentoxide, an ion substitution method or an inorganic acid method has been developed. Among these, an ion exchange method requires an ion exchange process, which is complicated. There was a problem that the manufacturing cost is increased by the addition of the process of filtration washing.

또한, 일본특허(특개소52-1298호)에 의하면, 삼산화안티몬의 입자를 90∼ 105℃의 온도로 가열한 후 과산화수소수로 반응시켜 오산화안티몬을 제조하는 방법이 제안되어 있지만, 이러한 기술은 삼산화안티몬이 자중에 의해 침강되면서 분산효율이 저하되어 미립자로 형성시키기 곤란한 문제점이 있었다. In addition, Japanese Patent Laid-Open No. 52-1298 proposes a method for producing antimony pentoxide by heating particles of antimony trioxide to a temperature of 90 to 105 ° C. and then reacting with hydrogen peroxide solution. As antimony is precipitated by its own weight, the dispersion efficiency is lowered, which makes it difficult to form fine particles.

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위해 안출된 것으로서, 삼산화안티몬에 증류수와 과산화수소수를 첨가한 다음 반응시간 및 반응온도를 조절하여 초미립자 상태의 오산화안티몬의 분말을 제조시킬 수 있도록 된 오산화안티몬의 나노분말 제조 방법을 제공하는 데에 그 목적이 있다. Thus, the present invention was devised to solve the problems as described above, to add the distilled water and hydrogen peroxide water to the antimony trioxide, and then to control the reaction time and reaction temperature to produce a powder of antimony pentoxide in ultrafine state It is an object of the present invention to provide a method for preparing nanopowders of antimony pentoxide.

상기한 바의 목적을 달성하기 위한 본 발명은 반응기 내에 삼산화안티몬 1몰에 대하여 증류수를 2.5∼3몰의 반응비로 투입한 다음 교반기를 이용하여 일정한 회전속도로 혼합시켜 삼산화안티몬의 현탁액을 생성시키는 용해공정; 용해공정에서 생성된 현탁액에 삼산화안티몬 1몰에 대하여 과산화수소수를 2∼3몰의 반응비로 첨가하고 40∼70℃의 온도에서 1∼2시간 동안 반응시켜 오산화안티몬의 현탁액을 생성시키는 발열공정; 발열공정에서 생성된 오산화안티몬의 현탁액을 반응기 내에서 2∼3atm상태를 유지하면서 자연환류를 통해 적어도 1.5∼2시간 동안 냉각시켜 오산화안티몬을 숙성시키는 숙성공정; 숙성공정에서 생성된 오산화안티몬의 숙성물을 건조기 내에 투입한 다음 안정제를 첨가하여 점도조정하면서 0.5∼0.7㎏/㎠의 압력으로 분무하여 오산화안티몬을 분말화시키는 분말제조공정으로 이루어진 것을 특징으로 한다. The present invention for achieving the above object is to dissolve distilled water in a reaction ratio of 2.5 to 3 moles with respect to 1 mole of antimony trioxide in the reactor and then mixed at a constant rotational speed using a stirrer to produce a suspension of antimony trioxide fair; An exothermic step of adding a hydrogen peroxide solution at a reaction ratio of 2-3 mol to 1 mol of antimony trioxide to the suspension produced in the dissolution step and reacting at a temperature of 40-70 ° C. for 1-2 hours to produce a suspension of antimony pentoxide; A aging step of cooling the suspension of the antimony pentoxide generated in the exothermic process for at least 1.5 to 2 hours through natural reflux while maintaining the 2-3 atm state in the reactor; After the aging of the antimony pentoxide produced in the aging process is added to the dryer, and stabilized by adding a stabilizer and spraying at a pressure of 0.5 ~ 0.7 ㎏ / ㎠ to powder the antimony pentoxide is characterized in that the powder manufacturing process consisting of.

이하, 본 발명에 따른 실시예를 첨부된 예시도면을 참고로하여 상세하게 설명하면 다음과 같다.Hereinafter, an embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 오산화안티몬의 나노분말 제조공정을 도시한 공정도로서, 반응기 내에 삼산화안티몬 1몰에 대하여 증류수를 2.5∼3몰의 반응비로 투입한 다음 교반기를 이용하여 일정한 회전속도로 혼합시켜 삼산화안티몬의 현탁액을 생성시키는 용해공정; 용해공정에서 생성된 현탁액에 삼산화안티몬 1몰에 대하여 과산화수소수를 2∼3몰의 반응비로 첨가하고 40∼70℃의 온도에서 1∼2시간 동안 반응시켜 오산화안티몬의 현탁액을 생성시키는 발열공정; 발열공정에서 생성된 오산화안티몬의 현탁액을 반응기 내에서 2∼3atm상태를 유지하면서 자연환류를 통해 적어도 1.5∼2시간 동안 냉각시켜 오산화안티몬을 숙성시키는 숙성공정; 숙성공정에서 생성된 오산화안티몬의 숙성물을 건조기 내에 투입한 다음 안정제를 첨가하여 점도조정하면서 0.5∼0.7㎏/㎠의 압력으로 분무하여 오산화안티몬을 분말화시키는 분말제조공정으로 이루어진 것을 특징으로 한다. 1 is a process chart showing a process for producing nanoparticles of antimony pentoxide in accordance with the present invention, distilled water is added in a reactor with a reaction ratio of 2.5 to 3 moles with respect to 1 mole of antimony trioxide in a reactor and then mixed at a constant rotation speed using an agitator A dissolution step of producing a suspension of antimony trioxide; An exothermic step of adding a hydrogen peroxide solution at a reaction ratio of 2-3 mol to 1 mol of antimony trioxide to the suspension produced in the dissolution step and reacting at a temperature of 40-70 ° C. for 1-2 hours to produce a suspension of antimony pentoxide; A aging step of cooling the suspension of the antimony pentoxide generated in the exothermic process for at least 1.5 to 2 hours through natural reflux while maintaining the 2-3 atm state in the reactor; After the aging of the antimony pentoxide produced in the aging process is added to the dryer, and stabilized by adding a stabilizer and spraying at a pressure of 0.5 ~ 0.7 ㎏ / ㎠ to powder the antimony pentoxide is characterized in that the powder manufacturing process consisting of.

여기서, 본 발명에서 사용되는 주원료인 삼산화안티몬은 99.65%이상의 고순도를 유지함과 동시에 그 입도가 0.4∼0.5 ㎛인 것을 사용하였으며, 산화제로 투입되는 과산화수소수는 순도 35%정도 이상인 것을 사용하였고, 반응기의 내부온도를 규정치에 ±3℃ 이내로 유지되게 하였다. Here, the antimony trioxide, which is the main raw material used in the present invention, maintained a high purity of 99.65% or more, and used a particle size of 0.4 to 0.5 μm, and hydrogen peroxide introduced into the oxidant used a purity of about 35% or more. The internal temperature was kept within ± 3 ° C of the specified value.

또한, 오산화안티몬의 제조장치, 즉 반응기는 파이렉스유리(pyrex glass)로 성형된 것으로서, 그 몸체에 산화제가 투입되는 펀넬(funnel), 수용액의 증발을 위한 냉각기, 임펠러가 구비된 교반기, 온도측정을 위한 더미스터(thermister), 반응온도의 조절을 위한 히팅장치 등이 구비된다. In addition, the production apparatus of the antimony pentoxide, that is, the reactor is formed of pyrex glass (funre), the funnel (oxidizer) is injected into the body (funnel), a cooler for evaporation of an aqueous solution, a stirrer equipped with an impeller, temperature measurement There is a dummy (thermister), a heating device for controlling the reaction temperature and the like.

[실시예] EXAMPLE

먼저, 반응기(미도시)에 펀넬과 냉각기와 교반기와 더미스터와 히팅장치 등을 설치한 상태에서, 표 1과 같이 삼산화안티몬 5㎏과 증류수 12.5ℓ를 비율로 첨가하고, 교반기를 이용하여 일정한 회전속도로 혼합하면서 현탁액상태(슬러리상태)의 삼산화안티몬을 제조하였다. First, with funnel, cooler, stirrer, dummyster, heating device, etc. installed in a reactor (not shown), 5 kg of antimony trioxide and 12.5 L of distilled water are added at a ratio as shown in Table 1, and a fixed rotation is performed using a stirrer. Suspension (slurry) of antimony trioxide was prepared while mixing at a speed.

이때, 교반기의 회전속도는 50 ~ 100RPM이 바람직하나, 이러한 회전속도는 증감이 가능하다.At this time, the rotational speed of the stirrer is preferably 50 ~ 100RPM, this rotational speed can be increased or decreased.

아울러 삼산화안티몬과 증류수를 1:2.5∼3의 반응비로 첨가한 이유는 증류수를 규정치 이하로 첨가하는 경우 최종생성물의 생성에 따른 가열온도가 상승되어 수율이 저하되며, 반면에 증류수를 규정치 이상으로 경우 현탁액의 생성에 따른 시간이 지연되어 작업시간이 증대되기 때문이다. In addition, the reason for adding antimony trioxide and distilled water in a reaction ratio of 1: 2.5 to 3 is that when the distilled water is added below the prescribed value, the heating temperature is increased due to the formation of the final product, and the yield is lowered. This is because the time due to the production of the suspension is delayed and the working time is increased.

[표 1] TABLE 1

조 성Furtherance 산 화 제Oxidizer 삼산화안티몬Antimony trioxide 증류수Distilled water 과산화수소수Hydrogen peroxide amount 5kg5 kg 12.5ℓ12.5ℓ 5ℓ5ℓ Wt%Wt% 28.628.6 71.471.4 삼산화안티몬:3molAntimony trioxide: 3 mol

그런 다음. 반응기에 설치된 히팅장치를 작동하여 내부온도를 40∼70℃의 온도범위로 세팅시킨 다음, 반응기 내로 산화제인 과산화수소수를 5ℓ의 범위로 단계적으로 첨가하면서 반응시키고 1.5∼2시간 동안 유지시킨 결과, 현탁액상태의 중간물질이 형성되었다. after that. The heating device installed in the reactor was operated to set the internal temperature to a temperature range of 40 to 70 ° C., followed by stepwise addition of hydrogen peroxide, an oxidizing agent, into the reactor in a range of 5 L and maintained for 1.5 to 2 hours. An intermediate of state was formed.

이때, 삼산화안티몬과 과산화수소수를 1:2∼3의 반응비로 첨가한 이유는 과산화수소수를 규정치 이상으로 첨가한 경우 중간물질이 우유빛으로 변하여 현탁액의 특성이 저하되는 반면, 과산화수소수를 규정치 이하로 첨가한 경우 현탁액이 끓는 현상이 발생되어 수율이 저하되기 때문이다. At this time, the reason why the addition of antimony trioxide and hydrogen peroxide at a reaction ratio of 1: 2 to 3 is that when the hydrogen peroxide solution is added above the prescribed value, the intermediate material turns milky and the suspension properties are deteriorated, while the hydrogen peroxide solution is below the prescribed value. This is because when added, the suspension is boiled and the yield is lowered.

또한, 반응기의 내부온도를 40∼70℃의 온도범위로 유지시킨 이유는, 40℃이하의 온도에서는 오산화안티몬이 거의 생성되지 않는 반면, 70℃이상의 온도에서는 현탁액이 끓어 반응계의 압력이 상승되므로 이후의 성숙공정에서 많은 시간이 필요하기 때문이다. In addition, the reason why the internal temperature of the reactor was maintained in the temperature range of 40 to 70 ° C. is that almost no antimony pentoxide is produced at the temperature below 40 ° C., while the suspension boils at a temperature above 70 ° C., thereby increasing the pressure in the reaction system. This is because a large amount of time is required in the maturation process.

또한, 삼산화안티몬과 과산화수소수의 반응시간을 1.5∼2시간 동안 유지시킨 이유는 반응시간을 1.5∼2시간으로 유지한 결과 현탁액의 입도가 매우 미세해졌기 때문이며, 이는 반응시간이 오산화안티몬의 입도와 용해물(수분)의 감소에 영향을 미치는 것으로 해석된다. The reason why the reaction time of antimony trioxide and hydrogen peroxide solution was maintained for 1.5 to 2 hours was because the particle size of the suspension became very fine as a result of maintaining the reaction time at 1.5 to 2 hours. It is interpreted to affect the reduction of lysate (water).

따라서, 삼산화안티몬과 과산화수소수의 반응과정에서, 오산화안티몬은 입도의 미세화 측면에서 반응기의 내부온도와 반응시간이 중요함을 알 수 있다. Therefore, in the reaction process of antimony trioxide and hydrogen peroxide, it can be seen that the internal temperature of the reactor and the reaction time are important in terms of miniaturization of antimony pentoxide.

이어서, 삼산화안티몬에 과산화수소수를 첨가한 후 30∼40분 정도의 시간이 경과되는 경우 발열반응으로 인해 90℃정도의 온도로 상승되었고, 이때 삼산화안티몬의 현탁액이 연노란색으로 변하면서 오산화안티몬의 현탁액이 생성되었는데, 그 조성은 표 2에 도시한 바와 같다. Subsequently, after 30-40 minutes of addition of hydrogen peroxide solution to the antimony trioxide, the temperature rose to about 90 ° C. due to the exothermic reaction, and the suspension of antimony trioxide turned pale yellow to a suspension of antimony pentoxide. Was produced, the composition of which is shown in Table 2.

이때, 삼산화안티몬과 과산화수소수의 반응과정에서 오산화안티몬이 생성되는 이유는, (식 1)과 같은 결합식에 의해, 삼산화안티몬와 과산화수소수가 반응하여 오산화안티몬과 수분을 형성시키기 때문이다. At this time, the reason why antimony pentoxide is generated in the reaction process of antimony trioxide and hydrogen peroxide is because the antimony trioxide and hydrogen peroxide react to form antimony pentoxide and water by a binding formula as shown in Equation (1).

(식 1): Sb2O3 + 2H2O2 ――→Sb2O5 + 2H2O(Formula 1): Sb 2 O 3 + 2H 2 O 2 ― → Sb 2 O 5 + 2H 2 O

그런 다음, 오산화안티몬의 현탁액을 반응기 내에서 2∼3atm상태를 유지하면서 자연환류를 통해 적어도 1.5∼2시간 동안 냉각시켜 오산화안티몬을 숙성시킨 결과 졸상태의 오산화안티몬이 생성되었다. Then, the suspension of the antimony pentoxide was cooled for at least 1.5 to 2 hours through natural reflux while maintaining a 2-3 atm state in the reactor to mature antimony pentoxide, resulting in a sol-type antimony pentoxide.

[표 2]TABLE 2

함수율(%)Moisture content (%) PHPH 오산화안티몬(%)Antimony pentoxide (%) 밀도(g/㎤)Density (g / cm 3) 입도(㎛)Particle size (㎛) 61.661.6 4.314.31 38.438.4 3.703.70 0.190.19

한편, 삼산화안티몬의 현탁액과 과산화수소수가 반응하는 과정에서 최종생성물의 입도를 조절하고자 하는 경우, 과산화수소수의 투입량을 단계적으로 실시하여 조절시킬 수 있는데, 이는 삼산화안티먼과 과산화수소수의 발열반응이 지속적으로 발생되어 반응온도의 조절이 가능하기 때문이다. On the other hand, in the case of controlling the particle size of the final product in the course of the reaction of the suspension of antimony trioxide and hydrogen peroxide, it can be controlled by the step of the dosage of hydrogen peroxide, which is exothermic reaction of antimony trioxide and hydrogen peroxide continuously This is because the reaction temperature can be controlled.

또한, 삼산화안티몬과 과산화수소수의 반응시간을 조절하여 최종생성물의 입도를 조절할 수 있는데, 이는 삼산화안티몬에서 오산화안티몬으로 전이되는 과정에서 입자의 붕괴가 발생되기 때문인 것으로 해석된다. In addition, the particle size of the final product can be controlled by adjusting the reaction time of antimony trioxide and hydrogen peroxide solution, which may be interpreted as the breakdown of particles during the transition from antimony trioxide to antimony pentoxide.

한편, 반응기에서 숙성되어진 오산화안티몬을 건조기(Two fluid nozzle type, 입구온도: 250∼270℃, 출구온도: 110∼120℃)로 투입하여 0.5∼0.7㎏/㎠의 압력으로 분무시킨 결과, 볼밀 등과 같은 분쇄장치를 이용하지 않고서도 고순도의 오산화안티몬의 나노분말을 얻을 수 있다. Meanwhile, antimony pentoxide matured in the reactor was introduced into a dryer (Two fluid nozzle type, inlet temperature: 250 to 270 ° C, outlet temperature: 110 to 120 ° C), and sprayed at a pressure of 0.5 to 0.7 kg / cm 2. It is possible to obtain nanoparticles of high purity antimony pentoxide without using the same grinding device.

이때, 건조기 내로 투입되는 오산화안티몬의 입도를 조절하고자 하는 경우에는 안정제로서 아민류를 포함하는 유기염류 또는 수산화나트륨을 포함하는 무기염류를 투입함이 바람직하다. At this time, in order to control the particle size of the antimony pentoxide introduced into the dryer, it is preferable to add an organic salt containing amines or an inorganic salt containing sodium hydroxide as a stabilizer.

물론, 오산화안티몬에 투입되는 안정제는 촉매역할을 하여 반응시간을 단축시킬 수 있으면서도 현탁액의 보관성을 높이고 최종생성물의 입도를 감소시키는 역할을 수행하는 것으로 알려져 있다. Of course, the stabilizer added to the antimony pentoxide is known to play a role of reducing the reaction time while reducing the particle size of the final product while acting as a catalyst to shorten the reaction time.

또한, 아민류에는 에틸아민(Ethyl amine)과 뷰틸아민(Buthyl amine)과 트리에틸아민(Triethyl amine) 등의 알킬아민(Alkyl amine)과, 모노에탄올아민(Mono- ethanol amine)과 디에탄올아민(Di-ethanol amine)과 트리에탄올아민(Tri-ethanol amine) 등의 알카놀아민(Alkanol amine)과, 트리에틸아민+인산 등의 알카놀아민염 (Alkanol amine salt)이 있다. In addition, amines include ethyl amine, alkyl amine such as butyl amine and triethyl amine, monoethanol amine and diethanol amine. Alkanol amines such as -ethanol amine and Tri-ethanol amine, and alkanol amine salts such as triethylamine and phosphoric acid.

[표 3]TABLE 3

내용Contents 오산화안티몬(%)Antimony pentoxide (%) P HP H 침적비중(B/D)Deposition weight (B / D) 입도(㎛)Particle size (㎛) 색 상color LL aa bb 결과result 79.1679.16 4.654.65 1.175∼1.2751.175-1.275 4.564.56 99.2399.23 -0.18-0.18 +0.39+0.39 98.8598.85 -0.23-0.23 +0.85+0.85

한편, 건조기에 의해 오산화안티몬의 숙성액에 포함된 수분이 제거된 오산화안티몬분말의 분말은 표 3에 도시한 바와 같이, 약산성(PH:4.65)을 띠면서도 침적비중(1.175∼1.275)이 낮음은 물론 입도(4.56)가 미세하므로, 난연성을 향상시키기 위한 모든 조건이 충족되는 것이다.Meanwhile, as shown in Table 3, the powder of the antimony pentoxide powder from which the moisture contained in the aging solution of the antimony pentoxide is removed by the dryer has a low acidity (PH: 4.65) and low deposition specific gravity (1.175 to 1.275). Of course, since the particle size (4.56) is fine, all the conditions for improving the flame retardancy is satisfied.

이상에서 설명한 바와 같이 본 발명에 따른 오산화안티몬의 나노분말 제조 방법에 의하면, 삼산화안티몬에 증류수와 과산화수소수를 첨가한 다음 반응시간 및 반응온도를 조절하여 오산화안티몬으로 제조시키므로 오산화안티몬 분말의 제조에 따른 작업공수가 단순화되어 제반 부대비용이 절감될 뿐만 아니라, 오산화안티몬의 분말입도가 미세하면서도 침적비중이 낮아 회로기판과 같은 제품의 품질을 고급화시킬 있음은 물론 합성수지 제품의 난연성을 향상시킬 수 있는 효과가 있다. As described above, according to the method for preparing nanoparticles of antimony pentoxide according to the present invention, since distilled water and hydrogen peroxide solution are added to antimony trioxide, the reaction time and reaction temperature are adjusted to produce antimony pentoxide, according to the preparation of antimony pentoxide powder. Not only does the work man-hours be simplified, but the additional costs are reduced, and the particle size of the antimony pentoxide is low and the deposition weight is low, which not only improves the quality of products such as circuit boards, but also improves the flame retardancy of synthetic resin products. have.

도 1은 본 발명에 따른 오산화안티몬의 나노분말 제조공정을 도시한 공정도.1 is a process chart showing a nano powder manufacturing process of antimony pentoxide in accordance with the present invention.

Claims (3)

반응기 내에 투입된 삼산화안티몬에 증류수를 첨가하여 삼산화안티몬 현탁액을 생성시키는 용해공정과; 이 삼산화안티몬 현탁액에 과산화수소수를 첨가하여 오산화안티몬 현탁액을 생성시키는 발열공정 및; 이 오산화안티몬 현탁액을 자연환류를 통해 냉각하여 오산화안니몬을 숙성시키는 숙성공정으로 이루어진 오산화안티몬의 제조방법에 있어서, A dissolution step of adding distilled water to the antimony trioxide introduced into the reactor to produce an antimony trioxide suspension; An exothermic step of adding hydrogen peroxide solution to the antimony trioxide suspension to produce an antimony pentoxide suspension; In the manufacturing method of antimony pentoxide which consists of a maturation process which cools this antimony pentoxide suspension through natural reflux and matures antimony pentoxide, 상기 용해공정에서 삼산화안티몬 1몰에 2.5∼3몰의 반응비로 증류수를 첨가하고 교반시키며, 상기 발열공정에서 삼산화안티몬 현탁액 1몰에 2∼3몰의 반응비로 과산화수소수를 첨가하고 40∼70℃로 1∼2시간 반응시키되, In the dissolving step, distilled water is added and stirred at a reaction ratio of 2.5 to 3 moles to 1 mole of antimony trioxide, and hydrogen peroxide solution is added to a molar ratio of 2-3 moles to 1 mole of antimony trioxide suspension in the exothermic step, and then at 40 to 70 ° C. Allowed to react for 1-2 hours, 상기 숙성공정에서 생성된 오산화안티몬 숙성물을 건조기에 투입하고 안정제를 첨가하여 점도조정하고 0.5∼07㎏/㎠의 압력으로 분무하여 오산화안티몬을 미세화시키는 분말제조공정을 더 포함하며, The method further includes a powder manufacturing step of adding the antimony pentoxide produced in the aging process to a dryer, adding a stabilizer to adjust the viscosity, and spraying at a pressure of 0.5 to 07 kg / cm 2 to refine the antimony pentoxide. 상기 건조기는 그 입구온도가 250∼270℃로 유지되면서 그 출구온도가 110∼120℃로 유지되며, 상기 안정제는 아민류를 포함하는 유기염류 또는 수산화나트륨을 포함하는 무기염류인 것을 특징으로 하는 오산화안티몬의 나노분말 제조 방법. The dryer is maintained at the inlet temperature of 250 ~ 270 ℃ and the outlet temperature of 110 ~ 120 ℃, the stabilizer is an organic salt containing amines or inorganic salts containing sodium hydroxide antimony pentoxide, characterized in that Nano powder manufacturing method. 삭제delete 삭제delete
KR10-2001-0051372A 2001-08-24 2001-08-24 Method for manufacturing the nano powder of autimony oxides KR100483482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0051372A KR100483482B1 (en) 2001-08-24 2001-08-24 Method for manufacturing the nano powder of autimony oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0051372A KR100483482B1 (en) 2001-08-24 2001-08-24 Method for manufacturing the nano powder of autimony oxides

Publications (2)

Publication Number Publication Date
KR20030017197A KR20030017197A (en) 2003-03-03
KR100483482B1 true KR100483482B1 (en) 2005-04-15

Family

ID=27720768

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0051372A KR100483482B1 (en) 2001-08-24 2001-08-24 Method for manufacturing the nano powder of autimony oxides

Country Status (1)

Country Link
KR (1) KR100483482B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145001B1 (en) * 2009-02-06 2012-05-11 연세대학교 산학협력단 Method of fabricating oxide nano-structure using sol-gel process and porous nano template

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026819A (en) * 1976-04-09 1977-05-31 N L Industries, Inc. Production of hydrous pentavalent antimony oxide sol composition, dry powder prepared therefrom, and production of said dry powder
JPS62153123A (en) * 1985-12-26 1987-07-08 Toppan Printing Co Ltd Synthesis of antimonic acid
JPS63285120A (en) * 1987-05-19 1988-11-22 Sumitomo Metal Mining Co Ltd Electroconductive composite powder and its production
JPH02180717A (en) * 1988-12-28 1990-07-13 Catalysts & Chem Ind Co Ltd Antomony oxide sol and its production
US5213785A (en) * 1991-10-21 1993-05-25 Phillips Petroleum Company Continuous antimony pentoxide production
KR960010527A (en) * 1994-09-07 1996-04-20 김유채 Method for preparing hydrated antimony pentoxide
KR19990034331A (en) * 1997-10-29 1999-05-15 채영훈 Method of manufacturing antimony pentoxide
KR20010072724A (en) * 1998-08-19 2001-07-31 그래햄 이. 테일러 Process for preparing nanosize metal oxide powders

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026819A (en) * 1976-04-09 1977-05-31 N L Industries, Inc. Production of hydrous pentavalent antimony oxide sol composition, dry powder prepared therefrom, and production of said dry powder
JPS62153123A (en) * 1985-12-26 1987-07-08 Toppan Printing Co Ltd Synthesis of antimonic acid
JPS63285120A (en) * 1987-05-19 1988-11-22 Sumitomo Metal Mining Co Ltd Electroconductive composite powder and its production
JPH02180717A (en) * 1988-12-28 1990-07-13 Catalysts & Chem Ind Co Ltd Antomony oxide sol and its production
US5213785A (en) * 1991-10-21 1993-05-25 Phillips Petroleum Company Continuous antimony pentoxide production
KR960010527A (en) * 1994-09-07 1996-04-20 김유채 Method for preparing hydrated antimony pentoxide
KR19990034331A (en) * 1997-10-29 1999-05-15 채영훈 Method of manufacturing antimony pentoxide
KR20010072724A (en) * 1998-08-19 2001-07-31 그래햄 이. 테일러 Process for preparing nanosize metal oxide powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145001B1 (en) * 2009-02-06 2012-05-11 연세대학교 산학협력단 Method of fabricating oxide nano-structure using sol-gel process and porous nano template

Also Published As

Publication number Publication date
KR20030017197A (en) 2003-03-03

Similar Documents

Publication Publication Date Title
EP3487829B1 (en) Process for the production of geopolymer or geopolymer composite
KR101194621B1 (en) Process for producing antimony pentaoxide
KR20070044817A (en) A method for producing iron oxide nano particles
EP3398908B1 (en) Method for producing synthetic hectorite at low temperature and under atmospheric pressure
US20120172594A1 (en) Process for the Synthesis of Melamine Cyanurate in Lamellar Crystalline Shape with High Purity and Flowability
WO2013012201A2 (en) Method for manufacturing a porous alumina
CN109437258A (en) A kind of heat-conducting plastic special magnesium oxide raw powder's production technology
KR20080080350A (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
KR20100095592A (en) Process for preparing silicon dioxide dispersions
CN101591033A (en) A kind of preparing calcium carbonate powder
KR100483482B1 (en) Method for manufacturing the nano powder of autimony oxides
KR20080084720A (en) Method for preparing cerium carbonate powder using urea
CN114853049B (en) Preparation method of high-stability nano calcium carbonate
CN104693483A (en) Preparation method of high-dispersibility melamine pyrophosphate fire retardant
EP3438050B1 (en) Near-infrared absorbing white material and preparation method thereof
KR100460447B1 (en) Process for preparing an amorphous aluminosilicate
KR0152972B1 (en) Method of calcium carbonate
KR100236610B1 (en) Antimony pentoxide production
JPH10287415A (en) Production of highly pure spherical silica
KR100196465B1 (en) Manufacturing method of alumina sol
CN107555458A (en) A kind of method that metastable state vaterite calcium carbonate is prepared based on calcium ethoxide method
CN111620348B (en) Preparation method of sodium silicate for nano silicon dioxide
KR102005857B1 (en) Manufacturing method of sodium hexa Hydroxy antimonate
KR102229815B1 (en) Manufacturing method of porous silica
US4806329A (en) Method of producing granular synthetic silica

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee