JPS62153123A - Synthesis of antimonic acid - Google Patents

Synthesis of antimonic acid

Info

Publication number
JPS62153123A
JPS62153123A JP29710085A JP29710085A JPS62153123A JP S62153123 A JPS62153123 A JP S62153123A JP 29710085 A JP29710085 A JP 29710085A JP 29710085 A JP29710085 A JP 29710085A JP S62153123 A JPS62153123 A JP S62153123A
Authority
JP
Japan
Prior art keywords
antimonic acid
antimony
antimonic
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29710085A
Other languages
Japanese (ja)
Other versions
JPH0662302B2 (en
Inventor
Osahisa Matsudaira
長久 松平
Kanenori Yoshida
吉田 兼紀
Hajime Kashima
肇 鹿島
Ishio Arai
荒井 石男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Toppan Inc
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd, Toppan Printing Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP29710085A priority Critical patent/JPH0662302B2/en
Publication of JPS62153123A publication Critical patent/JPS62153123A/en
Publication of JPH0662302B2 publication Critical patent/JPH0662302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce vitreous antimonic acid, by hydroxylating antimony trioxide under a specific condition and carrying out wet-oxidization of the product in H2O2 to form antimony pentoxide. CONSTITUTION:A reactor furnished with a stirrer and a cooling jacket is charged with 250g of 35% aqueous solution of hydrogen peroxide, 250G of ion-exchange water and 250g of antimony trioxide and the content is thoroughly dispersed by stirring for 60min at 50+ or -20 deg.C. The slurry mixture is cooled, agitated and maintained at 20+ or -2 deg.C for >=24hr to effect hydroxylation reaction and obtain a pudding-like solid. The solid is transferred to a closed reactor furnished with a heater and oxidized at 120 deg.C under a gauge pressure of 1kg/cm<2> for 24hr. The oxidation product is dried at 100 deg.C for 24hr in a box-type hot-air dryer and pulverized in a mortar to obtain vitreous antimonic acid.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガラス質のアンチモン酸な含有スるアンチモ
ン酸の合成法に係わり、用途のひとつとして、エレクト
ロクロミック表示体の固体電解質に用いれば優れた物性
を示すものを合成する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for synthesizing glassy antimonic acid-containing sulfur antimonic acid, and as one of its uses, it can be used as a solid electrolyte of an electrochromic display. It relates to a method for synthesizing products that exhibit excellent physical properties.

(従来の技術) アンチモン酸は無機イオン交換体として、リチケムイオ
ン(Li+)の選択吸着剤やプロトン導電性を利用した
燃料電池、水素分離膜、江しク)aクロミック表示体用
の固体電解質などへの応用が検討されている材料である
(Prior technology) Antimonic acid is used as an inorganic ion exchanger for selective adsorption of lithium ions (Li+), fuel cells that utilize proton conductivity, hydrogen separation membranes, solid electrolytes for chromic displays, etc. This is a material whose application is being considered.

このアンチモン酸は含水の酸化アンチモンとも呼ばれ1
例えば、オルトアンチモン酸(HsSbO4)。
This antimonic acid is also called hydrated antimony oxide.
For example, orthoantimonic acid (HsSbO4).

メタアンチモンa (H5bO3)、ピロアンチモン酸
Metaantimony a (H5bO3), pyroantimonic acid.

別名ニアンチモンe (H4S bz Ot )−三ア
ンチモン酸(HsS b s O+。)などがある。そ
のうち、50’Cで乾燥させたものは5b20s・4H
20に近似し、1原子のアンチモンに1個の水酸基と1
個の自由水が存在することが分って8つ、X線回折によ
ると結晶性のもノl! + (H3Sb305(OH)
s) )3 (I(、Sb、06(OH) +s )の
組成を持ち、これが単位格子となり。
Other names include nianantimony e (H4S bz Ot )-triantimonic acid (HsS b s O+). Among them, those dried at 50'C are 5b20s/4H.
Approximately 20, one atom of antimony has one hydroxyl group and one
It was found that there were 8 free waters, and X-ray diffraction showed that they were crystalline! + (H3Sb305(OH)
s) )3 (I(,Sb,06(OH) +s), which is the unit cell.

14個の交換可能な水素原子を持っていることがわかっ
てSす、良好なプロトン導電性を示し、温度20°CV
CMいてo、oxohmm  といった値をもつことも
知られている。その水は表面や空孔に結合し、その量b
′−調製法により変化する付着水。
S is known to have 14 exchangeable hydrogen atoms, exhibits good proton conductivity, and has a temperature of 20°C.
It is also known that CM has values such as o and oxohmm. The water binds to the surface and pores, and the amount b
′-Adhesive water that changes depending on the preparation method.

水素結合で母体と結合している結合水、及び構造水と呼
ばれるものがあり、その結合の強さは連続的に変化し℃
いぎ、100℃で乾燥したものは5b20.・2H20
に近い組成になる。
There is bound water, which is bound to the parent material through hydrogen bonds, and what is called structural water, and the strength of these bonds changes continuously.
Igi, dried at 100℃ is 5b20.・2H20
The composition is close to that of

以上の化合物は含水の五酸化アンチモンであるが、一般
的にアンチモン酸と言うと、他に含水の三酸化アンチモ
ン6”−あり、オルト亜アンチモン酸(H3Sb03つ
まり5bzOs・乙H20)ピロ亜アンチモン酸(H4
S b t Osすなわち5bfi03・2H20)メ
タ亜アンチモン酸(H2S b 204すなわち5bt
Os・H20)などが知られている。
The above compound is hydrated antimony pentoxide, but when speaking of antimonic acid, there is also hydrated antimony trioxide 6''-, orthoantimonite (H3Sb03 or 5bzOs・OtH20), pyroantimonite. (H4
S b t Os or 5bfi03.2H20) metaantimonite (H2S b 204 or 5bt
Os・H20), etc. are known.

この含水三酸化アンチモンも含水の五酸化アンチモンと
同様にその水の結合の強さが連続的に変化していく。ア
ンチモンの酸化物には五酸化アンチモン、三酸化アンチ
モンのほかに四酸化アンチモン(Sb204)中間酸化
物(S b60H)といつたものが知られており、これ
らの含水物の存在も可能である。
Similar to hydrated antimony pentoxide, the strength of the water bond in this hydrated antimony trioxide changes continuously. In addition to antimony pentoxide and antimony trioxide, antimony oxides such as antimony tetroxide (Sb204) and intermediate oxide (Sb60H) are known, and the presence of hydrated products of these is also possible.

以上のアンチモン酸(含水の酸化アンチモン)には形状
SよびX線回析図形の異なった無定形。
The above antimonic acid (hydrous antimony oxide) is amorphous with different shapes S and X-ray diffraction patterns.

ガラス状?よび結晶性の三種類の状態が存在することが
知られている。これら三種のアンチモン酸の合成は阿部
ら(工業化学雑誌70巻12号1967年PP26〜5
4)によって発表されている。その方法をイ)として示
す。
Glassy? It is known that there are three types of states: The synthesis of these three types of antimonic acids was carried out by Abe et al.
4). The method is shown as a).

(イ)無定形アンチモン酸は、あらかじめ五塩化アンチ
モン3o rnlを、同容の水で加水分解して濃厚溶液
を作成し、その濃厚溶液を2石の水で加水分解し、生成
した沈殿を20〜25°Cで4時間熟成する。沈殿を口
割し遠心分離器(10000rpm )を用い、5℃の
純水で塩素イオンが認められなくなるまで水洗後、約1
年間風乾して得ている。
(a) Amorphous antimonic acid can be obtained by first hydrolyzing 3 o rnl of antimony pentachloride with the same volume of water to create a concentrated solution, then hydrolyzing the concentrated solution with 2 tablespoons of water, and dissolving the resulting precipitate into 20 ml of precipitate. Age for 4 hours at ~25°C. Crack the precipitate, wash it with pure water at 5℃ using a centrifuge (10,000 rpm) until no chlorine ions are observed, and then wash it for about 1 hour.
It has been air-dried for years.

結晶性アンチモン酸は無定形と同様に加水分解して熟成
を50℃で20日間行ない結晶化させる。
Similar to amorphous antimonic acid, crystalline antimonic acid is hydrolyzed and aged at 50° C. for 20 days to crystallize it.

水洗以降は無定形と同じ処理を行なっている。After washing with water, the same treatment as for the amorphous material is performed.

ガラス状アンチモン酸は湿潤状態の水洗した無定形アン
チモン酸を80℃の温湯にすばや(溶解し、シャーレに
薄く流し、扇風機を用いてできるだけ速く乾燥し、さら
に1年間風乾して得ている。
Glassy antimonic acid is obtained by quickly dissolving wet, water-washed amorphous antimonic acid in warm water at 80°C, pouring it thinly into a Petri dish, drying it as quickly as possible using an electric fan, and then air-drying it for one year.

以上三種のアンチモン酸のX線回析図形は第1図のよう
に報告されている。
The X-ray diffraction patterns of the above three types of antimonic acids are reported as shown in Figure 1.

第1図に示すように結晶状のアンチモン酸は回折角14
.8°、28.0°、29.8°、49.2°、5日、
乙のピークを持ち、ガラス質のアンチモン酸は275′
にピークを持つ。又、アモルファス(無定形)はピーク
を示さない。
As shown in Figure 1, crystalline antimonic acid has a diffraction angle of 14
.. 8°, 28.0°, 29.8°, 49.2°, 5th,
Glassy antimonic acid has a peak of 275'
has a peak at Moreover, amorphous (amorphous) does not show a peak.

この外にアンチモン酸の合成法としては沖)へキサヒド
ロキシアンチモン(V)酸カリウムをイオン交換させて
得る方法(L、H,Baetsle’他、J  (no
rg、Nucl、chem、、−639し→硫化アンチ
モンを発煙硝酸によって処理する方法(C,J、Vil
al 1ansらAmer、Mineralo−gis
t、37 982(1952))に)三酸化アンチモン
を過酸化水素中で湿式酸化し水洗、乾燥して得る方法 (小浜ら日本化学会誌五488  (1985)が報告
されている。
In addition to this method, antimonic acid can be synthesized by ion-exchanging potassium hexahydroxyantimonate (Oki) (L, H, Baetsle et al., J (no.
rg, Nucl, chem, -639 → Method of treating antimony sulfide with fuming nitric acid (C, J, Vil
al 1ans et al. Amer, Mineralo-gis
t, 37 982 (1952))) has been reported in which antimony trioxide is wet oxidized in hydrogen peroxide, washed with water, and dried (Obama et al., Journal of the Chemical Society of Japan, 5488 (1985)).

(発明が解決すべき問題点) 以上のような従来のアンチモン酸の合成方法のなかで、
阿部らによって報告されている三標のアンチモン酸の合
成方法は、いずれも−年間も風乾して得るという実験室
的な方法であり、およそ工業的な方法としては現実離れ
しているから採用でさない。また2番目と3番目の方法
も塩素イオン(Ca  )やカリウムイオン(K+)な
どの不純物が混入しやすく、何よりも結晶性のアンチモ
ン酸しか得られないので適当でない。
(Problems to be solved by the invention) Among the conventional methods for synthesizing antimonic acid as described above,
The three standard methods of synthesizing antimonic acid reported by Abe et al. are all laboratory methods in which the product is air-dried for years, which is unrealistic as an industrial method, so they cannot be used. do not have. Moreover, the second and third methods are also unsuitable because impurities such as chlorine ions (Ca) and potassium ions (K+) are likely to be mixed in, and above all, only crystalline antimonic acid can be obtained.

あとひとつ残った。二酸化アンチモンを過酸化水素水に
て湿式酸化する方法は、CA−やに+といった不純物の
含まれないアンチモン酸(゛含水の五酸化アンチモン)
が得られるので都合が良い。しかし残念なことに、この
方法では非常に結晶性の高いアンチモン酸しか得られな
いという事実がある。
One more thing left. The method of wet oxidation of antimony dioxide with hydrogen peroxide is antimonic acid that does not contain impurities such as CA-Gin + (water-containing antimony pentoxide).
It is convenient because you can get Unfortunately, however, this method only yields highly crystalline antimonic acid.

(発明の目的) 本発明は1以上のような従来技術を踏まえ、ガラス質の
アンチモン酸を含有するアンチモン酸を工業的に合成で
きる新規な手段を提供するものである。本発明の他の目
的は1本発明により合成されたアンチモン酸が、エレク
トロクロミック表示装置の固体電解質層の主成分として
用いた時、優れた物性を示すことを明らかにすることに
ある。
(Object of the Invention) The present invention provides a novel means for industrially synthesizing antimonic acid containing glassy antimonic acid based on one or more of the prior art techniques. Another object of the present invention is to demonstrate that antimonic acid synthesized according to the present invention exhibits excellent physical properties when used as a main component of a solid electrolyte layer of an electrochromic display device.

(発明の構成) すなわち1本発明は三酸化アンチモンを過酸化水素水中
で湿式酸化し、含水の五酸化アンチモン(アンチモン酸
)とする合成法に%l、、sて、前記湿式酸化の前反応
として温度22℃以下でのオール化反応な24時間以上
行ない、しかるのち湿式酸化を行tうことを特徴とする
ガラス質のアンチモン酸を含有するアンチモン酸の合成
法である。
(Structure of the Invention) That is, 1. The present invention includes a method for wet-oxidizing antimony trioxide in hydrogen peroxide water to produce water-containing antimony pentoxide (antimonic acid). This is a method for synthesizing antimonic acid containing glassy antimonic acid, which is characterized in that an odorization reaction is carried out at a temperature of 22° C. or lower for 24 hours or more, and then wet oxidation is carried out.

(発明の詳述) 湿式浪化の前反応として行なうオール化反応しま、三酸
化アンチモンに過酸化水素水を添加して長時間攪拌し、
熟成させる過程であり、ヒドロオキシ錯体からOHで橋
かけしたオール錯体を生じる反応を意味する。反応が充
分に進行した状報ではプリン状の固形物を得るのであり
、これを湿式酸化することによりガラス質な含有するア
ンチモン酸が得られる。
(Detailed description of the invention) For the olization reaction, which is carried out as a pre-reaction for wet oxidation, hydrogen peroxide solution is added to antimony trioxide and stirred for a long time.
It is a process of ripening, and refers to a reaction that produces an OH-bridged all complex from a hydroxy complex. When the reaction has proceeded sufficiently, a pudding-like solid is obtained, and by wet oxidation of this, glassy antimonic acid is obtained.

しかしながら、ガラス質のアンチモン酸が得られる頻度
は、オール化反応時の温度が関係し、具体的には22゛
C以下に設定することb″−好ましい。
However, the frequency with which glassy antimonic acid is obtained is related to the temperature during the olization reaction, and specifically, it is preferable to set the temperature to 22°C or less.

三酸化アンチモンのオール化反応は発熱反応であり1通
常の状報では60℃またはそれ以上にも昇温するので1
本発明では反応容器を外部から冷却保温する必妥がある
。また、オール化反応は24時間以上行ない充分に熟成
するのが良く、上限(i特に定めないが、例えば100
時間程度またはそれ以上性なってもさしつかえない。
The olization reaction of antimony trioxide is an exothermic reaction.1 In normal conditions, the temperature rises to 60°C or more.
In the present invention, the reaction vessel must be cooled and kept warm from the outside. In addition, it is recommended that the olization reaction be carried out for 24 hours or more to ensure sufficient ripening, and the upper limit (i is not particularly specified, but for example 100
It is okay if it takes about an hour or more.

また、湿式酸化は、過酸化水素と水が存在する状西で温
度70〜150℃に加温して酸化させる過程であり、オ
ール化反応時に過酸化水素水を添加していた場合には、
これをそのまま酸化剤として用いるのが実際的である。
In addition, wet oxidation is a process in which hydrogen peroxide and water are heated to 70 to 150°C for oxidation, and if hydrogen peroxide is added during the olization reaction,
It is practical to use this directly as an oxidizing agent.

さらに言えば、湿式酸化は1.5気圧以上の回圧化で行
なうのが好ましく、加圧化で反応させることにより、得
られるアンチモン酸の吸油量の値を例えば25以下に減
らすことができる。
Furthermore, the wet oxidation is preferably carried out at a pressure of 1.5 atmospheres or more, and by carrying out the reaction under pressure, the oil absorption value of the obtained antimonic acid can be reduced to, for example, 25 or less.

補足説明すると、吸油量の少ないアンチモン酸(粉末状
)は、少量の樹脂バインダーによって層状に固化でさる
ことを意味するのであり、このアンチモン酸をエレクト
ロクロミック表示装置の固体電解質層に用いた場合、プ
ロトンの導電性を妨げる因子となる樹脂バインダーb′
−少ないが故に。
As a supplementary explanation, antimonic acid (in powder form) with low oil absorption means that it is solidified in a layered form with a small amount of resin binder, and when this antimonic acid is used in the solid electrolyte layer of an electrochromic display device, Resin binder b' which is a factor that hinders proton conductivity
-Because there aren't many.

プロトン導電性が高いという好結果が得られる。A good result of high proton conductivity is obtained.

このような好ましい吸油量の値は、25以下ということ
になる。
Such a preferable oil absorption value is 25 or less.

第2図に後述する比較例Sよび実施例により得られるア
ンチモン酸のX線回析図形を示す。このうち、アンチモ
ン酸B、アンチモン酸Cすなわち。
FIG. 2 shows X-ray diffraction patterns of antimonic acid obtained in Comparative Example S and Examples described later. Among these, antimonic acid B, antimonic acid C, ie.

ガラス質のアンチモン酸の所在を示す回折角27.3゜
のピークを持つアンチモン酸が本発明により得られるの
であり、すでにわかるように1本発明は。
According to the present invention, antimonic acid having a peak at a diffraction angle of 27.3°, which indicates the presence of glassy antimonic acid, can be obtained.

ガラス質のアンチモン酸と結晶質のアン3モン酸が混在
する形で得られる合成法である。27.5゜のピークは
オール化反応の温度依存性があり、反応器に温度上昇が
みられるとガラス質を示すX線回析図形の27.3°の
ピークが少すくすったり、現われなくなる。アン3チモ
ンeAは結晶性のアンチモン酸のみからなるもののX線
回析図形である。
This is a synthesis method that produces a mixture of glassy antimonic acid and crystalline amtrimonic acid. The peak at 27.5° is dependent on the temperature of the olization reaction, and as the temperature rises in the reactor, the peak at 27.3° in the X-ray diffraction pattern, which indicates glassiness, becomes slightly smaller or disappears. . Antimony eA is an X-ray diffraction pattern of a substance consisting only of crystalline antimonic acid.

以下に本発明の実施例を比較例をまじえて述べる。Examples of the present invention will be described below along with comparative examples.

〔比較例〕[Comparative example]

攪拌機、冷却用ジャケットを備えた反応器に55%過酸
化水素水250g、イオン交換水250g。
In a reactor equipped with a stirrer and a cooling jacket, add 250 g of 55% hydrogen peroxide and 250 g of ion-exchanged water.

三酸化アンチモン250gQ入れ、50±2℃で60分
間攪拌しながらよく分散させる。続けて混合スラリー液
を冷却攪拌し、60±2℃に保持しながら、24時間以
上オール化反応を続けたところ、プリン状の固形物を得
た。
Add 250 g of antimony trioxide and disperse well while stirring at 50±2°C for 60 minutes. Subsequently, the mixed slurry liquid was cooled and stirred, and the olization reaction was continued for more than 24 hours while maintaining the temperature at 60±2°C, to obtain a pudding-like solid.

ヒータ付密閉反応器に固形物を移し、120°Cケージ
圧1ky/ff1(反応器内の内圧は2気圧)で24時
間酸化反応し、生15!2$lJを市型熱J虱乾燥礪で
100°C24時間乾燥後乳鉢により製粉し、X線回析
分析ならびに吸油量ケ測定したところ、第2図に示すア
ンチモン酸Aと同様の回折図形が得られ、吸油量は22
.0であった。
The solid material was transferred to a sealed reactor equipped with a heater, and oxidized at 120°C and a cage pressure of 1ky/ff1 (the internal pressure inside the reactor was 2 atm) for 24 hours. After drying at 100°C for 24 hours, it was milled in a mortar and subjected to X-ray diffraction analysis and oil absorption measurements, and a diffraction pattern similar to that of antimonic acid A shown in Figure 2 was obtained, with an oil absorption of 22
.. It was 0.

またオール化反応生成固形物を還流器付セパラブルフラ
スコに移し、常圧のウォーターパス中で100°C12
4時間酸化反応後、熱風乾燥機で100℃24時間乾燥
し、乳鉢により製粉したものをX線回析分析ならびに吸
油量測定したところ第2図に示すアンチモン酸Aと同様
の回折図形が得られ、吸油量は35.0であった。
In addition, the olization reaction product solid was transferred to a separable flask with a reflux device, and heated to 100°C in a water path at normal pressure.
After 4 hours of oxidation reaction, it was dried in a hot air dryer at 100°C for 24 hours, and ground in a mortar. X-ray diffraction analysis and oil absorption measurements showed that a diffraction pattern similar to that of antimonic acid A shown in Figure 2 was obtained. , the oil absorption amount was 35.0.

〔実施例1〕 攪拌機、冷却用ジャケットを備えた反応器に35%過酸
化水素水250,9.イオン交換水250,9゜三酸化
アンチモン250gを入れ、50部2℃で60分間攪拌
しながらよく分散させる。
[Example 1] In a reactor equipped with a stirrer and a cooling jacket, 35% hydrogen peroxide solution was added at 250.9%. Add 250.9° of ion-exchanged water and 250 g of antimony trioxide, and disperse well with stirring at 2° C. for 60 minutes in 50 parts.

続けて混合スラリー液を冷却攪拌し、20部2°Cに保
持しながら24時間以上オール化反応を続げたところ、
プリン状の固形物を得た。
Subsequently, the mixed slurry liquid was cooled and stirred, and the olization reaction was continued for more than 24 hours while maintaining 20 parts at 2 ° C.
A pudding-like solid was obtained.

ヒータ付密閉反応器に固形物を移し、12o°d。Transfer the solid to a closed reactor equipped with a heater and heat to 12 o'd.

ゲージ圧1kg/cr!(反応器の内圧は2気圧)で2
4時間酸化反応し、生成物を箱型熱風乾燥機で100°
C,24時間乾燥後乳鉢により製粉し、X線回析分析な
らびに吸油量を測定したところ第2図に示すアンチモン
酸Bと同様の回折図形が得られ吸油量は21.0であっ
た。
Gauge pressure 1kg/cr! (The internal pressure of the reactor is 2 atm) and 2
Oxidation reaction was carried out for 4 hours, and the product was dried at 100° in a box-type hot air dryer.
C. After drying for 24 hours, it was milled in a mortar and subjected to X-ray diffraction analysis and oil absorption measurement. A diffraction pattern similar to that of antimonic acid B shown in FIG. 2 was obtained, and the oil absorption amount was 21.0.

〔実施例2〕 実施例1の反応器に35%過酸化水素水、イオン交換水
、三酸化アンチモンを各々2509人h50±2℃でよ
く分散させた後冷却し、10部2℃に保持しながら36
時間以上オール化反応を続げたところ、プリン状の固形
物な得た。
[Example 2] In the reactor of Example 1, 2,509 people each of 35% hydrogen peroxide, ion-exchanged water, and antimony trioxide were well dispersed at 50 ± 2°C, then cooled, and 10 parts were kept at 2°C. While 36
When the olization reaction was continued for more than an hour, a pudding-like solid was obtained.

120°C、ゲージ圧1kg/7で24時間酸化反応し
、生成物を100’C,24時間乾燥後製粉し。
The oxidation reaction was carried out at 120°C and a gauge pressure of 1 kg/7 for 24 hours, and the product was dried at 100°C for 24 hours and then milled.

X線回析分析ならびに吸油量を測定したところ。X-ray diffraction analysis and oil absorption measurements.

第2図のアンチモン酸Cと同様な回折図形が得られ、吸
油量は20.0であった。
A diffraction pattern similar to that of antimonic acid C shown in FIG. 2 was obtained, and the oil absorption was 20.0.

〔発明の用途〕[Use of invention]

本発明のアンチモン酸な用いたエレクトロクロミック表
示体の一実施例に係る断面及び使用状帽の説明図を第6
図に示す。
The explanatory diagram of the cross section and usage cap of one embodiment of the electrochromic display using antimonic acid of the present invention is shown in the sixth figure.
As shown in the figure.

本発明に係るエレクトロクロミック表示体はガラス透明
基板(1)の片面にパターニングした透明電極(2)を
設け1表示部にはエレクトロクロミック体IJ t31
 、表示部とネガのパターン状に絶縁層(4)、更に上
部の略全面に本発明のアンチモン酸よりなる固体電解質
層(5)を設け、更に上部に可逆酸化物質層+6+、更
に上部に集電体層(7)、保護層(8)を順次積層した
形状となって8つ、パターニングされた透明電極(2)
と集電体層(7)の間に交換電圧を印加させることによ
り発消色を得るものである。
The electrochromic display body according to the present invention has a patterned transparent electrode (2) on one side of a glass transparent substrate (1), and one display part has an electrochromic body IJ t31.
, an insulating layer (4) in the display area and a negative pattern, a solid electrolyte layer (5) made of antimonic acid of the present invention on almost the entire upper surface, a reversible oxide layer +6+ on the upper part, and a concentrated layer on the upper part. Eight patterned transparent electrodes (2) in the shape of successively laminating an electric layer (7) and a protective layer (8).
By applying an exchange voltage between the current collector layer (7) and the current collector layer (7), coloring and fading is achieved.

以下本発明の合成法で得たガラス質含有のアンチモン酸
を用いた場合の表示体の安定性について述べる。
The stability of display materials using the vitreous antimonic acid obtained by the synthesis method of the present invention will be described below.

ガラス基板(1)上に酸化インジウム、酸化錫よりなる
透明電極(2)がパターン状に設け、かつ前記透明電極
(2)上の表示部に酸化タングステンCWos )同層
の非表示部にスクリーン印刷法により東洋インキ製造1
掬の商品名5S−25000メジウムインキの印刷によ
って作成された絶縁、′偕(4)が有り。
A transparent electrode (2) made of indium oxide and tin oxide is provided in a pattern on a glass substrate (1), and tungsten oxide (CWos) is applied to the display area on the transparent electrode (2), and screen printing is applied to the non-display area of the same layer. Toyo Ink Manufacturing 1 by law
Insulation created by printing with Shiki's product name 5S-25000 medium ink, '偕(4).

更に上部に固体電解質として第2図に示すX線回折図形
のBのアンチモンa。
Furthermore, antimony a of B in the X-ray diffraction pattern shown in FIG. 2 is placed on top as a solid electrolyte.

及びグリセリン、水を重量比5 : 1.65 : 0
.4で混練インキ化しスクリーン印刷法により設けて乾
燥した約150〜160μmの膜厚の固体電解質層(5
)を設け、更にその上にカーボン系導電ペースト(藻食
化成4製 商品名ドータイトXc−74)10部にプル
シアンブルー3部を添加したもの?スクリーン印刷法に
より施して、可逆酸化物質層(6)を設け、更に上部に
銀糸導電ペースト(藻食化成■製 商品名XA−167
)を、スクリーン印刷法で漬層して集電体層(7)とし
、更に上部に保護層(8)として、エポキシ樹脂系の硬
化型明弓旨をスクリーン印刷法で全面を被覆して保護層
18)とした。
and glycerin and water at a weight ratio of 5:1.65:0
.. A solid electrolyte layer with a film thickness of about 150 to 160 μm (5
), and on top of that, 10 parts of carbon-based conductive paste (manufactured by Moshoku Kasei 4, trade name: Dotite Xc-74) and 3 parts of Prussian blue added. A reversible oxidizing substance layer (6) is formed by screen printing, and a silver thread conductive paste (manufactured by Moshoku Kasei ■, product name: XA-167) is applied on top.
) was layered using a screen printing method to form a current collector layer (7), and then a protective layer (8) was formed on top by covering the entire surface with an epoxy resin-based hardening type light emitting diode using a screen printing method for protection. Layer 18).

以上の構成の表示体を70’C中に保存し、その応答性
の劣化度合をみたものb′−第4図である。
The display body having the above configuration was stored at 70'C and the degree of deterioration of its response was observed in Fig. b'-4.

70℃から表示体を25℃にもどし、IV、1秒間印加
したとぎに発色のために流れる電気量をみたものである
が、劣化すると発色しにくくなり電気量が減少する。
This figure shows the amount of electricity that flows for coloring when the display is returned to 25°C from 70°C and an IV voltage is applied for 1 second.As the display deteriorates, coloring becomes difficult and the amount of electricity decreases.

この表示体ではアンチモン酸として、第2図に示すX線
回析図形のアンチモン酸う〜宣用いたもの(このアンチ
モン酸はガラス質を示す27.3°のプークはみられな
い)と比較して1/4 の劣化スピードであった。
In this display, antimonic acid is compared with the antimonic acid shown in the X-ray diffraction pattern shown in Figure 2 (the 27.3° puck, which indicates glassiness, is not observed in this antimonic acid). The deterioration speed was 1/4 that of the original.

さらに固体電解質として第2図に示すX線回析図形のア
ンチモン酸C1(このアンチモン酸のガラス質を示すピ
ーク強度(λ7.3°)の結晶質を示すピーク強度(1
4,8°、28.0°、29.8°)に対するピーク強
度比率は28.5%であった、)を甲11り。
Furthermore, as a solid electrolyte, antimonic acid C1 in the X-ray diffraction pattern shown in FIG.
4,8°, 28.0°, 29.8°) was 28.5%.

以上の構成の表示体を70℃中に保存し、その応答性の
劣化度合をみたが、第2図に示すX線回折図形のアンチ
モンdAを用いたものと比較して1/20の劣化スピー
ドであった。
The display with the above configuration was stored at 70°C and the degree of deterioration of its responsiveness was observed, and the deterioration rate was 1/20 compared to that using antimony dA with the X-ray diffraction pattern shown in Figure 2. Met.

X線回析図形を示すアンチモン酸を用いてセル化し、そ
れぞれXffJ1回析図形のガラス質を示すピーク強度
(27,3°)の結晶質を示すピーク強度(14,8°
、280°、29.8°)の平均に対するピーク強度比
率(横軸)と、70°C中に保存し、その応答性の劣化
度合(縦軸)との関係をみたものを第5図に示すが、ピ
ーク強度比率が高い方、すなわちガラス質が多くなって
いく方が劣化度合h″−少ないことがわかる。
Cells were formed using antimonic acid, which shows an X-ray diffraction pattern.
, 280°, 29.8°) to the average (horizontal axis) and the degree of deterioration of the response after storage at 70°C (vertical axis) is shown in Figure 5. As shown in the figure, it can be seen that the higher the peak intensity ratio, that is, the higher the glass content, the lower the degree of deterioration h''-.

以上のよってガラス質含有のアンチモン酸カーエレクト
ロクロミックディスプレイにとって非常に有効である事
htわかる。
From the above, it can be seen that antimonic acid containing glass is very effective for electrochromic displays.

(発明の効果) 本発明のガラス質含有アンチモン酸の合成法は以上のよ
うなものであり1本発明によれば、従来。
(Effects of the Invention) The method for synthesizing vitreous antimonic acid of the present invention is as described above.

工業的を手法によりガラス質のアンチモン酸を得ること
ができなかったのに対して、結晶性とガラス質と混在状
壱ではあるが、ガラス質のアンチモン酸を合成するのに
成功したものであり、その技術的知見は大いなるものが
ある。また、このようにし℃得られた本発明のアンチモ
ン酸をエレクトロクロミック表示体の固体電解質層の主
成分に用いれば、エレクトロクロミック表示体の耐熱性
や耐久性に顕著な改善がみられるものであり、実用上の
価直も高いものである。
Although it was not possible to obtain glassy antimonic acid using industrial methods, this method succeeded in synthesizing glassy antimonic acid, although it was a mixture of crystalline and glassy substances. , and its technical knowledge is significant. Furthermore, if the antimonic acid of the present invention obtained in this manner at °C is used as the main component of the solid electrolyte layer of an electrochromic display, a remarkable improvement can be seen in the heat resistance and durability of the electrochromic display. , the practical cost is also high.

【図面の簡単な説明】 第1図は、アンチモン酸の各状態のX線回析図形を示す
説明図であり、第2図は本発明の合成法により得られる
ガラス質含有アンチモンdlHよび結晶質アンチモン酸
のX線回析図形を示すグラフ図であり、第5図はエレク
トロクロミック表示体の一実施例を示す説明図、第4図
は本発明によるアンチモン酸を用いたエレクトロクロミ
ック表示体の経日男化寄性を示すグラフ図であり、第5
図は本発明によるアンチモ/(diのX線回析図形にS
けるガラス質のピーク強度比率と、そのアンチモンd’
f用いたエレクトロクロミック表示体の温度70℃に8
ける劣化速度との関係を示すグラフ図であな。 +11・・・透明基板     (2)・・・透明電極
(3)・・・エレクトロクロミック体層(4)・・・絶
縁層    (5)・・・固体電解質層(6)・・・可
逆酸化物質層  (7)・・・集電体、層(8)・・・
保護層
[Brief Description of the Drawings] Figure 1 is an explanatory diagram showing the X-ray diffraction pattern of each state of antimonic acid, and Figure 2 is an explanatory diagram showing the X-ray diffraction pattern of antimonic acid in each state. FIG. 5 is a graph showing an X-ray diffraction pattern of antimonic acid, FIG. 5 is an explanatory diagram showing an example of an electrochromic display, and FIG. It is a graph diagram showing virilization parasitism,
The figure shows the X-ray diffraction pattern of antimony/(di) according to the present invention.
The glassy peak intensity ratio and its antimony d'
f The temperature of the electrochromic display used was 70°C.
This is a graph showing the relationship between deterioration rate and deterioration rate. +11...Transparent substrate (2)...Transparent electrode (3)...Electrochromic body layer (4)...Insulating layer (5)...Solid electrolyte layer (6)...Reversible oxidizing substance Layer (7)... Current collector, Layer (8)...
protective layer

Claims (3)

【特許請求の範囲】[Claims] (1)三酸化アンチモンを過酸化水素水中で湿式酸化す
る含水の五酸化アンチモンの合成法において、前記湿式
酸化の前反応として温度22℃以下でのオール化反応を
24時間以上行ない、しかるのち湿式酸化を行なうこと
を特徴とするガラス質のアンチモン酸を含有するアンチ
モン酸の合成法。
(1) In a method for synthesizing water-containing antimony pentoxide in which antimony trioxide is wet-oxidized in hydrogen peroxide, an olization reaction at a temperature of 22°C or less is performed for 24 hours or more as a pre-reaction to the wet oxidation, and then the wet oxidation A method for synthesizing antimonic acid containing glassy antimonic acid, which is characterized by carrying out oxidation.
(2)湿式酸化を1.5気圧以上の加圧化で行なう特許
請求の範囲第1項記載のアンチモン酸の合成法。
(2) The method for synthesizing antimonic acid according to claim 1, wherein the wet oxidation is carried out under pressure of 1.5 atmospheres or more.
(3)吸油量の値が25以下であるアンチモン酸が得ら
れる特許請求の範囲第1項または第2項記載のアンチモ
ン酸の合成法。
(3) The method for synthesizing antimonic acid according to claim 1 or 2, which yields antimonic acid having an oil absorption value of 25 or less.
JP29710085A 1985-12-26 1985-12-26 Synthetic method of antimonic acid Expired - Lifetime JPH0662302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29710085A JPH0662302B2 (en) 1985-12-26 1985-12-26 Synthetic method of antimonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29710085A JPH0662302B2 (en) 1985-12-26 1985-12-26 Synthetic method of antimonic acid

Publications (2)

Publication Number Publication Date
JPS62153123A true JPS62153123A (en) 1987-07-08
JPH0662302B2 JPH0662302B2 (en) 1994-08-17

Family

ID=17842200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29710085A Expired - Lifetime JPH0662302B2 (en) 1985-12-26 1985-12-26 Synthetic method of antimonic acid

Country Status (1)

Country Link
JP (1) JPH0662302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483482B1 (en) * 2001-08-24 2005-04-15 일양화학 주식회사 Method for manufacturing the nano powder of autimony oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483482B1 (en) * 2001-08-24 2005-04-15 일양화학 주식회사 Method for manufacturing the nano powder of autimony oxides

Also Published As

Publication number Publication date
JPH0662302B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
Luo et al. Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites
CN107973333B (en) Composite metal oxide with hollow sea urchin-shaped structure, and preparation method and application thereof
CN101597086A (en) Method for preparing nano manganese dioxide with different crystal forms in low-temperature acid solution
CN1189402C (en) High-purity spherical cobalto-cobaltic oxide, and its preparing method and use
Nagai et al. Synchronous electrochromism of lithium ion battery with chemically fabricated transparent thin films
CN105957966A (en) REO (rare earth oxide) down-conversion material perovskite solar cell and preparation method
CN106892460A (en) A kind of preparation method of tungsten bronze nanometer sheet
JPS6317774B2 (en)
JP2022069684A (en) Electrochromic device
Xie et al. Application of ultrasonic irradiation to the sol–gel synthesis of silver vanadium oxides
JPS62153123A (en) Synthesis of antimonic acid
CN104556728B (en) A kind of hydrotalcite precursor pyrolysis prepares the method for mixing aluminum oxidation nickel electrochomeric films
Su et al. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte
JP2656415B2 (en) Lithium crystallized glass
CN117117299A (en) Inorganic sulfide solid electrolyte and preparation method thereof
Porkodi et al. Polyol mediated synthesis of tungsten trioxide and Ti doped tungsten trioxide: part 1: synthesis and characterisation of the precursor material
Zhou et al. Preparation and electrochromism of pyrochlore-type tungsten oxide film
Khan et al. Recent developments in properties and applications of metal oxides
CN114620698A (en) Large-particle zirconium phosphate and preparation method thereof
JPS6236008A (en) Polytungstic acid having peroxo structure and method for synthesizing said acid
Ohsaka et al. Synthetic inorganic ion exchange materials XLIV: synthesis and ion exchange properties of cubic niobic acid (HNbO3)
JP2002100420A (en) Semiconductor for photoelectric transfer material of superior photoelectric transfer efficiency and durability, photoelectric transfer element, and solar battery
JP3438076B2 (en) Metal-containing colored mica sheet and method for producing the same
Sun et al. Electrodeposition fabrication of WO3/EuMOF film for fluorescence switch
Apostolova et al. Synthesis and Examination of Electrolytic Sodium–Vanadium Oxide Compounds Intended for Cathodes of Lithium Batteries: The Mechanism of Formation of Electrolytic Bronze β-Na x V2O5