KR100481985B1 - Manufacturing method of highly integrated MML semiconductor device - Google Patents

Manufacturing method of highly integrated MML semiconductor device Download PDF

Info

Publication number
KR100481985B1
KR100481985B1 KR10-1998-0040003A KR19980040003A KR100481985B1 KR 100481985 B1 KR100481985 B1 KR 100481985B1 KR 19980040003 A KR19980040003 A KR 19980040003A KR 100481985 B1 KR100481985 B1 KR 100481985B1
Authority
KR
South Korea
Prior art keywords
region
interlayer
film
dram
logic
Prior art date
Application number
KR10-1998-0040003A
Other languages
Korean (ko)
Other versions
KR20000021069A (en
Inventor
김윤장
임근
문원
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR10-1998-0040003A priority Critical patent/KR100481985B1/en
Publication of KR20000021069A publication Critical patent/KR20000021069A/en
Application granted granted Critical
Publication of KR100481985B1 publication Critical patent/KR100481985B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823443MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Abstract

본 발명은 MML반도체소자에 관한 것으로서, 특히, 디램영역 및 로직영역의 반도체기판상에 디램트랜지스터 및 로직트랜지스터를 형성한 후에 이 결과물 상에 제1층간산화막 및 제1층간질화막을 순차적으로 적층하는 단계와; 상기 단계 후에 로직트랜지스터상에 제1감광막을 적층한 후에 디램영역의 제1층간질화산화막을 식각으로 제거하는 단계와; 상기 단계 후에 제1감광막을 제거하고 디램영역 및 로직영역에 제2층간절연막을 적층한 후 디램영역에 고온 열공정으로 비트라인 및 커패시터를 형성하고 전영역에 버퍼산화막을 형성하는 단계와; 상기 디램영역의 결과물 상에 제2감광막을 적층한 후 식각공정으로 버퍼산화막, 제2층간절연막, 제1층간질화산화막 및 제1층간산화막을 제거하는 단계와; 상기 단계 후에 로직트랜지스터의 소오스/드레인영역에 티타늄실리사이드층을 형성하는 단계와; 상기 단계 후에 제3층간절연막을 적층한 후 디램영역의 셀지역만 개방되도록 제3감광막을 적층한 후 셀지역의 제3층간절연막을 식각하는 단계로 이루어진 고집적 MML반도체소자 제조방법인 바, 디램영역에 고온 열공정을 먼저 진행한 후에 로직트랜지스터의 소오스/드레인에 실리사이드층을 형성하므로 실리사이드층의 열화로 인한 손상을 방지하여 반도체소자의 수율을 향상시키도록 하는 매우 유용하고 효과적인 발명이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MML semiconductor device, and in particular, after forming a DRAM transistor and a logic transistor on a semiconductor substrate of a DRAM region and a logic region, sequentially depositing a first interlayer oxide film and a first interlayer nitride film on the resulting product. Wow; After the step of laminating a first photoresist film on the logic transistor, and etching the first interlayer nitride oxide film of the DRAM region by etching; Removing the first photoresist film after the above step, laminating a second interlayer insulating film in the DRAM region and the logic region, forming bit lines and capacitors in the DRAM region by a high temperature thermal process, and forming a buffer oxide film in all regions; Stacking a second photoresist film on the resultant of the DRAM region and removing the buffer oxide film, the second interlayer insulating film, the first interlayer nitride oxide film and the first interlayer oxide film by an etching process; Forming a titanium silicide layer in the source / drain region of the logic transistor after the step; A method of manufacturing a highly integrated MML semiconductor device comprising: laminating a third interlayer insulating film after the step, and then laminating a third photosensitive film so that only the cell region of the DRAM region is opened, and then etching the third interlayer insulating layer of the cell region. Since the silicide layer is formed on the source / drain of the logic transistor after the high temperature thermal process is performed first, it is a very useful and effective invention to improve the yield of semiconductor devices by preventing damage due to deterioration of the silicide layer.

Description

고집적 MML반도체소자 제조방법Manufacturing method of highly integrated MML semiconductor

본 발명은 MML반도체소자에 관한 것으로서, 특히, 디램영역 및 로직영역의 디램게이트전극 및 로직게이트전극을 동시에 형성한 후에 디램영역에 절연막을 적층하고, 고온 열공정으로 커패시터와 비트라인을 형성한 후 마스킹식각으로 로직영역의 게이트전극을 개방시키고, 로직게이트전극의 필드산화막에 실리사이드층을 적층하며, 상기 결과물상에 다수의 금속층 및 금속층간절연막을 적층하여 형성하므로 로직영역의 실리사이드층의 손상을 방지하도록 하는 고집적MML반도체소자 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MML semiconductor device, and in particular, to form a DRAM gate electrode and a logic gate electrode of a DRAM region and a logic region at the same time, and then, an insulating film is laminated on the DRAM region, and a capacitor and a bit line are formed by a high temperature thermal process. The gate electrode of the logic region is opened by masking etching, a silicide layer is laminated on the field oxide layer of the logic gate electrode, and a plurality of metal layers and intermetallic insulating layers are stacked on the resultant to prevent damage to the silicide layer of the logic region. It relates to a method for manufacturing a highly integrated MML semiconductor device.

일반적으로, 메모리(Memory)와 로직(Logic)이 단일칩에 형성되는 복합반도체(MML: Merged Memory Logic)가 최근에 들어 많은 관심을 보이면서 점차적으로 많이 사용하는 추세에 있으며, 이 MML반도체장치는 로직과 메모리를 한 칩에서 단일한 공정으로 제조하는 것이 가능하므로 특별한 설계의 변경 없이도 기존 칩들에 비하여 고속으로 동작하고, 저전력으로 사용하는 것이 가능한 장점을 지닌다.In general, a mixed semiconductor (MML: Merged Memory Logic), in which memory and logic are formed on a single chip, has been increasingly used in recent years, and this MML semiconductor device has been increasingly used. Since it is possible to manufacture a single process in one chip and memory, it has the advantage that it can operate at a higher speed and use at lower power than existing chips without any special design change.

그 반면에, 메모리제품의 제조공정과 로직제품의 제조공정이 한 칩에서 동시에 제조되므로 단위칩의 크기가 커지며, 이에 따라 제조공정을 진행하기에 많은 어려움을 요하는 단점도 지니고 있을 뿐만아니라 메모리에서의 트랜지스터는 높은 전류 구동력을 요하는 것보다 오히려 누설전류를 방지하는 것에 비중을 두고 있으나 로직제품은 높은 전류구동능력을 요구하는 등 양자의 특성을 모두 갖추어서 한 칩으로 제조하여야 한다. On the other hand, since the manufacturing process of the memory product and the manufacturing process of the logic product are manufactured on the same chip at the same time, the size of the unit chip is increased, and therefore, it has a disadvantage that requires a lot of difficulty to proceed with the manufacturing process. Transistors have more emphasis on preventing leakage current than requiring high current driving force, but logic products must be manufactured in one chip with both characteristics such as high current driving capability.

이와 같이, 종래에는 반도체기판에서 메모리영역과 로직영역에 필드산화막과 트랜지스터의 게이트전극을 동시에 형성하여 게이트전극의 측면부분에 스페이서막을 적층하고, 다시 활성영역에 이온을 주입하여 소오스/드레인을 형성한 후 그 공정 후에 메모리영역의 필드산화막 상에 커패시터(Capacitor)를 800℃에 이르는 고온 공정으로 형성하였으며, 연속하여 로직영역의 트랜지스터와 메모리영역의 트랜지스터 및 커패시터 상에 산화막으로 된 절연층 및 금속배선층을 다층으로 적층하여 이후 공정을 진행하게 된다. As described above, in the semiconductor substrate, a field oxide film and a gate electrode of a transistor are simultaneously formed in a memory region and a logic region, a spacer film is stacked on a side portion of the gate electrode, and ions are implanted into an active region to form a source / drain. After the process, a capacitor was formed on the field oxide film of the memory region by a high temperature process of 800 ° C., and the insulating layer and the metal wiring layer of the oxide film were formed on the transistor of the logic region and the transistor and capacitor of the memory region. Lamination is carried out in a multilayer process.

그런데, 상기한 바와 같이, 메모리영역의 트랜지스터는 누설전류방지에 비중을 두는 반면에 로직영역의 트랜지스터의 경우에는 높은 전류구동능력을 가지는 것에 비중을 두게 되는 것으로서, 종래에는 로직영역 및 메모리영역의 트랜지스터를 모두 형성한 후에 메모리영역에서 고온(800℃정도)의 커패시터를 제조하는 공정을 진행하므로 로직영역에서 이미 제조된 트랜지스터에, 특히, 트랜지스터의 소오스/드레인영역 및 활성영역에 형성되는 실리사이드층에 중대한 영향을 가하여 로직영역의 트랜지스터의 전류구동능력을 저하시켜 소자의 성능을 약화시키는 문제점을 지니고 있었다.By the way, as described above, the transistors in the memory region place emphasis on the prevention of leakage current, while the transistors in the logic region place emphasis on having a high current driving capability. After the formation of all, the process of manufacturing a high temperature capacitor (about 800 ℃) in the memory region is performed, which is important for transistors already manufactured in the logic region, particularly for silicide layers formed in the source / drain and active regions of the transistor. It had a problem of lowering the current driving ability of the transistor in the logic region to affect the device performance.

본 발명의 목적은 디램영역 및 로직영역의 디램게이트전극 및 로직게이트전극을 동시에 형성한 후에 디램영역에 절연막을 적층하고, 고온 열공정으로 커패시터와 비트라인을 형성한 후 마스킹식각으로 로직영역의 게이트전극을 개방시키고, 로직게이트전극의 필드산화막에 실리사이드층을 적층하며, 상기 결과물상에 다수의 금속층 및 금속층간절연막을 적층하여 형성하므로 로직영역의 실리사이드층의 손상을 방지하는 것이 목적이다.An object of the present invention is to form a DRAM gate electrode and a logic gate electrode of the DRAM region and the logic region at the same time, and then to insulate an insulating film in the DRAM region, and to form a capacitor and a bit line by a high temperature thermal process, and then the gate of the logic region by masking etching The purpose is to prevent damage to the silicide layer of the logic region by opening the electrode, laminating a silicide layer on the field oxide film of the logic gate electrode, and laminating a plurality of metal layers and an intermetallic insulating layer on the resultant.

이러한 목적은 디램영역 및 로직영역의 반도체기판 상에 디램트랜지스터 및 로직트랜지스터를 형성한 후에 이 결과물 상에 제1층간산화막 및 제1층간질화산화막을 순차적으로 적층하는 단계와; 상기 단계 후에 로직트랜지스터 상에 제1감광막을 적층한 후에 디램영역의 제1층간질화산화막을 식각으로 제거하는 단계와; 상기 단계후에 제1감광막을 제거하고 디램영역 및 로직영역에 제2층간절연막을 적층한후 디램영역에 고온 열공정으로 비트라인 및 커패시터를 형성하고 전영역에 버퍼산화막을 형성하는 단계와; 상기 디램영역의 결과물 상에 제2감광막을 적층한 후 식각공정으로 버퍼산화막, 제2층간절연막, 제1층간질화산화막 및 제1층간산화막을 제거하는 단계와; 상기 단계 후에 로직트랜지스터의 소오스/드레인영역에 티타늄실리사이드층을 형성하는 단계와; 상기 단계 후에 제3층간절연막을 적층한 후 디램영역의 셀지역만 개방되도록 제3감광막을 적층한 후 셀지역의 제3층간절연막을 식각하는 단계와; 상기 제3감광막을 제거하고, 전 영역의 제3층간절연막을 화학기계적연마공정으로 단차를 줄이도록 하는 단계와; 상기 제3층간절연막상에 다수의 금속층 및 금속층간절연막을 적층하는 단계로 이루어진 고집적 MML반도체소자 제조방법을 제공함으로써 달성된다. The object is to form a DRAM transistor and a logic transistor on the semiconductor substrate of the DRAM region and the logic region, and then sequentially depositing the first interlayer oxide film and the first interlayer nitride oxide film on the resultant material; After the step of laminating a first photoresist film on the logic transistor and etching the first interlayer nitride oxide film of the DRAM region by etching; Removing the first photoresist film after the above step, laminating a second interlayer insulating film in the DRAM region and the logic region, forming bit lines and capacitors in the DRAM region by a high temperature thermal process, and forming a buffer oxide film over the entire region; Stacking a second photoresist film on the resultant of the DRAM region and removing the buffer oxide film, the second interlayer insulating film, the first interlayer nitride oxide film and the first interlayer oxide film by an etching process; Forming a titanium silicide layer in the source / drain region of the logic transistor after the step; Stacking a third interlayer insulating film after the step, and then laminating a third photoresist film to open only the cell region of the DRAM region, and then etching the third interlayer insulating layer of the cell region; Removing the third photoresist film and reducing the step between the third interlayer insulating film over the entire region by a chemical mechanical polishing process; It is achieved by providing a method for fabricating a highly integrated MML semiconductor device comprising the step of laminating a plurality of metal layers and intermetallic insulating films on the third interlayer insulating film.

그리고, 상기 로직영역의 버퍼산화막 및 제2층간절연막은 습식식각(Wet Etch)으로 제거되고, 제1층간질화산화막 및 제1층간산화막은 건식식각(Dry Etch)으로 제거되는 것이 바람직하며, 상기 티타늄실리사이드층은 급속열처리공정(Rapid Thermal Processing)으로 진행하도록 하며, 상기 제3층간절연막은 650 ∼ 700℃로 플로잉공정(Flowing Processing)으로 진행되도록 하는 고집적 MML반도체소자 제조방법을 제공함으로써 달성된다.The buffer oxide layer and the second interlayer dielectric layer of the logic region may be removed by wet etching, and the first interlayer nitride oxide layer and the first interlayer oxide layer may be removed by dry etching, and the titanium may be removed. The silicide layer is achieved by providing a rapid thermal processing process, and the third interlayer insulating film is achieved by providing a method for manufacturing a highly integrated MML semiconductor device, which is allowed to proceed by a flowing process at 650 to 700 ° C.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 일실시예에 대해 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1은 디램(DRAM)영역 및 로직(LOGIC)영역의 반도체기판(10)상에 디램트랜지스터(20) 및 로직트랜지스터(25)를 형성한 후, 상기 결과물 상에 제1층간산화막(30) 및 제1층간질화산화막(35)을 순차적으로 적층하는 상태를 도시하고 있다.FIG. 1 illustrates the formation of a DRAM transistor 20 and a logic transistor 25 on a semiconductor substrate 10 in a DRAM area and a logic area. Then, a first interlayer oxide film 30 and A state in which the first interlayer nitride oxide film 35 is sequentially stacked is shown.

도 2는 상기 단계 후에 로직트랜지스터(25)상에 제1감광막(40)을 적층한 후에 디램영역의 제1층간질화산화막(35)을 식각으로 제거하는 상태를 도시하고 있다.FIG. 2 illustrates a state in which the first interlayer nitride oxide film 35 in the DRAM region is etched after the first photoresist film 40 is stacked on the logic transistor 25 after the step.

그리고, 도 3은 상기 단계 후에 제1감광막(40)을 제거하고 디램영역 및 로직영역에 제2층간절연막(50)을 적층한 후 디램영역에 고온 열공정으로 비트라인(Bit Line) (45)및 커패시터(Capacitor)(55)를 형성하고, 디램영역 및 로직영역에 버퍼산화막(60)을 적층하는 상태를 도시하고 있다. 3, the first photoresist film 40 is removed after the above step, and the second interlayer insulating film 50 is laminated in the DRAM region and the logic region, and then the bit line 45 is formed by a high temperature thermal process in the DRAM region. And a capacitor 55 and a buffer oxide film 60 stacked in the DRAM and logic regions.

도 4 및 도 5는 상기 디램영역의 결과물 상에 제2감광막을 적층한 후 식각공정으로 로직영역에 있는 버퍼산화막(60), 제2층간절연막(50), 제1층간질화산화막(35) 및 제1층간산화막(30)을 제거하는 상태를 도시하고 있다.4 and 5 illustrate a buffer oxide film 60, a second interlayer insulating film 50, a first interlayer nitride oxide film 35, and a buffer oxide film 60 in a logic region by an etching process after stacking a second photoresist film on the result of the DRAM region. The state which removes the 1st interlayer oxide film 30 is shown.

이때, 상기 로직영역의 버퍼산화막(60) 및 제2층간절연막(50)은 습식식각(Wet Etch)으로 제거하도록 하며, 상기 로직영역의 제1층간질화산화막(35) 및 제1층간산화막(30)은 건식식각(Dry Etch)으로 제거하는 것이 바람직하다.At this time, the buffer oxide layer 60 and the second interlayer dielectric layer 50 of the logic region are removed by wet etching, and the first interlayer nitride oxide layer 35 and the first interlayer oxide layer 30 of the logic region are removed. ) Is preferably removed by dry etching.

도 6는 상기 단계 후에 로직트랜지스터(25)의 소오스/드레인영역에 티타늄실리사이드층(TiSi2)(70)을 형성하는 상태를 도시하고 있으며, 상기 티타늄실리사이드층(70)은 급속열처리공정(RTP; Rapid Thermal Processing)으로 진행하도록 한다.FIG. 6 shows a state in which a titanium silicide layer (TiSi 2 ) 70 is formed in the source / drain region of the logic transistor 25 after the step, wherein the titanium silicide layer 70 is formed by a rapid thermal treatment process (RTP); Rapid Thermal Processing).

도 7은 상기 단계 후에 제3층간절연막(75)을 적층한 후 디램영역의 페리(Periphery)영역은 적층되고 셀(Cell)지역만 개방시키는 상태로 제3감광막(75)을 적층한 상태를 도시하고 있으며, 상기 제3층간절연막(75)은 650 ∼ 700℃의 온도에서 플로잉(Flowing)공정으로 진행되도록 한다. FIG. 7 illustrates a state in which the third photoresist layer 75 is laminated with the third interlayer dielectric layer 75 stacked after the above step, and the Periphery region of the DRAM region is stacked and only the cell region is opened. The third interlayer insulating film 75 is subjected to a flow process at a temperature of 650 to 700 ° C.

도 8은 상기 제3감광막(80)을 적층한 후 식각공정으로 셀지역의 제3층간절연막(75)을 식각하는 상태를 도시하고 있다.FIG. 8 illustrates a state in which the third interlayer dielectric layer 75 in the cell region is etched by laminating the third photoresist layer 80.

그리고, 도 9는 상기 제3감광막(80)을 제거하고, 전 영역의 제3층간절연막(75)을 화학기계적연마공정(Chemical Mechanical Polishing Processing)으로 단차를 줄여준 상태를 도시하고 있다. FIG. 9 illustrates a state in which the third photoresist film 80 is removed and the step difference is reduced by the chemical mechanical polishing process of the third interlayer insulating film 75 in all regions.

도 10은 메탈콘택마스크를 이용하여 금속플러그를 형성한 후에 제1금속층(85)을 형성한 상태를 도시하고 있다. FIG. 10 illustrates a state in which the first metal layer 85 is formed after the metal plug is formed using the metal contact mask.

도 11은 상기 결과물 상에 제1층간절연막(90)을 형성한 상태를 도시하고 있다.FIG. 11 shows a state where a first interlayer insulating film 90 is formed on the resultant product.

도 12는 상기 결과물에 제2금속층(95)을 마스킹식각으로 형성한 상태를 도시하고 있다.FIG. 12 shows a state in which the second metal layer 95 is formed by masking etching on the resultant.

도 13은 상기 결과물에 제2금속층간절연막(100)을 적층하고, 제3,제4금속층(105)(115) 및 제3금속층간절연막(110), 보호산화막(120)을 적층한 상태를 도시하고 있다.FIG. 13 illustrates a state in which a second interlayer insulating film 100 is stacked, and a third and fourth metal interlayer insulating film 110, a third intermetallic insulating film 110, and a protective oxide film 120 are stacked on the resultant. It is shown.

상기한 바와 같이 본 발명에 따른 고집적 MML반도체소자 제조방법을 이용하게 되면, 디램영역 및 로직영역의 디램게이트전극 및 로직게이트전극을 동시에 형성한 후에 디램영역에 절연막을 적층하고, 고온 열공정으로 커패시터와 비트라인을 형성한 후 마스킹식각으로 로직영역의 게이트전극을 개방시키고, 로직게이트전극의 필드산화막에 실리사이드층을 적층하며, 상기 결과물상에 다수의 금속층 및 금속층간절연막을 적층하여 형성하므로 디램영역에 커패시터 및 비트라인을 형성하는 고온 열공정을 먼저 진행한 후에 로직트랜지스터의 소오스/드레인에 실리사이드층을 형성하므로 실리사이드층의 열화로 인한 손상을 방지하여 반도체소자의 수율을 향상시키도록 하는 매우 유용하고 효과적인 발명이다. As described above, when the method for fabricating the highly integrated MML semiconductor device according to the present invention is used, the DRAM gate electrode and the logic gate electrode of the DRAM region and the logic region are simultaneously formed, and then an insulating film is laminated on the DRAM region, and the capacitor is subjected to a high temperature thermal process. After forming the bit line, the gate electrode of the logic region is opened by masking etching, a silicide layer is laminated on the field oxide layer of the logic gate electrode, and a plurality of metal layers and intermetallic insulating layers are stacked on the resultant DRAM region. It is very useful to improve the yield of the semiconductor device by preventing the damage caused by deterioration of the silicide layer because the silicide layer is formed on the source / drain of the logic transistor after the high temperature thermal process of forming the capacitor and the bit line first. It is an effective invention.

도 1 내지 도 13은 본 발명의 일실시예에 따른 고집적 MML반도체소자 제조방법을 순차적으로 보인 도면이다.1 to 13 are views sequentially showing a method for manufacturing a highly integrated MML semiconductor device according to an embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 반도체기판 15 : 필드산화막 10: semiconductor substrate 15: field oxide film

20 : 디램트랜지스터 25 : 로직트랜지스터 20: DRAM transistor 25: Logic transistor

30 : 제1층간산화막 35 : 제1층간질화산화막30: first interlayer oxide film 35: first interlayer oxide film

40 : 제1감광막 45 : 비트라인 40: first photosensitive film 45: bit line

50 : 제2층간절연막 55 : 커패시터50: second interlayer insulating film 55: capacitor

60 : 버퍼산화막 65 : 제2감광막60: buffer oxide film 65: second photosensitive film

70 : 티타늄실리사이드층 75 : 제3층간절연막 70: titanium silicide layer 75: third interlayer insulating film

80 : 제3감광막 85 : 제1금속층80: third photosensitive film 85: first metal layer

90 : 제1금속층간절연막 95 : 제2금속층90: first interlayer insulating film 95: second metal layer

100 : 제2금속층간절연막 105 : 제3금속층100: second interlayer insulating film 105: third metal layer

110 : 제3금속층간절연막 115 : 제4금속층 110: third metal interlayer insulating film 115: fourth metal layer

120 : 보호산화막 120: protective oxide film

Claims (5)

디램영역 및 로직영역의 반도체기판상에 디램트랜지스터 및 로직트랜지스터를 형성한 후에 이 결과물 상에 제1층간산화막 및 제1층간질화산화막을 순차적으로 적층하는 단계와;Forming a DRAM transistor and a logic transistor on the semiconductor substrate of the DRAM region and the logic region, and then sequentially depositing the first interlayer oxide film and the first interlayer nitride oxide film on the resultant material; 상기 단계 후에 로직트랜지스터상에 제1감광막을 적층한 후에 디램영역의 제1층간질화산화막을 식각으로 제거하는 단계와;After the step of laminating a first photoresist film on the logic transistor, and etching the first interlayer nitride oxide film of the DRAM region by etching; 상기 단계후에 제1감광막을 제거하고 디램영역 및 로직영역에 제2층간절연막을 적층한후 디램영역에 고온 열공정으로 비트라인 및 커패시터를 형성하고 전영역에 버퍼산화막을 형성하는 단계와;Removing the first photoresist film after the above step, laminating a second interlayer insulating film in the DRAM region and the logic region, forming bit lines and capacitors in the DRAM region by a high temperature thermal process, and forming a buffer oxide film over the entire region; 상기 디램영역의 결과물 상에 제2감광막을 적층한 후 식각공정으로 버퍼산화막, 제2층간절연막, 제1층간질화산화막 및 제1층간산화막을 제거하는 단계와; Stacking a second photoresist film on the resultant of the DRAM region and removing the buffer oxide film, the second interlayer insulating film, the first interlayer nitride oxide film and the first interlayer oxide film by an etching process; 상기 단계 후에 로직트랜지스터의 소오스/드레인영역에 티타늄실리사이드층을 형성하는 단계와; Forming a titanium silicide layer in the source / drain region of the logic transistor after the step; 상기 단계 후에 제3층간절연막을 적층한 후 디램영역의 셀지역만 개방되도록 제3감광막을 적층하여 셀지역의 제3층간절연막을 식각하는 단계와;After the step of laminating a third interlayer insulating film, etching the third interlayer insulating film of the cell region by laminating a third photosensitive film so that only the cell region of the DRAM region is opened; 상기 제3감광막을 제거하고, 디램영역 및 로직영역의 제3층간절연막을 화학기계적연마공정으로 연마하여 단차를 줄이도록 하는 단계와;Removing the third photoresist film and polishing the third interlayer insulating film in the DRAM region and the logic region by a chemical mechanical polishing process to reduce the step difference; 상기 제3층간절연막상에 다수의 금속층 및 금속층간절연막을 적층하는 단계로 이루어진 것을 특징으로 하는 고집적 MML반도체소자 제조방법. A method for manufacturing a highly integrated MML semiconductor device, comprising: stacking a plurality of metal layers and an intermetallic insulating film on the third interlayer insulating film. 제 1 항에 있어서, 상기 로직영역의 버퍼산화막 및 제2층간절연막은 습식식각(Wet Etch)으로 제거되는 것을 특징으로 하는 고집적 MML반도체소자 제조방법. The method of claim 1, wherein the buffer oxide layer and the second interlayer dielectric layer of the logic region are removed by wet etching. 제 1 항에 있어서, 상기 로직영역의 제1층간질화산화막 및 제1층간산화막은 건식식각(Dry Etch)으로 제거되는 것을 특징으로 하는 고집적 MML반도체소자 제조방법. The method of claim 1, wherein the first interlayer nitride oxide layer and the first interlayer oxide layer of the logic region are removed by dry etching. 제 1 항에 있어서, 상기 티타늄실리사이드층은 급속열처리공정으로 진행하는 것을 특징으로 하는 고집적 MML반도체소자 제조방법. The method of claim 1, wherein the titanium silicide layer is subjected to a rapid heat treatment process. 제 1 항에 있어서, 상기 제3층간절연막은 650 ∼ 700℃로 진행되는 것을 특징으로 하는 고집적 MML반도체소자 제조방법. The method of claim 1, wherein the third interlayer dielectric film is processed at 650 to 700 占 폚.
KR10-1998-0040003A 1998-09-25 1998-09-25 Manufacturing method of highly integrated MML semiconductor device KR100481985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0040003A KR100481985B1 (en) 1998-09-25 1998-09-25 Manufacturing method of highly integrated MML semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0040003A KR100481985B1 (en) 1998-09-25 1998-09-25 Manufacturing method of highly integrated MML semiconductor device

Publications (2)

Publication Number Publication Date
KR20000021069A KR20000021069A (en) 2000-04-15
KR100481985B1 true KR100481985B1 (en) 2005-06-08

Family

ID=19551981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0040003A KR100481985B1 (en) 1998-09-25 1998-09-25 Manufacturing method of highly integrated MML semiconductor device

Country Status (1)

Country Link
KR (1) KR100481985B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510736B1 (en) * 2000-12-07 2005-08-30 매그나칩 반도체 유한회사 Method for fabricating of Merged DRAM on Logic Device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260607A (en) * 1996-03-27 1997-10-03 Nec Corp Manufacture of semiconductor
KR0144413B1 (en) * 1994-09-26 1998-07-01 김주용 Semiconductor device and manufacturing method
JPH10256511A (en) * 1997-03-12 1998-09-25 Lg Semicon Co Ltd Manufacture method of semiconductor device
KR20000004745A (en) * 1998-06-30 2000-01-25 김영환 Method for manufacturing mml semiconductor memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0144413B1 (en) * 1994-09-26 1998-07-01 김주용 Semiconductor device and manufacturing method
JPH09260607A (en) * 1996-03-27 1997-10-03 Nec Corp Manufacture of semiconductor
JPH10256511A (en) * 1997-03-12 1998-09-25 Lg Semicon Co Ltd Manufacture method of semiconductor device
KR20000004745A (en) * 1998-06-30 2000-01-25 김영환 Method for manufacturing mml semiconductor memory device

Also Published As

Publication number Publication date
KR20000021069A (en) 2000-04-15

Similar Documents

Publication Publication Date Title
US6262455B1 (en) Method of forming dual gate oxide layers of varying thickness on a single substrate
US6787857B2 (en) Contact structure a semiconductor device and manufacturing method thereof
US6509216B2 (en) Memory structure with thin film transistor and method for fabricating the same
US7829925B2 (en) Semiconductor device and method for manufacturing same
US6372641B1 (en) Method of forming self-aligned via structure
KR100481985B1 (en) Manufacturing method of highly integrated MML semiconductor device
KR100400250B1 (en) Method For Forming The Transitor Of Semiconductor Device
KR100475715B1 (en) MML Semiconductor Device Manufacturing Method
US5962907A (en) Semiconductor device and method of manufacturing the same
KR100316059B1 (en) Method for manufacturing the mml semiconductor device
KR20020042309A (en) Method for manufacturing semiconductor semiconductor memory device
KR100240249B1 (en) A fabricating method of semiconductor device having different gate oxides and gate electrode
KR100545210B1 (en) A semiconductor device having a memory device and a logic device, and a manufacturing method thereof
KR100310255B1 (en) Method For Forming The DRAM Cell And Flash Cell Of MML Semiconductor Device
KR100367400B1 (en) Manufacturing Method of Composite Semiconductor Device
KR100240096B1 (en) Method for manufacturing semiconductor device
KR20000001366A (en) Method for forming silicide layer of merged memory logic circuits
KR100432893B1 (en) Method for forming a semiconductor device
TW591758B (en) Method of improving the top plate electrode stress inducing voids for 1T SRAM process
KR100464934B1 (en) Method for fabricating semiconductor device
KR20010008600A (en) Method For Forming The Analogue Capacitor Of MML Semiconductor Device
KR20000008358A (en) Transistor formation method of mml semiconductor devices
JP2003273249A (en) Method of manufacturing semiconductor integrated circuit device
JP2004342979A (en) Semiconductor device and method for manufacturing the same
KR19990057372A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080218

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee