KR100434108B1 - L-트립토판의유전공학적제조방법 - Google Patents

L-트립토판의유전공학적제조방법 Download PDF

Info

Publication number
KR100434108B1
KR100434108B1 KR1019960058827A KR19960058827A KR100434108B1 KR 100434108 B1 KR100434108 B1 KR 100434108B1 KR 1019960058827 A KR1019960058827 A KR 1019960058827A KR 19960058827 A KR19960058827 A KR 19960058827A KR 100434108 B1 KR100434108 B1 KR 100434108B1
Authority
KR
South Korea
Prior art keywords
tryptophan
plasmid
synthase
ptr5
prpp
Prior art date
Application number
KR1019960058827A
Other languages
English (en)
Other versions
KR19980039739A (ko
Inventor
임상조
김성준
이세영
전영중
이재홍
Original Assignee
씨제이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이 주식회사 filed Critical 씨제이 주식회사
Priority to KR1019960058827A priority Critical patent/KR100434108B1/ko
Publication of KR19980039739A publication Critical patent/KR19980039739A/ko
Application granted granted Critical
Publication of KR100434108B1 publication Critical patent/KR100434108B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 포스포리보실파이로포스페이트(Phosphoribosylpyrophosphate: 이하 "PRPP"라 한다) 합성효소(PRPP synthase)를 코드화하는 유전자, 일명 prs를 함유함을 특징으로 하는 재조합 플라스미드, 이 재조합 플라스미드에 의해 형질전환된 대장균 형질전환체 및 형질전환된 대장균을 포도당이 함유된 발효배지에서 직접 발효시킴으로써 배양액내에 L-트립토판을 축적시킴을 특징으로 하는 L-트립토판의 제조방법에 관한 것이다.

Description

L-트립토판의 유전공학적 제조방법
본 발명은 포스포리보실파이로포스페이트(Phosphoribosylpyrophosphate: 이하 "PRPP"라 한다)합성효소(PRPP synthase)를 코드화하는 유전자, 일명 prs를 함유함을 특징으로 하는 재조합 플라스미드, 이 재조합 플라스미드에 의해 형질전환된 대장균 형질전환체 및 이 형질전환체를 포도당이 함유된 발효배지에서 직접 발효시킴으로써 배양액내에 L-트립토판을 축적시킴을 특징으로 하는 t-트립토판의 제조방법에 관한 것이다.
트립토판은 필수 아미노산의 일종으로서 사료첨가제, 의약품 원료, 식품 소재 등으로 널리 이용되고 있으며, 주로 화학적 합성법, 효소반응법, 발효법 등에 의하여 생산되고 있다. 이중, 화학적 합성법의 경우에는 고온, 고압의 조건이 필요하며 그 산물 또한 D 형과 L 형이 함께 혼합되어 있기 때문에 정제하는 과정이 용이치 않다. 효소합성법으로는 일본 미쓰이도오아쓰의 특허(대한민국 특허 공고 제90-5773 호)가 있는데, 이러한 효소합성법의 경우에는 기질로 사용되는 인돌과 세린이 고가여서 비경제적일 뿐아니라 효소의 안정성을 확보하여야 한다는 문제가 있다. 따라서 현재는 미생물을 이용한 직접발효법에 의한 생산이 주로 이루어지고 있는 실정이다.
미생물의 직접발효에 의한 트림토판의 생산방법은 대장균과 코리네박테리움등 여러 다양한 미생물의 영양요구성 균주와 조절부위 변이균주를 대상으로 연구되어 왔는데, 그 수율이 낮아 산업적으로 적용시키기에는 문제가 있었다. 따라서 많은 연구자들이 유전자 조작 기법을 이용한 재조합 균주의 개발에 노력하였으며, 이에 따라 상당한 정도의 생산성 향상을 가져오게 되었다(참조:Matsui 등, Agri. Biol. Chem, 52 : 1863-1865, 1988). 예를들어, 직접발효법을 이용한 특허로서, 트립토판 유사체에 내성을 갖거나 영양요구성을 갖는 변이균주를 이용한 경우(참조: 대한민국 특허공고 제 87-1813, 90- 8251 및 92-7405); 재조합 균주를 이용한 경우(대한민국 특허공고 제 90-5772 및 91-5627호)가 공지되어 있다. 그러나, 지금까지 개발되어온 트립토판 생산용 재조합 균주들은 대부분 트립토판 생합성에 직접 관련되는 트립토판 오페론의 유전자들을 목적유전자로서 클로닝하여 사용한 것이었으므로 트립토판 생합성에 이용되는 중앙대사 경로상의 기질들의 양은 그대로인 상태였다.
따라서 최근에는 방향을 바꾸어 이러한 중앙대사 경로상의 기질들의 양을 동시에 증가시켜 수율을 높이고자 시도되었으며, 그 대표적인 예로서 tkt(rransket-olase 유전자), pps(phosphoenolpyruvate synthase 유전자) 등의 세포내 클로닝을언급할 수 있다(참조: Berry, Trands in Biotechnology, 14 : 250-256, 1996).
그러나, 이들 유전자를 도입하여 대장균에서 L-트립토판의 생산성을 획기적으로 증가시켰다는 보고는 아직 없는데, 이는 대장균의 중앙대사 경로가 L-트립토판을 용이하게 생합성할 수 있도록 디자인되어 있지 않기 때문으로 생각된다. 즉, 대장균의 경우 배양액의 원재료인 포도당이 세포내로 유입된다 해도 대사의 흐름상 L-트림토판 생합성에 기질을 제공하는 HMP (hexose monophosphate pathway)보다는 해당작용의 대사경로를 택해 우선적으로 대사되는 특징을 갖고 있기 때문이다.
이에 본 발명자들은 상기 언급한 바와 같은 문제점없이 보다 효율적으로 L-트립토판을 대량생산할 수 있는 방법을 개발하고자 오랜기간에 걸쳐 집중적인 연구를 수행하였으며, 그 결과 HMP로 부터 공급을 받는 L-트립토판의 생합성 경로에서 중요한 기질로 작용하는 PRPP를 합성하는 효소(PRPP synthase)의 세포내 양을 증폭시켜 주면 세포내 L-트립토판의 생산을 보다 효과적으로 향상시킬 수 있으리라는 점에 착안하게 되었으며, 실험을 통해 이를 확인함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명은 PRPP 합성효소 (PRPP synthase)를 코드화하는 유전자, 즉 prs 를 함유함을 특징으로 하는 재조합 플라스미드를 제공함을 목적으로 한다.
본 발명의 또다른 목적은 상기 재조합 플라스미드에 의해 트립토판 생산균주를 형질전환시킴으로써 발효를 통해 L-트립토판을 효율적으로 생산할 수 있도록 제조된 형질전환체를 제공함을 목적으로 한다.
본 발명의 또다른 목적은 상기 형질전환체를 적당한 배지에서 배양하여 배지내에 L-트립토판의 양을 축적시킴을 특징으로 하는 L-트립토판의 제조방법을 제공하는 것이다. 이하, 본 발명의 구성을 좀더 상세히 설명한다.
본 발명은 PRPP 합성효소(PRPP synthase)를 코드화하는 유전자, 즉 prs 를 함유함을 특징으로 하는 재조합 플라스미드에 관한 것이다.
PRPP 합성효소는 리보오스-5-포스페이트와 ATP를 기질로 하여 5-포스포리보실 α-1-파이로포스페이트(PRPP)를 합성하는 효소로서 박테리아내에서 퓨린뉴클레오티드, 피리미딘뉴클레오티드, 트립토판, 히스티딘, 피리딘 뉴클레오티드 조 효소 등의 합성에 광범위하게 관여한다. 따라서, 트립토판 생산균주 내에서 PRPP가 부족할 경우 트립토판의 생산 뿐아니라 세포의 성장 자체도 저해할 가능성이 높다.
본 발명자들은 세포내의 PRPP 양을 증가시켜 궁극적으로는 L-트립토판의 생산을 증가시키는 목적에 사용하고자 먼저 PRPP 합성효소를 코드화하는 유전자(prs)를 다음과 같은 방법으로 클로닝하였다. 즉, 트립토판 생산균주인 대장균 CA15 (KFCC-10861)로 부터 공지의 방법으로 염색체를 분리하고 DNA 데이터베이스로부터 입수한 prs 유전자의 염기서열을 바탕으로 하여 프라이머(primer)를 합성한 다음 PCR을 통해 원하는 prs 유전자를 수득하였다. 그 후, 제 1도에 도시하여 나타낸 바와 같이 수득된 prs 유전자를 pT7T3-19U(Pharmacia 社로부터 구입)과 결합시켜 재조합 플라스미드 작제하였으며 이를 pRS1라 명명하였다. 한편, 재조합 플라스미드 pRS1을 6.4kb 길이의 공지 플라스미드 pLH3.5(기탁번호: KFCC-10860)와 함께 재조합하여 역시 prs 유전자를 함유하는 재조합 플라스미드를 작제하고 이를 pTR5라 명명하였다.
이와 같이하여 제조된 pRS1 및 pTR5 재조합 플라스미드들은 모두 본 발명에서 목적하는 PRPP 합성효소를 코드화하는 유전자 prs 를 함유하고 있으며, 따라서 본 발명에 따른 L-트립토판의 제조방법에 유용하게 사용될 수 있다. 이들은 대장균내에 삽입된 후 각각 Escherichia coli RS1 및 Escherichia coli TR5의 명칭으로 1996년 11 월 19 일자로 사단법인 한국종균협회에 기탁되었으며 기탁번호는 재조합 플라스미드 pRS1 의 경우 KFCC-10930이고 재조합 플라스미드 pTR5의 경우 KFCC-10929 이다.
한편, 본 발명에 따른 재조합 플라스미드 pRS1 및 pTR5를 L-트립토판 제조에 이용하기 위해서는 이들을 각각 적절한 숙주세포에 형질전환시켜 형질전환체를 제조하여야 하며, 이 형질전환체를 적절한 배지에서 적절한 조건하에 배양하여야 한다. 따라서, 본 발명은 PRPP 합성효소를 코드화하는 prs 유전자를 함유하는 재조합 플라스미드에 의해 트립토판 생산균주를 형질전환시킴으로써 발효를 통해 L-트립토판을 효율적으로 생산할 수 있도록 제조된 형질전환체 및 이 형질전환체를 포도당이 함유된 발효배지에서 배양하여 배지내에 L-트립토판의 양을 축적시킴을 특징으로 하여 L-트립토판을 제조하는 방법에 관한 것이다.
본 발명의 목적에 적합한 트립토판 생산균주로는 대장균 CA15을 언급할 수 있다.
수회에 걸친 실험결과, 본 발명에 따라 제조된 재조합 형질전환체들은 호기적 조건(플라스크의 경우 진탕배양 200-300 rpm), 배양온도 30 내지 37℃ 및 pH 6.0 내지 8.0의 조건에서 배양하는 경우 가장 효율적으로 배양액내에 L-트립토판을축적시키는 것으로 밝혀졌으며, 트립토판 발효배지의 성분으로서 바람직한 예는 표 1 에 나타낸 바와 같다. 하기 표 1 에는 트립토판 발효배지를 통상의 LB 배지와 비교하여 각 성분 및 함량을 기재하였다.
[표 1]. 트립토판 발효 배지 및 LB 배지
발효를 완료한 후 배양액중의 균체 성장정도는 562nm에서 흡광도를 측정함으로써 확인하였으며, 분석은 버트란드(Bertrand)법에 따라 수행하였다. 또한, PRPP 합성효소의 효소 활성은 Switzer등이 사용한 방법(참조: The Journal of Biol-ogical Chemistery, 244:2854-2863, 1969)을, 안스라닐레이트 합성효소의 활성은 Smith 등이 사용한 방법(참조: Methods in Enzymology, 5 : 794-806, 1962)을 각각 사용하여 분석하였고, 단백질 정량은 Lawry 법에 준하여 시행하였다. L-트립토판 및 기타 아미노산의 정량은 HPLC(High Performance Liquid Chromatography)로 분석하였다. 이러한 분석법을 통해 확인해본 결과, 본 발명에 따른 재조합 플라스미드중 pRS1으로부터 제조된 형질전환체를 사용하여 L-트립토판을 제조하는 경우 약20%의 생산성 향상을 가져온 반면, trpED유전자 및 prs유전자를 동시에 보유한 재조합 플라스미드 pTR5 로부터 제조된 형질전환체를 사용한 경우 약 38% 의 생산성 향상을 가져옴을 알 수 있었다.
이하, 본 발명을 하기 실시예에 의거하여 보다 구체적으로 설명한다. 그러나, 이들 실시예는 본 발명에 대한 이해를 돕기위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
실시예 1: prs 유전자의 클로닝
트립토판 생산균주인 대장균 CA15 (KFCC-10861)로 부터 prs 유전자를 클로닝하기 위해 다음과 같이 염색체 DNA를 분리 정제하였다. LB 배양액에 대장균 CA15를 접종하고 대수기 초기까지 배양한 후 원심분리에 의해 세포를 회수하였다. 이를 10mM Tris-Cl(pH 8.0)으로 세척한 후, 세포침전물을 -70℃ 에서 10분 동안 급속동결시킨 후 실온에서 녹였다. 세포를 라이조자임이 포함된(5mg/mℓ) 40 mM Tris-Cl, 5mM NaCl, 1mM EDTA 및 0.5M 수크로오스 함유 용액에 재현탁시킨 다음 37℃에서 1 시간동안 방치하였다. 원심분리에 의해 세포침전물을 회수하고 수크로오스와 라이조자임이 제외된 상기 용액 10mℓ를 사용하여 현탁시켰다. 여기에 0.5M EDTA 0.6mℓ 및 4% SDS 4.4mℓ를 가한다음, 60℃ 에서 세포 현탁액을 때때로 섞어주며 세포를 용해시켰다. 최종농도 0.96 g/ℓ가 되도록 CsCl을 첨가하여 용해시킨 다음, 2mℓ의 EtBr용액(10 mg/mℓ)을 가하여 혼합하였다. 14℃에서 50,000rpm(Beckman 70.1 Ti rotor)으로 48 시간 동안 초원심분리하였다. 원심분리 튜브로부터 염색체 DNA를 분리하고 동일부피의 이소프로판올로 3 내지 4회 세척하여 EtBr를 제거한 후, TE완충액으로 3회 투석하여 염색체 DNA를 준비하였다.
정제된 염색체 DNA를 SalI 제한 효소로 부분 절단한 후 PCR 반응을 위한 템플레이트로 사용하였다. prs 유전자의 염기서열은 NCBI DNA data base 로부터 취득하였으며 전방 프라이머(forward primer)는 출발코돈(start codon)으로 부터 -504 내지 -481 부위와 상보적이면서 끝부분에 salI 제한효소 부위를 가진 35개의 염기(ATCGAGCTAGCGTATTTACCCCGTTATTGTCGACG)로 구성되었고, 역 프라이머(reverse primer)는 종결코돈(stop codon)으로부터 299 내지 320 부위와 상보적이면서 마찬가지로 끝부분에 SalI제한효소 부위를 가진 35개의 염기(AACGTGTCGACGATAACATGAGCGAAGAAGAGATT)로 구성되었다. PCR 반응은 베링거 만하임 (Boehringer Mannheim) 社로 부터 구입한 Expand High Fidelity PCR System Kit를 사용하여 수행하였다. 즉, dNTP 0.35mM, 프라이머 0.3 mM, DNA 템플레이트 15 mg/mℓ, DNA 폴리머라제 2유닛을 잘 혼합한 다음, 변성(dena-turation) 반응은 92℃에서 2분간, 합성반응은 92℃에서 10초, 58℃에서 30초, 68℃에서 2분간을 한 주기로 하여 30회 반복하였고 최종 합성반응은 68℃에서 7분간 실시하였다. 이렇게 하여 합성한 prs 유전자를 프로테이나아제(Proteinase) K로 처리한 후 페놀/클로로포름으로 2회 추출하였다. 그 후 SalI 제한 효소와 함께 4시간 동안 반응시키고 다시 페놀/클로로포름으로 2회 추출한 다음, pT7T3-19U 의 SalI 제한효소 위치로 도입시키고 DH5α를 형질전환시켰다(참조:Lederberg, E. M., and Cohen, S. N. 1974. J. Bacteriol. 119 : 1072-1074). 그 후, 휜색 콜로니를 생성한 세포로부터 플라스미드를 분리(참조: Maniatis, T., Sambrook, J., and Fritsch, E.F, 1989.Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Lab)하고 SalI 제한효소로 처리하여 prs 유전자가 클로닝되었는지를 확인하였다. 또한, HincII 및 HindIII 제한효소로 추가 절단하여 클로닝된 prs 유전자의 방향성을 확인함으로써 베타 락타마아제와 방향이 동일한 재조합 플라스미드를 pRS1으로 명명하고, 1996년 11월 19일자로 사단법인 한국종균협회에 기탁하여 KFCC-10930의 기탁번호를 부여받았다(제 1도 참조)
실시예 2: pRS1을 보유한 재조합 균주에서 PRPP 합성효소의 활성 측정
실시예 1에서 클로닝한 prs 유전자가 실제로 세포내에서 활성 PRPP 합성효소를 발현시킬 수 있는지를 확인하기 위해, pRS1 에 의해 형질전환시킨 CA15 균주와 형질전환되지 않은 CA15 균주를 세포 파쇄하고 하기 절차를 거쳐 PRPP 합성효소를 부분 정제한 후 효소의 비활성도를 산출하여 pRS1을 보유한 대장균 CA15가 모균주보다 더 높은 효소역가를 나타내는지를 조사하였다.
먼저, 효소를 부분정제하기 위하여 1%의 포도당을 함유한 LB 배지에서 상기 균주들을 대수기 말기까지 배양한 후 원심분리에 의해 균체를 회수하여 냉동보관하였다. 얼린 균체를 50mM 인산칼륨 완충용액(pH7.5) 5 부피부에 현탁시킨 후 초음파를 이용하여 파쇄하고 원심분리하여 세포추출물을 수득하였다. 그 후, 10% 스트렙토마이신 황산염 용액을 1/10 부피부 첨가하고 54℃ 에서 5분간 열처리한 다음, 23,000g 에서 1시간 동안 원심분리하여 상등액을 취하였다. 여기에 황산암모늄을 35% 되도록 첨가하여 위와 동일한 조건으로 원심분리하고 침전물을 취하여 인산칼륨 완충용액(pH 7.5)에 용해시켰다. 1N 아세트산을 pH 4.6이 되도록 첨가하고 원심분리하여 침전물을 취한 다음 이를 인산칼륨 완충용액에 용해시켰다. 여기에 황산암모늄으로 포화된 인산칼륨 완충용액 1/2 부피부를 첨가하고 원심분리를 실시하여 흰색 침전물을 취한 다음, 이를 황산암모늄으로 18% 포화된 인산칼륨 완충용액에 용해시키고 원심분리 후 침전물을 취하여 다시 인산칼륨 완충용액에 용해시켰다.
상기 단계를 거쳐 부분 정제된 단백질 용액을 이용하여 PRPP 합성효소의 활성을 측정하였다. 즉, PRPP 합성효소가 리보오스-5-포스페이트와 ATP 로부터 합성한 5-포스포리보실 α-1-파이로포스페이트(PRPP)를 오로티딜레이트 포스포릴라아제-데카르복실라아제(orotydylate phosphorylase-decarboxylase)를 이용하여 오로티딜산(orotidylic acid)과 유리딜산(uridylic acid)으로 전환시키는 방법을 사용하여 효소활성을 측정하였다(참조: The Journal of Biological Chemistery, 244 : 2854-2863, 1969). 측정 결과는 표 2에 나타내었다.
[표 2]. 모균주 및 재조합 균주의 PRPP 합성효소의 비활성도
표 2의 결과로부터 알 수 있듯이, pRS1을 보유한 대장균 CA15균주의 PRPP 합성효소의 비활성도는 pRS1을 보유하지 않는 대장균 CA15 균주에 비해 7.5배 정도 증가하였는데, 이는 prs 유전자가 트립토판 생산균주인 대장균 CA15 균주 내애서정상적으로 발현됨을 의미한다.
실시예 3: pRS1 을 보유한 재조합균주의 트립토판 발효
하기 설명하는 것과 같은 방법으로 실시예 1에서 수득한 pRS1으로 트립토판 생산균주인 대장균 CA15를 형질전환시켰다. 대장균 DH5α 500mℓ를 대수기까지 배양한 다음 멸균수로 2회 세척하고 10% 글리세롤 용액으로 최종세척하였다. 10% 글리세롤 용액 1mℓ에 재현탁시켜 세포현탁액 40μℓ를 형질전환시 이용하였다. 형질전환 방법으로는 전기충격법을 사용하였으며 이때 조건은 25μF,200Ω, 2.5kV로 유지하였다. 이러한 과정을 통해 수득된 재조합 균주를 삼각 플라스크에서 발효시켜 그 발효성을 조사하였다. 즉, 암피실린(50μg/mℓ)이 함유된 30mℓ의 트립토판 발효배지가 들어있는 250mℓ 용량의 corner-baffled플라스크에 대장균 CA15와 재조합 대장균 CA15/pRS1를 각각 1 백금니 접종하고 상세한 설명중에 언급한 발효조건에서 48 내지 60시간 동안 진탕배양하여 L-트립토판을 배양액중에 축적시켰다. 그 결과는 표 3에 나타낸 바와 같다.
[표 3]. 재조합 대장균 CA15/pRS1의 플라스크 발효결과
표 3 에서 볼 수 있듯이, 형질전환된 재조합 대장균 CA15/pRS1은 모균주인 대장균 CA15에 비해 트립토판에 있어서 약 20%의 농도향상을 달성하였음을 확인할수 있었다. 한편 발효과정 중의 플라스미드의 안정성을 측정하기 위하여 배양 말기인 60시간 째의 세포들을 LB 평판배지에 도말하여 콜로니를 획득하고 이를 암피실린이 포함된 평판배지에 tooth picking 한 결과 90 내지 95%의 안정성을 확인할 수 있었다.
실시에 4: pTR5 재조합 플라스미드의 제조
실시예 1에서 클로닝한 prs 유전자를 안스라닐레이트 합성효소인 trpED 유전자와 동시에 트립토판 생산균주내에서 발현시키는 경우 트립토판 생산에 어떠한 영향을 주는지 조사하기 위하여 하기 과정을 통해 prs 유전자와 trpED유전자를 동시에 함유하는 재조합 플라스미드 pTR5를 제조하였다.
먼저, 플라스미드 pLH35 (KFCC-10860) 를 salI 제한효소로 절단한 다음, CIAP(Calf Intestinal Alkaline Phophotase)로 처리하였다. 여기서, 플라스미드 pLH35는 염기서열의 변화로 인하여 아미노산 서열중 21 번째 L-프롤린이 L-세린으로, 40번째 L-세린이 L-아르기닌으로, 147번째 세린이 L-글리신으로 각각 치환된 TrpE 유전자와 TrpD 유전자를 플라스미드 pACYC177 과 재조합하여 얻은 6.4kb 길이의 플라스미드이다. 재조합 플라스미드 pRS1을 SalI 제한효소로 절단한 후 1.7kb 길이의 prs 유전자를 분리하였으며, 이를 위에서 준비한 벡터와 결찰시켜 8.1kb 길이의 재조합 플라스미드 pTR5를 제조하였다. 이를 1996년 11월 19일자로 사단법인 한국종균협회에 기탁하여 KFCC-10929의 기탁번호를 부여받았다(제1 도 참조).
실시예 5: pTR5를 보유한 재조합 균주에서 안트라닐레이트(anthranil-ate) 합성효소 및 PRPP 합성효소의 활성 측정
재조합 플라스미드 pTR5 에 의해 형질전환된 균주가 유전자 prs 및 trpED(anthranilate synthase 유전자)를 정상적으로 발현시키는지 확인하기 위하여 다음과 같이 실험하였다. 즉, pTR5에 의해 형질전환된 대장균 CA15 및 형질전환되지 않은 대장균 CA15를 세포 파쇄한 다음, 실시예 2에서와 동일하게 실시하여 PRPP 합성효소를 부분 정제하고 효소의 비활성도를 산출하였다. 또한, 안스라닐레이트 합성효소의 경우 초음파 파쇄 후 원심분리하여 얻은 상등액을 사용하여 효소의 비활성도를 측정하였으며, 각각의 측정결과를 표 4에 나타내었다.
[표 4]. 모균주 및 재조합 균주의 PRPP 합성효소 및 안스라닐레이트 합성효소의 비활성도
표 5의 결과로부터 알 수 있듯이, pTR5를 보유한 재조합 대장균 CA15의 경우, PRPP 합성효소 및 안스라닐레이트 합성효소의 비활성도는 모균주인 대장균 CA15 에 비해 각각 4.5배와 6.0배 정도 증가하였는데, 이는 pTR5의 prs 유전자 및 trpED 유전자가 트립토판 생산균주인 대장균 CA15 내에서 정상적으로 발현되고 있음을 의미한다.
실시예 6: pTR5 를 보유한 재조합균주의 트립토판 발효
실시예 4에서 수득한 pTR5로 트립토판 생산균주인 대장균 CA15를 형질전환시킨 다음, 실시예 3 에서와 동일한 방법에 의해 가나마이신(50 μg/mℓ)을 함유한 LB 평판배지에서 성장한 재조합 콜로니를 선별하여 새로운 동일 평판배지에서 하룻밤 동안 항온(32℃)처리하여 종모로 사용하였다. 삼각 플라스크에서 이들 재조합 균주들의 발효성을 조사하였다. 즉, 가나마이신(50 μg/mℓ)이 함유된 트립토판 발효배지 30mℓ가 들어있는 250mℓ 용량의 corner-baffled 플라스크에 대장균 CA15 및 재조합된 대장균 CA15/pTR5를 각각 1 백금니씩 접종하고, 상세한 설명중에 언급한 발효조건에서 48 내지 60시간동안 진탕 배양하여 L-트립토판을 배양액중에 축적시켰다. 그 결과는 표 5에 나타낸 바와 같다.
[표 5].재조합 대장균 CA15/pTR5의 플라스크 발효결과
표 5의 결과로부터, 재조합 대장균 CA15/pTR5이 트립토판을 생산하는 모 균주인 대장균 CA15 에 비해 약 38%정도 트립토판을 더 많이 축적시킴을 확인할 수 있었다. 한편, 발효과정 중 플라스미드의 안정성을 측정하기 위하여 배양 말기인 60 시간 째의 세포들을 LB 평판배지에 도말하여 콜로니를 획득하고 이를 가나마이신이 포함된 평판배지에 tooth picking 한 결과 97 내지 100%의 안정성을 확인할 수 있었다.
따라서, 본 발명에 따른 재조합 플라스미드 pRS1 및 pTR5 중에서도 pTR5에 의해 형질전환된 재조합 균주가 pRS1에 의해 형질전환된 균주에 비해 L-트립토판의 생산성 및 안정성 측면에서 더욱 우수한 것으로 나타났다.
제 1 도는 본 발명에 따른 재조합 플라스미드 pRS1 및 pTR5 의 작제과정을 도식화하여 나타낸 것이다.

Claims (7)

  1. 플라스미드 pRS1(기탁번호: KFCC-10930) 및 플라스미드 pLH35를 재조합시켜 trpED 및 prs 유전자를 동시에 함유하도록 제조된 플라스미드 pTR5 (기탁번호: KFCC-10929).
  2. 제 1항에 따른 프라스미드 pTR5로 형질전환된, 대장균 및 코리네박테리움으로 구성된 그룹으로부터 선택되는 트립토판 생산균주.
  3. 제 2항에 있어서, 대장균 CA15 인 트립토판 생산균주.
  4. PRPP 합성효소를 코드화하는 유전자 prs를 함유하는 재조합 플라스미드로 형질 전환된 트립토판 생산균주를 포도당이 함유된 발효배지에서 배양하여 배지내에 L-트립토판의 양을 축적시킴을 특징으로 하는 L-트립토판의 제조방법.
  5. 제 4항에 있어서, 트립토판 생산균주를 200-300 rpm, 배양온도 30 내지 37℃, pH 6.0 내지 8.0 의 조건에서 진탕배양하는 방법.
  6. 제 4 항에 있어서, 포도당이 함유된 발효배지가 하기 표에 기재한 바와 같은조성을 갖는 것인 방법:
  7. 제 4항에 있어서, 재조합 플라스미드가 플라스미드 pRS1 및 플라스미드 pTR5로 구성된 그룹으로부터 선택되는 방법.
KR1019960058827A 1996-11-28 1996-11-28 L-트립토판의유전공학적제조방법 KR100434108B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960058827A KR100434108B1 (ko) 1996-11-28 1996-11-28 L-트립토판의유전공학적제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960058827A KR100434108B1 (ko) 1996-11-28 1996-11-28 L-트립토판의유전공학적제조방법

Publications (2)

Publication Number Publication Date
KR19980039739A KR19980039739A (ko) 1998-08-17
KR100434108B1 true KR100434108B1 (ko) 2004-09-01

Family

ID=37341001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960058827A KR100434108B1 (ko) 1996-11-28 1996-11-28 L-트립토판의유전공학적제조방법

Country Status (1)

Country Link
KR (1) KR100434108B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830001B1 (ko) * 2016-10-11 2018-02-19 대상 주식회사 Prpp 합성 경로 개선을 통한 l-트립토판이 과발현되는 균주 및 이를 이용하는 l-트립토판의 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850853B1 (ko) * 2006-12-13 2008-08-06 씨제이제일제당 (주) nrfE 유전자가 불활성화된 L-트립토판 생산 미생물 및이를 이용한 L-트립토판 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465132A2 (en) * 1990-07-03 1992-01-08 Takeda Chemical Industries, Ltd. DNA and its use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465132A2 (en) * 1990-07-03 1992-01-08 Takeda Chemical Industries, Ltd. DNA and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830001B1 (ko) * 2016-10-11 2018-02-19 대상 주식회사 Prpp 합성 경로 개선을 통한 l-트립토판이 과발현되는 균주 및 이를 이용하는 l-트립토판의 제조 방법

Also Published As

Publication number Publication date
KR19980039739A (ko) 1998-08-17

Similar Documents

Publication Publication Date Title
KR20210032928A (ko) 트립타민의 생산 방법
JP2000505291A (ja) トランスアミナーゼ及びアミノトランスフェラーゼ
JPH11513562A (ja) 組換えプラスミドの生産方法
EA010179B1 (ru) Биохимический синтез 1,4-бутандиамина
JP3369231B2 (ja) 芳香族アミノ酸の製造法
US20090253168A1 (en) Novel Transporter Protein
JP2509552B2 (ja) 生合成の方法およびその細胞
KR20190025969A (ko) 당 포스포트랜스퍼라제 시스템 (pts)을 코딩하는 유전자를 포함하는 미생물에 의한 관심 분자의 발효적 생산을 위한 방법
JPH0376580A (ja) 大腸菌発現ベクターとそれを利用した抗ウイルス性タンパク質の製造方法
KR970001238B1 (ko) L-트립토판의 제조방법
KR20200134333A (ko) 발효에 의한 히스타민 생산을 위해 조작된 생합성 경로
CN1065916C (zh) 生物合成钴胺素和/或钴胺酰胺有关的多肽、编码这些多肽的dna序列、其制备方法及应用
KR100434108B1 (ko) L-트립토판의유전공학적제조방법
KR900004424B1 (ko) 아미노산의 제조방법
KR19990028940A (ko) 이소시트레이트 리아제 활성이 변성된 미생물에 의한 리보플라빈의 제조 방법
KR20020029767A (ko) 환상 뎁시펩티드 합성효소 및 그의 유전자 및 환상뎁시펩티드의 대량생산계
JPH0587234B2 (ko)
KR20030072208A (ko) 신규 프로모터 및 이 프로모터를 사용한 유전자 발현방법
JP2000509992A (ja) コバラミンを製造し得る生合成方法
KR102016050B1 (ko) 신규한 프로모터 및 이의 용도
KR100455054B1 (ko) 페니실륨 크리소제눔 유래의 페닐아세틸-CoA 리가제
KR102031886B1 (ko) 신규한 프로모터 및 이의 용도
WO2000008170A1 (fr) Gene participant a la production d'acide homoglutamique, et utilisation associee
JPH02286077A (ja) バチルス・エス・ピー、l―乳酸脱水素酵素遺伝子を含有するdna断片およびそれを含有する組み換え体プラスミド並びにl―乳酸脱水素酵素遺伝子およびそれを含有する組み換え体プラスミド。
JPS63105688A (ja) L−フエニルアラニンの製造法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 12

EXPY Expiration of term