KR100379604B1 - Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process - Google Patents

Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process Download PDF

Info

Publication number
KR100379604B1
KR100379604B1 KR1019960072577A KR19960072577A KR100379604B1 KR 100379604 B1 KR100379604 B1 KR 100379604B1 KR 1019960072577 A KR1019960072577 A KR 1019960072577A KR 19960072577 A KR19960072577 A KR 19960072577A KR 100379604 B1 KR100379604 B1 KR 100379604B1
Authority
KR
South Korea
Prior art keywords
tundish
molten steel
dam
nozzle
ladle
Prior art date
Application number
KR1019960072577A
Other languages
Korean (ko)
Other versions
KR19980053471A (en
Inventor
권오덕
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019960072577A priority Critical patent/KR100379604B1/en
Publication of KR19980053471A publication Critical patent/KR19980053471A/en
Application granted granted Critical
Publication of KR100379604B1 publication Critical patent/KR100379604B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means

Abstract

PURPOSE: A structure of tundish is provided which reduces steel slab quality difference between both molds generated during injection of molten steel into eccentric position of tundish instead of center of tundish when injecting molten steel into tundish from ladle by changing structure of dams and weirs in tundish in the continuous casting process. CONSTITUTION: In a tundish(2) of the continuous casting process in which molten steel is cooled as molten steel is passing through molds(3) and second cooling section(6) after molten steel(4) in ladle(1) is injected into tundish through shroud nozzle(5), the structure of the tundish is characterized in that weirs(10) and dams(9) are sequentially positioned at a side of the tundish where a distance between the shroud nozzle and submerged entry nozzle is long, height of the dam is 0.25 to 0.31 H0, wherein the H0 is height of the surface level of molten steel, the dams and the weirs are positioned in order of dam, weir and dam again at a side of the tundish where a distance between the shroud nozzle and the submerged entry nozzle is short, and a residual molten steel discharge hole is formed a central lower part of the dam close to the submerged entry nozzle.

Description

연주공정의 래들-턴디시간 편심주입시 청정강 제조를 보장하는 턴디시 구조Tundish structure to ensure clean steel manufacturing during ladle-teddy time eccentric injection of the playing process

본 발명은 래들-턴디시-주형으로 구성된 연속주조 공정에서 턴디시내의 댐(dam)과 웨어(weir)의 구조 변경을 통해 래들에서 턴디시로 용강을 주입하는 과정에서 턴디시의 중앙이 아닌 편심위치에 용강의 주입시 발생하는 양 주형간의 주편 품질차를 저감시키는 턴디시 구조에 관한 것이다.In the continuous casting process consisting of a ladle-tundish-mould, the present invention is not the center of the tundish but the eccentricity of the tundish in the process of injecting molten steel from the ladle to the tundish by changing the structure of the dam and weir in the tundish. The present invention relates to a tundish structure for reducing the quality difference between the cast pieces generated when the molten steel is injected into the position.

일반적으로 슬라브 연주기(slab caster)는 도 1와 같이 래들(1)-턴디시(2)-주형(3)으로 구성된다. 래들내 용강(4)은 쉬라우드 노즐(5)을 통하여 턴디시(2)로 주입되고 이후 양 주형(3)으로 분배 되어 주형과 2차 냉각대(6)를 거치면서 냉각된다.In general, the slab caster is composed of a ladle (1)-tundish (2)-mold (3) as shown in FIG. The molten steel 4 in the ladle is injected into the tundish 2 through the shroud nozzle 5 and then distributed to both molds 3 and cooled by passing through the mold and the secondary cooling stand 6.

연속주조 공정의 턴디시(2)는 래들(1)로부터 주입된 용강(4)을 양 주형(3)으로 분배 해주고 응고층(도 4의 16)에 작용하는 철정압을 완화시켜 주고 용강(4)중 개재물을 탕면쪽으로 부상시켜 개재물이 탕면의 슬랙(8)과 반응하여 용해,흡수되도록 하는 기능이 있다. 턴디시(2)내 용강(4)의 유동을 제어하기 위하여 여러 형태의 댐(dam)(9)과 웨어(weir)(10)가 사용되고 있다.The tundish 2 of the continuous casting process distributes the molten steel 4 injected from the ladle 1 to both molds 3, relieves the static static pressure acting on the solidification layer (16 in FIG. 4) and the molten steel 4 ) To raise the inclusions toward the tap surface so that the inclusions react with the slag 8 of the tap surface to dissolve and absorb. Various types of dams 9 and weirs 10 are used to control the flow of the molten steel 4 in the tundish 2.

상기 댐은 턴디시 바닥에 부착되는 것으로서 위쪽이 잘려서 용강이 통과하는 구조를 갖고, 상기 웨어는 댐과 비슷하나 턴디시 바닥에서 떠 있고 하부가 잘려서 용강이 통과하는 구조를 갖고 있다.The dam is attached to the bottom of the tundish, and has a structure in which the molten steel passes through the upper portion thereof, and the wear is similar to the dam, but has a structure in which the molten steel passes through the bottom of the tundish and is cut off.

통상의 경우 도 1a와 같이 래들(1)에는 콜렉터 노즐(11,12)이 2개로서 하나는 주입용, 나머지는 노즐의 개공 불가시 사용하는 비상개공용으로 사용하여 개공토록 하였다.In general, as shown in FIG. 1A, the ladle 1 has two collector nozzles 11 and 12, one for injection and the other for emergency opening used when the nozzle cannot be opened.

래들(1)의 연속주조시 각 히트(heat)마다 양 노즐을 번갈아 가면서 주입용 및 비상개공용으로 사용하였다. 그러나 최근에는 제강기술의 발전과 함께 래들(1)의 노즐 개공율이 향상됨에 따라 래들(1) 수리를 간편화시키고 턴디시 커버의 용강 주입구를 최소화시키고자 한쪽 노즐만 사용하게 되었다. 따라서 턴디시(2)내 용강 주입위치(13)로 고정되어 연연주 히트(heat) 순서에 관계없이 주입위치-턴디시노즐간의 거리가 도면에서 X측은 멀고 Y측은 가깝게 되었다.During the continuous casting of the ladle (1) it was used for injection and emergency opening by alternating both nozzles for each heat (heat). Recently, however, as the nozzle opening rate of the ladle 1 is improved with the development of steelmaking technology, only one nozzle is used to simplify the ladle 1 repair and minimize the molten steel inlet of the tundish cover. Therefore, the molten steel injection position 13 in the tundish 2 is fixed so that the distance between the injection position and the tundish nozzle is closer to the X side and closer to the Y side in the drawing, regardless of the performance of the cast heat.

종전에는 용강을 X측과 Y측으로 번갈아 가면서 주입하여서 주형(3)간 품질 편차가 인지되지 않았으나 편심주입과 함께 주편의 품질도 결함의 종류에 따라 X측 혹은 Y측으로 치우치는 경향이 나타나게 되었다. 도 2에서 보는 바와같이 주편의 표면 개재물의 경우는 X측이, 내부개재물의 경우는 Y측이 발생율이 높다. 양주형(3)간 주편 품질의 문제가 발생하면 품질관리상 품질불균일 문제만 아니라 결함의 발생원이 한쪽 주형(3)측으로 집중되므로 주편결함의 발생율도 높아지는 문제점이 야기된다.Previously, molten steel was injected alternately into the X and Y sides, but the quality variation between the molds (3) was not recognized, but the quality of the casts with the eccentric injection tended to be biased toward the X or Y side depending on the type of defect. As shown in Fig. 2, the occurrence rate of the X-side is high in the case of the surface inclusions of the cast steel, and Y-side in the case of the internal inclusions. When the problem of cast quality between the two molds (3), not only the quality non-uniformity problem in quality control but also the source of defects is concentrated on one side of the mold (3), causing a problem that the incidence of cast defects also increases.

상기 턴디시(2)내 용강의 온도와 유동상태를 보면, 중앙주입인 도 1b 경우 주입된 용강(4)은 웨어(10) 사이를 지나 댐(9)을 거쳐 양측의 각 주형(3)으로 주입된다. 이 경우, 양측으로 용강(4)의 온도분포와 유속분포가 동일한 상태가 된다. 그러나 쉬라우드 노즐(5)의 용강 주입위치(13)가 편심화함에 따라 용강의 온도 및 유속분포가 비대칭화 한다. 턴디시내 침지노즐(도 4의 14) 상부의 용강온도를 조사해보면 도 3에서 보는 바와 같이 X측 대비 Y측이 용강온도가 높다. 또한 수치계산 결과도 유사한 경향을 나타낸다. 이는 용강 주입위치(13)-침지노즐(14)간 거리가 멀어 용강(4)의 온도하락이 더욱 크기 때문이다.Looking at the temperature and flow state of the molten steel in the tundish (2), in the case of the central injection of Figure 1b injected molten steel 4 passes between the weirs 10 through the dam (9) to each mold (3) on both sides Is injected. In this case, the temperature distribution and the flow velocity distribution of the molten steel 4 are in the same state on both sides. However, as the molten steel injection position 13 of the shroud nozzle 5 is eccentric, the temperature and flow rate distribution of the molten steel are asymmetric. Investigation of the molten steel temperature at the top of the immersion nozzle (14 in FIG. 4) in the tundish as shown in FIG. 3 shows that the molten steel temperature is higher in the Y side than in the X side. Numerical results also show similar trends. This is because the distance between the molten steel injection position 13 and the immersion nozzle 14 is far, so that the temperature drop of the molten steel 4 is greater.

용강(4)의 온도가 하락하면 도 4에서 보이는 바와 같이 침지노즐(14)에서 저온성 노즐막힘을 조장하여 주형내 탕면변동을 유발시키므로서 주형용제등(15)이 응고층(16)에 쉽게 포집되고, 노즐 막힘물질(17)등도 노즐벽면에서 이탈하여 응고층(16)에 포집되어 주편의 표면개재물이 된다.When the temperature of the molten steel 4 decreases, as shown in FIG. 4, the casting solvent 14 facilitates the low temperature nozzle clogging in the immersion nozzle 14 to cause fluctuations in the mold surface, thereby allowing the mold solvent 15 to be easily applied to the solidified layer 16. Collected, the nozzle clogging material 17 and the like are also separated from the nozzle wall surface and collected in the solidification layer 16 to become the surface inclusions of the cast steel.

턴디시(2)의 용강 주입위치에서 양 주형(3)측으로 흐르는 용강의 턴디시내 체류시간를 조사하기 위하여 구리(Cu)성분을 트레이서(tracer)로 투입하여 양 주형에서 용강(4)을 연속채취하여 구리성분의 변화를 조사하므로서 용강체류시간을 조사하였고 그 결과는 도 5에서 보인다. X측에 비해 Y측이 최대체류시간이 짧은 것을 확인할 수 있었다. 따라서 Y측의 경우가 비금속개재물의 부상분리 가능성이 적음을알 수 있으며, 이는 도 2에서 내부개재물의 경우 Y측이 발생율이 높은 사실과 잘 일치한다.In order to investigate the residence time in the tundish of the molten steel flowing from the molten steel injection position of the tundish 2 to the two mold 3 side, a copper (Cu) component is introduced into a tracer to continuously collect the molten steel 4 in both molds. The molten steel residence time was investigated by investigating the change of copper component, and the result is shown in FIG. It was confirmed that the maximum stay time was shorter on the Y side than on the X side. Therefore, it can be seen that the Y side is less likely to separate the floating of the non-metallic inclusions, which is in good agreement with the fact that the Y side has a high incidence in the case of the internal inclusions in FIG. 2.

본 발명은 전술한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 래들-턴디시-주형으로 구성된 연속주조 공정에서 래들의 용강을 턴디시에 편심주입하는 경우 발생하는 양 주형간의 품질편차를 최소화할 수 있는 연주공정의 래들-턴디시간 편심주입시 청정강 제조를 보장하는 턴디시 구조를 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-described problems of the prior art, to minimize the quality deviation between the two molds caused by the eccentric injection of the molten steel of the ladle in the continuous casting process consisting of ladle-tundish-mould It is an object of the present invention to provide a tundish structure that guarantees clean steel production during ladle-teddy time eccentric injection of a performance process.

도 1a는 연주공정의 래들-턴디시 주형간의 모식도에서 편심주입시의 구조를 보이는 도면.Figure 1a is a view showing the structure during eccentric injection in the schematic diagram between the ladle-tundish mold of the playing process.

도 1b는 연주공정의 래들-턴디시-주형간의 모식도에서 중앙 주입시의 구조를 보이는 도면.Figure 1b is a view showing the structure at the center injection in the schematic diagram between the ladle-tundish-template of the playing process.

도 2는 편심주입시 턴디시의 양 주형간의 주편 결함을 비교한 도면.FIG. 2 is a diagram comparing cast defects between both molds of tundish during eccentric injection. FIG.

도 3은 편심주입 턴디시의 양 주형간 용강온도 차이를 보이는 도면.Figure 3 is a view showing the difference between the molten steel temperature between the two molds of the eccentric injection tundish.

도 4는 주편내 결함형성 모식도.4 is a schematic diagram of the defect formation in the cast steel.

도 5는 편심주입시 실제 용강 체류시간을 보이는 도면.5 is a view showing the actual molten steel residence time during eccentric injection.

도 6은 턴디시내 웨어와 댐의 위치를 보이는 도면.Figure 6 shows the position of the tundish weir and dam.

도 7은 본 발명의 특징적 구성을 나타낸 도면.7 is a view showing a characteristic configuration of the present invention.

표 1은 본 발명의 일실시예에 따른 수모델시험 결과 댐/웨어의 위치에 따른 체류시간비와 최대 체류시간을 보이는 도표.Table 1 is a table showing the retention time ratio and the maximum residence time according to the position of the dam / ware according to the water model test according to an embodiment of the present invention.

표 2는 본 발명의 다른 실시예에 따른 수모델시험 결과 댐/웨어/댐의 위치에 따른 체류시간비와 최대 체류시간을 보이는 도표.Table 2 is a table showing the retention time ratio and the maximum residence time according to the position of the dam / ware / dam result of the water model test according to another embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1: 래들 2: 턴디시1: ladle 2: tundish

3:주형 4: 용강3: mold 4: molten steel

5: 쉬라우드 노즐 6: 2차 냉각대5: Shroud Nozzle 6: Second Cooling Table

7: 용강 8: 슬랙7: molten steel 8: slack

9: 댐 10: 웨어9: dam 10: ewe

11,12: 콜랙터노즐 13: 용강 주입 위치11, 12: Collector nozzle 13: molten steel injection position

14: 침치 노즐 15: 주형용제14: immersion nozzle 15: molding solvent

16: 응고층 17: 노즐막힘물질16: solidification layer 17: nozzle clogging material

이하 첨부한 도면을 참고하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명은 연주 과정에서 턴디시내의 댐(dam)과 웨어(weir)의 구조 변경을 통해 래들에서 턴디시로 용강을 주입하는 과정에서 발생하는 양 주형간의 주편 품질치를 저감시키는 턴디시 구조에 관한 것이다.The present invention relates to a tundish structure for reducing slab quality between the two molds generated in the process of injecting molten steel from the ladle to the tundish by changing the structure of dams and weirs in the tundish during the playing process. .

본 발명은 래들내의 용강이 쉬라우드 노즐을 통하여 턴디시로 주입된 후 주형과 2차 냉각대를 거치면서 냉각되는 연속주조 공정의 턴디시에 있어서, 상기 턴디시는 상기 쉬라우드 노즐과 침지 노즐간의 거리가 먼 쪽은 쉬라우드 노즐로부터 웨어(weir)와 댐(dam)의 순으로 위치시키고, 상기 댐의 높이는 0.25-0.31Ho(여기서 Ho)는 탕면높이)로 하며, 상기 쉬라우드 노즐과 침지 노즐간의 거리가 가까운 쪽은 쉬라우드 노즐로부터 댐과 웨어, 그리고 댐의 순으로 각각 위치시키는 한편, 상기 침지 노즐과 가까운 댐의 중앙 하부에 잔탕배출용 구멍을 가지는 것을 특징으로 하는 연주공정의 래들-턴디시간 편심주입시 청정강 제조를 보장하는 턴디시 구조에 관한 것이다.The present invention relates to a tundish of a continuous casting process in which molten steel in a ladle is injected into a tundish through a shroud nozzle and then cooled while passing through a mold and a secondary cooling stand, wherein the tundish is formed between the shroud nozzle and the immersion nozzle. The far side is located from the shroud nozzle in the order of weir and dam, and the height of the dam is 0.25-0.31Ho (where Ho is the height of the floor), and the shroud nozzle and the immersion nozzle The distance between them is located in the order of dam, weir, and dam from the shroud nozzle, and the ladle-teddy of the playing process, characterized in that it has a hole for discharging the residual water in the lower center of the dam close to the immersion nozzle. It relates to a tundish structure which guarantees clean steel production during time eccentric injection.

이때, 상기 댐의 높이를 0.25-0.31Ho로 한정한 것은 댐의 높이가 0.25Ho 미만이거나, 0.31 Ho 보다 높을 경우, 턴디시내의 용강 체류시간비 감소와 함께 최대 체류시간이 짧게 되어 개재물의 부사 제거 능력이 저하되기 때문이다.At this time, the height of the dam is limited to 0.25-0.31Ho, when the height of the dam is less than 0.25Ho or higher than 0.31 Ho, the maximum residence time is shortened with decreasing the molten steel residence time in the tundish, thereby removing the adverbs of inclusions. This is because the ability is degraded.

이하에서는 실시예를 통해 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

하기 표 1은 수모델 시험 결과로서 기존의 턴디시 댐과 웨어 조건하에서 댐과 웨어의 위치를 변경하면서 양 주형간 체류시간비와 최대 체류시간을 조사하였다.Table 1 below shows the retention time ratio and maximum residence time between the two molds while changing the position of the dam and weir under the existing tundish dam and weir conditions.

수모델의 쉬라우드 노즐에 염화칼륨(KCI) 트레이서(tracer)를 투입하고 침지 노즐에서 전기전도도 측정기를 통하여 트레이서 농도를 조사하므로서 양 X,Y측의 체류시간을 구하였고, 이를 근거로 체류시간비(=Y측 최대체류시간/X측 최대체류시간)와, 양측중 최대 체류시간의 큰 경우를 최대체류시간으로 간주하였다. 여기서 Ho는 도 6에서 보이듯이, 탕면높이를 말하고 Lo는 X측 턴디시 노즐과 Y측 턴디시 노즐 사이의 거리를 말한다.A residence time ratio of both X and Y sides was obtained by inserting a potassium chloride (KCI) tracer into the shroud nozzle of several models and examining the tracer concentration through an conductivity meter at the immersion nozzle. The maximum stay time of Y side / maximum stay time of X side) and the maximum stay time of both sides were considered as the maximum stay time. Here, Ho is the hot water level, as shown in Figure 6, Lo is the distance between the X-side tundish nozzle and Y-side tundish nozzle.

기존의 경우 도표의 제일 좌측에서 보듯이 체류시간비가 0.675로서 X측이 체류시간이 길며 상기의 실측결과와도 잘 일치한다. Y측 체류시간을 증가시키기 위하여 Y측 댐과 웨어를 이동시켰다. Y측 댐을 이동시킨 결과, 체류시간비는 증가하여 0.82-0.79Lo에서 1수준에 접근하였다. Y측 웨어를 이동시킨 결과 양측의 체류시간비의 편차는 오히려 증가하는 문제점을 초래 하였다. 반대로 X측의 댐을 침지노즐측으로 이동시켜 X측체류시간을 짧게하였으며 이때는 0.08Lo - 0.06Lo일 때 1 수준에 근접하였다. 표 1의 경우는 모든 경우에 최대체류시간이 1.11이하로서 기존조건보다 낮았다.In the case of the existing case, as shown in the far left of the chart, the residence time ratio is 0.675, and the residence time on the X side is long, which is in good agreement with the above results. The dam and weir on the Y side were moved to increase the residence time on the Y side. As the Y-side dam was moved, the residence time ratio increased, approaching the level 1 at 0.82-0.79Lo. As a result of moving the Y side weir, the deviation of the residence time ratio on both sides resulted in an increase. On the contrary, the X-side stay time was shortened by moving the dam on the X side to the immersion nozzle side, and this time approached the 1 level when 0.08Lo-0.06Lo. In the case of Table 1, the maximum residence time in all cases was below 1.11, which was lower than the existing conditions.

[표 1]TABLE 1

* 댐과 웨어는 각각 상단 및 하단 높이* Dam and weir are top and bottom height respectively

* 체류시간비=Y측 최대체류시간/X측 최대체류시간* Stay time ratio = Maximum stay time on Y side / Maximum stay time on X side

* 최대체류시간=X 또는 Y측 최대체류시간/공칭체류시간* Maximum stay time = Maximum stay time on X or Y side / nominal stay time

(실시예 2)(Example 2)

하기 표 2는 실시예 1의 수모델에서 Y측에 용강 체류시간을 증가시키기 위해서 턴디시의 탕류부족으로 하부 댐으 설치하고 다음에 웨어를, 마지막으로 다시 하부 댐을 설치하여 X측의 댐의 높이와 위치를 이동시키고 Y측의 하부 댐에 잔탕배출용 구멍(도시되지 않음)을 뚫어 시험을 행하였다. 이 경우 실시예 1의 경우 보다 최대체류시간이 높아 개재물의 부상제거능력이 훨씬 우수함을 알 수 있다.Table 2 below shows the height of the dam on the X side by installing the lower dam, and then installing the lower dam, and finally the lower dam in order to increase the molten steel residence time on the Y side in the water model of Example 1 The test was carried out by moving the position and the hole and drilling a residue discharge hole (not shown) in the lower dam on the Y side. In this case, the maximum residence time is higher than that of Example 1, and it can be seen that the floating removal ability of the inclusion is much superior.

[표 2]TABLE 2

* 체류시간비=Y측 최대체류시간/X측 최대체류시간* Stay time ratio = Maximum stay time on Y side / Maximum stay time on X side

* 최대체류시간=X 또는 Y측 최대체류시간/공칭체류시간* Maximum stay time = Maximum stay time on X or Y side / nominal stay time

X측 댐의 높이를 0.23Ho에서 0.34Ho까지 변화시킨 경우 0.25-0.31Ho사이에서 체류시간비도 1에 접근하고 체류시간도 1,2로 긴 상태를 유지하였다. 반면에0.23Ho에서 댐의 위치를 0.05Lo에서 0.25Lo까지 증가시킴에 따라 체류시간비는 1.4에서 0.9까지 감소하며 0.20-0.25Lo에서 체류시간비가 1에 접근하나 이 경우 댐과 웨어간에 용강이 유출될만한 공간이 없기 때문에 실용적이지 못하다.When the height of the X-side dam was changed from 0.23Ho to 0.34Ho, the residence time ratio approached 1 and the residence time was maintained to be 1,2 between 0.25-0.31Ho. On the other hand, as the position of the dam increases from 0.05Lo to 0.25Lo at 0.23Ho, the residence time ratio decreases from 1.4 to 0.9, and the residence time ratio approaches 1 at 0.20-0.25Lo, but in this case, the molten steel flows out between the dam and weir. It is not practical because there is no room for it.

마지막으로 턴디시의 용강 배제시 잔류용강을 최소화하기 위해서 댐의 하부에 배출구멍을 뚫었다. X측의 댐의 경우 중앙바닥에 잔탕배출구가 뚫려 있고 Y측 댐들에 있어서 배출구멍이 둘다 있는 경우, 첫 번째 댐에 구멍이 뚫린 경우와 두 번째 댐에 구멍이 뚫린 경우를 대상으로 용강체류시간을 조사 하였다. 그 결과 두 번째 댐의 구멍을 뚫은 경우가 체류시간비 1을 만족하고 최대체류시간도 가장 길어 개재물의 부상분리에 가장 유리하였다.Finally, the drain hole was drilled in the lower part of the dam to minimize the residual molten steel when tungsten was excluded. For the dam on the X side, the molten steel discharge time is defined in the case where the receptacle outlet is drilled in the center bottom and both discharge holes in the Y-side dams, the hole is drilled in the first dam and the hole is drilled in the second dam. Investigated. As a result, the case of the second dam was drilled, which satisfies the residence time ratio 1 and the longest stay time, which was most advantageous for the separation of the inclusions.

이상의 예를 종합하면 도 7에 잘 나타난 바와 같이, 래들-턴디시-주형으로 구성된 연속주조 공정에서 래들에서 턴디시로 용강을 주입하는 과정에서 턴디시의 중앙이 아닌 편심위치에 용강의 주입시 발생하는 양 주형간의 주편 품질차를 최소화하기 위해서는 상기 턴디시는 상기 쉬라우드 노즐과 침지 노즐간의 거리가 먼 쪽은 쉬라우드 노즐로부터 웨어와 댐의 순으로 위치시키고, 상기 댐의 높이는 0.25-0.3Ho로 하며, 상기 쉬라우드 노즐과 침지 노즐간의 거리가 가까운 쪽은 쉬라우드 노즐로부터 댐과 웨어, 그리고 댐의 순으로 각각 위치시키는 한편, 상기 침지 노즐과 가까운 댐의 중앙 하부에 잔탕배출용 구멍을 가지도록 하면 가능한 것을 알 수 있다.In summary, as shown in FIG. 7, when molten steel is injected into an eccentric position other than the center of the tundish in the process of injecting molten steel from the ladle to the tundish in a continuous casting process consisting of a ladle-tundish-mould. In order to minimize the quality difference between the two casting molds, the tundish is located at the far side between the shroud nozzle and the immersion nozzle in order from the shroud nozzle to the weir and the dam, and the height of the dam is 0.25-0.3Ho. The distance between the shroud nozzle and the immersion nozzle is closer to each other in order from the shroud nozzle to the dam, the ware, and the dam, and has a hole for discharging the residue in the center lower portion of the dam close to the immersion nozzle. You can see what you can do.

본 발명에 의하여 용강 체류시간 편차를 최소화하고 체류시간을 극대화하므로써 턴디시에서 용강중 개재물의 부상 분리율을 극대화 시킬수 있음은 물론 연속 주조 공정에서 턴디시내의 댐(dam)과 웨어(weir)의 구조 변경을 통해 래들에서 턴디시로 용강을 주입하는 과정에서 턴디시의 중앙이 아닌 편심위치에 용강의 주입시 발생하는 양 주형간의 주편 품질차를 저감시키는 효과가 있다.The present invention can maximize the separation time of molten steel inclusions in tundish by minimizing the variation of the dwell time in molten steel and maximizing the dwell time, as well as modifying the structure of dams and weirs in tundish in the continuous casting process. Through the injection of molten steel from the ladle to the tundish, there is an effect of reducing the quality difference between the two casts generated when the molten steel is injected into the eccentric position rather than the center of the tundish.

Claims (1)

래들 내의 용강이 쉬라우드 노즐을 통하여 턴디시로 주입된 후 주형과 2차 냉각대를 거치면서 냉각되는 연속주조 공정의 턴디시에 있어서,In the tundish of the continuous casting process in which molten steel in the ladle is injected into the tundish through the shroud nozzle and then cooled through the mold and the secondary cooling stand, 상기 턴디시는 상기 쉬라우드 노즐과 침지 노즐간의 거리가 먼 쪽은 쉬라우드 노즐로부터 웨어(weir)와 댐(dam)의 순으로 위치시키고, 상기 댐의 높이는 0.25-0.31Ho(여기서 Ho는 탕면높이)로 하며, 상기 쉬라우드 노즐과 침지 노즐간의 거리가 가까운 쪽은 쉬라우드 노즐로부터 댐과 웨어, 그리고 댐의 순으로 각각 위치시키는 한편, 상기 침지 노즐과 가까운 댐의 중앙 하부에 잔탕배출용 구멍을 가지는 것을 특징으로 하는 연주공정의 래들-턴디시간 편심주입시 청정강 제조를 보장하는 턴디시 구조.The tundish is located at the far side between the shroud nozzle and the immersion nozzle in the order of the weir and the dam from the shroud nozzle, and the height of the dam is 0.25-0.31Ho (where Ho is the height of the floor) The distance between the shroud nozzle and the immersion nozzle is closer to each other in order from the shroud nozzle to the dam, the ware, and the dam, and a hole for discharging the residual water in the center lower portion of the dam close to the immersion nozzle. A tundish structure to ensure clean steel production during ladle-teddy time eccentric injection of the playing process, characterized in that it has a.
KR1019960072577A 1996-12-26 1996-12-26 Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process KR100379604B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960072577A KR100379604B1 (en) 1996-12-26 1996-12-26 Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960072577A KR100379604B1 (en) 1996-12-26 1996-12-26 Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process

Publications (2)

Publication Number Publication Date
KR19980053471A KR19980053471A (en) 1998-09-25
KR100379604B1 true KR100379604B1 (en) 2003-07-10

Family

ID=37496590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960072577A KR100379604B1 (en) 1996-12-26 1996-12-26 Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process

Country Status (1)

Country Link
KR (1) KR100379604B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102033629B1 (en) * 2017-12-05 2019-10-17 주식회사 포스코 Continuous casting method and apparatus
KR102033642B1 (en) * 2017-12-11 2019-11-08 주식회사 포스코 Processing apparatus for molten material
KR102103387B1 (en) * 2018-06-15 2020-04-22 주식회사 포스코 Nozzle, apparatus of casting and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717357A (en) * 1980-07-04 1982-01-29 Sumitomo Metal Ind Ltd Manufacturing lead free-cutting steel
JPS59141353A (en) * 1983-02-02 1984-08-14 Aikoo Kk Tundish for casting steel
JPH03198954A (en) * 1989-12-28 1991-08-30 Harima Ceramic Co Ltd Refractory for adsorbing and removing inclusion in molten steel
JPH06114510A (en) * 1992-10-05 1994-04-26 Nisshin Steel Co Ltd Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717357A (en) * 1980-07-04 1982-01-29 Sumitomo Metal Ind Ltd Manufacturing lead free-cutting steel
JPS59141353A (en) * 1983-02-02 1984-08-14 Aikoo Kk Tundish for casting steel
JPH03198954A (en) * 1989-12-28 1991-08-30 Harima Ceramic Co Ltd Refractory for adsorbing and removing inclusion in molten steel
JPH06114510A (en) * 1992-10-05 1994-04-26 Nisshin Steel Co Ltd Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion

Also Published As

Publication number Publication date
KR19980053471A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
CN100357049C (en) Electromagnetic eddy flow downspout
CA2149191A1 (en) Discharge nozzle for continuous casting
KR100379604B1 (en) Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
JPH09122848A (en) Cleaning method for molten steel in tundish
KR100379603B1 (en) Continuous casting method in tundish with sliding gate control method
JPH04220148A (en) Molten steel supplying nozzle
JP2000141025A (en) Method and device for removing slag in frame
KR100946659B1 (en) Submerged entry nozzle for continuous casting
KR102033642B1 (en) Processing apparatus for molten material
JPH04238658A (en) Immersion nozzle for continuous casting
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JPH0238058B2 (en)
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPH06114510A (en) Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion
JP2005028376A (en) Tundish for continuously casting steel
JPS6343752A (en) Molten metal vessel providing weir
KR101053275B1 (en) Dipping nozzle for thin cast continuous casting device and thin cast continuous casting method using same
KR20030054625A (en) Submerged entry nozzle for reducing nozzle clogging
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPS5935856A (en) Continuous casting mold
JP3139927B2 (en) Continuous casting of thin slabs
JPH09122847A (en) Cleaning method for molten metal in tundish
JPH0866751A (en) Continuous casting method and immersion nozzle
JPS611458A (en) Continuous casting method of different kinds of metal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120320

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee